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ON THE ENERGY INEQUALITY FOR WEAK SOLUTIONS TO
THE NAVIER-STOKES EQUATIONS OF COMPRESSIBLE

FLUIDS ON UNBOUNDED DOMAINS

FILIPPO DELL’ORO AND EDUARD FEIREISL

Abstract. We consider the Navier-Stokes equations of compressible isentropic viscous
fluids on an unbounded three-dimensional domain with a compact Lipschitz boundary.
Under the condition that the total mass of the fluid is finite, we show the existence of
globally defined weak solutions satisfying the energy inequality in differential form.

1. Introduction

Let T > 0 be fixed and let Ω ⊂ R3 be an exterior domain (an unbounded domain
with compact Lipschitz boundary ∂Ω). We consider the Navier-Stokes equations of a
compressible isentropic viscous fluid

∂tϱ+ divx(ϱu) = 0,(1.1)

∂t(ϱu) + divx(ϱu⊗ u) +∇xϱ
γ = divxS,(1.2)

in the unknown variables

ϱ = ϱ(x, t) : Ω× (0, T ) → R and u = u(x, t) : Ω× (0, T ) → R3

representing the density and velocity of the fluid, respectively. The adiabatic constant γ
is subjected to the technical constraint

γ >
3

2
,

while the viscous stress tensor S fulfills Newton’s rheological law

S(∇xu) = µ
(
∇xu+∇t

xu− 2

3
divxuI

)
+ ηdivxuI,

with shear viscosity coefficient µ and bulk viscosity coefficient η satisfying

µ > 0 and η ≥ 0.

Accordingly, we may write

divxS = µ∆u+ (λ+ µ)∇xdivxu,
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2 F. DELL’ORO AND E. FEIREISL

where

λ = η − 2

3
µ.

As the underlying physical domain is unbounded, the system is supplemented with the
far field conditions

lim
|x|→∞

ϱ(x, t) = 0, lim
|x|→∞

u(x, t) = 0,

and the no-slip boundary condition

u(x, t)|x∈∂Ω = 0.

Finally, we prescribe the initial conditions

ϱ(0) = ϱ0 and (ϱu)(0) = q0

where ϱ0 and q0 are given functions, complying with the following assumptions:

• ϱ0 ∈ L1(Ω) ∩ Lγ(Ω) and ϱ0 ≥ 0 almost everywhere.

• q0 ∈ L
2γ
γ+1

loc (Ω;R3) is such that q0(x) = 0 whenever ϱ0(x) = 0. Moreover

|q0|2

ϱ0
∈ L1(Ω).

Under the above general assumptions on the structural coefficients and the initial data,
the compressible Navier-Stokes equations (1.1)-(1.2) are known to admit at least one
globally defined weak solution1 (ϱ,u) (see [5, 12, 14]). In particular, for the energy
functional

E(t) =

∫
Ω

[1
2
ϱ|u|2(t) + 1

γ − 1
ϱγ(t)

]
dx,

the weak solutions can be constructed to fulfill the energy inequality in the integral form

(1.3) E(t) +

∫ t

0

∫
Ω

[
µ|∇xu|2 + (λ+ µ)|divxu|2

]
dx ≤ E0

for almost any t ∈ [0, T ], where

E0 =

∫
Ω

[
1

2

|q0|2

ϱ0
+

1

γ − 1
ϱγ0

]
dx.

In this paper, we show the existence of globally defined weak solutions with associated
energy E(t) satisfying the energy inequality in the differential form

(1.4)


d

dt
E +

∫
Ω

[
µ|∇xu|2 + (λ+ µ)|divxu|2

]
dx ≤ 0, in D′(0, T ),

ess lim sup
t→0+

E(t) ≤ E0.

Although the existence of such solutions on a bounded domain is relatively easy to show
(cf. Kukučka [10] for a rather general class of bounded domains with rough boundaries),
the case of unbounded domains is not obvious and, as a matter of fact, an open problem
(see the discussion in [14]). We also note that some results on the long-time behavior
of solutions to the compressible Navier-Stokes system require (1.4) rather than (1.3),

1See Section 3 for the precise definition.
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see [6]. In the incompressible situation, analogous results have been obtained by Leray
[11] when Ω = R3 and by Galdi, Maremonti, Miyakawa and Sohr [8, 13] when Ω is an
exterior domain. Our proof relies on some refined pressure estimates on bounded domains
(see Lemma 3) and the fact that the total mass of the fluid is finite and conserved (see
Definition 1). When the mass of the fluid is infinite, namely, when

lim
|x|→∞

ϱ(x, t) > 0,

the existence of globally defined weak solutions satisfying (1.4) remains an open question.

Remark. It is immediate to see that inequality (1.4) is equivalent to

E(t) +

∫ t

s

∫
Ω

[
µ|∇xu|2 + (λ+ µ)|divxu|2

]
dx dr ≤ E(s),

for almost every t, s ∈ [0, T ] with t ≥ s, the case s = 0 included.

Plan of the paper. In the next Section 2 we introduce the notation and we recall some
basic tools needed in the analysis. In Section 3 we state the main result, whose proof is
carried out in the subsequent Section 4. The last Section 5 is devoted to final remarks.

2. Preliminaries and Notation

For p ∈ [1,∞] and k ∈ N, the symbols Lp(Ω) and W k,p
0 (Ω) will denote the usual Lebesgue

and Sobolev spaces of vector or tensor valued functions on Ω. We introduce the homo-
geneous Sobolev space D1,2

0 (Ω), defined as the completion of C∞
cpt(Ω) with respect to the

norm

∥f∥D1,2
0 (Ω) =

(∫
Ω

|∇f |2 dx
)1/2

.

Accordingly, we set

D1,2
0 (Ω) = D1,2

0 (Ω;R3).

Given a bounded Lipschitz domain Π ⊂ R3, we have the Sobolev inequality

(2.1) ∥f∥
L

3p
3−p (Π)

≤ c(p)∥∇f∥Lp(Π), 1 ≤ p < 3,

for every f ∈ W 1,p
0 (Π), with a constant c(p) > 0 independent of Π (see e.g. [9]). In

particular, when p = 2,

(2.2) ∥f∥L6(Π) ≤ c(p)∥∇f∥L2(Π).

We will also need the inequality

(2.3)
∥∥∥f − 1

|Π|

∫
Π

f dx
∥∥∥
Lp(Π)

≤ 2∥f∥Lp(Π),

where |Π| denotes the measure of Π. Finally, for 1 < q, p < ∞, we introduce the Banach
space

Eq,p(Π) =
{
f ∈ Lq(Π) : div f ∈ Lp(Π)

}
endowed with the norm

∥f∥Eq,p(Π) = ∥f∥Lq(Π) + ∥div f∥Lp(Π).
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We will also encounter the space Eq,p
0 (Π), defined as the completion of C∞

cpt(Π) with
respect to the above norm.

Remark. The space D1,2
0 (Π) coincides with W 1,2

0 (Π) as long as Π is bounded Lipschitz.

3. The Main Result

We begin by recalling the definition of weak solution to Navier-Stokes system (1.1)-(1.2).

Definition 1. A couple (ϱ,u) is called weak solution of the Navier-Stokes equations (1.1)
and (1.2) with initial data ϱ0 and q0 if the following conditions are satisfied:

• The density ϱ is nonnegative and such that

ϱ ∈ L∞(0, T ;L1(Ω) ∩ Lγ(Ω)).

• The velocity u is such that

u ∈ L2(0, T ;D1,2
0 (Ω)).

• The total mass of the fluid is conserved, namely,

(3.1)

∫
Ω

ϱ(t) dx =

∫
Ω

ϱ0 dx =M0, ∀t ∈ [0, T ].

• The integral identity∫ T

0

∫
Ω

[
ϱB(ϱ)(∂tφ+ u · ∇xφ)− b(ϱ)divxuφ

]
dx dt = −

∫
Ω

ϱ0B(ϱ0)φ(0) dx

holds for every φ ∈ C∞
cpt([0, T )× Ω) and every function B : [0,∞) → R such that

B(r) = B(1) +

∫ r

1

b(s)

s2
ds

for some bounded b ∈ C[0,∞).

• The integral identity∫ T

0

∫
Ω

[
ϱu · ∂tφ+ (ϱu⊗u) : ∇xφ+ ϱγdivxφ

]
dx dt =

∫ T

0

∫
Ω

S : ∇xφ dx dt−
∫
Ω

q0φ(0) dx

holds for every φ ∈ C∞
cpt([0, T )× Ω;R3).

• The energy

E(t) =

∫
Ω

[1
2
ϱ|u|2(t) + 1

γ − 1
ϱγ(t)

]
dx

satisfies inequality (1.3) for almost any t ∈ [0, T ].

Remark. Observe that, due to (1.3), the function ϱ|u|2 belongs to L∞(0, T ;L1(Ω)).

The main result of the paper reads as follows.

Theorem 2. Within our general assumptions on the structural coefficients and the initial
data, the compressible Navier-Stokes equations (1.1)-(1.2) admit at least one weak solution
whose associated energy satisfies the inequality in differential form (1.4).
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4. Proof of Theorem 2

Along the paper, BR will denote the three-dimensional open ball of radius R centered at
0. Without loss of generality, we suppose that

(4.1) R3 \ Ω ⊂ B1

and, for every n ∈ N, we set

Ωn = Ω ∩Bn.

We also denote by ϱ0n and q0n the restriction of ϱ0 and q0 to Ωn.

In light of the results [2, 4, 12], for all n ∈ N there exists a globally defined weak
solution (ϱn,un) to the Navier-Stokes equations (1.1)-(1.2) in Ωn × (0, T ) with initial
datum (ϱ0n, q0n) and no-slip boundary conditions

un|∂Ωn = 0,

whose associated energy functional

En(t) =

∫
Ωn

[1
2
ϱn|un|2(t) +

1

γ − 1
ϱγn(t)

]
dx

satisfies the energy inequality in differential form

(4.2)
d

dt
En +

∫
Ωn

[
µ|∇xun|2 + (λ+ µ)|divxun|2

]
dx ≤ 0

in D′(0, T ). We extend ϱn,un to be zero outside Ωn × (0, T ). We also know that the
density ϱn is nonnegative and such that

(4.3)

∫
Ωn

ϱn(t) dx =

∫
Ωn

ϱ0n dx ≤
∫
Ω

ϱ0 dx =M0, ∀t ∈ [0, T ].

Remark. Note that the density ϱn as a function of the time t is continuous with values
in L1(Ωn), see e.g. [12].

Moreover, the following estimates hold:

sup
t∈[0,T ]

∥ϱn(t)∥Lγ(Ωn) ≤ c(E0),(4.4)

ess sup
t∈[0,T ]

∥√ϱnun(t)∥L2(Ωn) ≤ c(E0),(4.5) ∫ T

0

∫
Ωn

|∇xun|2 dx dt ≤ c(E0),(4.6)

where the constant c(E0) > 0 depends on the initial energy E0, but is independent on n.
In particular, from (4.6),

∥S(∇xun)∥L2(0,T ;L2(Ωn)) ≤ c(E0).

In addition, exploiting (4.3), (4.4) and interpolation,

(4.7) sup
t∈[0,T ]

∥ϱn(t)∥Lp(Ωn) ≤ c(M0, E0), 1 ≤ p ≤ γ,
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for some constant c(M0, E0) > 0 depending on M0 and E0, but independent of n. All
these uniform estimates, as well as the Sobolev embeddings (2.1) and (2.2), will be used
several times in what follows, often without explicit mention.

Refined pressure estimates. Our goal is to prove that the sequence ϱn is uniformly
bounded in Lγ+θ(Ωn × (0, T )) for some θ = θ(γ) > 0.

Lemma 3. There exists θ = θ(γ) > 0 such that the estimate∫ T

0

∫
Ωn

ϱγ+θ
n dx dt ≤ c(T,M0, E0)

holds for some constant c(T,M0, E0) > 0 depending on T , the initial mass M0 and the
initial energy E0, but independent on n.

We need a preliminary result [1, 7, 14] concerning the existence of the so-called Bogov-
skii’s operator BΠ. In particular, for the statement (iv), see e.g. Lemmas 3.17 and 3.18
in [14].

Lemma 4. Let Π ⊂ R3 be a bounded Lipschitz domain. Then, there exists a bounded
linear operator

BΠ :
{
f ∈ Lp(Π) :

∫
Π

f dx = 0
}
→ W 1,p

0 (Π), 1 < p <∞,

such that:

(i) the function v = BΠ(f) solves the problem

div v = f

almost everywhere in Π.

(ii) the inequality

∥∇BΠ(f)∥Lp(Π) ≤ c1(p,Π)∥f∥Lp(Π)

holds with a constant c1(p,Π) > 0 depending on p and Π.

(iii) if f = div g for some g ∈ Eq,p
0 (Π) and 1 < q <∞, then the inequality

∥BΠ(f)∥Lq(Π) ≤ c2(q,Π)∥g∥Lq(Π)

holds with a constant c2(q,Π) > 0 depending on p and Π.

(iv) when Π = BR, the constants c1 and c2 appearing in the estimates above are inde-
pendent of the radius R, namely,

c1(p,BR) = c1(p) and c2(q, BR) = c2(q).

We are now in a position to prove Lemma 3. Along the proof, c(T,M0, E0) > 0 will
denote a generic constant depending on T , M0 and E0, but independent on n.

For a fixed

0 < θ <
γ

3



ENERGY INEQUALITY FOR THE NAVIER-STOKES EQUATIONS 7

to be suitably chosen later, we compute, with help of (4.3),∫ T

0

∫
Ωn

ϱγ+θ
n dx dt =

∫ T

0

∫
{x∈Ωn:ϱn(x,t)≤1}

ϱγ+θ
n dx dt+

∫ T

0

∫
{x∈Ωn:ϱn(x,t)>1}

ϱγ+θ
n dx dt

≤M0T +

∫ T

0

∫
Ω1

ϱγ+θ
n dx dt+

∫ T

0

∫
{x∈Ωn\Ω1:ϱn(x,t)>1}

ϱγ+θ
n dx dt.

Exploiting statements (i)-(iii) of Lemma 4 and performing similar computations as in
[5, 14], the second integral above can be estimated as∫ T

0

∫
Ω1

ϱγ+θ
n dx dt ≤ c(T,E0,Ω1),

for some positive constant c(T,E0,Ω1) depending on T,E0 and the domain Ω1, but inde-
pendent on n. Therefore, we only need to control the last integral∫ T

0

∫
{x∈Ωn\Ω1:ϱn(x,t)>1}

ϱγ+θ
n dx dt,

uniformly with respect to n. To this end, let b ∈ C2[0,∞) be such that

b(r) =


0 for r ≤ 1,

b′(r) ≥ 0 for r ∈ (1, 2),

b(r) = rθ for r ≥ 2.

Note that, in view of (4.7),

(4.8) sup
t∈[0,T ]

∥b(ϱn)(t)∥Lp(Ωn) ≤ c(M0, E0), 1 ≤ p ≤ γ

θ
.

With reference to Lemma 4, let now

Bn = BBn

be the Bogovskii operator associated to the ball Bn. Setting

b(ϱn) = b(ϱn)−
1

|Bn|

∫
Bn

b(ϱn) dx

and exploiting properties (ii) and (iv) of Lemma 4, together with inequalities (2.3) and
(4.8), we infer that

(4.9) sup
t∈[0,T ]

∥∇xBn

(
b(ϱn)

)
∥Lp(Bn) ≤ c(M0, E0), 1 < p <

γ

θ
.

By the same token, due to the Sobolev embedding (2.1) and inequality (2.3),

(4.10) sup
t∈[0,T ]

∥Bn

(
b(ϱn)

)
∥Lq(Bn) ≤ c(M0, E0),

3

2
< q ≤ ∞.
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At this point, taking ψ ∈ C∞
cpt(0, T ), we test2 the momentum equation (1.2) by

ψ(t)ϕ(x)Bn

(
b(ϱn)

)
where ϕ ∈ C∞(R3) is such that

(4.11)


0 ≤ ϕ ≤ 1,

ϕ ≡ 1 on R3 \ Ω1,

ϕ ≡ 0 on ∂Ω.

We obtain ∫ T

0

ψ

∫
Ωn

ϕϱγnb(ϱn) dx dt =
9∑

j=1

Ij

where

I1 =
1

|Bn|

∫ T

0

ψ

∫
Bn

b(ϱn) dx

∫
Bn

ϕϱγn dx dt

I2 = −
∫ T

0

ψ

∫
Ωn

ϱγn∇xϕ · Bn

(
b(ϱn)

)
dx dt

I3 =

∫ T

0

ψ

∫
Ωn

ϕS(∇xun) : ∇xBn

(
b(ϱn)

)
dx dt

I4 =

∫ T

0

ψ

∫
Ωn

S(∇xun) · ∇xϕ · Bn

(
b(ϱn)

)
dx dt

I5 = −
∫ T

0

ψ

∫
Ωn

ϕ(ϱnun ⊗ un) : ∇xBn

(
b(ϱn)

)
dx dt

I6 = −
∫ T

0

ψ

∫
Ωn

(ϱnun ⊗ un) · ∇xϕ · Bn

(
b(ϱn)

)
dx dt

I7 = −
∫ T

0

ψ′
∫
Ωn

ϕϱnun · Bn

(
b(ϱn)

)
dx dt

I8 =

∫ T

0

ψ

∫
Ωn

ϕϱnun · Bn (divx(b(ϱn)un)) dx dt

I9 =

∫ T

0

ψ

∫
Ωn

ϕϱnun · Bn

(
h(ϱn)

)
dx dt

having set

h(ϱn) = (b′(ϱn)ϱn − b(ϱn)) divxun

and

h(ϱn) = h(ϱn)−
1

|Bn|

∫
Bn

h(ϱn) dx.

2The multiplication can be justified by means of a standard regularization procedure (see e.g. [3, 14]).
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Our aim is to estimate the nine integrals above making use of (4.8), (4.9) and (4.10).
First,

|I1| ≤ ∥ψ∥L∞(0,T )∥ϕϱγn∥L∞(0,T ;L1(Ωn))∥b(ϱn)∥L1((0,T )×Ωn)

≤ c(T,M0, E0)∥ψ∥L∞(0,T ),

|I2| ≤ T∥ψ∥L∞(0,T )∥ϱγn∇xϕ∥L∞(0,T ;L1(Ωn))∥B
(
b(ϱn)

)
∥L∞(0,T ;L∞(Ωn))

≤ c(T,M0, E0)∥ψ∥L∞(0,T )∥∇xϕ∥L∞(R3).

Then,

|I3| ≤ ∥ψ∥L∞(0,T )∥ϕS(∇xun)∥L2(0,T ;L2(Ωn))∥∇xB
(
b(ϱn)

)
∥L2(0,T ;L2(Ωn))

≤ c(T,M0, E0)∥ψ∥L∞(0,T ),

|I4| ≤ ∥ψ∥L∞(0,T )∥S(∇xun) · ∇xϕ∥L2(0,T ;L2(Ωn))∥B
(
b(ϱn)

)
∥L2(0,T ;L2(Ωn))

≤ c(T,M0, E0)∥ψ∥L∞(0,T )∥∇xϕ∥L∞(R3).

Moreover, taking

(4.12) 0 < θ <
2γ − 3

3
,

we can also draw the controls

|I5| ≤ ∥ψ∥L∞(0,T )∥ϕϱn∥L∞(0,T ;Lγ(Ωn))∥∇un∥2L2(0,T ;L2(Ωn))
∥∇xB

(
b(ϱn)

)
∥
L∞(0,T ;L

3γ
2γ−3 (Ωn))

≤ c(T,M0, E0)∥ψ∥L∞(0,T ),

|I6| ≤ ∥ψ∥L∞(0,T )∥ϱn∇xϕ∥L∞(0,T ;Lγ(Ωn))∥∇un∥2L2(0,T ;L2(Ωn))
∥B

(
b(ϱn)

)
∥
L∞(0,T ;L

3γ
2γ−3 (Ωn))

≤ c(T,M0, E0)∥ψ∥L∞(0,T )∥∇xϕ∥L∞(R3),

|I7| ≤ ∥ψ′∥L1(0,T )∥ϕ
√
ϱn∥L∞(0,T ;L2γ(Ωn))∥

√
ϱnun∥L∞(0,T ;L2(Ωn))∥B

(
b(ϱn)

)
∥
L∞(0,T ;L

2γ
γ−1 (Ωn))

≤ c(T,M0, E0)∥ψ′∥L1(0,T ).

Exploiting now properties (iii) and (iv) of Lemma 4,

|I8| ≤ c2∥ψ∥L∞(0,T )∥ϕϱn∥L∞(0,T ;Lγ(Ωn))

∫ T

0

∥un(t)∥L6(Ωn)∥b(ϱn)un(t)∥
L

6γ
5γ−6 (Ωn)

dt.

Since

∥b(ϱn)un(t)∥
L

6γ
5γ−6 (Ωn)

≤ ∥un(t)∥L6(Ωn)∥b(ϱn)(t)∥L 3γ
2γ−3 (Ωn)

,

in light of (4.8) and (4.12), we conclude that

|I8| ≤ c2∥ψ∥L∞(0,T )∥ϕϱn∥L∞(0,T ;Lγ(Ωn))∥∇xun∥2L2(0,T ;L2(Ωn))
∥b(ϱn)∥

L∞(0,T ;L
3γ

2γ−3 (Ωn))

≤ c(T,M0, E0)∥ψ∥L∞(0,T ).
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In order to control the last integral I9, we shall distinguish two cases. When γ < 6, we
estimate

|I9| ≤ ∥ψ∥L∞(0,T )∥ϕϱn∥L∞(0,T ;Lγ(Ωn))

∫ T

0

∥un(t)∥L6(Ωn)∥B
(
h(ϱn)

)
(t)∥

L
6γ

5γ−6 (Ωn)
.

In addition,

∥B
(
h(ϱn)

)
(t)∥

L
6γ

5γ−6 (Ωn)
≤ ∥h(ϱn)(t)∥

L
6γ

7γ−6 (Ωn)

≤ ∥∇xun(t)∥L2(Ωn)∥b
′(ϱn)ϱn − b(ϱn)(t)∥

L
3γ

2γ−3 (Ωn)
,

yielding

|I9| ≤ ∥ψ∥L∞(0,T )∥ϕϱn∥L∞(0,T ;Lγ(Ωn))∥∇xun∥2L2(0,T ;L2(Ωn))

· ∥b′(ϱn)ϱn − b(ϱn)∥
L∞(0,T ;L

3γ
2γ−3 (Ωn))

≤ c(T,M0, E0)∥ψ∥L∞(0,T ).

On the other hand, when γ ≥ 6,

|I9| ≤ ∥ψ∥L∞(0,T )∥ϕϱn∥L∞(0,T ;L3(Ωn))

∫ T

0

∥un(t)∥L6(Ωn)∥B
(
h(ϱn)

)
(t)∥L2(Ωn),

and, analogously to the previous case,

∥B
(
h(ϱn)

)
(t)∥L2(Ωn) ≤ ∥∇xun(t)∥L2(Ωn)∥ϱnb

′(ϱn)− b(ϱn)(t)∥L3(Ωn).

Therefore, again,
|I9| ≤ c(T,M0, E0)∥ψ∥L∞(0,T ).

Collecting the estimates above on the integrals I1, · · · , I9,∫ T

0

ψ

∫
Ωn

ϕϱγnb(ϱn) dx dt ≤ c(T,M0, E0)
[
∥ψ∥L∞(0,T ) + ∥ψ′∥L1(0,T )

+ ∥ψ∥L∞(0,T )∥∇xϕ∥L∞(R3)

]
.

Observing that∫ T

0

ψ

∫
Ωn

ϕϱγnb(ϱn) dx dt =

∫ T

0

ψ

∫
{x∈Ωn:ϱn(x,t)>1}

ϕϱγnb(ϱn) dx dt

and using a standard approximation argument (see e.g. [14]), we end up with∫ T

0

∫
{x∈Ωn:ϱn(x,t)>1}

ϕϱγ+θ
n dx dt ≤ c(T,M0, E0)(1 + ∥∇xϕ∥L∞(R3)).

Finally, an exploitation of (4.11) entails∫ T

0

∫
{x∈Ωn\Ω1:ϱn(x,t)>1}

ϱγ+θ
n dx dt ≤

∫ T

0

∫
{x∈Ωn:ϱn(x,t)>1}

ϕϱγ+θ
n dx dt

≤ c(T,M0, E0)
(
1 + ∥∇xϕ∥L∞(R3)

)
.

The proof of Lemma 3 is finished. �
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Conclusion of the proof of Theorem 2. In light of the results [5, 14], the sequence
(ϱn,un) admits a subsequence converging to a weak solution (ϱ,u) of the Navier-Stokes
equations (1.1)-(1.2) in Ω× (0, T ),

(4.13) ∇xun → ∇xu weakly in L2(Ω× (0, T ))

and, for every fixed ball BR,

ϱn|un|2 → ϱ|u|2 weakly in L2(0, T ;L
6γ

4γ+3 (BR)),(4.14)

ϱγn → ϱγ weakly in L
5γ−3
3γ (BR × (0, T )).(4.15)

In addition, the total mass is conserved, namely, (3.1) holds (see [5, Proposition 2.1]).

Our plan is to pass to the limit as n → ∞ in the differential inequality (4.2). Making
use of (4.13), one can immediately pass to the limit in the viscous term∫

Ωn

[
µ|∇xun|2 + (λ+ µ)|divxun|2

]
dx

by means of lower weak semicontinuity of convex functionals, as∫ T

0

ψ

∫
Ω

|∇xu|2 dx dt ≤ lim inf
n→∞

∫ T

0

ψ

∫
Ω

|∇xun|2 dx dt,∫ T

0

ψ

∫
Ω

|divxu|2 dx dt ≤ lim inf
n→∞

∫ T

0

ψ

∫
Ω

|divxun|2 dx dt.

for every nonnegative ψ ∈ D(0, T ). The next step is to show that, for every ε > 0, there
exists R = R(ε) > 0 independent of n such that

(4.16)

∫ T

0

∫
{x∈Ω:|x|≥R}

ϱγn dx dt < ε

and

(4.17)

∫ T

0

∫
{x∈Ω:|x|≥R}

ϱn|un|2 dx dt < ε.

In order to prove the two estimates above, we need the following result.

Lemma 5. The convergence

ϱn → ϱ in L1(Ω× (0, T ))

holds up to a subsequence.

Proof. Recalling that ϱn ≡ 0 outside Ωn and collecting (3.1) and (4.3), we infer that∫ T

0

∫
Ω

(ϱ− ϱn) dx dt = T

∫
Ω

(ϱ0 − ϱ0n) dx dt.

Due the Dominated Convergence Theorem, the right-hand side of the equality above tends
to zero, yielding

(4.18) ∥ϱn∥L1(Ω×(0,T )) → ∥ϱ∥L1(Ω×(0,T )).
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Next, from [5, 14], there exists a subsequence of ϱn, which we shall denote by ϱ1,k, which
converges to ϱ pointwise almost everywhere in

Ω1 × (0, T )

as k → ∞. Then, for every m ∈ N, we construct by induction a subsequence ϱm+1,k of
ϱm,k which converges to ϱ pointwise almost everywhere in

Ωm+1 × (0, T )

as k → ∞. Hence, the “diagonal” sequence

ϱn = ϱn,n

converges to ϱ pointwise almost everywhere in Ω × (0, T ). In light of (4.18), we are
done. �

Collecting Lemmas 3 and 5, by interpolation we conclude that

ϱn → ϱ in Lγ(Ω× (0, T ))

up to a subsequence, yielding (4.16). Then, for every fixed R > 0, due to (2.2), interpo-
lation, estimates (4.4)-(4.6) and convergence (4.18),∫ T

0

∫
{x∈Ω:|x|≥R}

ϱn|un|2 dx dt ≤ c(E0)

∫ T

0

∥un(t)∥L6(Ω)

(∫
{x∈Ω:|x|≥R}

ϱ3/2n (t) dx
)1/3

dt

≤ c(E0)

[∫ T

0

(∫
{x∈Ω:|x|≥R}

ϱ3/2n (t) dx
)2/3

dt

]1/2
≤ c(T,M0, E0)

[∫ T

0

∫
{x∈Ω:|x|≥R}

ϱγn dx dt

]α/2γ
for some α ∈ (0, 1). Hence, an exploitation of (4.16) provides the desired control (4.17).
Finally, in light of (4.14)-(4.18), we can pass to the limit as n → ∞ in the remaining
terms of inequality (4.2). �

5. Final Remarks

I. In light of the results [10], the regularity of the boundary ∂Ω can be weakened to cover
domains that may contain cusps.

II. Theorem 2 can proved in the same way even if the motion of the fluid is driven by a
bounded external force, namely, if the momentum equation (1.2) is replace by

∂t(ϱu) + divx(ϱu⊗ u) +∇ϱγ = divxS+ ϱ f

with
f ∈ L∞(Ω× (0, T )) ∩ L∞(0, T ;L1(Ω)).

In addition, when f is the gradient of a scalar potential F = F (x), the solution (ϱ,u)
converges to a fixed stationary state as time goes to infinity, provided that F is bounded
and Lipschitz continuous and the upper level sets

[F > k] = {x ∈ Ω : F (x) > k}
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are connected in Ω for every k (see [6]).

III. The results contained in this paper hold also in two space dimension, for any γ > 1.
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