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Abstract

We adapt the relative energy functional associated to the compressible Navier-Stokes system
to show stability of solutions emanating from 1-D initial data with respect to multidimensional
N = 2, 3 perturbations. Besides the application of the relative energy inequality as a suitable
“distance” between two solutions, refined regularity estimates in Lp based Sobolev spaces are
used.
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1 Introduction

The results obtained in the present paper may be viewed as a “compressible” counterpart of the
recent paper of Bardos et al. [2], where the authors consider similar problems in the context of
incompressible fluid flows governed by the standard Navier-Stokes system. More specifically, we study
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the evolution of a viscous, compressible, isentropic fluid described in terms of the mass density % =
%(t, x) and the macroscopic velocity u = u(t, x) satisfying the compressible Navier-Stokes system:

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (1.2)

supplemented with the constitutive relations for the pressure

p(%) = a%γ, a > 0, γ > 1, (1.3)

and the viscous stress

S(∇xu) = µ
(
∇xu +∇t

xu−
2

N
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0. (1.4)

We introduce a one-dimensional counterpart of the system (1.1–1.4), namely

∂tR + ∂y(RV ) = 0, (1.5)

∂t(RV ) + ∂y(RV
2) + ∂yp(R) =

[
2µ

(
1− 1

N

)
+ η

]
∂2

y,yV. (1.6)

With the obvious identification x1 = y, %(x) = R(x1), u(x) = [V (x1), 0, . . . , 0], any solution of
problem (1.5), (1.6) obviously satisfies also the extended system (1.1–1.4).

The one-dimensional fluid motion governed by the system of equations (1.5), (1.6) is nowadays
well-understood, see the monograph by Antontsev, Kazhikhov and Monakhov [1]. In particular,
problem (1.5), (1.6) considered in the slab (0, 1), and supplemented with the impermeability boundary
conditions

V (t, 0) = V (t, 1) = 0, t ∈ (0, T ), (1.7)

and the initial conditions
R(0, ·) = R0 > 0, V (0, ·) = V0 (1.8)

admits a (unique) weak solution for a fairly vast class of initial data, see Amosov and Zlotnik [19].
Moreover, the solutions are regular provided the initial data are smooth enough, see Kazhikhov [15].

Our goal in the present paper is to examine stability of the one-dimensional solution [r, V ] under
multidimensional perturbations of the initial data. In particular, we show that the one-dimensional
solutions are uniquely determined in the framework of multidimensional weak solutions to problem
(1.1–1.4) supplemented with suitable boundary conditions provided a suitable form of energy in-
equality is satisfied. This fact is in sharp contrast to similar problems related to inviscid fluids, for
which Chiodaroli, DeLellis and Kreml [3] obtained infinitely many weak solutions for the compress-
ible Euler system emanating from Lipschitz initial data. Moreover, these solutions, constructed by
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the method of convex integration, start from one-dimensional initial data but become truly multidi-
mensional after a critical time. Thus, in particular, our results imply that the solutions constructed
in [3] are not viscosity solutions, meaning they cannot be obtained as an inviscid limit of solutions
of the Navier-Stokes system with the same initial data, see Section 5 for details.

Our approach is based on the relative energy inequality for the compressible Navier-Stokes system
identified in [10] combined with regularity properties of solutions to the one-dimensional problem
(1.5–1.8) in the Lp Sobolev norms. The paper is organized as follows. In Section 2, we collect
the necessary preliminary material and formulate our main results. The relative energy inequality
is introduced in Section 3. In Section 4, we show the Lp-estimates for the solutions of the one-
dimensional problem and complete the proof of their stability in the multidimensional setting. The
paper is concluded by a short discussion in Section 5.

2 Preliminaries, main result

We consider a domain Ω ⊂ RN , N = 2, 3,

Ω = (0, 1)× T N−1, where T N−1 ≡
(
(0, 1)|{0,1}

)N−1
is the torus in RN−1,

specifically all functions defined in Ω are 1-periodic with respect to the variables xj, j > 1. Accord-
ingly, any solution r, V of problem (1.5–1.7) can be extended to be constant in xj, j > 1.

2.1 Finite energy weak solutions to the multidimensional system

We say that the functions [%,u] represent a finite energy weak solution to the Navier-Stokes system
in the space-time cylinder (0, T )× Ω, supplemented with the boundary conditions

u|∂Ω = 0, (2.1)

and the initial conditions
%(0, ·) = %0, u(0, ·) = u0 (2.2)

if:

The density % is a non-negative function, % ∈ Cweak([0, T ];Lγ(Ω)), u ∈ L2(0, T ;W 1,2
0 (Ω;RN)),

%u ∈ Cweak([0, T ];L2γ/(γ−1)(Ω)), and[∫
Ω
%ϕ dx

]t=τ2

t=τ1

=
∫ τ2

τ1

∫
Ω

[%∂tϕ+ %u · ∇xϕ] dxdt (2.3)
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for any 0 ≤ τ1 ≤ τ2 ≤ T and any ϕ ∈ C∞
c ([0, T ]× Ω);[∫

Ω
%u · ϕ dx

]t=τ2

t=τ1

=
∫ τ2

τ1

∫
Ω

[%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%)divxϕ− S(∇xu) : ∇xϕ] dx dt (2.4)

for any 0 ≤ τ1 ≤ τ2 ≤ T and any ϕ ∈ C∞
c ([0, T ]× Ω;RN).

In addition, the energy inequality∫
Ω

[
1

2
%|u|2 + P (%)

]
(τ, ·) dx ≤

∫
Ω

[
1

2
%0|u0|2 + P (%0)

]
dx, with P (%) =

a

γ − 1
%γ, (2.5)

holds for a.a. τ ∈ (0, T ).

Remark 2.1 Obviously, we set %u(0, ·) = %0u0 in (2.3). In the weak formulation, however, it is more
natural to prescribe the initial distribution of the momentum %u(0, ·) = (%u)0 stipulating finiteness
of the kinetic energy ∫

Ω

1

2

|(%u)0|2

%0

dx <∞,

in particular (%u)0 vanishes a.a. on the vacuum set {%0 = 0}. Such a generality is not needed here
as we always consider the initial data with strictly positive density.

Remark 2.2 It is possible to replace (2.5) by a stronger assumption

ψ(τ)
∫
Ω

[
1

2
%|u|2 + P (%)

]
dx−

∫ τ

0
∂tψ

∫
Ω

[
1

2
%|u|2 + P (%)

]
dx dt ≤ ψ(0)

∫
Ω

[
1

2
%0|u0|2 + P (%0)

]
dx

(2.6)
for a.a. τ ∈ (0, T ) and any ψ ∈ C∞

c [0, T ], ψ ≥ 0. Weak solutions satisfying (2.6) were constructed by
Kukučka [16] for a fairly general class of spatial domains including those with non-Lipschitz boundary.

Finite energy weak solutions to problem (1.1–1.4), (2.1), (2.2) are known to exist for any finite
energy initial data whenever γ > N

2
, see Lions [17] and [9].

2.2 Solutions to the one-dimensional system

Solvability of the one-dimensional problem was established by Kazhikhov [15]. He showed that
system (1.5), (1.6) supplemented with the conditions (1.7), (1.8) admits a (strong) solution [R, V ],
unique in the class

R ∈ L∞(0, T ;W 1,2(0, 1)), V ∈ L∞(0, T ;W 1,2
0 (0, 1)) ∩ L2(0, T ;W 2,2(0, 1)), (2.7)
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as soon as
R(0, ·) = r0 ∈ W 1,2(0, 1), R0 > 0 in [0, 1], V (0, ·) = V0 ∈ W 1,2

0 (0, 1).

Moreover, a vacuum cannot appear in a finite time,

0 < R(t) ≤ R(t, ·) ≤ R(t) for any t ≥ 0. (2.8)

Remark 2.3 The absence of vacuum in one-dimensional flow was extended to a fairly general class
of weak solutions by Hoff and Smoller [14].

The well-posedness theory for problem (1.5–1.8) was later extended by Amosov and Zlotnik [19]
to a general class of initial data

R0,
1

R0

∈ L∞(0, 1), V0 ∈ L2(0, 1). (2.9)

On the other hand, if the initial data are smooth, specifically,
R0 ∈ C1+β[0, 1], R0V0 ∈ C2+β[0, 1], β > 0,

with the compatibility conditions V0|y=0,1 = ∂2
y,yV0|y=0,1 = ∂yR0|0,1 = 0,

 (2.10)

than the solution [R, V ] is classical (smooth), see Kazhikhov [15].

2.3 Main result

As already pointed out in the introduction, the solution [R, V ] of the one-dimensional problem can
be viewed as a particular solution of the multidimensional system (1.1–1.4), (2.1), (2.2) after the
natural extension

R(t, x1, x2, x3) = R(t, x1),V(t, x1, x2, x3) = (V (t, x1), 0, 0).

We are ready to state our main result:

Theorem 2.1 Let

γ >
N

2
, q > max {2, γ′} , 1

γ
+

1

γ′
= 1 if N = 2, q > max

{
3,

6γ

5γ − 6

}
if N = 3. (2.11)

Let [R, V ] be a (strong) solution of the one-dimensional problem (1.5–1.8), with the initial data
belonging to the class

R0 ∈ W 1,q(0, 1), R0 > 0 in [0, 1], V0 ∈ W 1,q
0 (0, 1). (2.12)
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Let [%,u] be a finite energy weak solution to the Navier-Stokes system (1.1–1.4) in (0, T ) × Ω, sup-
plemented with the conditions

%0 ∈ L∞(Ω), %0 > 0 a.a. in Ω; u0 ∈ L2(Ω;RN). (2.13)

Then ∫
Ω

[
1

2
%|u−V|2 + P (%)− P ′(R)(%−R)− P (R)

]
(τ, ·) dx (2.14)

≤ c(T )
∫
Ω

[
1

2
%0|u0 −V0|2 + P (%0)− P ′(R0)(%0 −R0)− P (R0)

]
dx

for a.a. τ ∈ (0, T ).

Seeing that % 7→ P (%) ≡ a
γ−1

%γ is a strictly convex function, relation (2.13) implies that % = R,

u = V whenever %0 = R0, u0 = V0 = (V0, 0, 0).
The next two sections are devoted to the proof of Theorem 2.1.

3 Relative energy

Following Dafermos [4], Germain [11], Mellet and Vasseur [18], among others, we introduce the
relative energy functional

E
(
[%,u]

∣∣∣[r,U]
)

=
∫
Ω

[
1

2
%|u−U|2 + P (%)− P ′(r)(%− r)− P (r)

]
dx.

Under the hypotheses of Theorem 2.1, any finite energy weak solution [%,u] of the compressible
Navier-Stokes system satisfies the relative energy inequality :

E
(
[%,u]

∣∣∣[r,U]
)

(τ) +
∫ τ

0

∫
Ω

(
S(∇xu)− S(∇xU)

)
:
(
∇xu−∇xU

)
dx dt (3.1)

≤ E
(
[%0,u0]

∣∣∣[r,U](0, ·)
)

+
∫ τ

0
R(%,u, r,U) dt,

for all “test” functions

r ∈ C∞
c ([0, T ]× Ω), r > 0, U ∈ C∞

c ([0, T ]× Ω;RN), U|∂Ω = 0, (3.2)

where the remained term reads

R (%,u, r,U) ≡
∫
Ω
%
(
∂tU + u∇xU

)
· (U− u) dx (3.3)
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+
∫
Ω

S(∇xU) : ∇x(U− u) dx

+
∫
Ω

((r − %)∂tP
′(r) +∇xP

′(r) · (rU− %u)) dx−
∫
Ω

divxU
(
p(%)− p(r)

)
dx,

see [8, Section 3.2.1].
The requirement (3.2) of smoothness of the test functions can be relaxed by means of a density

argument. In particular, following [8, Section 4.1.1], we may take r = R, U = [V, 0, 0], where [R, V ]
is a regular solution of the one-dimensional problem (1.5–1.8) to obtain

E
(
[%,u]

∣∣∣[R,V]
)

(τ) +
∫ τ

0

∫
Ω

(
S(∇xu)− S(∇xV)

)
:
(
∇xu−∇xV

)
dx dt (3.4)

≤ E
(
[%0,u0]

∣∣∣[R,V](0, ·)
)

+
∫ τ

0
R(%,u, R,V) dt,

R (%,u, R,V) = −
∫
Ω
%(u1 − V )2∂yV dx−

∫
Ω

[
p(%)− p′(R)(%−R)− p(R)

]
∂yV dx (3.5)

+
[
2µ

(
1− 1

N

)
+ η

] ∫
Ω

1

R
(%−R)(V − u1)∂2

y,yV dx.

Now, following step by step the arguments specified in [8, Section 4.1.1] we can establish the de-
sired relation (2.14) using basically the relative entropy inequality (3.1), combined with (3.5) and a
Gronwall type argument.

Unfortunately, the lower regularity of the one-dimensional solutions [r, V ] required in Theorem 2.1
does not allow us to derive (3.5) from (3.3) in a direct manner. Instead, having (3.5) granted for the
smooth solutions in Kazhikhov’s class (2.10) we derive suitable uniform bounds for solutions of the
one-dimensional problem under the data regularity hypothesis (2.12). Then we close the argument
by applying the density argument in the class of (strong) solutions satisfying (2.7). This will be done
in the next section.

4 Uniform estimates

We start by a formal argument yielding the desired conclusion (2.14) from the relative energy in-
equality

E
(
[%,u]

∣∣∣[R,V]
)

(τ) +
∫ τ

0

∫
Ω

(
S(∇xu)− S(∇xV)

)
:
(
∇xu−∇xV

)
dx dt (4.1)

≤ E
(
[%0,u0]

∣∣∣[R0,V0]
)

+
∫ τ

0
R(%,u, R,V) dt,

where R satisfies (3.5).
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Obviously, the first two integrals on the right-hand side of (3.5) may be “absorbed” by the left-
hand side via Gronwall’s lemma as soon as

V ∈ L1(0, T ;W 1,∞(0, 1)). (4.2)

Thanks to the embedding W 2,2(0, 1) ↪→ W 1,∞(0, 1), the relation (4.2) holds for the (strong) solutions
belonging to the class (2.7), specifically for any initial data satisfying hypothesis (2.12) with q = 2.

As for the last integral in (3.5), we first observe that

P (%)− P ′(R)(%−R)− P (R) ≥


c(R)(%−R)2 if R/2 < % < 2R

c(R)|%−R|γ

with c(R) > 0 is uniformly bounded for R belonging to a compact set in (0,∞), where the latter
condition is satisfied by solutions of the one-dimensional problem thanks to (2.8).

Next, applying Korn’s inequality to the class of functions satisfying the boundary conditions
(1.7), (2.1), we obtain

‖u−V‖W 1,2(Ω;RN ) ≤ c
∫
Ω

(
S(∇xu)− S(∇xV)

)
:
(
∇xu−∇xV

)
dx

Consequently, by virtue of the Sobolev embedding

W 1,2(Ω) ↪→ L6 for N = 3, W 1,2(Ω) ⊂ Lp for any finite p ≥ 1 if N = 2,

the relation (2.14) will follow from (4.1) with (3.5) as soon as we establish the bound

V ∈ L2(0, T ;W 2,q(0, 1)), (4.3)

for q satisfying (2.11), see [8, Section 4.1.1] for details. Consequently, the above formal procedure
can be justified by means of a density argument as soon as we show (4.3) with a bound depending
only on the norm of R0, V0 in the Sobolev space W 1,q(0, 1).

Following Danchin [5], we use the maximal regularity estimates for the velocity V adapted to the
parabolic equation (1.6). As we already know that R satisfies (2.7), (2.8) we may use the Sobolev
embedding W 1,2(0, 1) ↪→ Cα[0, 1], 0 < α < 1/2 to obtain

R ∈ C([0, T ];Cα[0, 1]),

with the associated norm bounded only in terms of ‖R‖W 1,2(0,1), ‖V ‖W 1,2(0,1). Consequently, the
maximal regularity theory applies to the parabolic problem (1.6), (1.7), specifically Denk, Hieber,
Prüss [7, Theorem 2.3] (cf. also Danchin [5]), yielding∫ τ

0
‖V ‖2

W 2,q(0,1) dt ≤ c(T )
(
‖V0‖2

W 1,q
0 (0,1)

+
∫ τ

0
‖∂yR‖2

Lq(0,1)

)
(4.4)
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for any 0 ≤ τ ≤ T .
On the other hand, denoting s = ∂yR we deduce easily that

∂ts+ V ∂ys = −2s∂yV −R∂2
y,yV,

and, consequently,

‖s(τ, ·)‖Lq(0,1) ≤ ‖∂yV0‖Lq(0,1) + c(T )
∫ τ

0
‖∂2

y,yV ‖Lq(0,1) dt, (4.5)

which, combined with (4.4) and the standard Gronwall argument, yields the desired estimates

sup
t∈(0,T )

‖∂yR‖Lq(0,1) +
∫ T

0
‖V ‖2

W 2,q(0,1) dt ≤ c(T ). (4.6)

We have proved Theorem 2.1.

5 Concluding remarks

We conclude the paper by several comments concerning the implications of Theorem 2.1.

5.1 Viscosity solutions to the Euler system

Recently, DeLellis and Székelyhidi [6], Chiodaroli, DeLellis, and Kreml [3] identified a vast class of
initial data for which the isentropic Euler system

∂t%+ divx(%u) = 0,

∂t(%u) + divx(%u⊗ u) +∇xp(%) = 0,

supplemented with the entropy inequality

∂t

(
1

2
%|u|2 + P (%)

)
+ divx

[(
1

2
%|u|2 + P (%) + p(%)

)
u

]
≤ 0,

admits infinitely many weak solutions defined in (0, T ) provided the space dimension N = 2, 3.
In particular, it was shown that this happens even for certain Lipschitz initial data %0, u0, see
Chiodaroli, DeLellis and Kreml [3]. These solutions are “constructed” via the method of convex
integration. Similarly our setting in this paper, the initial data are taken one-dimensional, the
solution develops discontinuity in a finite time leading to the initial value problems with Riemann
type data problem. The infinitely many solutions than emanate from the one-dimensional Riemann
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data but are truly multidimensional, in the sense that the second component of the velocity becomes
non-trivial.

In this Theorem 2.1 shows that these solutions are not viscosity solutions of the Euler system,
meaning they cannot be obtained as a vanishing viscosity limit of the solutions of the Navier-Stokes
system (1.1–1.4), in which we let µ→ 0, η → 0.

5.2 More general initial data

As we know (see Amosov and Zlotnik [19]), the one-dimensional Navier-Stokes system (1.5), (1.6) is
well-posed for a larger class of the initial data than those considered in Theorem 2.1, specifically,

R0 ∈ L∞(0, 1), R0 > 0, V0 ∈ L2(0, 1). (5.1)

It seems therefore natural and also interesting in view of possible application to extend the
conclusion of Theorem 2.1 to the initial data (5.1). Unfortunately, this seems not achievable by
our technique based on the relative energy inequality (3.3), (3.5), where the existence of the second
derivative of the velocity V is required. As observed by Hoff [12], [13], however, singularities in the
pressure for the Navier-Stokes system propagate in time, and ∂yV enjoys the same regularity with
p(R), in particular ∂yV experiences discontinuities induced by possible jumps in R0.

5.3 Symmetry preserving

The results of the present paper are easy to extend to the case of radially symmetric initial data
provided the problem is considered on an annulus

Ω =
{
x ∈ RN

∣∣∣0 < r < |x| < r
}
.

Similarly to Bardos et al. [2], we may assert that the symmetry of the data is preserved in time in
the class of weak solutions to the compressible Navier-Stokes system.
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