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INTRODUCTION

@ Interacting dynamical systems
@ Statistical physics

@ Graph theory

@ COMPLEX NETWORKS

@ Multivariate time series — networks

e Nodes: measuring sites
e Edges: dependence, “connectivity” measures

@ weighted graph
@ threshold — binary graph
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INTRODUCTION

@ Multivariate time series — networks
e Edges: dependence, “connectivity” measure
e linear cross-correlation — the measure of first choice
@ correlation — linearity — Gaussianity
@ Nonlinearity? hidden connectivity patterns?
@ Factors influencing connectivity measures

e dynamics (serial correlations)
e temporal and spatial sampling (time lags)

@ Factors influencing network structure

e uniform thresholding or individual statistical testing
e thresholding Z-score, significance function
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CLIMATE NETWORKS

@ Multivariate time series: gridded “reanalysis data” of
atmospheric variables: air temperature, pressure, humidity,
precipitation...

@ Here: near-surface air temperature anomalies
subtraction of seasonal means (mean Jan, mean Feb ...)
removal of the annual cycle
= fluctuations around seasonal means

@ grid 2.5° x 2.5° — 10* nodes

@ Pearson correlation — weighted network
@ thresholding — binary network

@ — graph-theoretical analysis
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Connectivity vs. dynamics

Area Weighted Connectivity o = 0.005 for
NCEP/NCAR SAT anomalies — absolute correlations
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Connectivity vs. dynamics

@ ndiscrete random variables Xj, ..., X,
values (Xy,...,Xp) € Zy X --+ X =p

@ PDF for an individual X; is p(x;) = Pr{X; = x;}, x; € =;

@ joint distribution for the n variables Xj, ..., X, is
p(xi,...,xn) =Pr{(Xq,..., Xn) = (X4,...,Xn)}

@ the joint entropy of the n variables Xj,. .., X, with the joint
distribution p(x1, ..., Xn):

HX, o Xa) ==Y -+ > p(x1,....Xn)log p(xt, ..., Xn)

X1€E=4 Xn€=n
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@ stochastic process { X;}:
indexed sequence of random variables, characterized by

p(X1,...,Xn)
@ entropy rate of {X;} is defined as

h= lim TH(X, ... Xy)

n—oo N

@ dynamical systems: Kolmogorov-Sinai entropy
e for a Gaussian process with spectral density function f(w)

1 s
hg = 271_/_7r log f(w)dw

M. Palu$ Connectivity vs dynamics



Connectivity vs. dynamics

@ autoregressive process

10

ye = CZ akyi—k + oét, (1)
k=1

where ax—1.. 10 = 0,0,0,0,0,.19,.2,.2,.2,.2, s = 0.01 and
e; are Gaussian deviates with zero mean and unit variance
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Connectivity vs. dynamics

autoregressive process
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Connectivity vs. dynamics

correlations of INDEPENDENT realizations of
10
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Connectivity vs. dynamics

mean ABSOLUTE correlations of INDEPENDENT realizations
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Connectivity vs. dynamics

DYNAMICAL GPER ENTROPY OF TEMPERATURE ANOMALIES

LATITUDE

LONGITUDE

Dynamical entropy (inverse to regularity) of temperature
anomaly time series for each node.

[m] = =
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Connectivity vs. dynamics: significance of
dependence

SURROGATE DATA / BOOTSTRAP
@ generated by a model

@ obtained by manipulation (randomization) of the original
data (surrogate data)

@ IID (scrambled) surrogate data

o FT (AAFT, IAAFT ...) surrogate data
@ wavelet

@ recurrence

@ constrained randomization ...

FT surrogates: preserve magnitudes of Fourier coefficients
(spectra), randomize Fourier phases
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Significance testing using surrogate data

@ Use of bootstrap-like strategy (surrogate time series)
@ Ideally preserve all properties except tested (coupling)

Coupling destroyed in surrogates !
|

I m Surrogate 1

/7 ! lk_.
[ Surrogate 2
| g Index

distribution on

original time surrogate

series \\
[ E i : Surrogate N
|
|

Surrogate Generating Algorithm
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Connectivity vs. dynamics
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Surrogate cross-correlation for high-ER (green, blue) and
low-ER (orange, red) NCEP/NCAR grid-points. FT (green,
orange), AAFT (blue, red).
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Connectivity vs. dynamics

Mean absolute correlation of NCEP/NCAR SAT anomalies

with FT surrogate data
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Connectivity vs. dynamics

Correct for dynamics (serial correlations):
For each link a statistical test with FT surrogate data

evaluated by using Z-score

7. = ¢; j—meanc; ;(surr)]
L= SD[c; j(surr)]

Z-score Z; j used instead of ¢; ; for the link weights
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Connectivity vs. dynamics

Area Weighted Connectivity, NCEP/NCAR SATA, o = 0.005

Z-score for absolute correlations + FT surrogate data
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Simple dependence measures

@ two variables X and Y:

ENZ |

X = —
Nf
N
TP
~ X,'—)_(
Xi =

@ correlation between x and y is
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Simple dependence measures

two variables X and Y:
p(x), H(X), p(y), H(Y), joint PDF p(x,y), joint entropy H(X,Y)
mutual information

I(X; Y) = H(X) + X(Y) — H(X, Y)

static p(x) — entropy H(X)
characterization of dynamics — entropy rate

static joint p(x,y) — mutual information I(X;Y) (correlation)
similarity of dynamics — mutual information rate
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Mutual information rate

@ stochastic processes { X}, {Y;}, characterized by
p(X1, ..., Xn) and p(y1, ..., ¥n)
@ mutual information rate

1
(X‘],...,Xn; Y‘],...,Yn)

i(X;: ¥;) = lim_ 1
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Mutual information rate

@ for Gaussian stochastic processes { X}, {Y;},

characterized by power spectral densities (PSD) & x(w),
dy(w) and cross PSD ¢x y(w)

@ mutual information rate

' 1 27
i ¥) = = [ Toa(1 ~ b v(w)P)els
™ Jo
@ magnitude-squared coherence

> |Pxyv(w)?

X,y (W) = Dx(@) Oy (@)
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AR process - remainder
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MUTUAL INFORMATION RATE

mean (Gaussian) MRI of 1000 INDEPENDENT realizations of
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Gaussian ER and nonlinear DS

24 March 1997

PHYSICS LETTERS A

ELSEVIER Physics Letters A 227 (1997) 301-308

On entropy rates of dynamical systems and Gaussian processes
Milan Palug

School of Mathematics. Queensland University of Technology, GPO Box 2434, Brisbane, Qld 4001, Australia
Instirute of Computer Science, Academy of Sciences of the Czech Republic. Pod Voddrenskou V& 2, 182 07 Prague 8. Czech Republic!
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Abstract

The possibility of a relation between the K Sinai entropy of a d 1

Gaussian process isospectral 10 time series generated by the dynamical system is numerically investigated using discrete
and continuous chaotic dynamical systems. The results suggest that such a relation as a nonlinear one-to-one function may
exist when the Kolmogorov-Sinai entropy varics smoothly with variations of the system parameters, but is broken in critical
stales near bifurcation points.

system and the entropy rate of a

1. Entropy rates H(X1,. ., Xn)
i i ¢ : =- s xp) logp P .
Entropy rates will be considered as a tool for quanti- XZ Z plx )logp(x Xn)
tative characterization of dynamic processes evolving ! " @

in time. Let {x;} be a time series, i.e., a series of mea-
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Gaussian ER and nonlinear DS
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Fig. 3. Further results for the Lorenz system: (a) The positive Lyapunoy exponents computed from the Lorenz equations for the parameter
7 varying from 33 to 120 in steps of 1. (b) The GP entropy rates estimated from 15 realizations of 16k time series (mean: thick line;
mean = SD: thin lines, coinciding with the mean) for different valucs of the parameter 7 varying as in (a). (c) Plot of GPER (the same
line codes as before) versus LE. (d), (e), (£) The same as (a). (b, (c). respectively, except for the parameter » varying from 33 to

200 in steps of 1.

r > 65 enters the bifurcation region (Figs. 3a, 3b and
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plot was obtained by increasing the parameter a from
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Route to synchronization

@ unidirectionally coupled Réssler systems

X1
Xo
X3

o=
Vo =
Vs =

—W1Xo — X3
= wiX1+ a3 Xo
= b1 +x3(x1 — 1)

—waYo — Y3+ €(X1 — yy)
w2y + as Yo
bo + y3(y1 — C2)

a=a =015 b1 =b,=02,¢ci=¢c =100
frequencies wy = 1.015, wo = 0.985.
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Route to synchronization and MIR, ER

COUPLED ROESSLER SYSTEMS, NOISE 10%
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Route to synchronization and MIR, ER

PHYSICAL REVIEW E, VOLUME 63, 046211
Synchronization as adjustment of information rates: Detection from bivariate time series

Milan Palus
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pemhskaia Vi 2, 182 07 Prague 8, Czech Republic

Viadimir Koméek, Zbyrié Hmar, and Katalin $rbova
Clinic of Paediatric Neurology, 2nd Medical Faculty of Charles University,wlu 84, 150 06 Prague-8iotol, Czech Republic
(Received 5 July 2000; revised manuscript received 4 December 2000; published 28 Margh 2001

An information-theoretic approach for studying synchronization phenomena in experimental bivariate time
series is presented. “Coarse-grained” information rates are introduced and their ability to indicate generalized
synchronization as well as to establish a “direction of information flow" between coupled systems, i.e., to
discern the driving from the drivefiesponsesystem, is demonstrated using numerically generated time series
from unidirectionally coupled chaotic systems. The method introduced is then applied in a case study of
electroencephalogram recordings of an epileptic patient. Synchronization events leading to seizures have been
found on two levels of organization of brain tissues and “directions of information flow” among brain areas
have been identified. This allows localization of the primary epileptogenic areas, also confirmed by magnetic
resonance imaging and pasitron emission tomography scans.

DOI: 10.1103/PhysRevE.63.046211 PACS nunfter05.45.Tp, 05.45.Xt, 89.76.c

I. INTRODUCTION electroencephalografEEG) recordings of an epileptic pa-
tient. A conclusion is given in Sec. V.
During the last decade there has been considerable inter-
est in the study of the cooperative behavior of coupled cha- ||, COARSE-GRAINED INFORMATION RATES
otic systemg1]. Synchronization phenomena have been ob- . ) ) .
served_in_manv_nhvsiral and_hinlnnical qustems  Aven in Consider discrete random variablésand Y with sets of
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Route to synchronization and MIR, ER

COUPLED ROESSLER SYSTEMS, NOISE 10%
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Connectivity vs. dynamics in climate network

Area Weighted Connectivity o = 0.005 for
NCEP/NCAR SAT anomalies — absolute correlations
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Connectivity vs. dynamics in climate network

Area Weighted Connectivity o = 0.005 for
NCEP/NCAR SAT anomalies — mutual information rate
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Spurious small-world networks

CHAOS 22, 033107 (2012)

Small-world topology of functional connectivity in randomly connected
dynamical systems

J. Hlinka, D. Hartman, and M. Palu$
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodarenskou Vezi 2,
18207 Prague, Czech Republic

(Received 15 March 2012; accepted 18 June 2012; published online 11 July 2012)

Characterization of real-world complex systems increasingly involves the study of their topological
structure using graph theory. Among global network properties, small-world property, consisting in
existence of relatively short paths together with high clustering of the network, is one of the most
discussed and studied. When dealing with coupled dynamical systems, links among units of the
system are commonly quantified by a measure of pairwise statistical dependence of observed time
series (functional connectivity). We argue that the functional connectivity approach leads to
upwardly biased estimates of small-world characteristics (with respect to commonly used random
graph models) due to partial transitivity of the accepted functional connectivity measures such as
the correlation coefficient. In particular, this may lead to observation of small-world characteristics
in connectivity graphs estimated from generic randomly connected dynamical systems. The
ubiquity and robustness of the phenomenon are documented by an extensive parameter study of its
manifestation in a multivariate linear autoregressive process, with discussion of the potential
relevance for nonlinear processes and measures. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4732541]

In the field of complex systems study, new measurement  dynamical system with linear dynamics and random cou-
and computational resources have lead to increased inter-  pling matrix, the functional’connectivity approach gener-
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Spurious small-world networks

FIG. 1. An example of binary functional connectivity matrix (right) generated from random structural connectivity matrix
(left) by thresholding the correlation matrix of AR-model generated time series (center, light shades of gray indicate higher
correlation values). Network with N = 100 nodes shown. Note that the functional connectivity matrix shows a specific structure
although the entries of the generating structural connectivity matrix were chosen randomly. See text for further details.

{0.2,0.5,0.75,0.9,0.99}, a € {0,1}. We further varied
psc and ppe logarithmically in 24 steps within the (0,1)
interval — more exactly both variables are defined as 2"
where n is an arithmetic progression from 0 to —6.9 with
step —0.3. The lowest density was therefore smaller than
0.01.

For robustness of evidence, for each parameter setting
we compute 20 independent realizations of the coupling

M. Palu$

tical significance in most cases (p-values < 107°, sign
test of hypothesis of median equal to 1, no correction for
multiple comparisons; similar results obtained for t-test).
The only exceptions were observed for the case of exactly
equal densities of structural and functional connectivi
matrix, when this commong density was very low (e.g.
only for ppc = psc < 0.03 for the specific settings in
Figure 2), whererthe o values were-relatively close to 1;
e i R
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NETWORKS FROM MULTIVARIATE TIME SERIES

@ interesting, useful, dangerous

@ (partial) transitivity connectivity measure —
— spurious small-world network topology

@ biased connectivity measure —
— spurious highly connected hubs

@ stability of connectivity, network structure
@ significance of changes in time and space
@ (climate) network variability vs. external influence
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Dependence and directional coupling in time series

@ bias due to different level of dynamical complexity in
different nodes

e symmetric measures: relate dynamics not static PDF
use MIR rather than M, corr

@ directional measures: the same problem, only partial
solution
e surrogate data
e test individually each direction

e existence of directional coupling
e but not its strength !
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CONCLUSION

Thank you for your attention
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SW for interaction analysis

SW for network analysis
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