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Navier-Stokes-Fourier system

Equation of contintuity

∂t%+ divx(%u) = 0, u · n|∂Ω = 0

Momentum equation

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(ϑ,∇xu), u|∂Ω = 0

Second law, entropy production

∂t(%s(%, ϑ))+divx(%s(%, ϑ)u)+divx

(
q(ϑ,∇xϑ)

ϑ

)
= σ, q ·n|∂Ω = 0

First law, total energy balance

d

dt

∫
Ω

(
1

2
%|u|2 + %e(%, ϑ)

)
dx = 0



Constitutive relations

Gibbs’ law, thermodynamics stability

ϑDs(%, ϑ) = De(%, ϑ)+p(%, ϑ)D

(
1

%

)
,
∂p(%, ϑ)

∂%
> 0,

∂e(%, ϑ)

∂ϑ
> 0

Viscosity, Newton’s law

S(ϑ,∇xu) = µ(ϑ)

(
∇xu +∇t

xu− 2

3
divxuI

)
+ ηdivxuI

Heat conductivity, Fourier’s law

q(ϑ,∇xϑ) = −κ(ϑ)∇xϑ

Second law, entropy production

σ ≥ 1

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ

)



Relative energy for NSF system

Ballistic free energy [Ericksen]

HΘ(%, ϑ) = %e(%, ϑ)−Θ%s(%, ϑ)

Relative NSF energy

E
(
%, ϑ,u

∣∣∣r ,Θ,U)
=

∫
Ω

(
1

2
%|u−U|2 + HΘ(%, ϑ)− ∂HΘ(r ,Θ)

∂%
(%− r)− HΘ(r ,Θ)

)
dx

Relative entropy vs. relative energy

Dafermos [1979] - relative entropy for the full Euler system
factor 1

Θ



Relative energy inequality

Relative entropy inequality[
E
(
%, ϑ,u

∣∣∣r ,Θ,U)]τ
t=0

+

∫ τ

0

∫
Ω

Θ

ϑ

(
S(ϑ,∇xu) : ∇xu− q(ϑ,∇xϑ) · ∇xϑ

ϑ

)
dx dt

≤
∫ τ

0

R(%, ϑ,u, r ,Θ,U) dt

Test functions

r > 0, Θ > 0

U satisfying the relevant natural boundary conditions



Remainder

Remainder

R(%, ϑ,u, r ,Θ,U)

=

∫
Ω

(
%
(
∂tU + u · ∇xU

)
· (U− u) + S(ϑ,∇xu) : ∇xU

)
dx

+

∫
Ω

[(
p(r ,Θ)− p(%, ϑ)

)
divU +

%

r
(U− u) · ∇xp(r ,Θ)

]
dx

−
∫

Ω

(
%
(
s(%, ϑ)− s(r ,Θ)

)
∂tΘ + %

(
s(%, ϑ)− s(r ,Θ)

)
u · ∇xΘ

+
q(ϑ,∇xϑ)

ϑ
· ∇xΘ

)
dx

+

∫
Ω

r − %
r

(
∂tp(r ,Θ) + U · ∇xp(r ,Θ)

)
dx
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Global-in-time weak solutions, hypotheses

Pressure - density, temperature state equation

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+ aϑ4

%e(%, ϑ) =
3

2
ϑ5/2P

( %

ϑ3/2

)
+

a

3
ϑ4

lim
Z→∞

P(Z )

Z 5/3
= p∞ > 0

Transport coefficients

µ(1 + ϑα) ≤ µ(ϑ) ≤ µ(1 + ϑα), η(ϑ) ≤ η(1 + ϑα), α ∈ (2/5, 1],

κ(1 + ϑ3) ≤ κ(ϑ) ≤ κ(1 + ϑ3)
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Results

Existence of weak solutions [Indiana Univ. Math. J. 2004]

Weak solutions exist (under certain constitutive restrictions) for any
finite energy initial data and on an arbitrary time interval. Smooth
weak solutions are strong solutions

Weak-strong uniqueness [with A.Novotný ARMA 2012]

Weak and strong solutions to the Navier-Stokes-Fourier system
emanating from the same initial data coincide as long as the latter
exists. Strong solutions are unique in the class of weak solutions

Conditional regularity [with A.Novotný, Y. Sun ARMA 2014]

A weak solution emanating from smooth initial data is smooth as
soon as

‖∇xu‖L∞((0,T )×Ω) <∞



Inviscid fluids?

Euler-Fourier system

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇x(%ϑ) = 0

3

2
[∂t(%ϑ) + divx(%ϑu)]−∆ϑ = −%ϑdivxu

Existence of weak solutions [with E.Chiodaroli, O.Kreml AIHP
2014]

The Euler-Fourier system admits infinitely many global-in-time

weak solutions for any smooth initial data %0, ϑ0, u0. Moreover, for
any %0, ϑ0 there exists a velocity field u0 ∈ L∞ such that the
problem admits infinitely many global admissible weak solutions.



Solutions via convex integration

Step 1: density and acoustic potential

%u = v +∇xΨ, divxv = 0, ∂t%+ ∆Ψ = 0

Step 2: temperature as a function of v

3

2

(
∂t(%ϑ) + divx

(
ϑ(v +∇xΨ)

))
−∆ϑ = −%ϑdivx

(
v +∇xΨ

%

)

Step 3: Euler system with nonconstant coefficients

∂tv + divx

(
(v +∇xΨ)⊗ (v +∇xΨ)

%

)
+∇x(∂tΨ + %ϑ[v]) = 0

e = χ(t)− 3

2
%ϑ[v]



Vanishing dissipation limit

Pressure

p(%, ϑ) = pM(%, ϑ)+pR(%, ϑ), pM = ϑ5/2P
( %

ϑ3/2

)
, pR(%, ϑ) =

a

3
ϑ4

Viscous stress

S(ϑ,∇xu) = ν

[
µ(ϑ)

(
∇xu +∇t

xu− 2

3
divxuI

)
+ η(ϑ)divxuI

]

Heat flux

q = − ω κ(ϑ)∇xϑ

Brinkman type “damping”

D = − λ u



Target system

Full Euler system

∂t%+ divx(%u) = 0

∂t(%u) + divx(%u⊗ u) +∇xpM(%, ϑ) = 0

∂t

(
1

2
%|u|2 + %eM(%, ϑ)

)
+divx

[(
1

2
%|u|2 + %eM(%, ϑ)

)
u + pM(%, ϑ)u

]
= 0

Slip boundary conditions

u · n|∂Ω = 0



Vanishing dissipation limit

Theorem EF [2015]

Let [%E , ϑE ,uE ] be the classical solution of the Euler system in a
time interval (0,T ), with the initial data [%0,E , ϑ0,E ,u0,E ]. Let
[%, ϑ,u] be a weak (dissipative) solution of the Navier-Stokes-Fourier
system, with the initial data [%0, ϑ0,u0].
Then

E
(
%, ϑ,u

∣∣∣%E , ϑE ,uE

)
(τ)

≤ c1(T ,data)E
(
%0, ϑ0,u0

∣∣∣%0,E , ϑ0,E ,u0,E

)
+c2(T ,data) max

{
a, ν, ω, λ,

ν√
a
,
ω

a
,

(
a√
ν3λ

)1/3
}

for a.a. τ ∈ (0,T ).



Numerics

Equation of continuity

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp = divxS(∇xu)

Thermal energy balance

cv (∂t(%ϑ) + divx(%ϑu)) + divxq ≥ S(∇xu) : ∇xu− pϑdivxu

Total energy balance

d

dt

∫
Ω

(
1

2
%|u|2 + %e

)
dx ≤ 0



Numerical analysis

Numerical analysis with T.Karper, A.Novotný, R.Hošek,
M.Michálek [2014]

A mixed finite-volume finite element implicit scheme converges
to a weak solution

Convergence is unconditional provided the numerical solutions
%h, ϑh,uh and divxuh remain uniformly bounded



Blow-up criterion

Blow-up of smooth solutions [E.F., Y.Sun 2014]

Suppose that the initial data %0, ϑ0, and u0 are smooth (W 2,3).
Then the Navier-Stokes-Fourier system admits a strong solution
defined on a (possibly short) time interval (0,T ).
If

sup
t∈(0,T )

[‖%‖L∞ + ‖ϑ‖L∞ + ‖u‖L∞ ] <∞,

then the solution can be extended beyond T .
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Regularity criterion

Regularity for weak solutions [E.F., Y.Sun 2014]

Suppose that the initial data %0, ϑ0, and u0 are smooth (W 2,3). Let
[%, ϑ,u] be a weak solution of the Navier-Stokes-Fourier system such
that

sup
t∈(0,T )

[‖%‖L∞ + ‖ϑ‖L∞ + ‖u‖L∞ + ‖divxu‖L∞ ] <∞.

Then [%, ϑ,u] is regular.
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Synergy analysis - numerics, assumptions

Numerical solutions with regular initial data

Suppose that [%h, ϑh,uh] is a sequence of numerical solutions for
regular initial data

Boundedness

Suppose that
%kh , ϑ

k
h , uk

h , divhuk
h

are bounded independently of the order of discretization h.



Synergy analysis - numerics, conclusion

Conclusion

The numerical solutions converge to a weak solution with

sup
t∈(0,T )

[‖%‖L∞ + ‖ϑ‖L∞ + ‖u‖L∞ + ‖divxu‖L∞ ] <∞.

Consequently:

the limit solution is smooth

the limit solution is unique

the numerical scheme converges unconditionally

error estimates (?)


