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Abstract. We consider the boundary value problem involving the one dimensional p-
Laplacian, and establish the precise intervals of the parameter for the existence and non-
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shooting method together with the qualitative theory for half-linear differential equations.
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1. INTRODUCTION

In this paper we consider the existence and non-existence of sign-changing solutions
for the one-dimensional p-Laplacian boundary value problem
(1.1) (| |P72/Y + Xa(z)f(u) =0, 0<z<l1,
(1.2) u(0) = u(l) =0,
where p > 1 and A > 0 is a parameter. Problems of the form (1.1)—(1.2) describe
some nonlinear phenomena in mathematical sciences and have been studied in recent

years by many authors (see [1], [2], [6], [7], [9], [11], [13], [14] and references therein).
In (1.1) we assume that a satisfies

a€C'0,1], a(x)>0 for0<x<1,
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and that f satisfies f € C(R), sf(s) > 0 for s # 0, f is locally Lipschitz continuous
on R\ {0}; moreover, there exist limits fy and fo with fo, foo € [0, 00] such that

fo= lim 7(s) and foo =

n ‘S?HO |S|p728

f(s)

|s|—o00 |S|p728.

By a solution u of (1.1) we mean a function u € C*[0, 1] with |«/|P~2u’ € C1[0,1]
which satisfies (1.1) at all points in (0,1). For each k € N we denote by S;" (S})
the set of all solutions « for (1.1)—(1.2) which have exactly k — 1 zeros in (0, 1) and
satisfy u/(0) > 0 (respectively, u'(0) < 0).

Let \g be the k-th eigenvalue of

(1.3)

{ (I¢'P~2¢") + Aa(z)|g|P 29 =0, 0<z<1,
©(0) = (1) =0,

and let ¢ be an eigenfunction corresponding to Ag. It is known that
D<A <A< oo <A < App1 < ooy klim A = 00,
—00

and that ¢ has exactly k —1 zeros in (0,1). (See, e.g., [3], [4], [8].) For convenience,
we put \g = 0.
By [12, Theorem 1], if there exists an integer k& € N such that either

Ao <A <Aoo O Afoe < A < Afo,

then S # 0 and S, # 0. As a consequence, in the case fy # fao, if either

(1.4) A€ (Ak/foor A/ fo) or A€ (A/fos A/ foo)

for some k£ € N, then S,j # 0 and S, # 0. Here, we agree that 1/0 = co and
1/00 =0.

In this paper we will consider the non-existence of solutions with prescribed num-
bers of zeros, and also investigate the existence of solutions in the case fo = foo €
(0,00). To this end we define f, and f* by

fe= inf f(f)z and f*= sup f(i,
s€R\{0} [s[P~2s ser\{0} [8[P2s

respectively. Then it follows that fo, foo € [fu, f*]-
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Theorem 1.1. Assume that A € (0, \p/f*) U (Ax/ f«, 00) for some k € N. Then
S =0andS, =

Corollary 1.1. Assume that Ag_1/f. < A/ f* for some integer k € N. If \ €
(Mc—1/f«, A/ f*), then the problem (1.1)—(1.2) has no nontrivial solution.

Remark 1.1. Let us consider, for instance, the case where

(1.5) fo=fo < foo ="

In this case, by (1.4) and Theorem 1.1, we find that S;" # 0 and S, # 0 if A €
(M/foos A/ fo), and that S = S, = 0 if X € (0, \e/foc) U (Ai/fo,00). Hence,
A/ foo and A/ fo are critical values for the existence of solutions in S ,j and S, . For
example, if f(s)/|s|[P~2s is nondecreasing, then (1.5) holds.

Next, let us consider the existence of solutions in the case fo = foo € (0,00). In
this case we require that

f(s)

1.
(1.6) |s|p—2s

# constant for any interval (—d,d) with § > 0.

It is clear that we have f, < f*, if (1.6) holds.

Theorem 1.2. Assume that fo = foo = f* € (0,00) and (1.6) holds. Let k € N.
(i) If X = \/f* then S;" =0 and S;, = 0.
(ii) There exists 0 € (Ax/f*, A\x/ f«) such that, if X € (A\y/f*,0k), then the problem
(1.1)—(1.2) has at least four solutions u; , vj}, u, , and v;, such that u}, v;" € S}
and u,, v, €5.

Theorem 1.3. Assume that fo = foo = f« € (0,00) and (1.6) holds. Let k € N.
(i) If X = A/ f« then S;" =0 and S, = 0.
(ii) There exists o € (Ar/f*, A/ f+) such that, if A € (0, A/ f+), then the problem
(1.1)—(1.2) has at least four solutions u; , vy}, u, , and v;, such that u}, v;" € S}
and u,, v, €5 .
Remark 1.2. In Theorems 1.2 and 1.3, if A € (0, \z/f*) U (Ar/fs,0), then
St =0and S, =0 by Theorem 1.1.

In the proofs of Theorems 1.1, 1.2 and 1.3, we first consider the solution u(z; i) of
(1.1) satisfying the initial condition with a parameter ¢ € R, and then we investigate
the behavior of u(z;p) as p — 0 and pu — oo. We will show the non-existence
of solutions by employing variants of the Sturm comparison theorem for half-linear
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differential equations, and prove the existence of solutions with prescribed numbers
of zeros by making use of the half-linear Priifer transformation which involves the
generalized trigonometric functions.

This paper is organized as follows. In Section 2 we give some variants of the Sturm
comparison theorem, and in Section 3 we prove Theorem 1.1. In Section 4 we give
the proofs of Theorems 1.2 and 1.3.

2. COMPARISON LEMMAS

Let us consider a pair of half-linear differential equations

(2.1) (' |P72u) + e(@)|ulP?u=0, 0<x<1,
and
(2.2) (|U'P2U0"Y + C(2)|UP2U =0, 0<2<1,

where ¢, C € C[0,1] satisfy C(z) > c¢(x) for € [0,1]. The Sturm comparison
theorem for the half-linear differential equation is formulated as follows: [4, Theo-
rem 1.2.4] (See also [3], [5] and [10].)

Lemma 2.1. Assume that a nontrivial solution u of (2.1) satisfies u(x1) =
u(ze) = 0 with some 0 < x1 < 22 < 1. Then every nontrivial solution U of (2.2) has
a zero in (x1,x2) or it is a multiple of the solution u on [x1, x2]. The latter possibility
is excluded if C(x) # c(x) for x € [x1, z2].

We will give some variants of Lemma 2.1.

Lemma 2.2. Assume that a solution u of (2.1) satisfies u(0) = u(1) = 0 and has
exactly k — 1 zeros in (0,1). Let U be a solution of (2.2) satisfying U(0) = 0 and
U’(0) # 0. Then U possesses one of the following properties:

(i) U has at least k zeros in (0,1);
(ii) U is a constant multiple of u on [0,1] and ¢ = C on [0, 1].

In both cases (i) and (ii), U has at least k zeros in (0, 1].

Proof. In the case where ¢ = C on [0,1], it is clear that (ii) holds. Hence it
suffices to show that (i) must hold in the case ¢ # C on [0, 1]. Let {z;}%_, be zeros of
u satisfying 0 = zp < 21 < ... < Tp—1 < x = 1. Assume that ¢ Z C on [z;,-1, Z;,]
for some 79 € {1,2,...,k}. Then Lemma 2.1 implies that U has at least one zero in
(Zig—1,Ti,). By Lemma 2.1, U has at least one zero in each interval [z;_1,x;) for
i=ido+1,i0+2,...,k and (x;_1,x;] for i = 1,2,...,ip — 1. Thus U has at least k
zeros in (0,1). O
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Lemma 2.3. Assume that a solution U of (2.2) satisfies U(0) = U(1) = 0 and
has exactly k — 1 zeros in (0,1). Let u be a solution of (2.1) satisfying u(0) = 0 and
u’(0) # 0. Then u possesses one of the following properties:

(i) w has at most k — 1 zeros in (0, 1];
(ii) w is a constant multiple of U on [0,1] and ¢ = C on [0, 1].

In both cases (i) and (ii), u has at most k — 1 zeros in (0, 1).

Proof. We will show that v has at most k—1 zeros in (0, 1] when ¢ # C on [0, 1].
Let {z;}*_, be zeros of U satisfying 0 = 79 < 71 < ... < 241 < 7 = 1. Assume
to the contrary that u has k zeros in (0,1]. Let {y;}*_, be zeros of u satisfying
O0=yo<y1 <...<yYr-1 <y < 1. By applying Lemma 2.2 on the interval (0, yz),
we conclude that the solution U has at least k zeros in (0,yx) C (0,1). This is a
contradiction. Thus w has at most k — 1 zeros in (0, 1], and (i) holds. O

We will need the following lemma [12, Lemma 3.3] in the proof of Theorem 1.1.

Lemma 2.4. Let )\, be the k-th eigenvalue of (1.3), and let {x;}*_, be the zeros
of the corresponding eigenfunction ¢y, such that

(2.3) O=a0<z1 <2< ...<Tp_1 <z = 1.

Assume that A > \,. Then for each i € {1,2,...,k} there is a solution w; of the
equation

(2.4) (Jw' [P~ 2w"Y + a(z)|wP2w =0

which has at least two zeros in (x;—1, ;).

3. PROOF OF THEOREM 1.1

Let A > 0. We denote by u(z; i, \) the solution of the problem (1.1) and
(3.1) w(0) =0 and u/'(0) = pu,

where p € R is a parameter. By [12, Proposition 2.1] we obtain the following:
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Lemma 3.1. For each p € R and A > 0, the solution u(x; u, \) exists on [0, 1]
and is unique. Furthermore, u(z; p, ) and u'(z; p, A) are continuous on (x, u, \) €
[0,1] x R x (0,00), and the number of zeros of u(x;u, \) in [0,1] is finite for each
we R\ {0} and A > 0.

The generalized sine function sin, is defined by the solution to the problem
(|S"P~28"Y + (p — 1)|S|P725 =0, S(0) =0 and S’(0) = 1.

The function sin, is defined on R and is periodic with period 2m,, where n, =
(2n)/(psin(n/p)). The generalized cosine function cos, is defined by cos,z =
(sinp z)’. For simplicity, we denote by wu(x; i) the solution of the problem (1.1) and
(3.1) with fixed A > 0. We define functions r(z; p) and 6(x; 1) by

u(z; p) = r(z; p) siny 6(z; @),
u'(z; p) = r(x; ) cosp O(x; 1),
where ' = d/dz. It can be shown that

Aa(z) f (r(z; p) sing 0(z; 1)) sing, 0(z; 1)

- Dl w1 >0

0 (2 1) = | cos, Oa; )P +

for « € [0,1], which implies that 6(x; p) is strictly increasing in x € [0,1] for each
fixed ¢+ > 0. (See, for example, [3] or [4].) The initial condition (3.1) yields that
6(0; 1) = 0 (mod 2m,). For simplicity we take 6(0; u) = 0. Lemma 3.1 implies that
0(z; p) is continuous in (z; ) € [0,1] x (0, 00). We easily see that u(x; 1) has exactly
k —1 zeros in (0,1) if and only if (k — 1)n, < 6(1; 1) < k.

Lemma 3.2. (i) Assume that \f(s)/(|s|P72s) > A\ for s € R\ {0} with some
k € N. Then for each p # 0 the solution u(x; u) has at least k zeros in (0, 1).

(ii) Assume that \f(s)/(|s|P=2s) < A, for s € R\ {0} with some k € N. Then for
each y1 # 0 the solution u(x; ) has at most k — 1 zeros in (0, 1].

Proof. (i) We observe that u = u(z; u) satisfies the equation

(3.2) (I'[P~2') + bl N|ul*2u = 0,
where

eyl )
(33) b($7>\) =A ( )|u(x;u)|p—2u(x;u)
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Note that f(s)/(|s|P~2s) is continuous at s = 0 if fo < co. Then the function b(z; \)
is continuous for = € [0, 1] if fy < oo.

First, assume that fy < co. Then b(x; A) given by (3.3) is continuous for = € [0, 1],
and satisfies

b(x; A) = Mga(x), b(z;A) £ Aga(z) for 0 <z < 1.

By Lemma 2.2, the solution u(z; 1) has at least k zeros in (0, 1).

Next, assume that fo = co. Let ¢ be an eigenfunction corresponding to A, and
let {xj}é?zo be zeros of ¢y, satisfying (2.3). We will show that wu(x; ) has at least
one zero in each interval (x;_1,z;) for ¢ = 1,2,... k, which implies that w(z; u)
has at least k zeros in (0,1). Assume to the contrary that u(x;u) has no zero in
(ig—1,Ti,) for some ig € {0,1,2,...,k}. Then b(z; \) given by (3.3) is continuous
for x € (wi,—1,2i,) and satisfies b(x; A) > Apa(z) for z;,—1 < x < x;,. We observe
that, due to fo = oo, there exists A > \; such that

b(z; A) > da(x) for iy 1 <z < x4,

even if u(z;y—1; ) = 0 or u(z;,; #) = 0. By Lemma 2.4, Eq. (2.4) has a nontrivial
solution w such that w(t1) = w(tz) = 0 with ¢1,t2 € (ziy—1, %4, ). Lemma 2.1 implies
that u(z; ) has at least one zero in (t1,t2) C (24,—1,%;,). This is a contradiction.
Thus wu(x; 1) has at least one zero in each interval (z;_1,x;) for i = 1,2,... k, and
hence u(z; 1) has at least k zeros in (0, 1).

(ii) By the assumption, fy < oo. Then the function b(x;\) given by (3.3) is
continuous for x € [0, 1] and satisfies

b(x; A) < Aga(x), bz A) £ Aga(z) for 0 <z < 1.

By Lemma 2.3, the solution u(z; 1) has at most k£ — 1 zeros in (0, 1]. O

Proof of Theorem 1.1. Assume that A € (0, A/ f*). In this case, we have
M(s)/(|s|P72s) < A\x  for s € R\ {0}.

Then, by Lemma 3.2 (ii), the solution u(x; x) has at most k — 1 zeros in (0, 1] for
every pu # 0. This implies that S;f = S, = 0. In the case A € (A;/f.,00) we obtain
S,j =S, =0 by a similar argument with a slight modification.

Proof of Corollary 1.1. Note that A\y < Apy1 for £ = 1,2,.... Then The-
orem 1.1 implies that, if A\ € (Ag—1/f«,00), then SJ‘-|r = S; = 0 for each j =
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1,2,...,k—1, and that, if A € (0, At/ f*), then S;' =5, = (0 foreach j =k, k+1,....
By Lemma 3.1, the number of zeros of nontrivial solutions of (1.1)—(1.2) is finite.
Hence (1.1)—(1.2) has no nontrivial solution.

4. PROOF OF THEOREMS 1.2 AND 1.3

We denote by u(z; 1, A) the solution of the problem (1.1) and (3.1). As in Section 3,
we define functions r(x; u, A) and 0(z; u, \) by

u(z; o, ) = (s p, A) sing, 0(; 1, M),
u' (0 p, ) = 7(25 1, A) cosy, 0(a; 1, \)

with 6(0; p, A) = 0, where " = d/dx. We see that 8(x; u, A) is continuous in (z, s, A) €
[0,1] X R x (0, 00) by Lemma 3.1, and that §(z; s, A) is strictly increasing in x € [0, 1]
for each fixed g > 0 and A > 0. From 6(0; 4, A) = 0 it follows that u(x;u, A) has
exactly k — 1 zeros in (0, 1) if and only if (k — 1)1, < 0(1; u, A) < k7p.

By Lemmas 4.1-4.4 in [12] we obtain the following.

Lemma 4.1. Let k € N.
(i) Assume that Afo < Ap. Then there exists j1. > 0 such that, for each p € (0, p4],
the solution u(x; u, \) has at most k — 1 zeros in (0, 1).
(ii) Assume that \fo > A,. Then there exists p. > 0 such that, for each p € (0, p4],
the solution u(x; u, \) has at least k zeros in (0,1).
(iii) Assume that Afso > M. Then there exists p* > 0 such that, for each 1 > p*,
the solution u(x; u, \) has at least k zeros in (0,1).
(iv) Assume that A\foo < A,. Then there exists pu* > 0 such that, for each u > u*,
the solution u(x; u, \) has at most k — 1 zeros in (0, 1).

We will prove Theorem 1.2 only, since Theorem 1.3 can be shown by an argument
similar to the proof of Theorem 1.2 with a slight modification.

Proof of Theorem 1.2. (i) We observe that u = u(x; u, \) satisfies (3.2) with

fulz;p, M)
4.1 b(z; X)) = A for 0 <z < 1.
oy N A Ve Rutar ) TS
If fo < oo, then the function b(x; A) is continuous for x € [0, 1].
Let 4 > 0. Due to fo = foo = f* € (0,00), the function b(x;A) given by (4.1)

satisfies
b(a; A/ f*) < Apa(z) for x € [0,1].
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By Lemma 2.3, the solution u(z;u, A) has at most & — 1 zeros on (0, 1), that is,
0(1; p, A/ f*) < kmyp. Assume that 6(1; pu, A/ f*) = km, with some p > 0. Then, by
Lemma 2.3, we obtain

b(x; A/ ) = Mga(z) for z € [0, 1],

which implies that

s |
s = for 0 < s < xrél[%ﬁ]u(x,u, A).

This contradicts (1.6). Thus we obtain 6(1; u, A/ f*) < kn, for any p > 0. This
implies that S;” = () if A\ = A\, /f*. By a similar argument, we obtain 6(1; iz, \s,/f*) <
km, for any p < 0, and hence S, = 0 if X = A/ f*.

(ii) Put pp > 0. By (i) we have 6(1;uo, A/ f*) < kmnp. By the continuity of
0(1; po, A) with respect to A > 0 there exists 5,: > A/ f* such that 6(1; po, A) < kmnp
for X € (A\g/f*,0;7). Let A\ € (A\x/f*,6;). Then we have A\fo = Afss > Ap. By
Lemmas 4.1 (ii), (iii) there are p., pu* > 0 such that, if either u € (0, ] or p €
[p*, 00), the solution u(x; 1, A) has at least k zeros in (0,1). This implies that

0(1; p, A) > kmp  for pu € (0, ps] U [17, 00),

and that pg € (u«, u*). Since 6(1; i, \) is continuous in g € (0,00), there exist py
and po such that

0<pr <po<pz and O(1;u1,) =0(1; u2, \) = knyp,

which means u(x; p1, A), u(z; p2, A) € S,j.

By an argument similar to the above, there exists a sequence ¢, > A/ f* such
that, if A € (A\x/f*, 06, ), then (1.1)—(1.2) has two solutions v; and v, which have
exactly k — 1 zeros in (0,1) and satisfy v1(0) < 0 and v5(0) < 0. This implies that
v1, v2 € 5 .

Finally, put 6, = min{6;,0, }. If A € (\x/f*,0k), then (1.1)~(1.2) has at least
four solutions u;, v,:r, uy, , v, which satisfy u;, v,:r € S,j and u; , v, €5} .
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