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Abstract. We describe the global dynamics of a disease transmission model between
two regions which are connected via bidirectional or unidirectional transportation, where
infection occurs during the travel as well as within the regions. We define the regional re-
production numbers and the basic reproduction number by constructing a next generation
matrix. If the two regions are connected via bidirectional transportation, the basic repro-
duction number R0 characterizes the existence of equilibria as well as the global dynamics.
The disease free equilibrium always exists and is globally asymptotically stable if R0 < 1,
while for R0 > 1 an endemic equilibrium occurs which is globally asymptotically stable. If
the two regions are connected via unidirectional transportation, the disease free equilibrium
always exists, but for R0 > 1 two endemic equilibria can appear. In this case, the regional
reproduction numbers determine which one of the two is globally asymptotically stable. We
describe how the time delay influences the dynamics of the system.
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1. Introduction

In a recent paper, Liu et al. [6] proposed a delay differential model of SIS type to

describe the spread of an infectious disease between two regions. Previous models

of disease spread by population dispersal implicitly assumed that the transporta-

tion between regions occurs instantaneously, so they introduced a delay to express

the time to complete a one-way travel. Further, they took into account the disease

transmission dynamics during transportation as well. The main results of [6] are the

global asymptotic stability of the disease free equilibrium if the basic reproduction

number R0 is less than one, and the uniform persistence of the disease if R0 > 1. In

the latter case there exists a unique endemic equilibrium which is locally asymptoti-

cally stable. In a subsequent paper, Nakata [8] proved the global asymptotic stability

of this endemic equilibrium by constructing a Lyapunov functional. Both [6] and [8]

assumed that the regions are identical sharing the same parameter values. In reality,

diseases frequently spread between regions which have very different characteristics

(for example, from countries with high population density to countries with lower

density, from rural areas to cities or vice versa).

In order to model this phenomenon, here we consider arbitrary parameters (differ-

ent population sizes; different dispersal, transmission, recovery, and mortality rates)

for each region. This generalization of the previous model ([6], [8]) is more suitable

for studying the impact of transport-related infections on the disease dynamics in

distinct regions connected by human transportation ([5]). The model has been fur-

ther generalized recently in [9] for n patches, where stronger results were obtained for

the global dynamics. Here we offer alternative proofs for global asymptotic stability

on two patches, which are more direct and do not rely on the heavily technical tools

used in [9], and also provide further insights into the behavior on two patches, which

were not obtained in [9]. We prove that in the case of bidirectional transportation on

two different patches, the system has threshold dynamics: the disease free equilib-

rium is globally asymptotically stable if R0 < 1, while for R0 > 1 a unique endemic

equilibrium exists which is globally asymptotically stable. The situation is different

for unidirectional transportation, when partially endemic equilibrium can exist as

well. Further, we discuss the role of the time delay on the disease dynamics.

2. Model formulation

Consider two distinct regions. For j ∈ {1, 2}, denote by Sj(t) and Ij(t) the

numbers of susceptible and infected individuals at time t in region j, respectively.

Let Aj be the recruitment rate, dj the natural death rate and δj the recovery rate

of the infected individuals in region j. We use standard incidence βjSjIj/(Sj + Ij),
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where βj is the disease transmission coefficient in region j. Then we obtain the

following basic SIS epidemic model:

dSj(t)

dt
= Aj − djSj(t)−

βjSj(t)Ij(t)

Sj(t) + Ij(t)
+ δjIj(t),

dIj(t)

dt
=
βjSj(t)Ij(t)

Sj(t) + Ij(t)
− (dj + δj)Ij(t)

for j ∈ {1, 2}. We assume that, for j ∈ {1, 2}, Aj , βj and dj are positive and δj is

nonnegative. Following [6], we incorporate transportation, assuming that individuals

do not die or recover during travel. We denote by skj(θ, t) and ikj(θ, t) the density

of susceptible and infective individuals who left region k at time t and spent θ 6 τ

time in transportation to region j, where τ ∈ (0,∞) is the time required to complete

a one-way travel. Let nkj(θ, t) = skj(θ, t) + ikj(θ, t). Thus,
∫ θ1

θ2
nkj(θ, t− θ) dθ is the

number of individuals who left region k in the time interval [t − θ1, t − θ2], where

τ > θ1 > θ2 > 0. In particular, for θ1 = τ and θ2 = 0, this gives the total number

of individuals who are being in travel from region k to j at time t. Assume that

susceptible and infected individuals leave region k to region j at a per capita rate

αkj ∈ [0,∞). Considering the rates susceptible and infected individuals leave region

k to j at time ts, we obtain that

(2.1) skj(0, ts) = αkjSk(ts) and ikj(0, ts) = αkjIk(ts).

Then the disease dynamics in the transportation from region k to region j is governed

by

∂

∂θ
skj(θ, ts) = −γkj

ikj(θ, ts)

ikj(θ, ts) + skj(θ, ts)
skj(θ, ts),(2.2a)

∂

∂θ
ikj(θ, ts) = γkj

ikj(θ, ts)

ikj(θ, ts) + skj(θ, ts)
skj(θ, ts),(2.2b)

where γkj ∈ (0,∞) is the transmission rate during travel. Let us define Nj(t) :=

Sj(t) + Ij(t) for j ∈ {1, 2}. Then

nkj(θ, ts) = skj(θ, ts) + ikj(θ, ts) = αkj(Sk(ts) + Ik(ts)) = αkjNk(ts) for any θ > 0.

From (2.2b) we obtain that

(2.3)
∂

∂θ
ikj(θ, ts) = γkj ikj(θ, ts)

(
1−

ikj(θ, ts)

αkjNk(ts)

)
,
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which is a logistic equation. Using (2.1) as an initial condition, we solve (2.3) explic-

itly to obtain

ikj(τ, ts) =
αkjIk(ts)

e−γkjτSk(ts) + Ik(ts)
Nk(ts),(2.4)

skj(τ, ts) = αkjNk(ts)− ikj(τ, ts) =
αkje

−γkjτSk(ts)

e−γkjτSk(ts) + Ik(ts)
Nk(ts),

where skj(τ, ts) and ikj(τ, ts) are the population densities of susceptible and infective

individuals arriving to region j from k at time ts + τ . Therefore, the respective

population densities at time t become skj(τ, t − τ) and ikj(τ, t − τ). Consequently,

we obtain the following model:

dSj(t)

dt
= Aj − (dj + αjk)Sj(t)−

βjSj(t)Ij(t)

Sj(t) + Ij(t)
+ δjIj(t) + skj(τ, t− τ),(2.5a)

dIj(t)

dt
=
βjSj(t)Ij(t)

Sj(t) + Ij(t)
− (dj + δj + αjk)Ij(t) + ikj(τ, t− τ)(2.5b)

for j, k ∈ {1, 2} and j 6= k. One can see that the transport-related infection model

formulated in Liu et al. [6] is a special case of the system (2.5).

2.1. Asymptotically autonomous system. To analyse the dynamics of (2.5)

it is convenient to consider a system which is described in terms of N and I instead

of S and I. As an equivalent system to (2.5) one can obtain

dNj(t)

dt
= Aj − (dj + αjk)Nj(t) + αkjNk(t− τ),(2.6a)

dIj(t)

dt
= Ij(t)

{
βj − (dj + δj + αjk)−

βj
Nj(t)

Ij(t)
}
+ ikj(τ, t− τ)(2.6b)

for j, k ∈ {1, 2} and j 6= k, where now

(2.7) ikj(τ, t− τ) =
αkje

γkjτ Ik(t− τ)

1 +
eγkjτ − 1

Nk(t− τ)
Ik(t− τ)

.

We denote by C = C([−τ, 0],R2) the Banach space of continuous functions mapping

the interval [−τ, 0] into R
2 equipped with the sup-norm. The standard existence

and uniqueness results hold [3], [4]. The nonnegative cone of C is defined as C+ =

C([−τ, 0],R2
+). We define a set, which only contains strictly positive functions, as

G :=
{
ϕ ∈ C+ : ϕ1(θ) > 0, ϕ2(θ) > 0 for s ∈ [−τ, 0]

}
.
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Due to the biological interpretation, we consider initial conditions for (2.6a) as

(N1(θ), N2(θ)) = ψ(θ)

for θ ∈ [−τ, 0], where ψ ∈ G. We use the notation xt(θ) := x(t+ θ) for θ ∈ [−τ, 0] as

usual in the theory of functional differential equations, see e.g. [3]. One can obtain

that (N1,t, N2,t) ∈ G for t > 0 and thus both components of the solution of (2.6a)

are strictly positive for t > 0.

R em a r k 2.1. For any nonnegative initial function system (2.6a) generates

a strictly positive solution. However, we restrict the initial function of (2.6a) to the

function in G to define (2.7) for t ∈ (0, τ ]. We prove the following result for (2.6a).

Lemma 2.1. There exists a unique positive equilibrium (N1, N2) of (2.6a), where

(2.8)

(
N1

N2

)
:=

(
d1 + α12 −α21

−α12 d2 + α21

)−1 (
A1

A2

)
.

The positive equilibrium is asymptotically stable.

P r o o f. We define xj(t) := Nj(t)−Nj for j ∈ {1, 2}. We obtain

d

dt
x1(t) = −(d1 + α12)x1(t) + α21x2(t− τ),(2.9a)

d

dt
x2(t) = −(d2 + α21)x2(t) + α12x2(t− τ).(2.9b)

Since d1 and d2 are positive and (d1 + α12)(d2 + α21) > α12α21, condition (16) in

Suzuki and Matsunaga [12], Example 2, page 1384, holds. Thus the zero solution of

(2.9) is asymptotically stable. �

We can view (2.6b) as a system of non-autonomous delay differential equations

with non-autonomous terms Nj(t) for j ∈ {1.2}, which are governed by system

(2.6a). In the following, using Lemma 2.1, we derive a limiting system of (2.6b). For

j, k ∈ {1, 2} and j 6= k we define a positive function

fkj(I) :=
αkje

γkjτ I

1 +
eγkjτ − 1

Nk

I

for I ∈ [0,∞),

where Nk is the positive equilibrium of (2.6a) given as in (2.8). By Lemma 2.1 one

can obtain

lim
t→∞

(
ikj(τ, t− τ)− fkj(Ikj(t− τ))

)
= 0.
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Then we find that system (2.6b) is asymptotically autonomous with the limiting

system of delay differential equations

(2.10)
dIj(t)

dt
= Ij(t)

{
βj − (dj + δj + αjk)−

βj
Nj

Ij(t)
}
+ fkj(Ik(t− τ))

for j, k ∈ {1, 2} and j 6= k. To obtain information on the long-term behavior of

solutions of (2.6b) we analyse global stability of system (2.10) and apply the theory

of asymptotically autonomous systems [1], [7], [13] in Sections 4 and 5.

3. The basic reproduction number

We define and give an explicit formula for a basic reproduction number R0 for

(2.6). In absence of the inflow into a region due to the transportation, we define

regional reproduction numbers as

(3.1) Rj :=
βj

dj + δj + αjk

for j ∈ {1, 2}, k 6= j. If we introduce a single infective into a fully susceptible region j,

it will generate Rj new infectives in this region in the expected sojourn time. Let

us consider the expected number of infective individuals appearing in region k due

to the transportation by a typical infective individual introduced into region j: the

probability of moving out from Ij by means of travel is αjk/(dj + δj + αjk), and

the expected number of infected individuals who arrive at region j if the travel was

started with a single infective is eγjkτ (this follows from the linear part of (2.3)).

Taking the product of these two numbers, for j, k ∈ {1, 2} and j 6= k we define

rjk :=
αjke

γjkτ

dj + δj + αjk

.

We construct a next generation matrix for (2.6) as

(3.2) M :=

(
R1 r21
r12 R2

)
,

define the basic reproduction number as the spectral radius ofM and denote it by R0.

Then one finds the explicit expression

(3.3) R0 =
1

2

{
(R1 +R2) +

√
(R1 −R2)2 + 4r12r21

}
.

If α12 = 0 or α21 = 0, then R0 = max{R1, R2}.
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4. Disease transmission dynamics: bidirectional transportation

In this section we consider a situation in which two regions are connected to each

other via bidirectional transportation. Thus we assume that

(4.1) αjk ∈ (0,∞) for j, k ∈ {1, 2} and j 6= k.

We prove that (2.6) admits a unique endemic equilibrium if and only if R0 > 1 while

there always exists a disease free equilibrium. Performing global stability analysis

we show that R0 works as a threshold quantity to determine which equilibrium is

globally asymptotically stable.

4.1. Existence of equilibria. In order to prove the existence of the endemic

equilibrium, we introduce a relation between the basic reproduction number and

regional reproduction numbers.

Proposition 4.1. (A) For

(4.2) r12r21 ∈ (0, 1),

the following statements hold:

(A1) R0 < 1 if and only if

(4.3) r12r21 < (1 −R1)(1−R2) for max{R1, R2} ∈ (0, 1).

(A2) R0 = 1 if and only if

(4.4) r12r21 = (1 −R1)(1−R2) for max{R1, R2} ∈ (0, 1).

(A3) R0 > 1 if and only if either

(4.5) r12r21 > (1 −R1)(1−R2) for max{R1, R2} ∈ (0, 1).

or

(4.6) max{R1, R2} > 1.

(B) If

(4.7) r12r21 > 1,

then R0 > 1 for any (R1, R2) ∈ (0,∞)× (0,∞).
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P r o o f. (A) We only prove statement (A3), statements (A1) and (A2) can be

shown in a similar way. Assume (4.2). If we suppose (4.6), then

R0 >
1

2

{
(R1 +R2) +

√
(R1 −R2)2

}
= max{R1, R2} > 1.

From (3.3), R0 > 1 if and only if

(4.8)
√
(R1 −R2)2 + 4r12r21 > 2− (R1 +R2).

If max{R1, R2} < 1, we can square both sides to obtain the equivalent inequality

r12r21 > (1−R1)(1−R2), as in (4.5). Therefore, both (4.5) and (4.6) imply R0 > 1.

For the other direction, suppose R0 > 1. Then either (4.6) or max{R1, R2} < 1

holds. In the latter case, we obtain r12r21 > (1 − R1)(1 − R2) from (4.8) and thus

(4.5) holds.

(B) Assume that (4.7) holds. Then from (3.3) we get R0 > 1. The proof is

complete. �

Next we consider the existence of equilibria of (2.6). We define

gj(z) := z
{
βj − (dj + δj + αjk)−

βj
Nj

z
}
for z ∈ [0,∞)

for j, k ∈ {1, 2} and j 6= k and

h1(x, y) := g1(x) + f21(y), h2(x, y) := g2(y) + f12(x).

In the following we study the solution of

(4.9) 0 = h1(x, y) = h2(x, y) for (x, y) ∈ [0,∞)× [0,∞).

Proposition 4.2. For (4.9) there always exists a trivial solution (0, 0). There

exists a unique solution, with both components strictly positive, if and only if R0 > 1.

P r o o f. Clearly (0, 0) is always a solution of (4.9). For the existence of the

positive solution, we show that (4.9) defines two curves having a unique intersection

in the first quadrant if and only if R0 > 1. We define y∞ := lim
y→∞

f21(y). One easily

proves that y∞ < ∞ and that f21(y) is monotone increasing on [0,∞) with range

[0, y∞). Therefore, it is a bijection and thus invertible on this domain: there exists

an inverse function of f21 such that f
−1

21 : [0, y∞) → [0,∞). We define

x∗(R1) := max
{
0, N1

(
1−

1

R1

)}
.
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We see that g1(x∗(R1)) = 0, lim
x→∞

g1(x) = −∞ and g1(x) is monotone decreasing

for x ∈ [x∗(R1),∞). We can find a unique x such that −g1(x) = y∞ and denote it

by x∗. Then we define a function G1 : [x∗(R1), x
∗) → [0,∞) as

G1(x) := f−1
21 (−g1(x)),

which is a continuous and monotone increasing function such that

(4.10) G1(x∗(R1)) = 0 and lim
x→x∗

G1(x) = ∞.

The graph of G1 is the zero level set of h1, i.e.,

(4.11) h1(x,G1(x)) = 0.

Similarly, we see that f12(0) = 0, lim
x→∞

f12(x) <∞ and f12(x) is monotone increasing

for x ∈ [0,∞). We define

y∗(R2) := max
{
0, N2

(
1−

1

R2

)}
.

One can prove that g2(y) is monotone decreasing on [y∗(R2),∞) with range (−∞, 0].

Therefore, it is a bijection and thus invertible on this domain: there exists an

inverse function of g2 such that g
−1

2 : (−∞, 0] → [y∗(R2),∞). We define y∗ :=

g−1

2

(
− lim

x→∞
f12(x)

)
<∞. Then we define a function G2 : [0,∞) → [y∗(R2), y

∗) as

G2(x) := g−1

2 (−f12(x)),

which is a continuous and monotone increasing function such that

(4.12) G2(0) = y∗(R2) and lim
x→∞

G2(x) = y∗.

The graph of G2 is the zero level set of h2, i.e.,

(4.13) h2(x,G2(x)) = 0.

Consequently, intersections of the curves are given as a solution of the equation

G1(x) = G2(x). For proving the existence of the solution we divide the proof into

two cases.

Case 1 : max{R1, R2} > 1 holds. From (4.10), (4.12) and monotonicity of G2, it

follows that

G1(x∗(R1)) = 0 6 y∗(R2) = G2(0) 6 G2(x∗(R1)).
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We have that either x∗(R1) > 0 or y∗(R2) > 0. Therefore, we obtain that

G1(x∗(R1)) < G2(x∗(R1)). On the other hand, there exists x0 ∈ (x∗, x
∗) such that

G1(x0) > G2(x0), since lim
x→∞

G2(x) = y∗ and lim
x→x∗

G1(x) = ∞ due to (4.10) and

(4.12). By the continuity, there must be an x ∈ (x∗(R1), x
∗) such thatG1(x) = G2(x)

(see Figure 1 (a), (b) and (c)).

y

x(0, 0) x∗(R1)

y∗(R2)

G1

G2

(a) R1 > 1 and R2 > 1

y

x(0, 0) x∗(R1)

G1

G2

(b) R1 > 1 and R2 6 1

y

x(0, 0)

y∗(R2)

G1

G2

(c) R1 6 1 and R2 > 1

y

x(0, 0)

G1

G2

(d) R1 6 1 and R2 6 1

Figure 1. Graph of G1 and G2 for R0 > 1. The unique intersection of G1 and G2 denotes
the unique endemic equilibrium.

Case 2 : max{R1, R2} 6 1 holds. In this case, by (4.5) we have that x∗(R1) = 0

and that y∗(R2) = 0. Then G1(0) = G2(0) = 0. We compute the slopes of G1 and

G2 at zero to determine the existence of the intersection. By differentiation of (4.11)

and evaluating at zero we obtain

(4.14) G′
1(0) = −

g′1(0)

f ′
21(0)

=
1−R1

r21
.

Similarly, from (4.13), we get that

(4.15) G′
2(0) =

r12
1−R2

(whenever R2 < 1),
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and in the case R2 = 1 the graph of G2 is tangential to the y-axis at 0. If

max{R1, R2} 6 1 but R0 > 1, then from Proposition 4.1, either (4.7) holds or

(4.2) and (4.6) hold. In any case we get G′
1(0) < G′

2(0) (where G
′
2(0) = ∞ when

R2 = 1). Hence there is some x1 > 0 such that G1(x1) < G2(x1). Since we have that

lim
x→∞

G2(x) = y∗ < ∞ and lim
x→x∗

G1(x) = ∞ from (4.10) and (4.12), there exists x0

such that G1(x0) > G2(x0). By the continuity, there must be an x ∈ (x∗, x
∗) such

that G1(x) = G2(x) (see Figure 1 (d)).

For the uniqueness of x we examine the convexity properties of G1 and G2. Ap-

plying implicit differentiation of h1(x, y) = 0 and using that

∂2h1(x, y)

∂y∂x
=
∂2h1(x, y)

∂x∂y
= 0,

we obtain

0 =
∂2h1(x, y)

∂x2
+
∂2h1(x, y)

∂y2
G′

1(x)
2 +

∂h1(x, y)

∂y
G′′

1 (x).

Simple calculations show that

∂2h1(x, y)

∂x2
< 0,

∂2h1(x, y)

∂y2
< 0 and

∂h1(x, y)

∂y
> 0.

Hence, it follows that

G′′
1 (x) = −

∂2h1(x, y)

∂x2
+
∂2h1(x, y)

∂y2
G′

1(x)
2

∂h1(x, y)

∂y

> 0.

On the other hand, analogous calculations give G′′
2 (x) < 0. By these convexity

properties we deduce that there is a unique positive solution x of G1(x) = G2(x).

Therefore, there exists a unique endemic equilibrium if R0 > 1.

Finally, we assume that R0 6 1 holds. Then either (4.3) or (4.4) in Proposition 4.1

holds, which gives G′
1(0) > G′

2(0) from (4.14) and (4.15). The convexity properties

of G1 and G2 show that there is no positive solution of G1(x) = G2(x). Therefore,

there exists no endemic equilibrium if R0 6 1. The proof is complete. �

For R0 > 1 we denote by (I1+, I2+) the unique positive solution of (4.9). We

obtain the following result on the existence of equilibria of (2.6).
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Theorem 4.1. For (2.6) there always exists a disease free equilibrium given as

(N1, N2, 0, 0).

A unique endemic equilibrium, given as

(N1, N2, I1+, I2+),

exists if and only if R0 > 1.

P r o o f. We obtain the first and second components of the equilibria from

Lemma 2.1. Since the third and fourth components of the equilibria of (2.6)

are determined by (4.9), from Proposition 4.2 we obtain the conclusion. �

From Theorem 4.1, one can easily obtain the existence of equilibria of (2.10).

Theorem 4.2. For (2.10) there always exists the trivial equilibrium (0, 0).

A unique positive equilibrium given as (I1+, I2+) exists if and only if R0 > 1.

4.2. Global dynamics analysis. For (2.6b) and (2.10) we consider the same

initial conditions

(4.16) (I1(θ), I2(θ)) = ϕ(θ)

for θ ∈ [−τ, 0], where ϕ ∈ C+. We denote by 0̂ the function which is identically zero,

i.e., ϕ(θ) = 0 for θ ∈ [−τ, 0]. In the following we assume

(4.17) ϕ ∈ C+ \ {0̂, 0̂}.

The proof of the following lemma is straightforward thus omitted.

Lemma 4.1. Both (2.6b) and (2.10) have unique nonnegative solutions (I1(t),

I2(t)), defined for all t > 0, which are bounded. We have Ij(t) > 0, j = {1, 2} for

t > τ , thus (I1,t, I2,t) ∈ G for t > 2τ .

R em a r k 4.1. For (2.6b) and (2.10) if ϕ=(0̂, 0̂) then it follows that (I1(t), I2(t))=

(0, 0) for t > 0, thus (I1,t, I2,t) = (0̂, 0̂) for t > 0. We analyse the global stability of

the trivial equilibrium of (2.10).

Theorem 4.3. The trivial equilibrium of (2.10) is globally asymptotically stable

for R0 < 1 while it is unstable for R0 > 1.
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P r o o f. We define

lj := βj − (dj + δj + αjk) for j, k ∈ {1, 2} and j 6= k.

By linearizing (2.10) at the trivial equilibrium we obtain that

d

dt
y(t) = B1y(t) +B2y(t− τ),(4.18)

where y(t) ∈ R
2 and

B1 :=

(
l1 0

0 l2

)
, B2 :=

(
0 α21e

γ21τ

α12e
γ12τ 0

)
.

Since (4.18) is a cooperative and irreducible system, according to Smith [11], Chap-

ter 5, Corollary 5.2, the stability of the trivial equilibrium is equivalent to that for

(4.19)
d

dt
y(t) = (B1 +B2)y(t).

One can show by a straightforward calculation that the trivial equilibrium of (4.19)

is asymptotically stable if R0 < 1 while it is unstable if R0 > 1. Hence we obtain

the conclusion on the stability of the trivial equilibrium of (2.10). Next we prove the

global attractivity. From (2.10) we obtain that

d

dt

(
I1(t)

I2(t)

)
6 B1

(
I1(t)

I2(t)

)
+B2

(
I1(t− τ)

I2(t− τ)

)
.

Since for R0 < 1 we have that lim
t→∞

y(t) = (0, 0) for (4.18), using the standard

comparison argument as in Smith [11], Chapter 5, Corollary 2.4, we conclude that

lim
t→∞

Ij(t) = 0 for j ∈ {1, 2}. Thus the trivial equilibrium is globally attractive. �

Next we analyse the global stability of the positive equilibrium of (2.10). For the

proof we employ Lyapunov’s direct method. For the construction of the Lyapunov

functional we let

g(z) := z − 1− ln z for z ∈ (0,∞).

One can see that g(z) has the global minimum at z = 1 with g(1) = 0. The following

elementary Lemma is taken from Nakata [8], Lemma 2.4. We use it to prove the

global asymptotic stability.

183



Lemma 4.2. For any x, y ∈ (0,∞) we have

(4.20)
(x
y
−
fkj(x)

fkj(y)

)(fkj(x)
fkj(y)

− 1
)
> 0

and

(4.21) g
(x
y

)
− g

(fkj(x)
fkj(y)

)
> 0

for j, k ∈ {1, 2} and j 6= k.

Theorem 4.4. The positive equilibrium of (2.10) is globally asymptotically stable

for R0 > 1.

P r o o f. The equilibrium condition of (2.10) yields

βj − (dj + δj + αjk) =
βjIj+
Nj

−
fkj(Ik+)

Ik+
.

Then from (2.10) we obtain that

(4.22)
dIj(t)

dt
=
βj
Nj

Ij(t)(Ij+ − Ij(t)) + fkj(Ik(t− τ))− fkj(Ik+)
Ij(t)

Ij+

for j, k ∈ {1, 2} and j 6= k. For (ϕ1, ϕ2) ∈ G we consider the following functional

defined as

(4.23) U(ϕ1, ϕ2) :=
∑

j,k∈{1,2},j 6=k

(
Ij+

fkj(Ik+)
g
(ϕj(0)

Ij+

)
+

∫ 0

−τ

g
(fkj(ϕk(s))

fkj(Ik+)

)
ds

)
.

By Lemma 4.1 there exists t0 such that (I1,t, I2,t) ∈ G for t > t0 > 2τ . We differen-

tiate U with respect to t along the solution of (4.22). For the convenience we drop

‘+’ in index from the notation. Hence

(4.24)
d

dt

[
g
(Ij(t)
Ij

)]
=

1

Ij

(
1−

Ij
Ij(t)

){βjIj(t)
Nj

Ij

(
1−

Ij(t)

Ij

)

+ fkj(Ik)
(fkj(Ik(t− τ))

fkj(Ik)
−
Ij(t)

Ij

)}

= −
βjIj
Nj

(
1−

Ij(t)

Ij

)2

+
fkj(Ik)

Ij

(
1−

Ij
Ij(t)

)(fkj(Ik(t− τ))

fkj(Ik)
−
Ij(t)

Ij

)
.
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Furthermore,

(4.25)
d

dt

∫ t

t−τ

g
(fkj(Ik(s))

fkj(Ik)

)
ds = g

(fkj(Ik(t))
fkj(Ik)

)
− g

(fkj(Ik(t− τ))

fkj(Ik)

)

=
fkj(Ik(t))

fkj(Ik)
−
fkj(Ik(t− τ))

fkj(Ik)
− ln

fkj(Ik(t))

fkj(Ik)
+ ln

fkj(Ik(t− τ))

fkj(Ik)
.

We define

Cjk(t) : =
(
1−

Ij
Ij(t)

)(fkj(Ik(t− τ))

fkj(Ik)
−
Ij(t)

Ij

)

+
(fkj(Ik(t))
fkj(Ik)

−
fkj(Ik(t− τ))

fkj(Ik)
− ln

fkj(Ik(t))

fkj(Ik)
+ ln

fkj(Ik(t− τ))

fkj(Ik)

)

for j, k ∈ {1, 2} and j 6= k. Then from (4.24) and (4.25) we obtain that

(4.26)
d

dt
U(I1t, I2t) =

2∑

j=1

{
−

βjI
2
j

Njfkj(Ik)

(
1−

Ij(t)

Ij

)2
}
+

∑

j,k∈{1,2}, j 6=k

Cjk(t).

Now we determine the sign of Cjk(t):

Cjk(t) =
(fkj(Ik(t− τ))

fkj(Ik)
−
Ij(t)

Ij
−

Ij
Ij(t)

fkj(Ik(t− τ))

fkj(Ik)
+ 1

)

+
(fkj(Ik(t))
fkj(Ik)

−
fkj(Ik(t− τ))

fkj(Ik)
− ln

fkj(Ik(t))

fkj(Ik)
+ ln

fkj(Ik(t− τ))

fkj(Ik)

)

=
fkj(Ik(t))

fkj(Ik)
−
Ij(t)

Ij
−

Ij
Ij(t)

fkj(Ik(t− τ))

fkj(Ik)

+ 1− ln
fkj(Ik(t))

fkj(Ik)
+ ln

fkj(Ik(t− τ))

fkj(Ik)

=
(fkj(Ik(t))
fkj(Ik)

− 1− ln
fkj(Ik(t))

fkj(Ik)

)
−
(Ij(t)
Ij

− 1− ln
Ij(t)

Ij

)

−
(Ijfkj(Ik(t− τ))

Ij(t)fkj(Ik)
− 1− ln

Ijfkj(Ik(t− τ))

Ij(t)fkj(Ik)

)

= g
(fkj(Ik(t))
fkj(Ik)

)
− g

(Ij(t)
Ij

)
− g

(Ijfkj(Ik(t− τ))

Ij(t)fkj(Ik)

)
.

Therefore, using (4.21) in Lemma 4.2, we obtain that

∑

j,k∈{1,2}, j 6=k

Cjk(t) =
∑

j,k∈{1,2}, j 6=k

{
g
(fkj(Ik(t))
fkj(Ik)

)
− g

(Ik(t)
Ik

)

− g
(Ijfkj(Ik(t− τ))

Ij(t)fkj(Ik)

)}
6 0.

Consequently, (d/dt)U(I1,t, I2,t) 6 0 for t > t0.
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If (I1,t0 , I2,t0) is the function identically equal to (I1, I2), then it is obvious that

it follows that (I1,t, I2,t) = (I1, I2) for t > t0. Thus we assume that (I1,t0 , I2,t0) is

not the function identically equal to (I1+, I2+). Then there exists c > 0 such that

c = U(I1,t0 , I2,t0). We define

Gc :=
{
ϕ ∈ G ; U(ϕ) 6 c

}
.

We see that Gc is closed and positively invariant. Thus the closure of Gc is again

Gc and Gc contains (I1,t, I2,t) for all t > t0. Since U is continuous on Gc, U is

a Lyapunov functional on Gc, see [3], Chapter 5.3. We define the set

Σ :=
{
(ϕ1, ϕ2) ∈ Gc :

d

dt
U(ϕ1, ϕ2) = 0

}
.

We obtain

Σ =
{
(ϕ1, ϕ2) : ϕj(0) = ϕj(−τ) = Ij , j ∈ {1, 2}

}
.

Let L be the largest subset in Σ that is invariant with respect to (2.10). From the

invariance, L consists of only the function identically equal to (I1, I2). Then, by

LaSalle’s invariance principle [3], Theorem 3.1, we conclude that the solution tends

to the positive equilibrium of (2.10). Since for every solution we can choose c, the

positive equilibrium is globally attractive. The stability of the equilibrium follows

from [3], Section 5, Corollary 3.1, if we define a(·) as

a(ϕ1(0), ϕ2(0)) :=
∑

j,k∈{1,2}, j 6=k

Ij
fkj(Ik)

g
(ϕj(0)

Ij

)
.

Hence the positive equilibrium is globally asymptotically stable. �

Finally, we extend the global stability results in Theorems 4.3 and 4.4 to the

original system (2.6) by applying the theory of asymptotic autonomous systems [13],

Theorem 4.1.

Theorem 4.5. For (2.6) the following statements hold. The disease free equilib-

rium is globally asymptotically stable if R0 > 1 and it is unstable if R0 > 1. For

R0 > 1, the endemic equilibrium is globally asymptotically stable.

P r o o f. We first show that the stability properties of (2.6) are the same as those

of (2.10). Let

N(t) := (N1(t), N2(t)) and I(t) := (I1(t), I2(t)).
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We define functions F : (R2)2 → R
2 and H : (R2)4 → R

2 as right hand sides of (2.6),

i.e., (2.6) can be written as

d

dt
N(t) = F

(
N(t), N(t− τ)

)
,

d

dt
I(t) = H

(
N(t), N(t− τ), I(t), I(t − τ)

)
.

To analyse stability of (2.6) we apply the principle of linearized stability [2], Chap-

ter VII, Theorem 6.8. For an equilibrium (N, I) of (2.6) we define

A :=

(
D1F (N,N) 0

D1H(N,N, I, I) D3H(N,N, I, I)

)

and

B :=

(
D2F (N,N) 0

D2H(N,N, I, I) D4H(N,N, I, I)

)
.

We define

D(λ) := det
(
λE −A−Be−λτ

)
,

where E is the identity matrix. Then for an equilibrium (N, I) the characteristic

equation is

(4.27) D(λ) = 0.

We define

D1(λ) := det
(
λE −D1F (N,N)−D2F (N,N)e−λτ

)
,

D2(λ) := det
(
λE −D3H(N,N, I, I)−D4H(N,N, I, I)e−λτ

)
.

Then it follows that

D(λ) = D1(λ)D2(λ).

From Lemma 2.1 we know that every root of D1(λ) has negative real part. Thus

(4.27) has a root in the right complex half plane if and only if

(4.28) D2(λ) = 0

has a root in the right complex half plane. We can write

d

dt
I(t) = H(N,N, I(t), I(t − τ))
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as (2.10). Then one can see that (4.28) is also the characteristic equation of (2.10).

Therefore the stability of (2.10) is equivalent to that of (2.6). Finally, from The-

orems 4.3 and 4.4, we obtain the statements on stability of both the disease free

equilibrium and the endemic equilibrium of (2.6).

Next we prove the global attractivity of the equilibria of (2.6b) by applying [13],

Theorem 4.1. Since we have the boundedness of solutions from Lemma 4.1, we

can show that forward orbits of (2.6b) are precompact, thus the ω-limit sets are

not empty, see e.g. Smith [10], Chapter 5. Consider first the case R0 < 1. From

Theorem 4.3 and Remark 4.1 the basin of attraction of the trivial equilibrium of

(2.10) is C+. Hence the ω-limit set of every forward orbit of (2.6b) intersects the

basin of attraction. By [13], Theorem 4.1, we can conclude that every solution of

(2.6b) converges to (0, 0). Now suppose R0 > 1. We prove the global attractivity

of the endemic equilibrium of (2.6). To apply [13], Theorem 4.1, we exclude the

possibility that the ω-limit set of a forward orbit of (2.6b) contains (0̂, 0̂). Suppose

the contrary, then there is a solution (I1(t), I2(t)) of (2.6b) such that

(4.29) lim
t→∞

(I1(t), I2(t)) = (0, 0).

Since, from Lemma 2.1, it holds that lim
t→∞

Nj(t) = Nj for j ∈ {1, 2}, for any ε > 0

and j, k ∈ {1, 2}, j 6= k there exists a sufficiently large T such that

1

1 +
eγkjτ − 1

Nk(t− τ)
Ik(t− τ)

> 1− ε and Rj

Ij(t)

Nj(t)
< ε for t > T.

For t > T , from (2.6b) we find the estimate

(4.30)
dIj(t)

dt
> Ij(t)(dj + δj + αjk)(Rj − 1− ε) + (1− ε)αkje

γkjτ Ik(t− τ)

for j, k ∈ {1, 2}, j 6= k. For j ∈ {1, 2} if Rj > 1, then, choosing a sufficiently small ε,

we see that Ij(t) is nondecreasing, which contradicts (4.29). Hence we focus on the

case when max{R1, R2} 6 1. We introduce the notation

aεj := (dj + δj + αjk)(Rj − 1− ε) and bεj := (1 − ε)αkje
γkjτ

for j, k ∈ {1, 2}, j 6= k. With this notation (4.30) can be written as

dIj(t)

dt
> aεjIj(t) + bεjIk(t− τ).
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Let

V (I1,t, I2,t) : = −aε2

(
I1(t) + bε1

∫ t

t−τ

I2(s) ds

)
+ bε1

(
I2(t) + bε2

∫ t

t−τ

I1(s) ds

)
.

We note that aε2 < 0. Differentiating V , the delayed terms and the coefficients of I2(t)

cancel out, and we obtain

d

dt
V (I1,t, I2,t) = I1(t)(b

ε
1b

ε
2 − aε1a

ε
2).

From Proposition 4.1 (A3), R0 > 1 implies b01b
0
2−a

0
1a

0
2 > 0, therefore for a sufficiently

small ε, bε1b
ε
2 − aε1a

ε
2 > 0 also holds. Thus V is nondecreasing; on the other hand, for

positive solutions we have V (I1,t, I2,t) > 0. Since we assume (4.29), which leads to

lim
t→∞

V (I1,t, I2,t) = 0, we obtain a contradiction. Thus the ω-limit set of any forward

orbit of (2.6b) does not contain (0̂, 0̂). Then by [13], Theorem 4.1, every solution

of (2.6) converges to the endemic equilibrium. �

5. Disease transmission dynamics: unidirectional transportation

In this section we assume that two regions are connected via unidirectional trans-

portation. Without loss of generality we assume that individuals move toward re-

gion 1 from region 2, but the opposite way is inhibited. Thus we assume that

(5.1) α12 = 0 and α21 ∈ (0,∞).

For the convenience of the notation, for j ∈ {1, 2} we define

Ij :=
(
1−

1

Rj

)
Nj.

For R2 > 1 we define a quadratic polynomial function for I ∈ [0,∞) as

(5.2) η(I) := I(d1 + δ1)
(
R1 − 1−

R1

N1

I
)
+ f21(I2).
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Proposition 5.1. If R2 > 1 then

(5.3) I∗ :=

R1 − 1 +

√
(R1 − 1)2 + 4

R1

N1

f21(I2)

d1 + δ1

2R1

N1

is a unique positive solution of η(I) = 0. Furthermore, one has

(5.4) η(I)





> 0 for I ∈ [0, I∗),

= 0 for I = I∗,

< 0 for I ∈ (I∗∞).

P r o o f. We see that the coefficient at I2 of η is negative with η(0) = f21(I2) > 0.

Since η is a quadratic function, there exists a unique positive solution of η(I) = 0

and one can obtain (5.3) as a unique positive solution. Since we have η(0) > 0, it is

easy to get (5.4). The proof is complete. �

We now formulate results on the existence of equilibria in terms of regional repro-

duction numbers.

Theorem 5.1. For (2.6) the following statements hold.

(i) There always exists a disease free equilibrium, which is given as (N1, N2, 0, 0).

(ii) There exists an endemic equilibrium only for region 1, which is given as

(N1, N2, I1, 0), if and only if R1 > 1.

(iii) There exists an endemic equilibrium for both regions, which is given as

(N1, N2, I
∗, I2), if and only if R2 > 1.

P r o o f. By Lemma 2.1 we obtain the first and second components of equilibria.

We omit the proofs of (i) and (ii), since they are straightforward. Assume R2 > 1.

Then we see that the positive equilibrium of the second component of (2.6b) is I2.

To find the equilibrium of the first component of (2.6b) we consider the equation

η(I) = 0. Since from Proposition 5.1 I = I∗ is a unique positive solution of η(I) = 0,

we obtain the equilibrium. �

For (2.6b) and (2.10) we consider the initial conditions I1(0) = I01 ∈ R+ and

I2(θ) = ϕ2(θ) for θ ∈ [−τ, 0], where ϕ2 ∈ C([−τ, 0],R+). We assume that ϕ2(0) > 0.

Lemma 5.1. Both (2.6b) and (2.10) have unique nonnegative solutions (I1(t),

I2(t)), defined for all t > 0, which are bounded. It holds that I1(t) > 0 for t > τ and

that I2(t) > 0 for t > 0.
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R em a r k 5.1. If ϕ2(0) = 0 then I2(t) = 0 for t > 0. If I01 = 0 and ϕ2 = 0̂ then

Ij(t) = 0 for j ∈ {1, 2} and t > 0. To obtain the global stability results for (2.6), we

first consider the limit equation (2.10) and then apply the theory of asymptotically

autonomous semiflow, as in the proof of Theorem 4.5. We here omit the details of

the proof, see also Section 5.2 in [9].

Theorem 5.2. For (2.6) the following statements hold.

(i) The disease free equilibrium is globally asymptotically stable if max{R1,R2}<1

and it is unstable if max{R1, R2} > 1.

(ii) The endemic equilibrium for only region 1 is globally asymptotically stable if

R1 > 1 > R2 and it is unstable if R2 > 1.

(iii) The endemic equilibrium for both regions is globally asymptotically stable if

R2 > 1.

6. The role of the travel delay

Theorem 6.1. Assume α12 > 0 and α21 > 0. Then R0 and all the components

of the endemic equilibrium (in the case of R0 > 1) are increasing functions of the

travel delay τ .

P r o o f. The monotonicity of R0 with respect to τ is clear from (3.3) and the

definition of rjk. The components of the endemic equilibrium are given by the inter-

section of the curves G1 and G2, see Figure 1. It is easy to check that fjk are also

increasing in τ , while gi are independent of τ . Consider some τ with the correspond-

ing Gi and fji functions and the endemic equilibrium (x∗, y∗), and a τ̃ > τ with

G̃i, f̃ji, and endemic equilibrium (x̃∗, ỹ∗) (which now we know that it exists). Then,

for any x, f̃ji(x) > fji(x), hence f̃
−1

ji (x) < f−1

ji (x) and G̃1(x) = f̃−1

21 (−g1(x)) <

f−1

21 (−g1(x)) = G1(x). Since g
−1

2 is decreasing, we also have G̃2(x) = g−1

2 (−f̃12(x)) >

g−1

2 (−f12(x)) = G2(x). We obtained that G̃1 < G1 and G̃2 > G2, which geomet-

rically means that the graph of G̃1 is shifted downwards, and the graph of G̃2 is

shifted upwards, compared to the graphs of G1 and G2, whenever they are defined.

Given the monotonicity and the geometric configuration of these curves, we find that

(x̃∗, ỹ∗) > (x∗, y∗), see again Figure 1 for a clear picture. �

To visualize the previous theorem, we plot the endemic equilibrium and the basic

reproduction number as a function of τ in Figures 2 and 3, in two different situations.

From Figure 2 we can conclude that ignoring the travel delay and the transport

related infections, the severity of an epidemics can be easily underestimated. Figure 3

shows the possibility that due to infection during travel, somewhat paradoxically,
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Figure 2. Plots of the components of the endemic equilibrium and R0 as functions of the
travel delay τ . Demographic parameters are chosen such that the total popula-
tions of the patches are 8× 105 and 3× 105. Transmission parameters are chosen
such that R0 > 1 even in the absence of travel related infections.
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Figure 3. Plots of the components of the endemic equilibrium and R0 as functions of the
travel delay τ . Demographic parameters are chosen as in Figure 2, but trans-
mission parameters are chosen such that R0 < 1 in the absence of travel related
infections (τ = 0).

a disease can die out if the two regions are near (small τ), but remains endemic in

both regions for larger travel delay, as R0 becomes larger than one at τ = τ∗ ≈ 7.

Thus the dynamics of the system suddenly changes as the delay is passing through

the critical value τ∗.
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