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Abstract. A one-dimensional version of a gradient system, known as “Kobayashi-Warren-
Carter system”, is considered. In view of the difficulty of the uniqueness, we here set
our goal to ensure a “stability” which comes out in the approximation approaches to the
solutions. Based on this, the Main Theorem concludes that there is an admissible range of
approximation differences, and in the scope of this range, any approximation method leads
to a uniform type of solutions having a certain common features. Further, this is specified
by using the notion of “energy-dissipative solution”, proposed in a relevant previous work.
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1. Introduction

Let 0 < L, T < ∞ be fixed constants, and let Ω := (−L,L) be a one-dimensional

bounded domain with the boundary points ±L ∈ R. Let Q := (0, T ) × Ω be the

product set of the time-interval (0, T ) and the spatial domain Ω.

In this paper, the one dimensional version of a gradient system, known as

“Kobayashi-Warren-Carter system”, is considered. This system is denoted by (S)

and is derived from the following free-energy:

F (η, θ) :=
1

2

∫

Ω

|ηx|
2 dx+

∫

Ω

ĝ(η) dx+

∫

Ω

α(η)|Dxθ|, ∀ [η, θ] ∈ H1(Ω)×BV (Ω),

including an unknown-dependent total variation
∫
Ω α(η)|Dxθ|, where ĝ is a given

nonnegative function, and α is a given positive convex function. Accordingly, the

system (S) is formally described as follows.
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(S):





ηt − ηxx + g(η) + α′(η)|Dxθ| = 0 in Q,

ηx(t,±L) = 0, t ∈ (0, T ),

η(0, x) = η0(x), x ∈ Ω;

(1.1)





α0(η)θt −
(
α(η)

Dxθ

|Dxθ|

)
x
= 0 in Q,

α(η(t,±L))
Dxθ

|Dxθ|
(t,±L) = 0, t ∈ (0, T ),

α0(η(0, x))θ(0, x) = α0(η0(x))θ0(x), x ∈ Ω,

(1.2)

where g is the derivative of ĝ, α′ is the differential of α, and α0 is a given nonnegative

function.

System (S) is based on a phase-field model of a planar grain boundary motion in

a polycrystal, proposed by Kobayashi-Warren-Carter [5]. In the context, the physical

situation is reproduced by using two order parameters η = η(t, x) and θ = θ(t, x),

which indicate, respectively, the orientation order and the orientation angle of the

grain. In particular, η is supposed to satisfy the range constraint 0 6 η 6 1 on Q, and

the threshold values 1 and 0 are supposed to indicate, respectively, the completely

oriented phase and the disordered phase of orientation.

Recently, the existence results relative to the Kobayashi-Warren-Carter system

were reported in several literatures [2], [3], [6], [8], [9], [10], and in each of these, the

forerunners adopted some approximation problems, configured as gradient systems

of the following types of relaxed free-energies:

Fν(η, θ) :=
1

2

∫

Ω

|ηx|
2 dx+

∫

Ω

ĝ(η) dx+

∫

Ω

α(η)βν (θx) dx

+
ν

2

∫

Ω

|θx|
2 dx, ∀ [η, θ] ∈ H1(Ω)×H1(Ω), ∀ ν ∈ (0, 1).

Here, ν ∈ (0, 1) is an index of the parabolic regularization for (1.2), and hence

this index approximates the original situation as ν ↓ 0. Further {αν ; ν ∈ (0, 1)}

and {βν ; ν ∈ (0, 1)} are sequences of functions to relax, respectively, the possibly

degenerate situation of α0 and the nonsmoothness of the absolute-value function | · |.

Meanwhile, with regard to the uniqueness, the standard analytic technique is not

applicable, due to the unknown dependence of the weights α0(η) and α(η) in (1.2).

This difficulty has cost us satisfactory answers for the uniqueness question, except

for a quite restrictive case (cf. [2], Theorem 2.2). Hence, we must still worry about

that the system (S) may include some “instability” for the approximation methods,

since we cannot deny the possibility of obtaining different types of solutions relative

to the choices of the approximation components {αν} and {βν}.
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In view of this, we here set our goal to ensure the “stability” for the approxima-

tion methods. To this end, a class A of pairs A = [{αν}, {βν}] of the approximation

components will be defined to prescribe an admissible range of the approximation

differences (oscillations). Based on this, the Main Theorem of this paper will be to

conclude that any approximation method associated with any A = [{αν}, {βν}] ∈ A

leads to a uniform type of solutions to (S)ν , having certain commonalities. Further-

more, the commonalities will be specified on the basis of the notion of the “energy-

dissipative solution”, proposed in the relevant previous work [8], Definition 3.1.

2. Main Theorem

We begin with confirming the assumptions and notation in this study.

Assumptions. Here are the assumptions in the study of the system (S).

(A1) g ∈ W
1,∞
loc (R), g(0) < 0, g(1) > 0, and g has a nonnegative primitive

ĝ ∈W
2,∞
loc (R).

(A2) α0 ∈W
1,∞
loc (R), α0 > 0 on R, and (α0)

−1(0) = {0}.

(A3) α ∈ C1(R), α > 0 on R, and it is a convex function such that the derivative

α′ ∈ C(R) satisfies α′(0) = 0. Moreover, δα := α(0) = min
η̃∈R

α(η̃) > 0.

(A4) The initial data [η0, θ0] belongs to a class D0 ⊂ C(Ω)× L∞(Ω), defined as

D0 := {[w, z] ∈ H1(Ω)×BV (Ω); 0 6 w 6 1 on Ω}.

Specific notation. For any w ∈ C(Ω), we define a functional Φ(w; ·) on L2(Ω)

by putting

(2.1) Φ(w, z) :=





∫

Ω

α(w)|Dxz|, if z ∈ BV (Ω),

∞, otherwise,

for any z ∈ L2(Ω).

Furthermore, for any open interval I ⊂ (0, T ) and any ξ ∈ C(I × Ω), we define

a functional Φ̂(ξ; ·)I on L
2(I;L2(Ω)) by putting

(2.2) Φ̂(ξ; ζ)I :=

∫

I

Φ(ξ(t); ζ(t)) dt, for any ζ ∈ L2(I;L2(Ω)).

As is easily seen, the functional given in (2.1) is a proper lower semicontinuous and

convex function on L2(Ω). We denote by ∂Φ(w; ·) the subdifferential of the convex

function Φ(w; ·) in the topology of L2(Ω), for any w ∈ C(Ω). Also, for any open
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interval I ⊂ (0, T ), it follows from (A3) and [9], Lemma 3 that the functional given

by (2.2) is a proper lower semicontinuous and convex function on L2(I;L2), and

D(Φ̂(ξ; ·)I) = {ζ̃ ∈ L2(I;L2(Ω)); |Dxζ̃(·)|(Ω) ∈ L1(I)}, ∀ ξ ∈ C(I × Ω).

Next, we propose (AP1)–(AP3) as the conditions to prescribe an admissible range

of approximations.

(AP1) {αν ; ν ∈ (0, 1)} ⊂ W
1,∞
loc (R) such that αν > 0 on R, ∀ ν ∈ (0, 1), and

αν → α0 in Cloc(R) as ν ↓ 0.

(AP2) {βν ; ν ∈ (0, 1)} ⊂ W 1,∞(R) ∩W
2,∞
loc (R) is a sequence of convex functions

such that βν > 0 on R and βν(0) = 0, ∀ ν ∈ (0, 1).

(AP3) There exist bounded functions qk : (0, 1) 7→ (0,∞), rk : (0, 1) 7→ [0,∞), k =

0, 1, such that lim
ν↓0

qk(ν) = 1, lim
ν↓0

rk(ν) = 0, k = 0, 1, and q0(ν)|τ | − r0(ν) 6

βν(τ) 6 q1(ν)|τ | + r1(ν), ∀ τ ∈ R, ∀ ν ∈ (0, 1).

Now, we define the class A , mentioned in Introduction, as follows:

(2.3) A := {A = [{αν}, {βν}] ; {αν} and {βν} fulfill (AP1)–(AP3)}.

Subsequently, for anyA = [{αν}, {βν}] ∈ A and any w ∈ L2(Ω), we define a sequence

{Φν(w; ·) ; ν ∈ (0, 1)} of relaxed convex functions for Φ(w; ·) by putting

(2.4) Φν(w; z) :=





∫

Ω

α(w)βν (zx) dx+
ν

2

∫

Ω

|zx|
2 dx,

if z ∈ H1(Ω), ∀ z ∈ L2(Ω), ∀ ν ∈ (0, 1).

∞, otherwise,

Moreover, for any A = [{αν}, {βν}] ∈ A , any open interval I ⊂ (0, T ) and any

ξ ∈ L2(I;L2(Ω)), we define a sequence {Φ̂ν(ξ; ·)I ; ν ∈ (0, 1)} of relaxed convex

functions for Φ̂(ξ; ·)I by putting

(2.5) Φ̂ν(ξ; ζ)I :=

∫

I

Φν(ξ(t); ζ(t)) dt, ∀ ζ ∈ L2(I;L2(Ω)), ∀ ν ∈ (0, 1).

As is easily seen, the functionals given in (2.4) are proper lower semicontinuous and

convex functions on L2(Ω). Also, for any open interval I ⊂ (0, T ), it follows from

(A3) that the functionals given in (2.5) are proper lower semicontinuous and convex

functions on L2(I;L2(Ω)), and all of their effective domains uniformly coincide with

the space L2(I;H1(Ω)).

R em a r k 2.1. The conditions (AP2)–(AP3) cover various regularization methods

of the absolute-value function | · |, e.g., approximations by using hyperbolic graphs,

Yosida-regularizations, primitives of tanh and arctan, etc., although the approxima-

tion by | · |p with p > 1 is not in the applicable scope of these conditions.
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Now, for any pair A = [{αν}, {βν}] ∈ A , we can consider a sequence of functional

pairs {[ην , θν ] ; ν ∈ (0, 1)} consisting of solutions [ην , θν ], ν ∈ (0, 1), to the following

approximation problems, denoted by (AP)ν :

(AP)ν : for a fixed index ν ∈ (0, 1), find a functional pair [ην , θν ] fulfilling





ην ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)),

and 0 6 ην 6 1 on Q,

θν ∈W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), and |θν |C(Q) 6 |θ0,ν |C(Ω),

(2.6)

(ην)t(t) + ΛNην(t) + g(ην(t)) + α′(ην(t))βν((θν)x(t)) = 0 in L2(Ω), t ∈ (0, T ),

αν(ην(t))(θν)t(t) + ∂Φν(ην(t); θν(t)) ∋ 0 in L2(Ω), t ∈ (0, T ),

[ην(0), θν(0)] = [η0,ν , θ0,ν ] in L
2(Ω)× L2(Ω),

where [η0,ν , θ0,ν ] ∈ D0 ∩ H1(Ω)2 is the relaxed initial data satisfying |θ0,ν |C(Ω) 6

|θ0|L∞(Ω) for all ν ∈ (0, 1), and ΛN is an operator defined as

ΛN : z ∈ {z̃ ∈ H2(Ω); z̃x(±L) = 0} 7→ ΛNz := −zxx ∈ L2(Ω),

and for any ν ∈ (0, 1) and any w ∈ L2(Ω), ∂Φν(w, ·) denotes the subdifferential of

the convex function Φν(w; ·) on L
2(Ω).

For any ν ∈ (0, 1), the existence and uniqueness of the solution to (AP)ν can be

verified by referring to the analytic method as in [2], [3], [4]. Furthermore, as another

consequence, we can derive the following energy identity:

(2.7)

∫ t

s

(|(ην)t(t)|
2
L2(Ω) + |

√
αν(ην(t))(θν)t(t)|

2
L2(Ω)) dt+ Fν(ην(t), θν(t))

= Fν(ην(s), θν(s)), ∀ s, ∀ t ∈ [0, T ], ∀ ν ∈ (0, 1).

Now, our Main Theorem is stated as follows.

Main Theorem (Stability for approximation methods). Let us assume (A1)–

(A4). Then, for any A ∈ A , the limiting set, defined as

ω(A) :=





[η̃, θ̃] ∈ L∞(Q)2

∣∣∣∣∣∣∣∣∣∣

∃{νn} ⊂ (0, 1) such that the sequence of

the approximate solutions [ηn, θn] := [ηνnθνn ]

(AP)νn , for n ∈ N, converges to [η̃, θ̃]

in the weak-∗ topology of L∞(Q)2 as n→ ∞





is nonempty, and the union
⋃

A∈A

ω(A) is a subset of the class of functional pairs [η, θ],

fulfilling the following conditions:
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(S1) η ∈ W 1,2(0, T ;L2(Ω)) ∩ L∞(0, T ;H1(Ω)), 0 6 η 6 1 on Q, θ ∈ L∞(Q),

|θ(·)|BV (Ω) ∈ L∞(0, T ), θt ∈ L2
loc(Q \ η−1(0)), |θ|L∞(Q) 6 |θ0|L∞(Ω), and

α0(η)θ ∈W 1,2(0, T ;L2(Ω)) ∩BV (Q).

(S2) η solves (1.1) in the following variational sense:

∫

Ω

(ηt(t) + g(η(t)))w dx+

∫

Ω

ηx(t)wx dx+

∫

Ω

wα′(η(t))|Dxθ(t)| = 0,

∀w ∈ H1(Ω), a.e. t ∈ (0, T ), with η(0) = η0 in L
2(Ω).

(S3) θ solves (1.2) in the following variational sense:

∫

Ω

ϑ∗(t)(θ(t) − z) dx+

∫

Ω

α(η(t))|Dxθ(t)| 6

∫

Ω

α(η(t))|Dxz|,

∀ z ∈ BV (Ω), a.e. t ∈ (0, T ), with α0(η(0))θ(0) = α0(η0)θ0 in L
2(Ω),

where ϑ∗ := [α0(η)θ]t − [α0(η)]tθ ∈ L2(0, T ;L2(Ω)).

(S4) [η, θ] satisfies the following energy inequality:

∫ t

s

|ηt(τ)|
2
L2(Ω) dτ +

1

1 + |α0|C[0,1]

∫ t

s

|ϑ∗(τ)|2L2(Ω) dτ + F (η(t), θ(t))

6 F (η(s), θ(s)), a.e. 0 < s 6 t < T .

R em a r k 2.2. Note that (S1)–(S4) are based on the conditions defining the

“energy-dissipative solution” proposed in [8], Definition 3.1. Hence, our Main The-

orem is to conclude that if the approximation method is taken in the range of A ,

then the approximation stably leads to a uniform type of solutions belonging to the

category of energy-dissipative solutions.

3. Proof of Main Theorem

Let us fix any A = [{αν}, {βν}] ∈ A to consider a sequence {[ην , θν ] ; ν ∈ (0, 1)}

of solutions [ην , θν ] to (AP)ν for ν ∈ (0, 1). Then, on account of (2.6) and (2.7),

it will be possible to show the existence of an approximation limit [η, θ] ∈ ω(A).

Also, an analytic method similar to that in [10], Section 5 will be applicable for the

verification of (S1)–(S4), if we can prove the following lemma concerned with the

Mosco-convergences of convex functions.
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Lemma 3.1 (cf. Mosco [7]). Under (A3), the following two items hold:

(I) If w0 ∈ C(Ω), {wν ; ν ∈ (0, 1)} ⊂ C(Ω), and wν → w0 in C(Ω) as ν ↓ 0,

then the sequence of convex functions {Φν(wν ; ·) ; ν ∈ (0, 1)} converges to the

convex function Φ(w0; ·) on L
2(Ω), in the sense of Mosco, as ν ↓ 0.

(II) For any open interval I ⊂ (0, T ), if ξ0 ∈ C(I × Ω), {ξν ; ν ∈ (0, 1)} ⊂

C(I × Ω), and ξν → ξ0 in C(I × Ω) as ν ↓ 0, then the sequence of convex

functions {Φ̂ν(ξν ; ·)I ; ν ∈ (0, 1)} converges to the convex function Φ̂(ξ0; ·)I on

L2(I;L2(Ω)), in the sense of Mosco, as ν ↓ 0.

Now, all we have to do is reduced to giving the proof of Lemma 3.1.

P r o o f of Lemma 3.1. We prove only the item (II), because the other item (I)

can be obtained similarly and more simply. Then, according to the general theory

of Mosco [7], we need to verify the following two items.

(M1) (Lower bound.) lim inf
ν↓0

Φ̂ν(ξν ; ζ̌ν)I > Φ̂(ξ0; ζ̌0)I , if ζ̌0 ∈ L2(I;L2(Ω)), {ζ̌ν ; ν ∈

(0, 1)} ⊂ L2(I;L2(Ω)) and ζ̌ν → ζ̌0 weakly in L
2(I;L2(Ω)) as ν ↓ 0.

(M2) (Optimality.) ∀ ζ̂0 ∈ D(Φ̂(ξ0; ·)I), ∃{ζ̂ν ; ν ∈ (0, 1)} ⊂ L2(I;H1(Ω)) such that

ζ̂ν → ζ̂0 in L
2(I;L2(Ω)) and Φ̂ν(ξν ; ζ̂ν)I → Φ̂(ξ0; ζ̂0)I as ν ↓ 0.

For the verification of the lower bound, let us take a function ζ̌0 ∈ L2(I;L2(Ω))

and a sequence {ζ̌ν ; ν ∈ (0, 1)} ⊂ L2(I;L2(Ω)) as in (M1). Here, if we suppose the

nontrivial case, i.e., if lim inf
ν↓0

Φ̂ν(ξν , ζ̌ν)I < ∞, then it follows from (A3) and (AP3)

that

lim inf
ν↓0

Φ̂ν(ξν , ζ̌ν)I > lim inf
ν↓0

(Φ̂ν(ξ0; ζ̌ν)I − |Φ̂ν(ξν ; ζ̌ν)I − Φ̂ν(ξ0; ζ̌ν)I |)

> lim inf
ν↓0

∫

I

∫

Ω

α(ξ0(t))βν((ζ̌ν)x)(t)) dxdt

+ lim inf
ν↓0

(−|α(ξν)− α(ξ0)|C(I×Ω)|βν((ζ̌ν)x)|L1(I;L1(Ω)))

> lim inf
ν↓0

(
q0(ν)

∫

I

∫

Ω

α(ξ0(t))|(ζ̌ν )x(t)| dxdt

)
− 2LT |α(ξ0)|C(I×Ω) lim

ν↓0
r0(ν)

+
1

δα
lim
ν↓0

(−|α(ξν)− α(ξ0)|C(I×Ω)) lim inf
ν↓0

Φ̂ν(ξν ; ζ̌ν)I > Φ̂(ξ0; ζ0).

Thus, the condition (M1) of the lower bound is verified.

Next, for the verification of the optimality, we fix any ζ̂0 ∈ D(Φ̂(ξ0; ·)I) as in (M2),

and apply [9], Lemma 7 to take {ψ̂i ; i ∈ N} ⊂ C∞(R2) such that

(3.1)




ψ̂i → ζ̂0 in L2(I;L2(Ω)),

∫

I

∫

Ω

|(ψ̂i)x(t)| dxdt→

∫

I

∫

Ω

|Dxζ̂0(t)| dt,

ψ̂i(t) → ζ̂0(t) in L2(Ω) and strictly in BV (Ω), a.e. t ∈ I, as i→ ∞.
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On that basis, let us take a decreasing sequence {ν̂i ; i ∈ N} ⊂ (0, 1) such that

(3.2) ν̂i+1 < ν̂i and
ν

2

∫

I

∫

Ω

|(ψ̂i)x(t)|
2 dxdt 6

1

i
, ∀ i ∈ N, ∀ ν ∈ (0, ν̂i),

and define a sequence {ζ̂ν ; ν ∈ (0, 1)} ⊂ L2(I;H1(Ω)) by putting

(3.3) ζ̂ν :=

{
ψ̂i in L

2(I;H1(Ω)), if ν ∈ [ν̂i+1, ν̂i) for some i ∈ N,

ψ̂1 in L
2(I;H1(Ω)), if ν ∈ [ν̂1, 1), ∀ ν ∈ (0, 1).

Then, from (3.1)–(3.3), it is easily checked that





ζ̂ν → ζ̂0 in L
2(I;L2(Ω)),

ν

2

∫
I

∫
Ω |(ζ̂ν)x(t)|

2 dxdt→ 0,

∫

I

∫

Ω

q1(ν)|(ζ̂ν )x(t)| dxdt→

∫

I

∫

Ω

|Dxζ̂0(t)| dt,

as ν ↓ 0,(3.4)

lim inf
ν↓0

∫

U

q1(ν)|(ζ̂ν )x(t)| dxdt(3.5)

> lim inf
ν↓0

q1(ν)

∫

I

∫

U∩{(t,x) ; x∈Ω}

|(ζ̂ν)x(t)| dxdt

>

∫

I

∫

U∩{(t,x) ; x∈Ω}

|Dxζ̂0(t)| dt, for any open set U ⊂ I × Ω,

and

(3.6) M0(I) := 1 + sup
ν∈(0,1)

{∫

I

∫

Ω

βν((ζ̂ν)x(t)) dxdt+

∫

I

∫

Ω

|(ζ̂ν)x(t)| dxdt

}

6 1 + sup
ν∈(0,1)

{∫

I

∫

Ω

(q1(ν) + 1)|(ζ̂ν)x(t)| dxdt+ 2TL r1(ν)

}
<∞.

Taking into account (AP3), (3.1), (3.4)–(3.6) and [1], Proposition 1.80 (see also [8],

Lemma 4.4, the condition (M2) of optimality is verified as follows:

|Φ̂ν(ξν ; ζ̂ν)I − Φ̂(ξ0; ζ̂0)I |

6

∣∣∣∣
∫

I

∫

Ω

[α(ξν (t))− α(ξ0(t))]βν((ζ̂ν )x(t)) dxdt

∣∣∣∣

+

∣∣∣∣
∫

I

∫

Ω

α(ξ0(t))[βν((ζ̂ν)x(t)) − |(ζ̂ν)x(t)|] dxdt

∣∣∣∣

+

∣∣∣∣
∫

I

∫

Ω

α(ξ0(t))[|(ζ̂ν )x(t)| dx− |Dxζ̂0(t)|] dt

∣∣∣∣+
ν

2

∫

I

∫

Ω

|(ζ̂ν)x(t)|
2 dxdt
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6M0(I)

[
|α(ξν)− α(ξ0))|C(I×Ω) + |α(ξ0)|C(I×Ω)

1∑

k=0

(|qk(ν)− 1|+ 2TL rk(ν))

]

+

∣∣∣∣
∫

I

∫

Ω

α(ξ0)|(ζ̂ν)x| dxdt−

∫

I

∫

Ω

α(ξ0(t))|Dxζ̂0(t)| dt

∣∣∣∣

+
ν

2

∫

I

∫

Ω

|(ζ̂ν)x(t)|
2 dxdt→ 0 as ν ↓ 0.

�
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