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Abstract. In the context of periodic homogenization based on two-scale convergence, we
homogenize a linear system of four coupled reaction-diffusion equations, two of which are
defined on a manifold. The system describes the most important subprocesses modeling the
carcinogenesis of a human cell caused by Benzo-[a]-pyrene molecules. These molecules are
activated to carcinogens in a series of chemical reactions at the surface of the endoplasmic
reticulum, which constitutes a fine structure inside the cell. The diffusion on the endoplas-
mic reticulum, modeled as a Riemannian manifold, is described by the Laplace-Beltrami
operator. For the binding process to the surface of the endoplasmic reticulum, different
scalings with powers of the homogenization parameter are considered. This leads to three
qualitatively different models in the homogenization limit.
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1. Introdution

The method of periodic homogenization is a mathematical tool for upscaling rigor-

ously models of multiscale processes. Often, the microstructure of the material leads

to the multiscale nature of the given problem. Because it is too costly to resolve

the microstructure in detail using numerical simulations, homogenized models are

used to describe the process on a much larger observation scale and these are mostly

entirely sufficient for practical purposes. The idea of periodic homogenization relies

on the assumption of periodicity of the material with respect to a reference cell.

The homogenized model is found by considering the limit as the periodicity length

approaches zero. Monographs on the subject are [3], [24], [2], [14], [6], [15].

163



The endoplasmic reticulum of a biological cell is a bilayered membrane, which per-

vades the whole cytoplasm of the cell. Considering the problem on lengthscales of the

order of the cell diameter, one can assume that, roughly speaking, the endoplasmic

reticulum is everywhere and nowhere in the cell. To handle this fine structure, we

use periodic homogenization based on two-scale convergence [1], [17], [16].

We apply two-scale convergence to homogenize a linear model for carcinogenesis

of a human cell, where carcinogenic molecules invade a cell, perform chemical reac-

tions to more aggressive molecules and enter the nucleus to bind to the DNA. The

transformations to the aggressive molecules take place at the surface of the endo-

plasmic reticulum. The binding process to the surface of the endoplasmic reticulum

is scaled with different powers of the homogenization parameter, ε > 0. This leads

to three qualitatively different models in the homogenization limit. As a byproduct

of the homogenization process of the carcinogenesis model, we indirectly find the

homogenization limit of an ε-depending operator involving the heat kernel defined

on a manifold.

This paper is organized as follows. In Section 2 the system of reaction-diffusion

equations is introduced and its relation to carcinogenesis in a human cell is explained.

Further, we show the a-priori estimates in Section 3, where boundedness in L2 inde-

pendent of ε is proven. In Section 4 the model is abbreviated by finding analytical

solutions of the equations defined on the surface of the endoplasmic reticulum. This

facilitates the verification of the existence of a solution for every ε > 0 in Section 5.

The limit for ε tending to zero is characterized in Section 6. Finally we show unique-

ness of the limit model in Section 7.

2. Statement of the problem on the microscale

One of the longest known and best understood causes for carcinogenesis is the

molecule Benzo-[a]-pyrene, abbreviated by BP. It is found, for example, in coal tar,

automobile exhaust fumes, cigarette smoke and charbroiled food. One of the main

reasons for lung cancer (caused by inhaling cigarette smoke), testicular cancer and

skin cancer is the contact with the molecule Benzo-[a]-pyrene (see [13], [11]).

The activation of BP to carcinogens mostly takes place on the surface of the en-

doplasmic reticulum induced by the enzyme system called MFO (microsomal mixed-

function oxidases). Normally the MFOs serve a detoxification role, but unfortunately

not in this case (see [10], [23], [27], [18]). We abbreviate endoplasmic reticulum

by ER.

The process of toxification is simplified by the following scenario: BP molecules

pass the plasma membrane from the intercellular space to the cytosol inside of a hu-

man cell, where they diffuse freely, but they cannot enter the nucleus. They can bind
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to the surface of the endoplasmic reticulum. There, a series of chemical reactions

takes place caused by the enzyme system MFO, which ultimately results in BP be-

ing chemically activated to a diol epoxide (DE), which can bind to DNA. From the

mathematical point of view, we summarize the reactions to just one metabolism from

BP to DE. Newly created DE molecules unbind from the surface of the endoplasmic

reticulum and diffuse again in the cytosol of the cell. There they may enter the nu-

cleus. Hence, BP cannot pass the nuclear membrane and DE cannot pass the plasma

membrane, which describes a worst case scenario. Here, when DE molecules enter

the nucleus, we stop our consideration. A nonlinear carcinogenesis model based on

similar modelling assumptions is presented in [12]. It is also worth poiting out [4],

in which the metabolism in the cell has been modelled similarly.

In order to formulate a mathematical model of this process, we require some

notation. Let Ω ⊂ R
n be a human cell with the domain occupied by the nucleus

removed, which has Lipschitz boundary ∂Ω. The process shall happen in the time

interval [0, T ] for fixed 0 < T <∞. We suppose that the endoplasmic reticulum has
a periodic structure. For this purpose we define a model district Y = [0, 1]n. Let

Y ∗∗ ⊂ Y be such that the smooth manifold Γ = ∂Y ∗∗ does not touch the boundary

of Y . This is the lumen of the ER. The volume occupied by cytosol is given by

Y ∗ = (0, 1)n \ Y ∗∗. We pave the cell with the model districts of size ε > 0, ε≪ 1.

We denote the cell membrane by ΓC and the boundary of nucleus by ΓN so that

∂Ω = ΓC ∪ΓN. Furthermore, Ωε and Γε are defined as Ωε :=
⋃

k∈Zn

ε(Y ∗ + k)∩Ω and

Γε :=
⋃

k∈Zn

ε(Γ + k) ∩Ω and we assume that the geometry is such that Γε ∩ ∂Ω = ∅.

Further, the concentration of BP molecules in cytosol is denoted by uε : Ωε ×
[0, T ] → R and the concentration of DE molecules in cytosol is vε : Ωε × [0, T ] → R.

The concentration of BP molecules bound to the surface of the endoplasmic reticulum

is denoted by sε : Γε × [0, T ] → R and the concentration of DE molecules bound to

the surface of the endoplasmic reticulum is denoted by wε : Γε × [0, T ] → R. We

set the initial values to be uε(x, t) = uI(x), vε(x, t) = vI(x) for t = 0, x ∈ Ω and

sε(x, t) = sI(x), wε(x, t) = wI(x) for t = 0, x ∈ Γε and assume that the initial values

are smooth, bounded and nonnegative. Further, at the membrane of the ER, Γε, we

multiply the binding-unbinding term by εl, for l > 0. The higher the exponent l,

the slower is the exchange between bound and unbound molecules. An exchange in

“normal” speed would be l = 1, because the binding process happens on a surface, see

[20], [16], [5], but also other values would make sense for special binding-unbinding

processes. For l < 1, the binding process is faster; for l > 1 it is slower. We denote

the exponent of ε in the term that corresponds to the binding term for DE molecules

by m > 0. More examples for homogenization of systems of equations describing

chemical reactions and the influence of scaling can be found in [21], [22], [19].
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For the weak formulation we need the function spaces V(Ωε) = L2([0, T ], H1(Ωε))∩
H1([0, T ], H1(Ωε)

′), VN(Ωε) = {u ∈ V(Ωε) ; u = 0 on ΓN}, VC0(Ωε) = {u ∈
V(Ωε) ; u = 0 on ΓC}, VC(Ωε) = {u ∈ V(Ωε) ; u = uBoundary on ΓC} and V(Γε) =

L2([0, T ], H1(Γε)) ∩ H1([0, T ], H1(Γε)
′), where uBoundary ∈ H1/2(ΓC). For the ho-

mogenization limits, we need the function spaces V(Ω, Y ) = L2([0, T ] × Ω, H1
#(Y ))

and V(Ω,Γ) = L2([0, T ] × Ω, H1(Γ)). For the test functions we define the func-

tion spaces VC0(Ωε) = {u ∈ H1(Ωε) ; u = 0 on ΓC}, VN(Ωε) = {u ∈ H1(Ωε) ; u =

0 on ΓN}, V (Γε) = H1(Γε), V (Ω, Y ) = L2(Ω, H1
#(Y )) and V (Ω,Γ) = L2(Ω, H1(Γ)).

For u, v ∈ L2(Γε) we use the scalar product 〈u, v〉Γε
:=

∫

Γε
gεuv dσx, where gε is the

metric tensor on Γε, see [8].

Having fixed notation, we state the model equations in their weak form: Find

(uε, vε, sε, wε) ∈ VC(Ωε) × VN(Ωε) × V(Γε) × V(Γε) with (uε(x, 0), vε(x, 0), sε(x, 0),

wε(x, 0)) = (uI(x), vI (x), sI(x), wI (x)) such that for all (ϕ1, ϕ2, ψ3, ψ4) ∈ VC0(Ωε)×
VN(Ωε)× V (Γε)× V (Γε) we have

(1) (∂tuε, ϕ1)Ωε
+Du(∇uε,∇ϕ1)Ωε

+ εlls〈uε − sε, ϕ1〉Γε
= 0,

(∂tvε, ϕ2)Ωε
+Dv(∇vε,∇ϕ2)Ωε

+ εmlw〈vε − wε, ϕ2〉Γε
= 0,

ε〈∂tsε, ψ3〉Γε
+ εDs〈ε∇Γsε, ε∇Γψ3〉Γε

+ εf〈sε, ψ3〉Γε

− εlls〈uε − sε, ψ3〉Γε
= 0,

ε〈∂twε, ψ4〉Γε
+ εDw〈ε∇Γwε, ε∇Γψ4〉Γε

− εf〈sε, ψ4〉Γε

− εmlw〈vε − wε, ψ4〉Γε
= 0.

The coefficients Du, Dv, Ds, Dw > 0 describe the diffusion tensors, ls, lw > 0 are

the binding and unbinding rates to the endoplasmic reticulum, and f > 0 is the

transformation rate from sε to wε.

3. A priori estimates for the solutions of the micromodel

First we show that the concentrations of molecules stay nonnegative for nonnega-

tive initial values. We then proceed by proving energy estimates.

Theorem 1 (Positivity). The functions uε and vε are nonnegative for almost

every x ∈ Ωε and t ∈ [0, T ]. The functions sε and wε are nonnegative for almost

every x ∈ Γε and t ∈ [0, T ].

P r o o f. We define uε− = −uε if uε 6 0 pointwise and uε− = 0 otherwise.

Analogously we define uε+, vε−, sε− and wε−. We test the weak formulation for uε
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and sε with −uε− and −sε−, respectively,

(∂tuε−, uε−)Ωε
+ (Du∇uε−,∇uε−)Ωε

+ εlls〈uε− + sε, uε−〉Γε
= 0,

ε〈∂tsε−, sε−〉Γε
+ εDs〈ε∇Γsε−, ε∇Γsε−〉Γε

+ εf〈sε−, sε−〉Γε

+ εlls〈uε + sε−, sε−〉Γε
= 0.

We integrate from 0 to t and add the equations. With the assumption that uε(0) > 0

and sε(0) > 0 we get

1
2‖uε−‖2Ωε

+Du‖∇uε−‖2Ωε,t +
1
2ε‖sε−‖2Γε

+Dsε
3‖∇Γsε−‖2Γε,t

+ εf‖sε−‖2Γε,t + εlls‖uε− − sε−‖2Γε,t + εlls〈sε+, uε−〉Γε,t + εlls〈uε+, sε−〉Γε,t = 0.

This yields

1
2‖uε−‖2Ωε

+Du‖∇uε−‖2Ωε,t +
1
2ε‖sε−‖2Γε

+Dsε
3‖∇Γsε−‖2Γε,t

+ εf‖sε−‖2Γε,t + εlls‖uε− − sε−‖2Γε,t 6 0.

We deduce that uε−(x, t) = 0 for almost every x ∈ Ωε and t ∈ [0, T ] and sε−(x, t) = 0

for almost every x ∈ Γε and t ∈ [0, T ]. This means that uε(x, t) > 0 for almost every

x ∈ Ωε and t ∈ [0, T ] and sε(x, t) > 0 for almost every x ∈ Γε and t ∈ [0, T ].

Analogously we find that vε(x, t) > 0 for almost every x ∈ Ωε and t ∈ [0, T ] and

wε(x, t) > 0 for almost every x ∈ Γε and t ∈ [0, T ]. �

Next, we show an a priori estimate in order to verify the conditions to use two-

scale convergence results on Ωε for uε and vε. Further we want to use two-scale

convergence on manifolds for sε and wε and we are going to show that the required

conditions are fulfilled.

Lemma 2 (Boundedness in L2). There is a constant C > 0 independent of ε such

that

‖uε‖2Ωε
+Du‖∇uε‖2Ωε,t + ‖vε‖2Ωε

+Dv‖∇vε‖2Ωε,t + ε‖sε‖2Γε
+Dsε

3‖∇Γsε‖2Γε,t

+ ε‖wε‖2Γε
+Dwε

3‖∇Γwε‖2Γε,t + εlls‖uε − sε‖2Γε,t + εmlw‖vε − wε‖2Γε,t 6 C

for almost every t ∈ [0, T ].

P r o o f. To prove the claim we start with the weak formulation of our problem.

We test the equations with the functions (uε, vε, sε, wε) and add them up,

(∂tuε, uε)Ωε
+ (∂tvε, vε)Ωε

+Du(∇uε,∇uε)Ωε
+Dv(∇vε,∇vε)Ωε

+ ε〈∂tsε, sε〉Γε
+ ε〈∂twε, wε〉Γε

+Dsε
3〈∇Γsε,∇Γsε〉Γε

+Dwε
3〈∇Γwε,∇Γwε〉Γε

+ εf〈sε, sε〉Γε
− εf〈sε, wε〉Γε

+ εlls〈uε − sε, uε − sε〉Γε

+ εmlw〈vε − wε, vε − wε〉Γε
= 0.
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With 1
2 (d/dt)‖uε(t)‖2Ωε

= (∂tuε, uε)Ωε
, integration from 0 to t and the binomial

theorem it holds that

1
2‖uε‖2Ωε

+ 1
2‖vε‖2Ωε

+Du‖∇uε‖2Ωε,t +Dv‖∇vε‖2Ωε,t

+ ε 12‖sε‖2Γε
+ ε 12‖wε‖2Γε

+Dsε
3‖∇Γsε‖2Γε,t +Dwε

3‖∇Γwε‖2Γε,t

+ εf‖sε‖2Γε,t + εlls‖uε − sε‖2Γε,t + εmlw‖vε − wε‖2Γε,t

6 εf‖sε‖2Γε,t + εf‖wε‖2Γε,t +
1
2‖uε(0)‖2Ωε

+ 1
2‖vε(0)‖2Ωε

+ 1
2ε‖sε(0)‖2Γε

+ 1
2ε‖wε(0)‖2Γε

.

With initial conditions lying in L2 we now deduce from Gronwall’s lemma that

1
2‖uε‖2Ωε

+ 1
2‖vε‖2Ωε

+Du‖∇uε‖2Ωε,t +Dv‖∇vε‖2Ωε,t

+ ε 12‖sε‖2Γε
+ ε 12‖wε‖2Γε

+Dsε
3‖∇Γsε‖2Γε,t +Dwε

3‖∇Γwε‖2Γε,t

+ εlls‖uε − sε‖2Γε,t + εmlw‖vε − wε‖2Γε,t 6 C

and the proof is complete. �

Further, we need one more corollary.

Corollary 3. There is a constant C > 0 independent of ε such that ε‖uε‖2Γε,t
< C

and ε‖vε‖2Γε,t
< C.

P r o o f. We assume ε < 1. With the trace inequality and Lemma 2 we find

ε‖uε‖2Γε,t
6 c0(‖uε‖2Ωε,t

+ ε2‖∇uε‖2Ωε,t
) < C. Analogous inequalities hold for vε. �

In the next section we are going to build an abbreviation of the model that is

helpful to show existence of a solution.

4. Abbreviation of the model

The partial differential equation for the functions sε and wε is a standard non-

homogeneous heat equation with an additional linear term on a domain without

boundary conditions. For such equations, analytical solutions exist and are unique,

see [9]. The right-hand side of the PDE for sε and wε depends on uε and vε, re-

spectively; so, the analytical solution also will depend on uε or vε. We will need to

deduce the solution on the Riemannian manifold Γε.

To solve ∂tsε−Dsε
2∆Γsε+(f +εl−1ls)sε = εl−1lsuε on Γε from (1), we implicitly

define an auxiliary function λ by sε(x, t) = λ(x, t)e−(f+εl−1ls)t as, e.g., in the proof

of Theorem 26.1 in [28]. The solution of the resulting equation for λ is well-known,
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see [7], [9], and by retransforming, we find the solution sε given by

(2) F (uε) := sε(x, t) = e(Dsε
2∆Γ−f−εl−1ls)tsI(x)

+ e−(f+εl−1ls)tεl−1ls

∫ t

0

eDsε
2∆Γ(t−s)uε(s, x)e

(f+εl−1ls)s ds.

Analogously, the solution wε can be written as

(3) G(uε, vε) := wε(x, t) = e(Dwε2∆Γ−εm−1lw)twI(x)

+ e−εm−1lwt

∫ t

0

eDwε2(t−s)∆Γ(εm−1lwvε(s, x) + fF (uε)(s, x))e
εm−1lws ds.

R em a r k 4. The operators F and G are linear because e∆Γt and integrals are

linear operators.

To show existence of a solution in the next section, we need positivity and bound-

edness of the operators F and G.

Lemma 5. The operators F : L2([0, T ] × Γε) → L2([0, T ], H1(Γε)) and G :

L2([0, T ]×Γε)
2 → L2([0, T ], H1(Γε)) defined in (2) and (3) are positive and bounded.

P r o o f. Davis proves in [7] that for the Laplace operator∆, the function e∆t has

a strictly positive C∞ kernel. This means there exists a smooth function kε(t, x) > 0

for each t > 0 (we denote kε,t = kε(t, ·)) such that eDsε
2∆tf(x) = (f ⋆ kε,t)(x) =

∫

Γε
kε(t, x − y)f(y) dσy for every f ∈ L2(Γε). Hence, for every function f > 0 it

yields e∆tf > 0. The integral operator f 7→
∫
f also is a positive operator. Hence,

we have F (uε) > 0, if uε > 0, and G(uε, vε) > 0, if uε, vε > 0.

Since the integral operator and e∆t are linear and bounded [7], the inequalities

‖F (uε)‖2Γε,t 6 c1‖uε‖Γε,t and ‖G(uε, vε)‖Γε,t 6 c2‖vε‖Γε,t + c3‖uε‖Γε,t

hold true with 0 < c1, c2, c3 <∞. �

The weak formulation of the abbreviated form is given by (uε, vε) ∈ VC(Ωε) ×
VN(Ωε) such that

(4) (∂tuε, ϕ1)Ωε
+ (∂tvε, ϕ2)Ωε

+Du(∇uε,∇ϕ1)Ωε
+Dv(∇vε,∇ϕ2)Ωε

+ εlls〈uε − F (uε), ϕ1〉Γε
+ εmlw〈vε −G(uε, vε), ϕ2〉Γε

= 0

for all ϕ = (ϕ1, ϕ2) ∈ VC0(Ωε)× VN(Ωε).

With the system of equations (4) we have an abbreviated version of the model (1).

We are going to use this representation for showing existence of a solution.
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5. Existence of a solution

To show existence of a solution of the system of equations (4) we use Proposi-

tion 3.2 in [26]. The proposition is summarized in Theorem 7. We briefly introduce

the setting used in [26].

Let V and V = L2([0, T ], V ) be separable Hilbert spaces with duals V ′ and V ′ =

L2([0, T ], V ′), respectively. Let W be a Hilbert space with continuous injection

V →֒ W and V dense in W . We are given for every t ∈ [0, T ] an operator A(t) ∈
L(V, V ′) such that (A(·)u)v ∈ L∞([0, T ]) for each pair u, v ∈ V . Furthermore, let

B(t) ∈ L(W,W ′) be another family of operators with (B(·)u)v ∈ L∞([0, T ]) for each

pair u, v ∈W . Finally, suppose that u0 ∈W and f ∈ L2([0, T ], V ′) are given.

The problem is given by: Find a u ∈ V such that

(5)
d

dt
(B(t)u(t)) +A(t)u(t) = f(t) in V ′, (B)(0) = B(0)u0.

Definition 6. The family {B(t) ; t ∈ [0, T ]} of operators given as above is called
regular if for each pair u, v ∈ V the function (B(·)u)v is absolutely continuous on
[0, T ] and there is a function K ∈ L1([0, T ]) such that

∣
∣
∣
d

dt
(B(t)u)v

∣
∣
∣ 6 K(t)‖u‖‖v‖, u, v ∈ V, a.e. t ∈ [0, T ].

Theorem 7. Let the separable Hilbert spaces V,W and linear operators A(t),

B(t), 0 6 t 6 T , the data u0 ∈ W and f ∈ L2([0, T ], V ′) be given as above, and

assume further that B(t) is a regular family of self-adjoint operators. Furthermore,
let B(0) be monotone and let there be numbers κ, λ > 0 such that

(6) 2(A(t)v)v + λ(B(t)v)v + (B′(t)v)v > κ‖v‖2, v ∈ V, 0 6 t 6 T.

Then the Problem (5) has at least one solution which satisfies

‖u‖V 6 C(λ, κ)(‖f‖2V′ + (B(0)u0)u0)1/2.

Transformation of the problem. Before we can use Theorem 7, the problem to

solve (4) is going to be transformed to a suitable form. Therefore, the function uB is

defined by extending the boundary function uBoundary ∈ H1/2(ΓC) to the domain Ωε

using the inverse trace operator γ : H1/2(ΓC) → H1(Ωε) such that γ(uB) = uBoundary

on ΓC. Further, we define ũε ∈ VC0 by ũε = uε − uB. Then the function ũε satisfies

(∂tũε + ∂tuB, ϕ1)Ωε
+ (∂tvε, ϕ2)Ωε

+Du(∇ũε +∇uB,∇ϕ1)Ωε
+Dv(∇vε, ϕ2)Ωε

+ εlls〈ũε + uB − F (ũε)− F (uB), ϕ1〉Γε

+ εmlw〈vε −G(ũε, vε)−G(uB, 0), ϕ2〉Γε
= 0.
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Hence, the problem (4) is equivalent to finding (ũε, vε) ∈ VC0 × VN with

(7) (∂tũε, ϕ1)Ωε
+ (∂tvε, ϕ2)Ωε

+Du(∇ũε,∇ϕ1)Ωε
+Dv(∇vε, ϕ2)Ωε

+ εlls〈ũε − F (ũε), ϕ1〉Γε
+ εmlw〈vε −G(ũε, vε), ϕ2〉Γε

= − (∂tuB, ϕ1)Ωε
−Du(∇uB,∇ϕ1)Ωε

− εlls〈uB − F (uB), ϕ1〉Γε

+ εmlw〈G(uB , 0), ϕ2〉Γε

for all (ϕ1, ϕ2) ∈ VC0 × VN with initial conditions (ũε(0), vε(0)) = (uI − uB, vI) and

then setting uε = ũε + uB.

Identification of the setting. For every ε > 0 we now identify the spaces,

operators and functions in our setting with the ones used in Theorem 7.

We set V = {u ∈ H1(Ωε) ; u = 0 on ΓC} × {u ∈ H1(Ωε) ; u = 0 on ΓN} and
W = L2(Ωε) × L2(Ωε). Then the conditions for the spaces are satisfied and the

space V in (5) is equal to the space VC0 × VN. Further, we define Aε(t) ∈ L(V, V ′)

by

(8) (Aε(t)w)ϕ = (Du∇w1,∇ϕ1)Ωε
+ (Dv∇w2,∇ϕ2)Ωε

+ εl〈ls(w1 − F (t)(w1)), ϕ1〉Γε
+ εm〈lw(w2 −G(t)(w1, w2)), ϕ2〉Γε

for w = (w1, w2) ∈ V and ϕ = (ϕ1, ϕ2) ∈ V . We are going to prove later that

(Aε(·)u)v ∈ L∞([0, T ]). The operator Bε(t) is independent of t and given by

(9) (Bε(t)w)ϕ = (w1, ϕ1)Ωε
+ (w2, ϕ2)Ωε

for w,ϕ ∈ W . Obviously, it holds that (Bε(·)u)v ∈ L∞([0, T ]). With uI and vI

elements of L2(Ωε), it follows that u0 = (uI − uB, vI) ∈ W . Finally, we identify the

right-hand side f ∈ L2([0, T ], V ′) by

f(t)ϕ = −(∂tuB, ϕ1)Ωε
−Du(∇uB,∇ϕ1)Ωε

− εlls〈uB − F (t)(uB), ϕ1〉Γε

+ εmlw〈G(t)(uB , 0), ϕ2〉Γε

for ϕ ∈ V . Then, problem (5) and problem (7) are equivalent. Now three preparing

lemmas are stated before the existence of a solution is proven.
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Lemma 8. For w,ϕ ∈ V and F (t) defined in (2), G(t) defined in (3) it holds that

|〈F (w1), ϕ1〉Γε
| 6 c(T )‖w1‖L2(Γε)‖ϕ1‖L2(Γε)

|〈G(w1, w2), ϕ2〉Γε
| 6 c(T )(‖w1‖L2(Γε) + ‖w2‖L2(Γε))‖ϕ2‖L2(Γε)

for all 0 6 t 6 T .

P r o o f. We know from [7] that there exists a smooth function kε(t, x) > 0

for t > 0 with kt,ε(·) = kε(t, ·) ∈ L2(Γε) such that e
Dsε

2∆tf(x) = (f ⋆ kt,ε)(x) =
∫

Γε
kε(t, x− y)f(y) dσy for every f ∈ L2(Γε). This yields for F (t)(w1) with w,ϕ ∈ V

and t > 0 that

|〈F (w1), ϕ1〉Γε
| =

∣
∣
∣
∣

〈(

e−(f+εl−1ls)t(w1 ⋆ kt,ε)

+ e−(f+εl−1ls)tεl−1ls

∫ t

0

(w1 ⋆ kt−s,ε)e
(f+εl−1ls)s ds

)

ϕ1

〉

Γε

∣
∣
∣
∣

6 ‖w1 ⋆ kt,ε‖L2(Γε)‖ϕ1‖L2(Γε)

+ ‖w1 ⋆ kt−·,ε‖L2([0,T ]×Γε)‖e(f+εl−1ls)·εl−1lsϕ1‖L2([0,T ]×Γε)

6 ‖kt,ε‖L1(Γε)‖w1‖L2(Γε)‖ϕ1‖L2(Γε)

+ c(T )‖kt,ε‖L1([0,t]×Γε)‖w1‖L2(Γε)‖ϕ1‖L2(Γε),

where we first used the Hölder inequality and then the Young inequality. With

‖kt,ε‖L1(Γε) and ‖kt,ε‖L1([0,t]×Γε) bounded for 0 < t 6 T , it holds that

|〈F (w1), ϕ1〉Γε
| 6 c(T )‖w1‖L2(Γε)‖ϕ1‖L2(Γε).

For t = 0 we have eDsε
2∆tf(x) = f(x) and it follows that

|〈F (w1), ϕ1〉Γε
| = |〈w1, ϕ1〉Γε

| 6 ‖w1‖L2(Γε)‖ϕ1‖L2(Γε).

Analogously we find that

|〈G(w1, w2), ϕ2〉Γε
| 6 c(T )(‖w1‖L2(Γε) + ‖w2‖L2(Γε))‖ϕ2‖L2(Γε).

�
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Lemma 9. The family of operators Bε(t) (defined in (9)) forms a regular family

of self-adjoint operators W . Furthermore, Aε(t) and Bε(t) are linear and Bε(0) and

Bε(t) are monotone and (Aε(·)u)ϕ ∈ L∞([0, T ]) for u, ϕ ∈ V .

P r o o f. With Bε(t) being the identity Id on W , Bε(t) is monotone and self-

adjoint for every 0 6 t 6 T . It also follows that (d/dt)(Bε(t)u)ϕ = 0 6 ‖ϕ‖‖u‖ for
every u, ϕ ∈ V and hence, Bε(t) is regular. Because the Laplace operator ∆, the

operators F (t), G(t) and the integral operator are linear, it follows that Aε(t) and

Bε(t) are linear. To show (Aε(·)w)ϕ ∈ L∞([0, T ]) for w,ϕ ∈ V , we consider

|(Aε(t)w)ϕ| = |(Du∇w1,∇ϕ1)Ωε
+ (Dv∇w2,∇ϕ2)Ωε

+ εl〈ls(w1 − F (t)(w1)), ϕ1〉Γε
+ εm〈lw(w2 −G(t)(w1, w2)), ϕ2〉Γε

|
6 Du‖∇w1‖Ωε

‖∇ϕ1‖Ωε
+Dv‖∇w2‖Ωε

‖∇ϕ2‖Ωε
+ εlls‖w1‖Γε

‖ϕ1‖Γε

+ εllsc(T )‖w1‖Γε
‖ϕ1‖Γε

+ εmlw‖w2‖Γε
‖ϕ2‖Γε

+ εmlwc(T )(‖w1‖Γε
+ ‖w2‖Γε

)‖ϕ2‖Γε
,

where we use Lemma 8. We continue by using Young’s and trace inequality

|(Aε(t)w)ϕ| 6 ‖w1‖2Ωε
(c0ε

l−1ls + c0c(T )ε
l−1ls + c0ε

m−1lw)

+ ‖∇w1‖2Ωε
(Du + c0ε

l+1ls + c0c(T )ε
l+1ls + c0c(T )ε

m+1lw)

+ ‖w2‖2Ωε
(c0ε

m−1lw + c0c(T )ε
m−1lw) + ‖∇w2‖2Ωε

(Dv + c0ε
m+1lw + c0c(T )ε

m+1lw)

+ ‖ϕ1‖2Ωε
(c0ε

l−1ls + c0c(T )ε
l−1ls) + ‖∇ϕ1‖2Ωε

(Du + c0ε
l+1ls + c0c(T )ε

l+1ls)

+ ‖ϕ2‖2Ωε
(c0ε

m−1lw + c0c(T )ε
m−1lw) + ‖∇ϕ2‖2Ωε

(Dv + c0ε
m+1lw + c0c(T )ε

m+1lw),

which is bounded for every ε > 0 and T bounded, since w, ϕ ∈ V . �

Lemma 10. The operators Aε and Bε defined in (8) and (9), respectively, satisfy

2(Aε(t)w)w + λ(Bε(t)w)w + (B′
ε(t)w)w > κ‖w‖2

for every w ∈ V and 0 6 t 6 T for constants λ, κ > 0.

P r o o f. With Bε constant it follow that B′
ε(t) = 0. We consider

2(Aε(t)w)w + λ(Bε(t)w)w = 2(Du∇w1,∇w1)Ωε

+ 2(Dv∇w2,∇w2)Ωε
+ 2εl〈ls(w1 − F (t)(w1)), w1〉Γε

+ 2εm〈lw(w2 −G(t)(w1, w2)), w2〉Γε
+ λ(w1, w1)Ωε

+ λ(w2, w2)Ωε

= 2Du‖∇w1‖2Ωε
+ 2Dv‖∇w2‖2Ωε

+ 2εlls‖w1‖2Γε
− 2εl〈lsF (t)(w1), w1〉Γε

+ 2εmlw‖w2‖2Γε
− 2εm〈lwG(t)(w1, w2), w2〉Γε

+ λ‖w1‖2Ωε
+ λ‖w2‖2Ωε

.
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By Lemma 8 we deduce

2(Aε(t)w)w + λ(Bε(t)w)w

> 2Du‖∇w1‖2Ωε
+ 2Dv‖∇w2‖2Ωε

+ 2εlls‖w1‖2Γε
− 2c(T )εlls‖w1‖2Γε

+ 2εmlw‖w2‖2Γε
− c(T )εmlw‖w1‖2Γε

− c(T )εmlw‖w2‖2Γε

− 2c(T )εmlw‖w2‖Γε
+ λ‖w1‖2Ωε

+ λ‖w2‖2Ωε
.

Dropping some positive terms and applying the trace inequality yields

2(Aε(t)w)w + λ(Bε(t)w)w > 2Du‖∇w1‖2Ωε
+ 2Dv‖∇w2‖2Ωε

− (2c0c(T )ε
l−1ls + c0c(T )ε

m−1lw)‖w1‖2Ωε

− (2c0c(T )ε
l+1ls + c0c(T )ε

m+1lw)‖∇w1‖2Ωε

− (c0c(T )ε
m−1lw + 2c0c(T )ε

m−1lw)‖w2‖2Ωε

− (2c0c(T )ε
m+1lw + c0c(T )ε

m+1lw)‖∇w2‖Ωε
+ λ‖w1‖2Ωε

+ λ‖w2‖2Ωε

= ‖w1‖2Ωε
(λ− 2c0c(T )ε

l−1ls − c0c(T )ε
m−1lw)

+ ‖∇w1‖2Ωε
(2Du − 2c0c(T )ε

l+1ls − c0c(T )ε
m+1lw)

+ ‖w2‖2Ωε
(λ− c0c(T )ε

m−1lw − 2c0c(T )ε
m−1lw)

+ ‖∇w2‖2Ωε
(2Dv − 2c0c(T )ε

m+1lw − c0c(T )ε
m+1lw).

Because l,m > 0, the factors at the norm of gradients of w1, w2 are positive for ε

small enough. If l,m 6 1 one chooses λ big enough such that the factors at the norm

of w1, w2 are positive even for small ε > 0. Then we merge the factors to a constant

κ and conclude that

2(Aε(t)w)w + λ(Bε(t)w)w > κ‖w‖2V ,

which completes the proof. �

Now we are ready to prove the existence of a solution.

Theorem 11. The partial differential equation (4) has at least one solution

(uε, vε) in VC(Ωε)× VN(Ωε).

P r o o f. Using Theorem 7 we find a solution (ũε, vε) of the problem (7) in

VC0(Ωε) × VN(Ωε) with initial condition (ũε(0), vε(0)) = (uI − uB, vI), because the

linear operators Aε(t) and Bε(t), defined in (8) and (9), satisfy the sufficient con-

ditions (proven in Lemma 9 and Lemma 10). Furthermore, the right-hand side in

(7) is in L2([0, T ], V ′) and the initial conditions (uI − uB, vI) are an element of W .

Setting uε = ũε + uB, we find a solution (uε, vε) ∈ VC(Ωε)× VN(Ωε). �
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Using (2) and (3), we find directly:

Corollary 12. There exist solutions for sε and wε.

6. Identification of the two-scale limit

In this section we derive the limit equations for the system of equations (1). At

first, we consider the limit of the binding terms for different values for l and m.

Then, we find the limit of the whole system.

Limit of the binding terms. To find the limit equations for uε, vε, sε and

wε we need to distinguish different cases for l and m in the binding terms. The

limit derivation for vε and wε is analogous to the limit derivation for uε and sε,

respectively. Hence, we only consider uε and sε here.

In every case we use that ε‖uε‖2Γε
and ε‖sε‖2Γε

are bounded, see Corollary 3 and

Lemma 2. Thus, by Theorem 1.2 of [16] we find u0 and s0 such that uε two-scale

converges to u0 and sε two-scale converges to s0.

Further, we know that εl‖uε − sε‖2Γε
is bounded, see Lemma 2, and we also use

Theorem 1.2 of [16]. Therefore, we consider the following cases:

⊲ For l > 1 and by Lemma 2 we obtain for ε tending to zero that

(10) εl‖uε − sε‖2Γε
= εl−1

︸︷︷︸

→0

ε‖uε − sε‖2Γε
︸ ︷︷ ︸

bounded

ε→0−→ 0.

⊲ l = 1 is the standard case and we find using the definition of two-scale conver-

gence that

(11) ε〈(uε − sε), ϕε〉Γε
dσx

ε→0−→ 〈(u0(x, y, t)− s0(x, y, t)), ϕ0(x, y)〉Ω×Γ.

⊲ For 0 6 l < 1 and by Lemma 2 we get for ε→ 0 that

(12) εl‖uε − sε‖2Γε
︸ ︷︷ ︸

bounded

= εl−1
︸︷︷︸

→∞

ε‖uε − sε‖2Γε
.

Since the right-hand side remains bounded, it must hold that lim
ε→∞

ε‖uε−sε‖2Γε
=

‖u0 − s0‖2Ω×Γ = 0. Hence, u0 = s0 almost everywhere on Ω× Γ.

Now, knowing the limits of the binding terms, we continue with the limit derivation

of the whole equations. The domain Ωε should not depend on ε, so we define the

characteristic function χ : Ω → R by χ(x/ε) = 1 for x ∈ Ωε and 0 otherwise. We
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obtain the limit equations for uε, vε, sε and wε by using theorems from articles [1],

[16]. In Lemma 2 we checked that the conditions are fulfilled. As test functions ϕε ∈
C∞(Ω, C∞

# (Y )) we choose functions of the form ϕε(x, x/ε) = ϕ0(x) + εϕ1(x, x/ε)

with (ϕ0, ϕ1) ∈ C∞(Ω)× C∞(Ω, C∞
# (Y )).

The case l > 1, m > 1. We start with the equation uε and test with the admissible

test function ϕε,

(χ(x/ε)∂tuε(x, t), ϕε(x, x/ε))Ω + (Duχ(x/ε)∇uε(x, t),∇ϕε(x, x/ε))Ω

+ 〈εlls(uε(x, t) − sε(x, t)), ϕε(x, x/ε)〉Γε
= 0.

For ε→ 0 we obtain the limit equation

(13) (∂tu0(x, t), ϕ0(x))Ω×Y ∗

+ (Du[∇xu0(x, t) +∇yu1(x, y, t)], [∇xϕ0(x) +∇yϕ1(x, y)])Ω×Y ∗ = 0

for all admissible test functions (ϕ0, ϕ1) ∈ VC0(Ω) × V (Ω, Y ), where u0 ∈ VC(Ω) is

independent of y and u1 ∈ V(Ω, Y ) = L2([0, T ]× Ω, H1
#(Y )).

Analogously we obtain for ε→ 0

(∂tv0(x, t), ϕ0(x))Ω×Y ∗

+ (Dv[∇xv0(x, t) +∇yv1(x, y, t)], [∇xϕ0(x) +∇yϕ1(x, y)])Ω×Y ∗ = 0

for all admissible test functions (ϕ0, ϕ1) ∈ VN (Ω) × V (Ω, Y ), where v0 ∈ VN(Ω) is

independent of y and v1 ∈ V(Ω, Y ).

Now we determine the limit equations for sε and wε,

ε〈∂tsε(x, t), ϕε(x, x/ε)〉Γε
+ ε〈Dsε∇Γsε(x, t), ε∇Γϕε(x, x/ε)〉Γε

+ ε〈fsε(x, t), ϕε(x, x/ε)〉Γε
− εl〈ls(uε(x, t) − sε(x, t)), ϕε(x, x/ε)〉Γε

= 0.

We find the limit function s0 ∈ V(Ω,Γ) satisfying for ε→ 0

〈∂ts0(x, y, t), ϕ0(x, y)〉Ω×Γ + 〈Ds∇Γs0(x, y, t),∇Γϕ0(x, y)〉Ω×Γ

+ 〈fs0(x, y, t), ϕ0(x, y)〉Ω×Γ = 0

for all ϕ0 ∈ V (Ω,Γ). We analogously find the limit function w0 ∈ V(Ω,Γ) satisfying

〈∂tw0(x, y, t), ϕ0(x, y)〉Ω×Γ + 〈Dw∇Γw0(x, y, t),∇Γϕ0(x, y)〉Ω×Γ

− 〈fs0(x, y, t), ϕ0(x, y)〉Ω×Γ = 0

for all ϕ0 ∈ V (Ω,Γ).
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As described in [25], the cell problem for limit equations like (13) is given by

(14) ∇y ·Du(ej +∇yµj) = 0 in Y ∗,

Du(ej +∇yµj) · n = 0 on Γ,

where µj must be Y -periodic for all j = 1, . . . , n. Then, u1(x, y, t) =
n∑

j=1

∂xj
u0(x, t)

µj(y) and the elements of the diffusion tensor P
u are given by

(15) Pu
ij =

∫

Y ∗

Du[δij + ∂yi
µj ] dy.

Analogously, we find that the cell problem for the equation for v is also given by

(14) but with Du replaced by Dv. Then v1(x, y, t) =
n∑

j=1

∂xj
v0(x, t)µj(y) and we

define the diffusion tensor P v by P v
ij =

∫

Y ∗
Dv[δij + ∂yi

µj ] dy.

We summarize our results with the weak macroscopic system of equations and use

that u0 and v0 are independent of y. Let (u0, v0, s0, w0) ∈ VC(Ω)×VN(Ω)×V(Ω,Γ)2
such that

(16) |Y ∗|(∂tu0, ϕ1)Ω + (Pu∇u0,∇ϕ1)Ω = 0,

|Y ∗|(∂tv0, ϕ2)Ω + (P v∇v0,∇ϕ2)Ω = 0,

(∂ts0, ψ)Ω×Γ + (Ds∇Γs0,∇Γψ)Ω×Γ + (fs0, ψ)Ω×Γ = 0,

(∂tw0, ψ)Ω×Γ + (Dw∇Γw0,∇Γψ)Ω×Γ − (fs0, ψ)Ω×Γ = 0

for all (ϕ1, ϕ2, ψ) ∈ VC0(Ω)× VN(Ω)× V (Ω,Γ).

We see that for l > 1 orm > 1 no BP molecules bind or unbind to the membrane of

the ER, or no DE molecules bind or unbind to the membrane of the ER, respectively.

Hence, no metabolism from BP to DE molecules takes place. Because we know from

biological examinations that there are metabolisms in real life, we conclude that this

model is not a good approximation to the reality for l > 1 or m > 1.

The case l = 1, m = 1. Here, we distinguish two cases. First, we consider the

limit derivation of the system of equations (1). Secondly, we derive the limit equation

for the abbreviated system of equations (4). Since it is unclear how to derive the

limits lim
ε→0

F (uε) and lim
ε→0

G(uε, vε), as defined in (2) and (3), in the sense of two-scale

convergence, we determine the limits for F (uε) and G(uε, vε) indirectly: With the

systems (4) and (1) being equivalent, also the corresponding limit equations must be

equivalent. In the limit we are going to identify these two limit equations with each

other and are able to determine lim
ε→0

F (uε) and lim
ε→0

G(uε, vε).
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For the limit derivations we may adopt the two-scale limit terms from the case

l,m > 1 for the time-derivatives, the diffusion terms and the linear terms. The limit

equations only differ in the binding terms, calculated in (11).

Identification of the two-scale limit of the model (1). We start with the

equation for uε and obtain for ε→ 0

(∂tu0(x, t), ϕ0(x))Ω×Y ∗

+ (Du[∇xu0(x, t) +∇yu1(x, y, t)], [∇xϕ0(x) +∇yϕ1(x, y)])Ω×Y ∗

+ 〈ls(u0(x, t) − s0(x, y, t)), ϕ0(x)〉Ω×Γ = 0

for all admissible test functions (ϕ0, ϕ1) ∈ VC0(Ω) × V (Ω, Y ), where u0 ∈ L2([0, T ],

H1(Ω)) and u1 ∈ L2([0, T ]× Ω, H1
#(Y )). For the equation with vε we find

(∂tv0(x, t), ϕ0(x))Ω×Y ∗

+ (Dv[∇xv0(x, t) +∇yv1(x, y, t)], [∇xϕ0(x) +∇yϕ1(x, y)])Ω×Y ∗

+ 〈lw(v0(x, t)− w0(x, y, t)), ϕ0(x)〉Ω×Γ = 0

for all (ϕ0, ϕ1) ∈ VN (Ω)×V (Ω, Y ), where v0 ∈ L2([0, T ], H1(Ω)) and v1 ∈ L2([0, T ]×
Ω, H1

#(Y )).

We find the limit function s0 ∈ L2([0, T ]×Ω, H1
#(Y )) satisfying the limit equation

〈∂ts0(x, y, t), ϕ0(x, y)〉Ω×Γ + 〈Ds∇Γs0(x, y, t),∇Γϕ0(x, y)〉Ω×Γ

+ 〈fs0(x, y, t), ϕ0(x, y)〉Ω×Γ − 〈ls(u0(x, y, t)− s0(x, y, t)), ϕ0(x, y)〉Ω×Γ = 0

for all admissible test functions ϕ0 ∈ V (Ω,Γ). From the limit derivation above we

see that u0 is independent of y. Thus, we can simplify the terms
∫

Γ lsu0(x, t) dσy to

|Γ|lsu0(x, t), where |Γ| means the Lebesgue measure of Γ.
Analogously we obtain for the equation for wε ∈ L2([0, T ]×Ω, H1

#(Y )) and ε→ 0

〈∂tw0(x, y, t), ϕ0(x, y)〉Ω×Γ + 〈Dw∇Γw0(x, y, t),∇Γϕ0(x, y)〉Ω×Γ

− 〈fs0(x, y, t), ϕ0(x, y)〉Ω×Γ − 〈lw(v0(x, y, t)− w0(x, y, t)), ϕ0(x, y)〉Ω×Γ = 0

for all admissible test functions ϕ0 ∈ V (Ω,Γ).

We find the same cell problem (14) as in the case l,m > 1, and the derivation of

the diffusion tensors Pu and P v is equivalent to (15).

We summarize our results with the macroscopic weak formulation. Let (u0, v0, s0,

w0) ∈ VC(Ω) × VN(Ω) × V(Ω,Γ)2 with (u0(x, 0), v0(x, 0), s0(x, 0), w0(x, 0)) =
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(uI , vI , sI , wI) such that

(|Y ∗|∂tu0, ϕ1)Ω + (Pu∇u0,∇ϕ1)Ω + ls|Γ|(u0, ϕ1)Ω − ls(s0, ϕ1)Ω×Γ = 0,(17)

(|Y ∗|∂tv0, ϕ2)Ω + (P v∇v0,∇ϕ2)Ω + lw|Γ|(v0, ϕ2)Ω − lw(w0, ϕ2)Ω×Γ = 0,

(∂ts0, ψ)Ω×Γ + (Ds∇Γs0,∇Γψ)Ω×Γ + (f + ls)(s0, ψ)Ω×Γ = ls|Γ|(u0, ψ)Ω,
(∂tw0, ψ)Ω×Γ + (Dw∇Γw0,∇Γψ)Ω×Γ − f(s0, ψ)Ω×Γ + lw(w0, ψ)Ω×Γ

= lw|Γ|(v0, ψ)Ω

for all (ϕ1, ϕ2, ψ) ∈ VC0(Ω)× VN(Ω)× V (Ω,Γ).

Here again there is an analytical solution for s0 and w0 on the manifold Γ, because

s0 and w0 are solutions of the well-known inhomogeneous heat equations. As in

section 4, we obtain functions F0(u0) = s0 and G0(u0, v0) = w0 with

F0(u0) = e(Ds∆Γ−f−ls)tsI(x)(18)

+ e−(f+ls)t

∫ t

0

eDs∆Γ(t−s)lsu0(s, x)e
(f+ls)s ds = s0,

G0(u0, v0) = e(Dw∆Γ−lw)twI(x)(19)

+ e−lwt

∫ t

0

eDw(t−s)∆Γ(lwv0(s, x) + fF0(u0)(s, x))e
lws ds = w0.

The abbreviated limit equation of (17) is

(20) (|Y ∗|∂tu0, ϕ1)Ω

+ (Pu∇u0,∇ϕ1)Ω + ls|Γ|(u0, ϕ1)Ω − ls(F0(u0), ϕ1)Ω×Γ = 0,

(|Y ∗|∂tv0, ϕ2)Ω

+ (P v∇v0,∇ϕ2)Ω + lw|Γ|(v0, ϕ2)Ω − lw(G0(u0, v0), ϕ2)Ω×Γ = 0

for all (ϕ1, ϕ2) ∈ VC0(Ω)× VN(Ω).

Identification of the two-scale limit of the abbreviated model (4). Wemay

adopt the limit terms from the case l,m > 1 for the time-derivative, the diffusion

term and the linear term. The equation

(χ(x/ε)∂tuε, ϕε)Ω + (χ(x/ε)∇uε,∇ϕε)Ω + ε〈ls(uε − F (uε)), ϕε〉Γε
= 0

yields for ε tending to zero

(|Y ∗|∂tu0, ϕ0)Ω + (Pu∇u0,∇ϕ0)Ω + |Γ|(lsu0, ϕ0)Ω − ls lim
ε→0

ε〈F (uε), ϕε〉Γε
= 0
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for all admissible test functions (ϕ0, ϕ1) ∈ VC0(Ω) × V (Ω, Y ), where u0 ∈ L2([0, T ],

H1(Ω)) and u1 ∈ L2([0, T ]×Ω, H1
#(Y )). As mentioned before, it is unclear initially

how to find the limit lim
ε→0

ε
∫

Γε
F (uε)ϕε dσx directly. By comparing this limit model

with model (20) we find that

lim
ε→0

ε〈F (uε), ϕε〉Γε
= 〈F0(u0), ϕ0〉Ω×Γ

with F0 as in (18). We analogously find lim
ε→0

ε〈G(uε, vε), ϕε〉Γε
= 〈G0(u0, v0), ϕ0〉Ω×Γ

with G0 as in (19).

The case l = m = 1 seems the most relevant one from the biological point of view.

The binding process of the molecules to the membrane of the ER has regular speed

and hence we obtain four coupled limit equations for u0, v0, s0, w0. In this context

we were also able to find a two-scale limit for the ε-dependent operators F and G,

(2) and (3).

The case l < 1, m < 1. We are going to use the binding limit term (12) and recall

that u0 = s0 on Γ in the limit for ε tending to zero. This means that in the limit,

the solution u0 will have to satisfy the limit equations for u0 and for s0. To be able

to relate these limit equations for u0 and for s0, we add the equations for uε and sε
before the limit derivation and test with ϕε:

(χ(x/ε)∂tuε(x, t), ϕε(x, x/ε))Ω + ε〈∂tsε(x, t), ϕε(x, x/ε)〉Γε

+Du(χ(x/ε)∇uε(x, t),∇ϕε(x, x/ε))Ω + ε〈Dsε∇Γsε(x, t), ε∇Γϕε(x, x/ε)〉Γε

+ ε〈fsε(x, t), ϕε(x, x/ε)〉Γε
= 0.

For ε tending to zero we find

(∂tu0(x, t), ϕ0(x))Ω×Y ∗ + 〈∂ts0(x, y, t), ϕ0(x)〉Ω×Γ

+ (Du[∇xu0(x, t) +∇yu1(x, y, t)], [∇xϕ0(x) +∇yϕ1(x, y)])Ω×Y ∗

+ 〈Ds∇Γs0(x, y, t),∇Γϕ0(x)〉Ω×Γ + 〈fs0(x, y, t), ϕ0(x)〉Ω×Γ = 0

for all (ϕ0, ϕ1) ∈ VC0(Ω) × V (Ω, Y ), where u1 ∈ L2([0, T ] × Ω, H1
#(Y )) and u0 ∈

L2([0, T ], H1(Ω)) and s0 ∈ L2([0, T ]× Ω, H1
#(Y )).

Since u0 = s0 on Γ, we obtain

(|Y ∗|+ |Γ|)(∂tu0(x, t), ϕ0(x))Ω

+Du([∇xu0(x, t) +∇yu1(x, y, t)], [∇xϕ0(x) +∇yϕ1(x, y)])Ω×Y ∗

+ 〈Ds ∇Γu0(x, t),
︸ ︷︷ ︸

=0

∇Γϕ0(x)〉Ω×Γ + 〈fu0(x, t), ϕ0(x)〉Ω×Γ = 0

where ∇Γu0 = 0 because u0 is independent of y, and analogously for v0 and w0.
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Again we refer to the cell problem (14) to see how the diffusion tensors Pu and P v

can be derived. Hence, we arrive at the macroscopic system of equations. The weak

formulation of the macroscopic system of equations is given by (u0, v0) ∈ VC(Ω) ×
VN(Ω) such that

(21) (|Y ∗|+ |Γ|)(∂tu0, ϕ1)Ω + (Pu∇u0,∇ϕ1)Ω + |Γ|f(u0, ϕ1)Ω = 0,

(|Y ∗|+ |Γ|)(∂tv0, ϕ2)Ω + (P v∇v0,∇ϕ2)Ω − |Γ|f(u0, ϕ2)Ω = 0

for all (ϕ1, ϕ2) ∈ VC0(Ω)× VN(Ω).

The third case with l,m < 1 is also interesting. We see that BP molecules directly

transform into DE molecules. Hence, the metabolism takes place very quickly. In

the next section we also will show uniqueness of the solution of system (21).

Combinations of these scalings, e.g. l < 1, m > 1, can be handled analogously.

7. Uniqueness of the limit model

In this section we are going to show that the solutions of systems (16) (case l > 1,

m > 1), (17) (case l = m = 1) and the solution of system (21) (case l < 1, m < 1)

are unique.

Theorem 13 (Uniqueness for l > 1, m > 1). There exists at most one solution

of the problem (16).

P r o o f. To show uniqueness of the solution s0 we assume the existence of two

solutions s1 and s2. We test the difference of these two solutions with ϕ = s1 − s2,

integrate from 0 to t, and find for the third equation of system (16) that

1
2‖s1 − s2‖2Ω×Γ +Ds‖∇Γ(s1 − s2)‖2Ω×Γ,t + f‖s1 − s2‖2Ω×Γ,t = 0.

Hence, s1 = s2 almost everywhere on Ω × Γ. The tensors Pu and P v are unique,

see [25]. Then the differential equation for the functions u0, v0 and w0 are standard

heat equations with homogeneous or inhomogeneous right-hand sides, respectively,

for which uniqueness can be obtained in a standard way, see [9]. �

Theorem 14 (Uniqueness for l = m = 1). There is at most one solution of the

problem (17).

P r o o f. First we note that the tensors Pu and P v are unique, see [25] for details.

We assume there are two solutions (u1, v1, s1, w1) and (u2, v2, s2, w2) and prove that

these solutions must be equal.
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We subtract the equations for u2 from the equation for u1 and test it with ϕ =

u1 − u2. After integration from 0 to t, using the binomial theorem and considering

that u1 and u2 have the same initial conditions we obtain

1
2‖u1 − u2‖2Ω + ‖

√
Pu∇(u1 − u2)‖2Ω,t + ls|Γ|‖u1 − u2‖2Ω,t

6 ls
1
2‖s1 − s2‖2Ω×Γ,t + ls

1
2‖u1 − u2‖2Ω,t.

We find similar estimates for the other equations and add them up to deduce

‖u1 − u2‖2Ω + ‖v1 − v2‖2Ω + ‖s1 − s2‖2Ω×Γ + ‖w1 − w2‖2Ω×Γ

6 c1(‖u1 − u2‖2Ω,t + ‖v1 − v2‖2Ω,t + ‖s1 − s2‖2Ω×Γ,t + ‖w1 − w2‖2Ω×Γ,t)

for a c1 > 0 depending on ls, lw, f and |Γ|. By Gronwall’s lemma it follows that

‖u1 − u2‖2Ω + ‖v1 − v2‖2Ω + ‖s1 − s2‖2Ω×Γ + ‖w1 − w2‖2Ω×Γ = 0

for almost every t ∈ [0, T ] and hence (u1, v1, s1, w1) = (u2, v2, s2, w2) almost every-

where. �

Theorem 15 (Uniqueness for 0 < l < 1, 0 < m < 1). There is at most one solu-

tion of the problem (21).

P r o o f. We already know that the diffusion tensors Pu and P v are unique from

[25]. It remains to show that there is at most one solution u0 and v0 solving (21).

We assume two solutions (u1, v1) and (u2, v2) and are going to show that they must

be equal. Therefore we subtract the equation for (u1, v1) and for (u2, v2) and test it

with ϕ = u1 − u2 and ϕ = v1 − v2, respectively, and integrate from 0 to t:

(|Y ∗|+ |Γ|)12‖u1 − u2‖2Ω + ‖
√
Pu∇(u1 − u2)‖2Ω,t + |Γ|f‖u1 − u2‖2Ω,t = 0.

Hence, we find that u1 = u2 almost everywhere in Ω and for almost every t ∈ [0, T ].

Similarly, we find that

(|Y ∗|+ |Γ|)12‖v1− v2‖2Ω+ ‖
√
P v∇(v1 − v2)‖2Ω,t = |Γ|f‖u1−u2‖2Ω,t+ |Γ|f‖v1− v2‖2Ω,t.

By Gronwall’s lemma we deduce

(|Y ∗|+ |Γ|)12‖v1 − v2‖2Ω + ‖
√
P v∇(v1 − v2)‖2Ω,t 6 0

and obtain that v1 = v2 almost everywhere in Ω and for almost every t ∈ [0, T ]. This

completes the proof. �
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