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CONTINUUM SPECTRUM FOR THE LINEARIZED EXTREMAL
EIGENVALUE PROBLEM WITH BOUNDARY REACTIONS

FuTosHI TAKAHASHI, Osaka

(Received August 6, 2013)

Abstract. We study the semilinear problem with the boundary reaction

—Au+u=0 inQ, g—u:/\f(u) on 0f,
v

where Q@ ¢ RN, N > 2, is a smooth bounded domain, f: [0,00) — (0,00) is a smooth,
strictly positive, convex, increasing function which is superlinear at co, and A > 0 is a pa-
rameter. It is known that there exists an extremal parameter A* > 0 such that a classical
minimal solution exists for A < A*, and there is no solution for A > \*. Moreover, there is
a unique weak solution u* corresponding to the parameter A = \*. In this paper, we con-
tinue to study the spectral properties of ©* and show a phenomenon of continuum spectrum
for the corresponding linearized eigenvalue problem.
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1. INTRODUCTION

In this paper, we consider the boundary value problem with the boundary reaction

(1.1) —Au+u=0 in{, %:/\f(u) on 0N

where A > 0 and Q ¢ RY, N > 2 is a smooth bounded domain. Throughout the

paper, we assume

(1.2) f:]0,00) = (0,00) is smooth, convex, increasing, f(0) > 0,

Part of this work was supported by JSPS Grant-in-Aid for Challenging Exploratory Re-
search, No. 24654043, and JSPS Grant-in-Aid for Scientific Research (B), No. 23340038.
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and superlinear at oo in the sense that

09 tim H = o
Then the maximum principle implies that solutions are positive on Q.
It is known that there exists an extremal parameter \* € (0, c0) such that
(i) for every A € (0,A*), (1.1)5 has a positive, classical, minimal solution uy €
C?(Q) which is strictly stable in the sense that

(1.4) /Q(|V<p|2 + %) dz > )\/BQ f(ux)@? ds,

for every ¢ € C1(Q), ¢ Z0,
(ii) for A = \*, the pointwise limit

1. (x) =l Q
(1.5) u*(z) Jim ur(z), xeqQ,
becomes a weak solution of (1.1)-,
(iii) for A > A*, there exists no solution of (1.1), not even in the weak sense.
Here, we call a function u = (u1,u2) € L (Q) x L1(9Q) a weak solution to (1.1)y if
f(u2) € LY(09Q) and

(1.6) /Q(—AC + O da = /m (Mf(ua) - %UQ) ds,

holds for any ¢ € C%(Q). The statement (ii) says that, under the assumption (1.3),
u* = (u*|q,u*|sq) is a weak solution in the above sense. We proved in [10] Theo-
rem 11 that u* € W17 (Q) for any v € [1, N/(N — 2)) when N > 3 (for any 7 € [1, o)
when N = 2), so u*|sn € W'1/77(9Q) ¢ LIN-D7/(N=7)(9Q) is the usual trace of
the W17 function u* on 9. For the facts (ii), (iii), we refer the reader to [10]. In
the following, we call u* the extremal solution of (1.1). In [10], the author obtained
several properties such as regularity and uniqueness of the extremal solution u*. This
paper is a sequel to [10]. For related elliptic problems with boundary reaction terms,

see, e.g., [4], [6], [9]. For a well-studied problem
—Au = Af(u) in Q, u=0 ondf

where f satisfies (1.2), (1.3), see [1], [2], [3], [5], [7], [8], and the references therein.
For A € (0,\*), we denote by u1(Af'(uy)) the first eigenvalue of the eigenvalue

problem

9 _

—Ap+¢=0 inQ, =
v

Af'(ux)p + pp  on 9.
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By the variational characterization, we have

\V4 2 2 de — ! 2d N
pi(Af'(ux)) = inf Jo(IVel® + ¢%) da 2fan Flux)¢”dsa
PECH(Q), 920 Joq ¥% dsa

Note that pi(Af'(ux)) > 0 since the minimal solution wy is strictly stable, and
decreases as A T A\*. Denote

(1.7) pi = lim (A f' ()

If w* is classical, it must hold that puj = 0 by considering (iii) above. However, if
u* = (u*|q, u*lan) & L>®(Q) x L>(99Q), it could happen that pf is positive. In [10],
we proved that even when pj > 0, there exists a nonnegative weak solution of

(1.8) —Ap+¢=0 1in Q, g—f =Xf'(u*)p + pp on N

for 4 = 0. This is a phenomenon of the existence of (L!-)zero eigenvalue for the
eigenvalue problem (1.8). The main purpose of this paper is to prove the following
result, which is a generalization of the result by Cabré and Martel [3] to our setting,
and may be seen as a phenomenon of the existence of (L'-)continuum spectrum for
the eigenvalue problem (1.8).

Theorem 1.1. Let u} be defined by (1.7). Then for any u € [0, u}] there exists
a weak solution ¢ to (1.8), p € WH4(Q) (1 < ¢ < N/(N —1)), ¢ = 0, in the sense
that f'(u*)plao € L'(9Q) and

0
Jac+pda= [ {0 elon + nplan)C - Gclony ds.

for all ¢ € C?(Y). Here ¢|sq is the usual trace of o € W14(Q).

2. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. We need the uniqueness theorem from [10],
which is an analogue of the result by Y. Martel [8].
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Theorem 2.1 ([10], Theorem 14). Assume (1.1)x~ has a weak supersolution
w = (wy,wy) € L}(Q) x L1(9Q), in the sense that f(wy) € L'(0Q) and

¢
_ > * _
/Q( AC—i—C)wldx//(m {)\ flwe2)¢ 8ng}dsgg
for any ¢ € C%(Q), ¢ > 0 on Q. Then (wy,ws) = (u*|q,u*|sq), where u* is defined
by (1.5).
The following is Lemma 17 in [10].

Lemma 2.2. Let {u,} C C*(Q) be a sequence of functions such that

—Auy, +u, =0 inQQ, %20 on 0f).

Assume |[uy||z1(90) < C for some C > 0 independent of n. Then there exists
a subsequence (denoted again by u,) and u € W9(Q) such that

Up — u  weakly in Wh(Q), 1 < g < N1

Moreover, for any 1 < p < (N — 1)/(N — 2) there exists a constant Cj, > 0 depending
only on p such that

lunllLeo0) < Cplltunllpraq) for any n € N.

Now, we prove Theorem 1.1.

Proof. We follow the argument by X. Cabré and Y. Martel [3].
Step 1. For n € N, define a sequence of functions f,, as

- f(S) if s <n,
P = {f(m +F)s=n) ifs>n,

and consider the approximated problem

0
(2.1) —Au+u=0 inQ, a—z = Afn(u) on 9.
Denote A’ = sup{A > 0: (2.1), admits a minimal solution € C?(Q)}, and let u,, » €
C?(Q) be the classical minimal solution to (2.1)y for A < A%. Since f,, < fnt1 < f,

we have u, x < Upy1a < ux and A* <Ay < A, for any n € N. Define

Vol|? + @) dz — [ AMfh(un)e? dsy
(2.2) (A fh(unn)) = inf fQ(| ol* +¢%) da 2fdQ I (un\)p® ds .
pECI(Q), 90 Joq ¥* dsa
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Note that p1(Af),(un ) is continuous with respect to A by (2.2). Take 0 < p <
pi where pi is defined by (1.7). Since wy x: is classical (which is because f, is
asymptotically linear) and there is no classical solution of (2.1)y for A > A%, the
linearized problem around (A}, %, +) must have zero eigenvalue. Thus

(A fr(unaz ) = 0 < < pf < pn (N, (o))

here we have used the fact that f] < f’ and u, \ < uy, which implies p1 (Af'(uy)) <
u1(Af} (un,x)). By the Intermediate Value Theorem, there exists A,, € [A*, A%] such
that

1 (A fr (Unx,)) =

which in turn implies there exists ¢, > 0 with f 50 Pn ds, = 1 such that

9n

(2.3) A, + ¢, =0 in Q, 5

= Mo f) (Un.x, ) Pn + ppn  on 0.
Recall also that wu,, , satisfies

Oun z,,

2.4 —Au, —— in Q,
(2.4) UpA, T Unr, =0 in £y

= M fn(tn,,) on Q.
We claim there exists ng € N such that

(2.5) l[tin 2.,

L1(09) < C for any n > ng.

Indeed, let 91 be the first eigenfunction of the Steklov type eigenvalue problem

(2.6) A1+ =0 in Q, % = K11 omn If2

with the first eigenvalue 1, which is normalized as [, ¥1 ds, = 1. Multiplying (2.4)

by 11 and using Jensen’s inequality for f,,, we obtain

K1 1P1Un,,\n dsz - >\n fn(un,)\n)wl dsz
[519)

o0
= /\nfn (/ wlun,/\n dsx) = /\*fn (/ wlun,/\n dsx)
o0 o0

Put a,, = [, 1un,», ds,. Then we have

(2.7) %>§nmy
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Assume by contradiction that f,(an) = f'(n)(an, —n) + f(n) for some n € N suf-
ficiently large. Then, since a,, > n and f(n) > (k1/A)n, f'(n) > (k1/X\*) for n
sufficiently large by (1.2) and (1.3), we have, by (2.7),

an > ﬁfnmn) _ %I{f’(n)(an — )+ f(n)}

>an—n+n:an,

which is a contradiction. Thus we conclude there exists ng € N such that f,(a,) =
f(ayn) for any n > no. Again, this and (2.7) imply a,, > (A*/k1)f(ay) for any n > ng.
Now, by the assumption on f, we have C' > 0 such that f(s) > (2k1/A*)s — C holds
for any s > 0. From this and the former estimate, we have a, < (A*/k1)C for
n = ng. This implies the claim (2.5).

Step 2. By (2.5), we have [Jup x,
recall that ||| 71(s0) = 1 for a solution ¢, of (2.3). Thus we can apply Lemma 2.2

r1o0) < C for some C independent of n. Also

and the trace Sobolev embedding to obtain w, p € L1(Q), ¢ > 0 a.e. satisfying

(2.8) Unr, =W, @n— ¢ weakly in wha(Q),
U r, = W, @n —> @ strongly in LP(02) and a.e. on 92

forany 1 < ¢ < N/(N—-1)and 1 <p < (N —1)/(N —2). Since [,,¢ds, =1, we
see ¢ # 0 on 0.

In the following, we prove that A, | \* as n — oo and w = u*. We will show
that w € WhH4(Q) is a weak supersolution in the sense of Theorem 2.1. Then the

conclusion is obtained by Theorem 2.1. To prove that w is a weak supersolution, put
A= ian An. Since A\, > \*, we have X > \*. We observe that
ne

/(—AC + Qunp,z, do = / Jrn(tn,,)Cdsg — / —Up\, dSg
Q 81/

holds for all ¢ € C%(Q), ¢ > 0. Using the fact that u, x, — w in L*(Q) or L}(99),
respectively, and Fatou’s lemma, we have

_ a¢
/Q(—Ag—i—g)wdx > )\/BQf(w)Cdsm _/89 511“1895

_ [ % 25
mf(ﬂ))édsz /aQ 8ywdsg,:, V¢ € C*(Q), ¢ =0.

This implies also f(w) € L'(99Q) if we take ¢ = 1. Thus, we conclude that w is
a weak supersolution to (1.1)x«
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Step 3. Let @, ¢ be as in Step 2. We claim that
(2.9) M (non, )on — AN f (u*)p  strongly in L'(9Q)

as n — oo. For the proof, we invoke Vitali’s Convergence Theorem. First, by (2.8),
we see

Ao (Unon, (2))on () = X f(u*(2))p(z)  ae z € 0Q

for a subsequence. Next, we prove the uniformly absolute continuity property of the
sequence {\,f;(Un 1, )Pn}tnen. For that purpose, let A C 9Q be measurable and
€ > 0 be given arbitrary. Since f,, is convex, we have

210) £ (D) > fun, @) + o, @) (A, @)

9 9

a.e. x € 0L); here y 4 is the characteristic function of A. By (2.3) and (2.4), we have

(2.11) A, In(unx, )ondse = Ay frlz(un,kn)un,%@n dsz + M/ Un,x, Pn A8z
o o0 o0

Z An fr/L(un,An)un,AnSOn dsg.
o0

Also an easy consideration shows that

(2.12) {fn(XA—(x)) - f(O)}gon(x) < f(é)gon(x)XA(x) a.e. on O0f).

3

Thus by (2.10), (2.11) and (2.12), we have

13) [ filwa) Lo, ds,

<[ n(B)endset [ fiunduanignds = [ falwnn)onds,

<[ £(2)ents = [ {1.(2) - 10}endse+ [ r0pas,

| 1) emxads+ £0) < 1(2) 1A Il rion + £0)
<of(2)IA + £(0)

for any 1 < p < (N — 1)/(N — 2), where |A| denotes the (N — 1) dimensional Haus-

dorff measure of A C 9 and p’ = p/(p — 1). In (2.13) we have used ||¢n || Lr90) < C
for some C' > 0 independent of n by (2.8). Define

5(e) = (%)p .

N
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Then for any € > 0 we obtain [, f}(unx,)¢nds. < 2f(0)e if A C N satisfies that
|A] < d(¢) by (2.13). This implies the uniform absolute continuity of the sequence
{An S (Un ) on tnen. Also for any e > 0, if we take E C 9 such that |[0Q\ E| < 4(¢)
where d(¢) is as above, we obtain that faQ\E M Sl (U, x, )pn dsy < Ce. This implies
the uniform integrability of { Ay f,,(un x,)¥n}nen. Therefore, Vitali’s Convergence
Theorem ensures the claim (2.9).

By (2.9), we pass to the limit n — oo in the weak formulation of (2.3):

[ ac+Qends= [ Oufiluns,) +uhont = Grpndss, ¥ € CH@),
Q o0 v

and conclude that ¢ is a weak solution of

0
~Ap+p=0 inQ, a_f = N f(u)po+pp on 9.
Recall ¢ € WH4(Q) for any 1 < ¢ < N/(N —1). The proof of Theorem 1.1 is
completed. O
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