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CONTINUUM SPECTRUM FOR THE LINEARIZED EXTREMAL

EIGENVALUE PROBLEM WITH BOUNDARY REACTIONS
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Abstract. We study the semilinear problem with the boundary reaction

−∆u+ u = 0 in Ω,
∂u

∂ν
= λf(u) on ∂Ω,

where Ω ⊂ R
N , N > 2, is a smooth bounded domain, f : [0,∞) → (0,∞) is a smooth,

strictly positive, convex, increasing function which is superlinear at ∞, and λ > 0 is a pa-
rameter. It is known that there exists an extremal parameter λ∗ > 0 such that a classical
minimal solution exists for λ < λ∗, and there is no solution for λ > λ∗. Moreover, there is
a unique weak solution u∗ corresponding to the parameter λ = λ∗. In this paper, we con-
tinue to study the spectral properties of u∗ and show a phenomenon of continuum spectrum
for the corresponding linearized eigenvalue problem.
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1. Introduction

In this paper, we consider the boundary value problem with the boundary reaction

(1.1) −∆u+ u = 0 in Ω,
∂u

∂ν
= λf(u) on ∂Ω

where λ > 0 and Ω ⊂ R
N , N > 2 is a smooth bounded domain. Throughout the

paper, we assume

(1.2) f : [0,∞) → (0,∞) is smooth, convex, increasing, f(0) > 0,

Part of this work was supported by JSPS Grant-in-Aid for Challenging Exploratory Re-
search, No. 24654043, and JSPS Grant-in-Aid for Scientific Research (B), No. 23340038.
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and superlinear at ∞ in the sense that

(1.3) lim
t→∞

f(t)

t
= ∞.

Then the maximum principle implies that solutions are positive on Ω.

It is known that there exists an extremal parameter λ∗ ∈ (0,∞) such that

(i) for every λ ∈ (0, λ∗), (1.1)λ has a positive, classical, minimal solution uλ ∈

C2(Ω) which is strictly stable in the sense that

(1.4)

∫

Ω

(|∇ϕ|2 + ϕ2) dx > λ

∫

∂Ω

f ′(uλ)ϕ
2 dsx

for every ϕ ∈ C1(Ω), ϕ 6≡ 0,

(ii) for λ = λ∗, the pointwise limit

(1.5) u∗(x) = lim
λ↑λ∗

uλ(x), x ∈ Ω,

becomes a weak solution of (1.1)λ∗ ,

(iii) for λ > λ∗, there exists no solution of (1.1)λ, not even in the weak sense.

Here, we call a function u = (u1, u2) ∈ L1(Ω) × L1(∂Ω) a weak solution to (1.1)λ if

f(u2) ∈ L1(∂Ω) and

(1.6)

∫

Ω

(−∆ζ + ζ)u1 dx =

∫

∂Ω

(

λf(u2)ζ −
∂ζ

∂ν
u2

)

dsx

holds for any ζ ∈ C2(Ω). The statement (ii) says that, under the assumption (1.3),

u∗ = (u∗|Ω, u
∗|∂Ω) is a weak solution in the above sense. We proved in [10] Theo-

rem 11 that u∗ ∈ W 1,γ(Ω) for any γ ∈ [1, N/(N − 2)) whenN > 3 (for any γ ∈ [1,∞)

when N = 2), so u∗|∂Ω ∈ W 1−1/γ,γ(∂Ω) ⊂ L(N−1)γ/(N−γ)(∂Ω) is the usual trace of

the W 1,γ function u∗ on ∂Ω. For the facts (ii), (iii), we refer the reader to [10]. In

the following, we call u∗ the extremal solution of (1.1). In [10], the author obtained

several properties such as regularity and uniqueness of the extremal solution u∗. This

paper is a sequel to [10]. For related elliptic problems with boundary reaction terms,

see, e.g., [4], [6], [9]. For a well-studied problem

−∆u = λf(u) in Ω, u = 0 on ∂Ω

where f satisfies (1.2), (1.3), see [1], [2], [3], [5], [7], [8], and the references therein.

For λ ∈ (0, λ∗), we denote by µ1(λf
′(uλ)) the first eigenvalue of the eigenvalue

problem

−∆ϕ+ ϕ = 0 in Ω,
∂ϕ

∂ν
= λf ′(uλ)ϕ+ µϕ on ∂Ω.
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By the variational characterization, we have

µ1(λf
′(uλ)) = inf

ϕ∈C1(Ω), ϕ 6≡0

∫

Ω(|∇ϕ|
2 + ϕ2) dx−

∫

∂Ω λf
′(uλ)ϕ

2 dsx
∫

∂Ω
ϕ2 dsx

.

Note that µ1(λf
′(uλ)) > 0 since the minimal solution uλ is strictly stable, and

decreases as λ ↑ λ∗. Denote

(1.7) µ∗
1 = lim

λ↑λ∗

µ1(λf
′(uλ)).

If u∗ is classical, it must hold that µ∗
1 = 0 by considering (iii) above. However, if

u∗ = (u∗|Ω, u
∗|∂Ω) 6∈ L∞(Ω)× L∞(∂Ω), it could happen that µ∗

1 is positive. In [10],

we proved that even when µ∗
1 > 0, there exists a nonnegative weak solution of

(1.8) −∆ϕ+ ϕ = 0 in Ω,
∂ϕ

∂ν
= λ∗f ′(u∗)ϕ+ µϕ on ∂Ω

for µ = 0. This is a phenomenon of the existence of (L1-)zero eigenvalue for the

eigenvalue problem (1.8). The main purpose of this paper is to prove the following

result, which is a generalization of the result by Cabré and Martel [3] to our setting,

and may be seen as a phenomenon of the existence of (L1-)continuum spectrum for

the eigenvalue problem (1.8).

Theorem 1.1. Let µ∗
1 be defined by (1.7). Then for any µ ∈ [0, µ∗

1] there exists

a weak solution ϕ to (1.8), ϕ ∈ W 1,q(Ω) (1 6 q < N/(N − 1)), ϕ > 0, in the sense

that f ′(u∗)ϕ|∂Ω ∈ L1(∂Ω) and

∫

Ω

(−∆ζ + ζ)ϕdx =

∫

∂Ω

{

(λ∗f ′(u∗)ϕ|∂Ω + µϕ|∂Ω)ζ −
∂ζ

∂ν
ϕ|∂Ω

}

dsx

for all ζ ∈ C2(Ω). Here ϕ|∂Ω is the usual trace of ϕ ∈W 1,q(Ω).

2. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We need the uniqueness theorem from [10],

which is an analogue of the result by Y.Martel [8].
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Theorem 2.1 ([10], Theorem 14). Assume (1.1)λ∗ has a weak supersolution

w = (w1, w2) ∈ L1(Ω)× L1(∂Ω), in the sense that f(w2) ∈ L1(∂Ω) and

∫

Ω

(−∆ζ + ζ)w1 dx >

∫

∂Ω

{

λ∗f(w2)ζ −
∂ζ

∂ν
w2

}

dsx

for any ζ ∈ C2(Ω), ζ > 0 on Ω. Then (w1, w2) = (u∗|Ω, u
∗|∂Ω), where u

∗ is defined

by (1.5).

The following is Lemma 17 in [10].

Lemma 2.2. Let {un} ⊂ C2(Ω) be a sequence of functions such that

−∆un + un = 0 in Ω,
∂un
∂ν

> 0 on ∂Ω.

Assume ‖un‖L1(∂Ω) 6 C for some C > 0 independent of n. Then there exists

a subsequence (denoted again by un) and u ∈W 1,q(Ω) such that

un ⇀ u weakly in W 1,q(Ω), 1 < q <
N

N − 1
.

Moreover, for any 1 6 p < (N − 1)/(N − 2) there exists a constant Cp > 0 depending

only on p such that

‖un‖Lp(∂Ω) 6 Cp‖un‖L1(∂Ω) for any n ∈ N.

Now, we prove Theorem 1.1.

P r o o f. We follow the argument by X.Cabré and Y.Martel [3].

Step 1. For n ∈ N, define a sequence of functions fn as

fn(s) =

{

f(s) if s 6 n,

f(n) + f ′(n)(s− n) if s > n,

and consider the approximated problem

(2.1) −∆u+ u = 0 in Ω,
∂u

∂ν
= λfn(u) on ∂Ω.

Denote λ∗n = sup{λ > 0: (2.1)λ admits a minimal solution ∈ C2(Ω)}, and let un,λ ∈

C2(Ω) be the classical minimal solution to (2.1)λ for λ < λ∗n. Since fn 6 fn+1 6 f ,

we have un,λ 6 un+1,λ 6 uλ and λ
∗ 6 λ∗n+1 6 λ∗n for any n ∈ N. Define

(2.2) µ1(λf
′
n(un,λ)) = inf

ϕ∈C1(Ω), ϕ 6≡0

∫

Ω
(|∇ϕ|2 + ϕ2) dx−

∫

∂Ω
λf ′

n(un,λ)ϕ
2 dsx

∫

∂Ω ϕ
2 dsx

.
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Note that µ1(λf
′
n(un,λ)) is continuous with respect to λ by (2.2). Take 0 6 µ 6

µ∗
1 where µ

∗
1 is defined by (1.7). Since un,λ∗

n
is classical (which is because fn is

asymptotically linear) and there is no classical solution of (2.1)λ for λ > λ∗n, the

linearized problem around (λ∗n, un,λ∗

n
) must have zero eigenvalue. Thus

µ1(λ
∗
nf

′
n(un,λ∗

n
)) = 0 6 µ 6 µ∗

1 6 µ1(λ
∗f ′

n(un,λ∗));

here we have used the fact that f ′
n 6 f ′ and un,λ 6 uλ, which implies µ1(λf

′(uλ)) 6

µ1(λf
′
n(un,λ)). By the Intermediate Value Theorem, there exists λn ∈ [λ∗, λ∗n] such

that

µ1(λnf
′
n(un,λn

)) = µ,

which in turn implies there exists ϕn > 0 with
∫

∂Ω ϕn dsx = 1 such that

(2.3) −∆ϕn + ϕn = 0 in Ω,
∂ϕn

∂ν
= λnf

′
n(un,λn

)ϕn + µϕn on ∂Ω.

Recall also that un,λn
satisfies

(2.4) −∆un,λn
+ un,λn

= 0 in Ω,
∂un,λn

∂ν
= λnfn(un,λn

) on ∂Ω.

We claim there exists n0 ∈ N such that

(2.5) ‖un,λn
‖L1(∂Ω) 6 C for any n > n0.

Indeed, let ψ1 be the first eigenfunction of the Steklov type eigenvalue problem

(2.6) −∆ψ1 + ψ1 = 0 in Ω,
∂ψ1

∂ν
= κ1ψ1 on ∂Ω

with the first eigenvalue κ1, which is normalized as
∫

∂Ω ψ1 dsx = 1. Multiplying (2.4)

by ψ1 and using Jensen’s inequality for fn, we obtain

κ1

∫

∂Ω

ψ1un,λn
dsx = λn

∫

∂Ω

fn(un,λn
)ψ1 dsx

> λnfn

(
∫

∂Ω

ψ1un,λn
dsx

)

> λ∗fn

(
∫

∂Ω

ψ1un,λn
dsx

)

.

Put an =
∫

∂Ω ψ1un,λn
dsx. Then we have

(2.7) an >
λ∗

κ1
fn(an).
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Assume by contradiction that fn(an) = f ′(n)(an − n) + f(n) for some n ∈ N suf-

ficiently large. Then, since an > n and f(n) > (κ1/λ
∗)n, f ′(n) > (κ1/λ

∗) for n

sufficiently large by (1.2) and (1.3), we have, by (2.7),

an >
λ∗

κ1
fn(an) =

λ∗

κ1
{f ′(n)(an − n) + f(n)}

> an − n+ n = an,

which is a contradiction. Thus we conclude there exists n0 ∈ N such that fn(an) =

f(an) for any n > n0. Again, this and (2.7) imply an > (λ∗/κ1)f(an) for any n > n0.

Now, by the assumption on f , we have C > 0 such that f(s) > (2κ1/λ
∗)s−C holds

for any s > 0. From this and the former estimate, we have an 6 (λ∗/κ1)C for

n > n0. This implies the claim (2.5).

Step 2. By (2.5), we have ‖un,λn
‖L1(∂Ω) 6 C for some C independent of n. Also

recall that ‖ϕn‖L1(∂Ω) = 1 for a solution ϕn of (2.3). Thus we can apply Lemma 2.2

and the trace Sobolev embedding to obtain w,ϕ ∈ L1(Ω), ϕ > 0 a.e. satisfying

(2.8) un,λn
⇀ w, ϕn ⇀ ϕ weakly in W 1,q(Ω),

un,λn
→ w, ϕn → ϕ strongly in Lp(∂Ω) and a.e. on ∂Ω

for any 1 < q < N/(N − 1) and 1 6 p < (N − 1)/(N − 2). Since
∫

∂Ω ϕdsx = 1, we

see ϕ 6≡ 0 on ∂Ω.

In the following, we prove that λn ↓ λ∗ as n → ∞ and w = u∗. We will show

that w ∈ W 1,q(Ω) is a weak supersolution in the sense of Theorem 2.1. Then the

conclusion is obtained by Theorem 2.1. To prove that w is a weak supersolution, put

λ̄ = inf
n∈N

λn. Since λn > λ∗, we have λ̄ > λ∗. We observe that

∫

Ω

(−∆ζ + ζ)un,λn
dx = λn

∫

∂Ω

fn(un,λn
)ζ dsx −

∫

∂Ω

∂ζ

∂ν
un,λn

dsx

> λ̄

∫

∂Ω

fn(un,λn
)ζ dsx −

∫

∂Ω

∂ζ

∂ν
un,λn

dsx

holds for all ζ ∈ C2(Ω), ζ > 0. Using the fact that un,λn
→ w in L1(Ω) or L1(∂Ω),

respectively, and Fatou’s lemma, we have

∫

Ω

(−∆ζ + ζ)w dx > λ̄

∫

∂Ω

f(w)ζ dsx −

∫

∂Ω

∂ζ

∂ν
w dsx

> λ∗
∫

∂Ω

f(w)ζ dsx −

∫

∂Ω

∂ζ

∂ν
w dsx, ∀ζ ∈ C2(Ω), ζ > 0.

This implies also f(w) ∈ L1(∂Ω) if we take ζ ≡ 1. Thus, we conclude that w is

a weak supersolution to (1.1)λ∗
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Step 3. Let ϕn, ϕ be as in Step 2. We claim that

(2.9) λnf
′
n(un,λn

)ϕn → λ∗f ′(u∗)ϕ strongly in L1(∂Ω)

as n → ∞. For the proof, we invoke Vitali’s Convergence Theorem. First, by (2.8),

we see

λnf
′
n(un,λn

(x))ϕn(x) → λ∗f ′(u∗(x))ϕ(x) a.e. x ∈ ∂Ω

for a subsequence. Next, we prove the uniformly absolute continuity property of the

sequence {λnf
′
n(un,λn

)ϕn}n∈N. For that purpose, let A ⊂ ∂Ω be measurable and

ε > 0 be given arbitrary. Since fn is convex, we have

(2.10) fn

(χA(x)

ε

)

> fn(un,λn
(x)) + f ′

n(un,λn
(x))

(χA(x)

ε
− un,λn

(x)
)

a.e. x ∈ ∂Ω; here χA is the characteristic function of A. By (2.3) and (2.4), we have

(2.11) λn

∫

∂Ω

fn(un,λn
)ϕn dsx = λn

∫

∂Ω

f ′
n(un,λn

)un,λn
ϕn dsx + µ

∫

∂Ω

un,λn
ϕn dsx

> λn

∫

∂Ω

f ′
n(un,λn

)un,λn
ϕn dsx.

Also an easy consideration shows that

(2.12)
{

fn

(χA(x)

ε

)

− f(0)
}

ϕn(x) 6 f
(1

ε

)

ϕn(x)χA(x) a.e. on ∂Ω.

Thus by (2.10), (2.11) and (2.12), we have

(2.13)

∫

∂Ω

f ′
n(un,λn

)
χA

ε
ϕn dsx

6

∫

∂Ω

fn

(χA

ε

)

ϕn dsx +

∫

∂Ω

f ′
n(un,λn

)un,λn
ϕn dsx −

∫

∂Ω

fn(un,λn
)ϕn dsx

6

∫

∂Ω

fn

(χA

ε

)

ϕn dsx =

∫

∂Ω

{

fn

(χA

ε

)

− f(0)
}

ϕn dsx +

∫

∂Ω

f(0)ϕn dsx

6

∫

∂Ω

f
(1

ε

)

ϕnχA dsx + f(0) 6 f
(1

ε

)

|A|1/p
′

‖ϕn‖Lp(∂Ω) + f(0)

6 Cf
(1

ε

)

|A|1/p
′

+ f(0)

for any 1 6 p < (N − 1)/(N − 2), where |A| denotes the (N − 1) dimensional Haus-

dorff measure of A ⊂ ∂Ω and p′ = p/(p− 1). In (2.13) we have used ‖ϕn‖Lp(∂Ω) 6 C

for some C > 0 independent of n by (2.8). Define

δ(ε) =
( f(0)

f(1/ε)C

)p′

.
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Then for any ε > 0 we obtain
∫

A
f ′
n(un,λn

)ϕn dsx 6 2f(0)ε if A ⊂ ∂Ω satisfies that

|A| < δ(ε) by (2.13). This implies the uniform absolute continuity of the sequence

{λnf
′
n(un,λn

)ϕn}n∈N. Also for any ε > 0, if we take E ⊂ ∂Ω such that |∂Ω\E| < δ(ε)

where δ(ε) is as above, we obtain that
∫

∂Ω\E
λnf

′
n(un,λn

)ϕn dsx 6 Cε. This implies

the uniform integrability of {λnf
′
n(un,λn

)ϕn}n∈N. Therefore, Vitali’s Convergence

Theorem ensures the claim (2.9).

By (2.9), we pass to the limit n→ ∞ in the weak formulation of (2.3):

∫

Ω

(−∆ζ + ζ)ϕn dx =

∫

∂Ω

(λnf
′
n(un,λn

) + µ)ϕnζ −
∂ζ

∂ν
ϕn dsx, ∀ζ ∈ C2(Ω),

and conclude that ϕ is a weak solution of

−∆ϕ+ ϕ = 0 in Ω,
∂ϕ

∂ν
= λ∗f ′(u∗)ϕ+ µϕ on ∂Ω.

Recall ϕ ∈ W 1,q(Ω) for any 1 6 q < N/(N − 1). The proof of Theorem 1.1 is

completed. �
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