The physical map of wheat chromosome arm 3DS

Jan Bartoš¹, Kateřina Cviková¹, Jan Šafář¹, Hana Šimková¹, Delphine Fleury², Hélène Bergès ³, Klaus Mayer⁴, Jan Dvořák⁵, Nils Stein⁶, Federica Cattonaro⁷, Jaroslav Doležel¹

¹ Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, 772 00 Olomouc, Czech Republic

² Australian Centre for Plant Functional Genomics (ACPFG), University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia

³ INRA, National Resources Centre for Plant Genomics, F-31326 Castanet Tolosan Cedex, France

⁴ Institute for Bioinformatics and Systems Biology (MIPS), Helmholtz Center f. Health and Environment, Ingolstadter Landstr. 1, D-85764 Neuherberg, Germany

⁵ University of California, Davis, CA

⁶ Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, 06466 Gatersleben, Germany

⁷ Instituto di Genomica Applicata, Via J. Linussio 51, 33100 Udine, Italy

Backround

Bread wheat is one of the most important crop in the world. Sequencing its genome can provide valuable information leading to its improvement. The wheat chromosome 3DS was sorted using flow cytometry. BAC library specific for wheat chromosome-arm 3DS¹⁾ was constructed and physical map was build using HIFC technique²⁾ using Fingerprinted Contigs software³⁾ (FPC). At the end of automated phase of contig building, Minimum Tilling Path (MTP) was selected. Three-dimensional pooling strategy was used to anchor markers.

Chromosome sorting using flow cytometry and chromosome library

BAC library parameters Number of clones 36,864 Average insert size 110 kb

Chromosome coverage 11.0x

Histogram of relative fluorescence intensity obtained from 3DS/3DL double ditelosomic line of wheat cultivar Chinese Spring.

Sequencing and assembly of "low-copy" portion of 3DS

DNA of sorted chromosome 3DS was sequenced using Roche 454 GS-FLX System to about 3x coverage. 2,081,761 reads were assembled using Newbler 2.5.3

Assembly results	
No. of contigs	46,297
Total length	42,333,654 bp
Average contig size	914 bp
N50 contig size	927 bp
Largest contig size	12,559 bp

Forward physical map anchoring

Part of genetic map of chromosome 3D Triticum aestivum -Syntetic/Opata-GPW showing markers (in red), which were mapped to the physical map of chromosome 3DS.

Genome Zipper

GenomeZipper approach was used to identify gene fragments in 454 reads and to order them virtually according to collinearity with Brachypodium, rice and Sorghum syntenic genome regions.

Bradi2g05010.1	Os01g0179300	Sb03g003810.1	ctg1032	
Bradi2g05000.1	Os01g0179200	Sb03g003820.1	ctg1032	
Bradi2g04980.1	Os01g0179000	Sb03g003830.1		
Bradi2g04970.1	Os01g0178700	Sb03g003920.1	ctg326	
Bradi2g04960.1	-	141		
Bradi2g04920.1	Os01g0178600	Sb03g003930.1		
Bradi2g04900.1	Os01g0178400	Sb03g003950.1	ctg2725	
B-13-04800 1	0-01-0178300	Sh02-002060 1		

Sequencing of 3D pools of MTP

DNA of 50 BAC pools was sequenced using Illumina HiSEQ2000. Reads of individual pools were aligned using MOSAIK 1.1.0021 to three independent sequence data sets: a) GenomeZipper; b) SNPs mapped in Ae. tauschii; c) contigs assembled from chromosome-arm 454 sequence. These sequences were than anchored to physical map using a novel in silico approach.

Reference GenomeZipper SNP (<i>Ae. tauschii</i>) sequence contigs	No. of sequences 594 7,152 46,297	No. of BAC addressed seq. 224 231 20,899
dq 891 4545EQ42875 4545EQ42977 4545EQ42977 4545EQ1322 4545EQ12741 4545EQ12741 4545EQ15885 4545EQ15885 4545EQ033772 4545EQ09071 4545EQ00050	454SEQ05279 454SEQ15330 454SEQ15330 454SEQ10002 454SEQ35190 454SEQ10789 454SEQ10789 454SEQ19673 454SEQ05446 454SEQ05446 454SEQ05766	454SEQ01504 454SEQ039857 454SEQ05952 454SEQ19003 454SEQ19003 454SEQ36797

Wheat ESTs dataset available from GenBank was compared to the region of rice chromosome 1 syntenic to wheat chromosome arm 3DS. 144 ESTs were selected for marker development. 42 of these markers were mapped to three bins of wheat chromomosme 3DS (C-0.24, 0.24-0.55, 0.55-1.00) and sorted in line with position on the rice chromosome.

Bradi2g04890.1 Os01g0178200 Sb03g003960.1 ctg2725

The physical map of 3DS 27,880 fingerprints

	1e-75	1e-45	1e-25
Contigs	2,682	1,360	945
Singletons	11,547	8,878	8,878
Q-clones	49	282	575
Assembly lenght (Mb)	404	310	280
Longest contig (kb)	470	1,092	1,595

Contig 33, which is shown as example, is composed of 61 clones. 37 markers are anchored to 6 clones in red, which represent MTP.

Conclusion

The physical map of 3DS consist of 945 contigs (87,2% of the chromosome)

60 sequences, which were anchored *in silico* to the physical map were selected to design primers. These primers were used to check their presence in particular BAC clones to confirm accuracy of this approach.

Contig ordering

Synteny with Aegilops tauschii, Brachypodium and Rice genomes was used to order contigs of 3DS physical map.

- 750 contigs (70%) have at least one marker anchored
- The order of 310 contigs (49%) on 3DS is known
- 95% in silico anchored markers were successfuly identified on BAC clones using PCR

- 1. Šafář J, Šimková H, Kubaláková M, Číhalíková J, Suchánková P, Bartoš J, Doležel J: Development of Chromosome-Specific BAC Resources for Genomics of Bread Wheat. Cytogenetic and Genome Research 2010, 129:211–223.
- 2. Luo M-C, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J: High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. *Genomics* 2003, 82:378–389.

3. Soderlund C, Humphray S, Dunham A, French L: Contigs Built with Fingerprints, Markers, and FPC V4.7. Genome Res. 2000, 10:1772–1787.

A) Graphical tool Strudel was used to vizualize homology among chromosome 3D of Aegilops tauschii, chromosome 2 of Brachypodium, chromosome Os01 of rice and contigs from wheat chromosome 3DS. In silico-ancored markers were blasted against the anotated sequences of the three genomes. The contigs of chromosome 3DS were ordered according to the position of genes in rice genome. B) Close-up of a segment of chromosome 3DS showing preservation of synteny.

Brachypodium chromosomes are given in kb.

This work was supported by European Seventh Framework Project FP7-212019 and IGA PrF/2012/001

