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Abstract. This note deals with structured deformations introduced by Del Piero & Owen

[5–6]. As treated in the present paper, a structured deformation is a pair �gÙ G� where g

is a macroscopic deformation giving the position of points of the body and G represents

deformations without disarrangements. g is a map of bounded variation on the reference region

Ω and G is a Lebesgue integrable tensor valued map. For structured deformations of this level of

generality, an approximating sequence gk of simple deformations is constructed from the space

of maps of special bounded variation on Ω which converges in the L 1�Ω� sense to �gÙ G� and

for which the sequence of total variations of gk is bounded. The condition is optimal. Further,

in the second part of this note, the Limit Relation of Del Piero & Owen is established on the

above level of generality. This relation allows one to reconstruct the disarrangement tensor M

of the structured deformation �gÙ G� from the information on the approximating sequence.
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1 Introduction and results

This paper deals with the geometry of deformation of nonclassical continua modeled
as media capable of (first-order) structured deformations introduced by Del Piero
& Owen [5–6]. 1 The main objective of the theory of structured deformations is to
describe how a continuous body with microstructure will deform under the applied
forces.

In the original setting [5–6], a structured deformation is a triplet �KÙ gÙ G� of
objects whose nature will now be roughly described. The set KÙ the crack site,
is a subset of vanishing Lebesgue measure of the reference region Ω, the map
g Ú Ω∼Kr R 3, the deformation map, is piecewise continuously differentiable and
injective, and G is a piecewise continuous map from Ω ∼K to the set of invertible
second order tensors describing deformation without disarrangements. The following
“accommodation inequality” is assumed:

0 ° m ² detG ² detD�a� g

inΩ∼KÙwithm a suitable constant, whereD�a� g is the classical derivative of g where
it exists.2 Within this context, a classical deformation is the triplet �KÙ gÙDg� with
g a continuously differentiable injective deformation function, and with G Ú¨ Dg ¨
D�a� g the deformation gradient, where D denotes the derivative (gradient) operation
on differentiable maps. A more general class of structured deformations is provided
by simple deformations which are triples �KÙ gÙD�a� g� where g is only piecewise
smooth injective with jump discontinuities describing partial or full separation of
pieces of the body, and of G Ú¨ D�a� g. In view of these classes, where G coincides
with the deformation gradient, in the general case the tensor of deficit

M ¨ D�a� g − G (1.1)

measures the departure of �KÙ gÙ G� from the simple deformation �KÙ gÙD�a� g�.
A substantial step towards a concrete interpretation of the tensor G is offered by

the Approximation Theorem [5; Theorem 5.8]. That theorem shows that each struc-
tured deformation �KÙ gÙ G� is a limit of a suitable sequence of simple deformations
�KkÙ gkÙD�a� gk� in the sense that

Kk r KÙ gk r gÙ D�a� gk r G (1.2)

with suitably defined convergences of the objects in (1.2). I note that the nontrivial
feature of the proof of the Approximation Theorem lies in proving the injectivity of
gk. Moreover, Del Piero & Owen [5] prove the following the Limit Relation for the
tensor M:

M�x� ¨ lim
ρr 0
lim
krð

�4π/3� − 1
ρ

− 3 �
J�g
k
�PB�xÙ ρ�

�gk� � nk dH
2 (1.3)

valid for any sequence (not just the one constructed in the proof of the Approximation
Theorem) �KkÙ gkÙD�a� gk� satisfying (1.2) and any x X Ω∼K, whereB�xÙ ρ� is the

1 The reader is referred to the proceedings [7] and to the recent survey [3] for additional

references and for further developments.
2 Later we shall identifyD�a� g with the absolutely continuous part of the derivative of a map g

of bounded variation.
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open ball of center x and radius ρ, J�gk� is the set of all points of (jump) discontinuity
of gk, �gk� is the jump of gk at the points of J�gk�, nk is the normal to J�gk�, and
H
2 is the area measure.
To apply the relaxation techniques of the calculus of variations, Choksi & Fonseca

[4] later enlarged the space of structured deformations to contain all pairs�gÙ G�where
g is in 3 SBV �ΩÙRm� and G is in L 1�ΩÙMm� n�Ø Here m and n are positive integers,
the dimensions of the spaces Rm and R n of dependent and independent variables,
respectively. Thus, in addition to weaker regularity, the authors relax the injectivity
requirement and put the crack site K equal to ó. (The cracks are described by the
omnipresent discontinuities of g.)

Choksi & Fonseca [4] prove the following version of the Approximation Theorem
(cf. [4; Theorem 2.12]) which is stated here in a slightly rephrased form, as explained
below.

Theorem 1.1. Let Ω ⊂ R n be a bounded open set and let �gÙ G� X L 1�ΩÙRm� �
L 1�ΩÙMm� n�. Then there exists a sequence gk in SBV �ΩÙRm� such that

gk r g in L 1�ΩÙRm� and D�a� gk ¨ G over ΩØ (1.4)

HereD�a� gk is the absolutely continuous part of the generalized derivative of gkØ The
statement of [4; Theorem 2.12] is narrower since (a) they assume, in accord with the
overall framework of [4], that g is in SBV �ΩÙRm� and (b) since they replace the
equality (1.4)2 by the weak   convergence in the sense of measures (although they
say that they will prove the equality). Their proof also shows that g X L 1�ΩÙRm�
suffices.

In connection with this generality, the question arises which additional informa-
tion beyond (1.4) can be imposed on the sequence gk if it is known that g belongs
to the smaller space BV �Ω ÙRm� or even to SBV �ΩÙRm�Ø An answer, one of the two
goals of this note, given in the subsequent theorem, is proved for reference regions
represented by admissible domains (which is a mild restriction on ΩÙ satisfied, e.g.,
by all open sets with lipschitzian boundary).4

Theorem 1.2 (The Approximation Theorem). If Ω is an admissible domain in

R
n and �gÙ G� X BV �ΩÙRm� � L 1�ΩÙMm� n� then there exists a sequence

gk X SBV �ΩÙRm� such that in addition to (1.4) the total variation M�Dgk� of

gk satisfies
sup !M�Dgk� Ú k ¨ 1ÙÜ) ° ðÛ (1.5)

hence we have the following convergence (without passing to a subsequence):

Dgk u
  Dg in M�ΩÙMm� n�Ø (1.6)

Thus the extra information stemming from the inclusion g X BV �ΩÙRm� is (1.5).
It is easy to see that conversely if �gÙ G� X L 1�ΩÙRm� � L 1�ΩÙMm� n� is a pair

3 I use the standard notations for function spaces throughout this introduction: thus BV �ΩÙRn�Ù
SBV �ΩÙRn� are spaces of Rm valued maps on Ω of bounded variation and of special bounded

variation; L 1�ΩÙRm� and L 1�ΩÙMm� n� are spaces of (Lebesgue) integrable Rm or Mm� n valued

maps on ΩØ M�ΩÙMm� n� is the space of Mm� n valued measures on Ω. The reader is referred to

Sections 2 and 3, below, for detailed definitions.
4 See Definition 5.1, below.
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satisfying (1.4) and (1.5) with gk X SBV �ΩÙRm�, then necessarily g X BV �ΩÙRm�Û
in this sense (1.5) is optimal. (Both directions are very intuitive.) The proof of the
boundedness in the Approximation Theorem is based on the observation in Lemma
5.1, below, but otherwise the construction of the sequence essentially follows that of
Choksi & Fonseca. 5

The second goal of the present note is to give an analog to the Limit Relation
(1.3) in the setting of maps of bounded variation.

Theorem 1.3 (The Limit Relation). Let Ω be a bounded open subset of R n, let

�gÙ G� X BV �Ω ÙRm� � L 1�ΩÙMm � n� and let gk X SBV �ΩÙRm� be a sequence

satisfying

gk r g in L 1�ΩÙRm�, D�a� gk r G in L 1�ΩÙMm � n� (1.7)

and (1.6) (in particular, let gk be the sequence from Theorem 1.2). Then there exists

a subsequence of gk (not relabeled) such that the tensor M [see (1.1)] satisfies

M�x� ¨ ess lim
ρr 0

lim
krð

κ − 1
n ρ

− n �
J�g
k
� PB�xÙ ρ�

�gk� � nk dH
n − 1 (1.8)

for almost every point x of Ω.

Here ess limρr 0 is the essential limit as ρ r 0Ù i.e., the limit neglecting an excep-
tional set of ρ’s of vanishing Lebesgue measure.6 Further, κn is the volume of the
unit ball in R n, J�gk� is the set of all points of jump discontinuity of gk, �gk� is the
jump of gk at the points of J�gk�, nk is the normal to J�gk�, and H

n − 1 is the n − 1
dimensional Hausdorff measure.7

The appendix to the present paper also outlines a proof of a weaker version of
the Approximation Theorem which does not use Alberti’s theorem mentioned above.
In that version, the equality (1.4)2 is replaced by the convergence (1.7)2Ø

2 Preliminaries; notation; measures

Throughout, n is a positive integer, the dimension of the underlying space R n and m
is a positive integer, the dimension of the target space RmØ We denote by a ċ b the
scalar product in both these spaces and by | ċ | the euclidean norm. Further, Mm� n

is the set of all linear transformations from R n to RmØ The value of A X Mm� n on
x X R n is denoted by AxØWe denote by A ċ B Ú¨ tr�ABT� the scalar product inMm� n

where AT X Mn�m is the transpose of A and tr denotes the trace. We further denote

by |A| ¨
√

A ċ A the associated euclidean norm.
If f is a map with domain any setM and ifN ⊂ M then f |N denotes the restriction

of f to N Ø
The interior, closure and boundary of a set M ⊂ R n is denoted by intM, clM

and bdryM. As in the introduction, B�xÙ ρ� denotes the open ball in R n of center x

and radius ρ. The symbol κn denotes the volume of B�0Ù 1�Ø

5 In particular, Alberti’s theorem [1] (Theorem 3.7, below) is used in the same way as in [4].
6 See the definition in Section 2, below.
7 See Section 3 for precise definitions of these notions.
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Throughout, let Ω be an open subset of R n, later to be restricted by additional
requirements. Let Z be a finite dimensional inner product space.

We denote by L
n the Lebesgue measure in R n [9; Subsection 2.6.5] and if k is

an integer, 0 ² k ² nÙ we denote by H
k the k-dimensional Hausdorff measure in R n

[9; Subsections 2.10.2–2.10.60]; recall that H n ¨ L
nØ If A ⊂ R n is a Borel set, we

denote by H
k A the restriction of H k to A, which is the measure defined by

�H k A��B� ¨ H
k�AP B�Ù (2.1)

for each Borel set B ⊂ R nØ If A ⊂ R n is a Borel set and f aZ valued Borel map defined
H
k almost everywhere on A, integrable with respect to H

k on AÙ then fH k A

denotes the Z valued measure on R n defined by

�fH
k A��B� ¨ �

APB
f dH kÙ (2.2)

for each Borel set B ⊂ R nØ The definitions (2.1) and (2.2) also apply to k ¨ n, i.e., to
L
n ª H

nÙ resulting in L
n A and fL n AØ

We denote by L 1�ΩÙZ� the set of all (classes of equivalence of) Lebesgue
integrable maps on Ω with values in Z; we write | ċ |

L1�ΩÙ Z� for the norm on L 1�ΩÙZ�Ù
defined by

|f|
L1�ΩÙ Z� ¨ �

Ω

|f| dL n

for each f X L 1�ΩÙZ�Ø We denote by C ð
0 �ΩÙZ� the set of all of indefinitely differ-

entiable Z valued maps f on R n with compact support contained in ΩØ
We denote by M�ΩÙZ� the set of all (finite) Z valued measures on ΩØ If µ X

M�ΩÙZ�Ù we denote by |µ| the total variation (measure) of µÙ i.e., the smallest
nonnegative measure on Ω such that |µ�B�| ² |µ|�B� for each Borel subset B of ΩØ
We denote byM�µ� the mass of µÙ defined byM�µ� ¨ |µ|�Ω�Ø A standard result is
that

M�µ� ¨ sup "�
Ω

f ċ dµ Ú f X C ð
0 �ΩÙZ�Ù |f| ² 1 on Ω*Ø (2.3)

We say that a measure µ X M�ΩÙZ� is supported by a Borel set A ⊂ Ω if µ�B� ¨ 0
for every Borel set B ⊂ Ω such that APB ¨ óØThe reader is referred to [2; Chapter 1]
for further details of measures with values in finite dimensional inner product spaces.

If f is a Z valued map defined L
1 almost everywhere in an interval �0Ù ε� where

ε ± 0Ù we say that a X Z is an essential limit of f at 0 and write

a ¨ ess lim
ρr 0

f�ρ� (2.4)

if there exists an L
1 null set N ⊂ �0Ù ε� such that

a ¨ lim
ρr 0

ρ X �0Ù ε�∼N

f�ρ�

where the last limit is the ordinary limit relative to a subset of �0Ù ε�Ø Note that unlike
the set N Ù the value a is uniquely determined, which justifies the notation (2.4).
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3 Maps of bounded variation, sets of finite perimeter and admissible

domains

We state some basic definitions and properties of the space BV of maps of bounded
variation, of the space SBV of special maps of bounded variation, of sets of finite
perimeter, and of admissible domains which will be needed in the sequel. For more
details, see [2, 8, 10], and [9].

Definition 3.1. We denote by BV �ΩÙRm� the set of all g X L 1�ΩÙRm� such that
there exists a measure Dg XM�ΩÙMm � n� satisfying

�
Ω

g ċ divT dL n ¨ − �
Ω

T ċ dDg (3.1)

for each T X C ð
0 �ΩÙRm� n�. Here divT is an Rm valued map on Ω such that

a ċ divT ¨ tr�D�TTa��

for each a X Rm whereD�TTa� denotes the classical derivative of the map TTaØ The
elements of BV �Ω ÙRm� are called maps of bounded variation; the measure Dg is
uniquely determined by g and is called the weak (or generalized) derivative of gØ
We denote byM�Dg� the mass of the measure Dg as defined in Section 2 and call
M�Dg� the total variation of g. Equations (2.3) and (3.1) provide

M�Dg� ¨ sup "�
Ω

g ċ divT dL n Ú T X C ð
0 �ΩÙR

m� n�Ù |T| ² 1 on Ω*Ø è

The choice of T represented by a matrix function with only the �iÙ j� element
different from 0 where i X  1ÙÜ Ùm(Ù j X  1ÙÜ Ù n(Ù reduces (3.1) to the usual index
definition of BV Ù as in, e.g., [2; Eq. (3.2)].

The set BV �ΩÙRm� is a Banach space under the norm

|g|BV �ΩÙ Rm� Ú¨ |g|
L1�ΩÙ Rm� +M�Dg�Ø

Definition 3.2. Let g X L 1�ΩÙRm�Ø We say that g has an approximate limit at
x X Ω if there exists a X Rm such that

lim
ρr 0

κ
− 1
n ρ

− n �
B�xÙ ρ�

|g − a| dL n ¨ 0Ø

The value a is uniquely determined and is called the approximate limit of g at xØ The
complement S�g� ⊂ Ω in Ω of the set of all x X Ω where the approximate limit of
g exists is called the approximate discontinuity set of gØ è

Definition 3.3. Let g X L 1�ΩÙRm�Ø We say that x X Ω is an approximate jump

point of g if there exist aÙ b X Rm, a © bÙ and n X R n with |n| ¨ 1 such that

lim
ρr 0

κ
− 1
n ρ

− n �
B + �xÙ ρÙ n�

|g − a| dL n ¨ 0Ù lim
ρr 0

κ
− 1
n ρ

− n �
B − �xÙ ρÙ n�

|g − b| dL n ¨ 0Ø

(3.2)
Here

B
±�xÙ ρÙ n� ¨  y X B�xÙ ρ�Ù ±�y − x� ċ n ± 0(Ø
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The triplet �aÙ bÙ n�, if it exists, is uniquely determined to within the interchange of a

and b and a simultaneous change of the sign of nØ In any case, the product

�g� � nÙ (3.3)

occurring frequently below, is uniquely determined, where

�g� ¨ a − b

is the jump of g at x. We denote by J�g� the set of all approximate jump points of g

and call any ±n the normal of J�g� at xØ è

The following result describes the relationship between the sets S�g� and J�g�.

Theorem 3.4. If g X BV �ΩÙRm� then

(i) J�g� ⊂ S�g� and H
n − 1�S�g� ∼ J�g�� ¨ 0,

(ii) J�g� is countably �H n − 1Ù n − 1� rectifiable in the sense that H n − 1 almost all

of J�g� can be covered by countably many class 1 surfaces Ck, k ¨ 1ÙÜ Ù of

dimension n − 1 in R n.

The derivative of a map of bounded variation has the following well–known structure.
The subsequent treatment uses especially the jump and the absolutely continuous parts
of the derivative to be now introduced.

Theorem 3.5. If g X BV �ΩÙRm� then

(i) the derivative Dg has a unique decomposition

Dg ¨ D�a� g L
n

Ω + D�c� g +D�j� g

where D�a� gÙ the absolutely continuous part of DgÙ is a map in L 1�ΩÙMm� n�,

D�c� gÙ the Cantor part of DgÙ is a measure on Ω singular with respect to L
n

and diffuse with respect toH n − 1Ù i.e.,D�c� g is supported by a set of null Lebesgue

measure in R n and D�c� g�B� ¨ 0 for each Borel subset B of Ω of finite H
n − 1

measure, and D�j� gÙ the jump part of DgÙ is a measure absolutely continuous

with respect to H
n − 1Ø

(ii) The jump part D�j� g is supported by J�g� and in fact

D�j� g ¨ �g� � n H
n − 1 J�g�

where for every point x of J�g�Ù the value �g� � n is the product (3.3).
(iii) For L n almost every point x of Ω we have

D�a� g�x� ¨ lim
ρr 0

κ − 1
n ρ

− nD�B�xÙ ρ��Ø (3.4)

Definition 3.6. We denote by SBV �ΩÙRm� the set of all g X BV �ΩÙRm� with
D�c� g ¨ 0Ø The elements of SBV �ΩÙRm� are called special maps of bounded

variation. è

SBV �ΩÙRm� is a closed subspace of BV �Ω ÙRm� under the norm | ċ |BV �ΩÙ Rm�Ø
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Theorem 3.7 (Alberti [1]). If Ω is bounded then for any G X L 1�ΩÙMm� n� there

exists a g X SBV �ΩÙRm� such that D�a� g ¨ GÛ moreover, there exists a constant

c X R depending only on Ω such that the map g as above can be chosen to satisfy

M�g� ² c|G|
L1�ΩÙMm � n�Ø

We conclude this section with basic information on sets of finite perimeter and
on admissible domains. Sets of finite perimeter fall in the framework of BV as
will be explained below. For a subset of the class of sets of finite perimeter called
admissible domains (see below) we shall establish the Approximation Theorem. The
distinguishing feature of admissible domains Ω is that maps from BV �Ω ÙRm� have
well defined boundary values.

Definition 3.8. A set E ⊂ R n is said to have a finite perimeter if 1E X BV �R nÙR�
where 1E denotes the characteristic function of EØThe perimeter of E isM�D 1E�ØThe
measure theoretic boundary of E is the set S�1E� which differs from the reduced

boundary bdry �E� Ú¨ J�1E� by a set of H n − 1 measure 0Ø è

Theorem 3.9. If E is a set of finite perimeter then for every x X bdry �E� the triplet

�aÙ bÙ n� as in Definition 3.3 can be chosen to be �0Ù 1Ù n�x��Û with this choice n�x� is

uniquely determined and is called the measure theoretic normal to E at xØ Equations

(3.2) then imply the following well–known formulas

lim
ρr 0

κ − 1
n ρ

− n
L
n�EPB + �xÙ ρÙ n�� ¨ 0Ù lim

ρr 0
κ − 1
n ρ

− n
L
n�B − �xÙ ρÙ n�∼E�� ¨ 0

where n ¨ n�x�Ø One has

D 1E ¨ nH
n − 1 bdry  EØ

Thus even 1E X SBV �R
nÙR�Ø

Definition 3.10 ([10; Definition 5.10.1]). A bounded open set Ω ⊂ R n is said to be
an admissible domain if it has a finite perimeter and the following two conditions
are satisfied:
(i) H

n − 1�bdryB∼ bdry  B� ¨ 0Û
(ii) there exists a constant M and for each x X bdryΩ there is a ball B�xÙ r� with

H
n − 1�bdry  E P bdry  Ω� ² MH

n − 1�Ω P bdry  E�

whenever E ⊂ cl Ω P B�xÙ r� is a set of finite perimeter. è

Each open bounded set with lipschitzian boundary is an admissible domain [10;
Remark 5.10.2]. The following two theorems describe the main virtues of admissible
domains.

Theorem 3.11 (See [10; Section 5.10]). If Ω is an admissible domain and g X
BV �ΩÙRm� then there exist a H

n − 1 measurable map gbdryΩ on bdryΩ such that

�
Ω

g ċ divT dL n + �
Ω

T ċ dDg ¨ �
bdry�Ω�

Tn ċ gbdryΩ dH
n − 1
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for every class 1 map T on Ω with values inMm� n which has a continuous extension

(again denoted by T) to cl Ω where n is the measure theoretic normal to ΩØ There

exists a c X R depending only on Ω such that

�
bdryΩ

|gbdryΩ | dH
n − 1 ² c|g|BV �ΩÙ Rm�Ø

The map gbdryΩ is determined to within a change on a set of H n − 1 measure 0 and is

called the trace of gØ One has

lim
rr 0

κ
− 1
n r

− n �
B�yÙ r�PΩ

|g − gbdryΩ�y�| dL n ¨ 0 (3.5)

for H n − 1 almost every point y of bdryΩØ

Theorem 3.12 (Cf. [10; Lemma 5.10.4]). If Ω is an admissible domain and g X
BV �ΩÙRm� then the extension g0 of g to R n equal to 0 outside Ω satisfies g0 X
BV �R nÙRm�,

Dg0 ¨ Dg − gbdryΩ � n H
n − 1 bdryΩ

and there exists a c X R depending only on Ω such that

|g0|BV �RnÙRm� ² c|g|BV �ΩÙ Rm�Ø

4 The BV setting of structured deformations

For the purpose of the Approximation Theorem and the Limit Relation (as stated in
Section 1) we enlarge the set SBV �ΩÙRm� � L 1�ΩÙMm� n� of structured deforma-
tions of Choksi & Fonseca [4] to form the set BV �ΩÙRm� � L 1�ΩÙMm� n�Ø We fur-
thermore interpret the elements g X SBV �ΩÙRm� as the macroscopic deformations

of the body Ω with macroscopic crack site J�g�Ø We note that the space of struc-
tured deformations �KÙ gÙ G� of Del Piero & Owen [5] as described in Section 1 with

K ¨ ó is a subset of SBV �ΩÙRm� � L 1�ΩÙMm� n� ⊂ BV �ΩÙRm� � L 1�ΩÙMm� n�.
In a general �gÙ G� X BV �ΩÙRm� � L 1�ΩÙMm � n�, the map g is the possibly dis-
continuous macroscopic displacement of the body Ω and G is a microscopic dis-

arrangement, as explained in the introduction and in accord with the original papers
by Del Piero & Owen [5–6].

5 Proof of the Approximation Theorem

The proof of the ApproximationTheorem is based on the decomposition ofR n into the
disjoint union of sufficiently small cubes of equal edge length and with faces parallel
to the natural coordinate planes in R nØ Various maps involved in the construction are
then approximated by (generally) discontinuous maps constant on the cubes (as in
the present section) or by discontinuous maps linear on the cubes (as in Section 7,
below).
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For each positive integer k consider the decomposition of R n into the system of
cubes

C�kÙ p� Ú¨ C/k + pÙ p X Zn/k (5.1)

where C Ú¨ �0Ù 1�nÙ C/k Ú¨  x/k Ú x X C(Ù Zn is the set of n tuples of integers and
Z
n/k Ú¨  z/k Ú z X Zn(Ø

Let e1ÙÜ Ù en be the natural orthonormal basis in R nØ

Lemma 5.1. Let k be a positive integer, let f X C ð
0 �R nÙRm� and let pÙ q X Zn/k be

such that P Ú¨ C�kÙ p� and Q Ú¨ C�kÙ q� are two adjacent cubes sharing the common

face F Ú¨ cl P P clQ © ó of normal n pointing from P to QØ Let m Ú P T Qr Rm be

defined by

m�x� ¨















a if x X PÙ

b if x X QÙ

where

a ¨ k n �
P

f dL nÙ b ¨ k n �
Q

f dL n (5.2)

are the averages of f over the two cubes. Then m X SBV �int�P T Q�ÙRm�,

Dm ¨ �b − a	 � n H
n − 1 F Ù D�a� m ¨ 0Ù (5.3)

and

M�Dm� ² �
PTQ

|Dn f| dL n (5.4)

where Dn f is the directional derivative of f in the direction nØ
Proof We only prove (5.4) since the other assertions of the lemma are immediate.
Let x X P be arbitrary and denote y�x� Ú¨ x + n/k so that y�x� X QØ Then

f�y�x�� − f�x� ¨ k − 1
1

�
0

Dn f�x + tn� dt

and hence

|f�y�x�� − f�x�| ² k − 1
1

�
0

|Dn f�x + tn�| dtØ (5.5)

We have

U Ú¨ | �
Q

f dL n − �
P

f dL n| ¨ | �
P

f�y�x�� dL n�x� − �
P

f�x� dL n�x�|

² �
P

|f�y�x�� − f�x�| dL n�x�Ø

Consequently, integrating (5.5) over P we obtain

U ² k − 1
1

�
0

�
P

|Dn f�x + tn�| dL n�x�dt ¨ k − 1
1

�
0

�
P + tn

|Dn f| dL ndt

² k − 1
1

�
0

�
PTQ

|Dn f| dL ndt

¨ k − 1 �
PTQ

|Dn f| dL nÛ
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the last inequality above follows from P + tn ⊂ PTQ for each t X �0Ù 1�Ø Multiplying
the just proved inequality

| �
Q

f dL n − �
P

f dL n| ² k − 1V Ù V Ú¨ �
PTQ

|Dn f| dL n

by k n we obtain
|b − a| ² k n − 1V

and a combination with (5.3)1 provides that the total variation (measure) |Dm|
satisfies

|Dm| ¨ |b − a|H n − 1 F ² k n − 1VH n − 1 F Ø

Integrating over R n we obtain

M�Dm� ¨ |Dm|�R n� ² k n − 1VH n − 1�F� ¨ V

which is (5.4). è

Proposition 5.2. Let f X C ð
0 �R nÙRm�Ø Then there exists a sequence mk X

SBV �R nÙRm� such that

mk r f in L 1�R nÙRm�Ù (5.6)

D�a� mk ¨ 0 on R n for all k ¨ 1ÙÜ Ù (5.7)

and

M�Dmk� ² 2n �
R n

|Df| dL nØ (5.8)

Proof For each positive integer k consider the decomposition of R n into the system
of cells as in (5.1). Let mk Ú R n r R n be defined by

mk�x� ¨ f�kÙ p� (5.9)

for each x X R n, where p X Zn/k is uniquely determined by the requirement that
x X C�kÙ p� and where

f�kÙ p� ¨ k n �
C�kÙ p�

f dL nØ

Then mk is piecewise constant with the points of jump discontinuity of mk contained
in the union

n

U
i ¨ 1

U
l XZ/k

PkÙ iÙ l

where
PkÙ iÙ l ¨  x X R n Ú x ċ ei ¨ l(

for any l X Z/kØ Here for each i ¨ 1ÙÜ Ù nÙ the system

SkÙ i ¨ !PkÙ iÙ l Ú l X Z/k)

forms an equidistant system of parallel planes perpendicular to eiØ
We now fix k ¨ 1ÙÜ Ù and i ¨ 1ÙÜ Ù nÙ and denote by SkÙ i ⊂ R n the union of

the system SkÙ i of planes perpendicular to ei. Next we apply Lemma 5.1 to each
pair of adjacent cubes C�kÙ p�Ù C�kÙ q� with pÙ q X Zn/k sharing a common face
perpendicular to eiØ Summing the inequality (5.4) over all such pairs, we obtain
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M�Dmk SkÙ i� ² 2 �
R n

|Dei
f| dL n

whereDei
f is the directional derivative of f in the direction eiØ Summing over all iwe

obtain (5.8). Relation (5.6) follows immediately from the well–known properties of
the piecewise constant approximations on system of cubes of decreasing edge length.
Finally (5.7) follows from the piecewise constant character of mkØ è

Proof of the Approximation Theorem By Alberti’s theorem (Theorem 3.7) there
exists h X SBV �ΩÙRm� such that

D�a� h ¨ G on ΩØ (5.10)

Put l Ú¨ g−h which is an element ofBV �ΩÙRm�Ø SinceΩ is an admissible domain, the
extension l0 of l to R n equal to 0 outside Ω satisfies l0 X BV �R

nÙRm� by Theorem
3.12. Let fk be a sequence of mollifications of l0 on R n with the mollification
parameter tending to 0Ù so that fk X C

ð
0 �R

nÙRm�Ù

�
R n

|Dfk| dL
n ²M�D l0�Ù (5.11)

fk r l0 in L 1�R nÙRm�

and hence in particular
fk|Ω r l in L 1�ΩÙRm�Ø (5.12)

Applying Proposition 5.2 with f replaced by fk we find that for each k there exists a
mk X SBV �R nÙRm� such that

|mk − fk|L1�RnÙ Rm� ° 1/kÙ (5.13)

D�a� mk ¨ 0 on R n (5.14)

and
M�Dmk� ² 2n �

R n

|D fk| dL
nØ (5.15)

We put
gk ¨ mk|Ω + h

for k ¨ 1ÙÜ Ù so that gk X SBV �ΩÙRm�Ø Equations (5.12) and (5.13) imply

mk|Ω r l in L 1�ΩÙRm� as k r ð

and hence we have (1.4)1. Further, (5.14) and (5.10) imply (1.4)2. Finally, (5.15),
(5.11) and h X SBV �ΩÙRm� imply (1.5). Assertion (1.6) then follows by an easy
argument that is left to the reader. è

6 Proof of the Limit Relation

Lemma 6.1. Let Ω be bounded, let g be a map (not a class of equivalence) in

BV �ΩÙRm�, let x X Ω and let ε ± 0 be such that B�xÙ ε� ⊂ ΩØ Then for L 1 almost

every ρ X �0Ù ε�, g| bdryB�xÙ ρ� is the trace of g|B�xÙ ρ� X BV �B�xÙ ρÙRm�Ø
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Proof By the Lebesgue differentiation theorem there exists a Borel set E ⊂ Ω with
L
n�E� ¨ 0 such that for every y X Ω ∼ E we have

lim
rr 0

κ − 1
n r

− n �
B�yÙ r�PΩ

|g − g�y�| dL n ¨ 0Ø (6.1)

Since by Fubini’s theorem

0 ¨ L
n�E� ¨

ð

�
0

H
n − 1�E P bdryB�xÙ ρ�� dL 1�ρ�Ù

we see that for L 1 almost every ρ ± 0 we have

H
n − 1�E P bdryB�xÙ ρ�� ¨ 0Ø

For every such a ρ X �0Ù ε� we have (6.1) for H n − 1 almost every y X bdryB�xÙ ρ�Û
hence in particular also

lim
rr 0

κ − 1
n r

− n �
B�yÙ r� PB�xÙ ρ�

|g − g�y�| dL n ¨ 0

since B�xÙ ρ� ⊂ ΩØ A comparison with Equation (3.5) of Theorem 3.11 written for
Ω replaced by B�xÙ ρ� shows that g�y� coincides with the trace of g|B�xÙ ρ� for
H
n − 1 almost every y X bdryB�xÙ ρ�Ø è

Proof of the Limit Relation Let us extend g and gk by 0 outside ΩØ We first
note that by (1.7)1 we may pass to a subsequence of gk (not relabeled) such that
|g − gk|L1�ΩÙ Rm� ° 2

− k so that the function

��x� ¨
ð
�
k ¨ 1

|g�x� − gk�x�|

satisfies
�
Ω

� dL n ² 1Ø (6.2)

Let x X Ω be fixed and let ε ± 0 be any number satisfying B�xÙ ε� ⊂ ΩØ Since
ð

�
0

�
bdryB�xÙ ρ�

� dH n − 1dρ ¨ �
Ω

� dL n ² 1

by (6.2), there exists a subset N1 of �0Ù ε� with L
1�N1� ¨ 0 such that

�
bdryB�xÙ ρ�

� dH n − 1 ª
ð
�
k ¨ 1

�
bdryB�xÙ ρ�

|g − gk| dH
n − 1 ° ð (6.3)

for every ρ X �0Ù ε� ∼ N1Ø Hence for every ρ X �0Ù ε� ∼ N1 we have �bdryB�xÙ ρ� |g −
gk| dH

n − 1 r 0 and hence
gk r g (6.4)

in the Lebesgue space L 1�bdryB�xÙ ρ�ÙH n − 1� on bdryB�xÙ ρ� relative to the mea-
sure H

n − 1. By Lemma 6.1 for every k ¨ 1ÙÜ Ù there exists a subset Mk of �0Ù ε�
with L

1�Mk� ¨ 0 such that for every ρ X �0Ù ε� ∼ Mk the restriction of the map
gk| bdryB�xÙ ρ� is the trace of gk|B�xÙ ρ� X BV �B�xÙ ρ�ÙRm�Ø Let

N ¨ N1 T
ð
U
k ¨ 1
Mk
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so that L 1�N� ¨ 0Ø For every ρ X �0Ù ε� ∼ N we have

�
bdryB�xÙ ρ�

�gk � n dH n − 1 ¨ �
B�xÙ ρ�

gk � D � dL
n + �

B�xÙ ρ�
� dDgk (6.5)

for all k ¨ 1ÙÜ Ù and for any � X C ð
0 �R n� where n is the normal to B�xÙ ρ�Ø The limit

using (6.4), (1.7)1 and (1.6) then gives

�
bdryB�xÙ ρ�

�g � n dH n − 1 ¨ �
B�xÙ ρ�

g �D � dL n + �
B�xÙ ρ�

� dDg (6.6)

and hence g| bdryB�xÙ ρ� is the trace of g|B�xÙ ρ� X BV �B�xÙ ρ�ÙRm� for every
ρ X �0Ù ε�∼ N Ø In particular, for � ª 1 on R n we obtain form (6.5) and (6.6)

Dgk�B�xÙ ρ�� r �
bdryB�xÙ ρ�

g � n dH n − 1 ¨ Dg�B�xÙ ρ��

i.e.,
Dgk�B�xÙ ρ�� r Dg�B�xÙ ρ��

as kr ð for each ρ X �0Ù ε� ∼ N Ø 8 Combining with (1.7)2 we then obtain

�Dgk −D�a� gkL
n

Ω��B�xÙ ρ�� r �Dg − G L
n

Ω��B�xÙ ρ�� (6.7)

as kr ð; noting that

Dgk −D�a� gkL
n

Ω ¨ �gk� � nkH
n − 1 J�gk�

where �gk� is the jump of gk on J�gk� and nk is the normal to J�gk�Ù we see that
(6.7) reads

lim
krð

�
J�g
k
�PB�xÙ ρ�

�gk� � nk dH
n − 1 ¨ Dg�B�xÙ ρ�� − �

B�xÙ ρ�
G dL n (6.8)

for every ρ X �0Ù ε� ∼ N Ø This holds for every x X Ω where N ¨ N�x�Ø Dividing
(6.8) by κnρ

n and using that (3.4) and

G�x� ¨ lim
ρr 0

κ − 1
n ρ

− n �
B�xÙ ρ�

G dL n

hold simultaneously for L n almost every x X ΩÙ we see that for every such an x we
have

lim
ρr 0

ρ X �0Ù ε�∼N

lim
krð

�
J�g
k
�PB�xÙ ρ�

�gk� � nk dH
n − 1 ¨ D�a� g − G�x�Ù

i.e., (1.8) holds. è

7 Appendix: Elementary proof of a weaker form of the

Approximation Theorem

We here outline a proof of the following form of the Approximation Theorem without
using Alberti’s theorem.

8Which is otherwise not a direct consequence of (1.6).
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Theorem 7.1. IfΩ is an admissible domain and �gÙ G� X BV �ΩÙRm��L 1�ΩÙMm� n�
then there exists two sequences mkÙ hk X SBV �ΩÙRm� such that

mk r g in L 1�ΩÙRm� and D�a� mk ¨ 0 over Ω, (7.1)

hk r 0 in L 1�ΩÙRm� and D�a� hk r G in L 1�ΩÙMm � n� (7.2)

and

sup !M�Dmk� Ú k ¨ 1ÙÜ) ° ðÙ sup !M�Dhk� Ú k ¨ 1ÙÜ) ° ðÛ (7.3)

consequently the sequence gk ¨ mk + hk X SBV �ΩÙRm� satisfies

gk r g in L 1�ΩÙRm�, D�a� gk r G in L 1�ΩÙMm � n� (7.4)

and

sup !M�Dgk� Ú k ¨ 1ÙÜ) ° ðÙ Dgk u
  Dg in M�ΩÙMm � n�Ø

Proof (outline) We denote by g0 the extension of g to R n equal to 0 outside ΩØ
Since Ω is an admissible domain, we have g0 X BV �R

nÙRm� by Theorem 3.12.
Let fk be a sequence of mollifications of g0 on R n with the mollification parameter
tending to 0Ø Applying Proposition 5.2 in the same way as in the proof of the
Approximation Theorem (Subsection 5.3) we find a sequence mk X SBV �R

nÙRm�
such that |fk − mk|L1�RnÙ Rm� ° 1/kØ The sequence mk|Ω (again denoted mk) then
satisfies (7.1) and (7.3)1Ø

Next, let G0 be the extension of G to R n equal to 0 outside Ω and put

hk�x� ¨ G�kÙ p��x − x�kÙ p��

for any x X R n where p X Zn/k is uniquely determined by the requirement x X
C�kÙ p�, x�kÙ p� is the barycenter of C�kÙ p� and

G�kÙ p� ¨ k n �
C�kÙ p�

G dL nØ

Then hk is easily seen to satisfy (7.2) and (7.3)2Ø è
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