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L2-solutions of the transmission problem, the Robin-transmission problem and
the Dirichlet-transmission problem for the Brinkman system are studied by the
integral equation method. Necessary and sufficient conditions for the solvability
are given. The uniqueness of a solution is also studied.
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1. Introduction

The integral equation method is one of traditional methods in hydrodynamics.[1–6] This
method is especially fruitful for transmission problems.[4,7–12] In this paper, we study the
following transmission problem: let � = �+ ⊂ Rm , m > 2, be a bounded open set with
Lipschitz boundary. Denote �− = Rm \ �+, where �+ is the closure of �+. Let λ+, λ−
and c+ be non-negative constants and a+, a−, b+ and b− positive constants. We study the
transmission problem for the Brinkman system

−�u± + λ±u± + ∇ p± = 0, ∇ · u± = 0 in �±,

a+u+ − a−u− = g, b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = f on ∂�.

Here, g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm). We look for an L2-solution of the problem, i.e.
the non-tangential maximal functions of u±, ∇u± and p± are in L2(∂�) and the boundary
conditions are fulfilled in the sense of the non-tangential limit. This problem was studied
in [4] for c+ = 0, λ± = 0, and in [9] for a± = b± = 1, c+ = 0. We study the transmission
problem for arbitrary λ±, a±, b± and c+.

In all preceding papers, the transmission problem is studied under additional condition
concerning behaviour of u− and p− at infinity. To remove this additional condition, we
study behaviour of a solution of the Brinkman system at infinity and we prove the theorem
of Liouville’s type. From this, we deduce that if the non-tangential maximal function
corresponding to u− and p− is in L2(∂�), then there exist u∞ ∈ Rm , p∞ ∈ R1 such
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2 D. Medková

that u−(x) → u∞, p−(x) → p∞ as |x| → ∞, and |u−(x) − u∞(x)| = O(|x|2−m),
|∇u−| + |p−(x) − p∞| = O(|x|1−m).

At the end, we study the Robin-transmission and the Dirichlet-transmission problems.
Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary, � = �+ be a
bounded open set with Lipschitz boundary such that � ⊂ G. Denote �− = G \ �, and by
n± the outward unit normal of �±. Let λ± and c± be non-negative constants, and a± and
b± be positive constants. We study by the integral equation method the Robin-transmission
problem for the Brinkman system

−�u± + λ±u± + ∇ p± = 0, ∇ · u± = 0 in �±,

a+u+ − a−u− = g, b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = f on ∂�,

T (u−, p−)n− + c−u− = h on ∂G.

Here, g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm), h ∈ L2(∂G). We look for an L2-solution of
the problem, i.e. the non-tangential maximal functions of u±, ∇u± and p± are in L2(∂�−)

and the boundary conditions are fulfilled in the sense of the non-tangential limit. (The
integral representation of a solution gives that u± ∈ H3/2(�, Rm), p± ∈ H1/2(�).) This
problem was studied in [8] for c± = 0, a± = b± = 1, λ+ = 0.

Then, the regular Dirichlet-transmission problem is studied by the integral equation
method:

−�u± + λ±u± + ∇ p± = 0, ∇ · u± = 0 in �±,

a+u+ − a−u− = g, b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = f on ∂�,

u− = h on ∂G.

Here, g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm) and h ∈ W 1,2(∂G). We look for an
L2-solution of the problem, i.e. the non-tangential maximal functions of u±, ∇u± and
p± are in L2(∂�−) and the boundary conditions are fulfilled in the sense of the non-
tangential limit. (The integral representation of a solution gives that u± ∈ H3/2(�, Rm),
p± ∈ H1/2(�).) This problem was studied in [11] for a± = b± = 1, c+ = 0.

2. Formulation of the transmission problem

Let � = �+ ⊂ Rm , m > 2, be a bounded open set with Lipschitz boundary. Denote
�− = Rm \ �+, where �+ is the closure of �+. Denote by n = n+ = n� the outward
unit normal of �+. Let λ+, λ−, c+ be non-negative constants and a+, a−, b+, b− positive
constants. We shall study the transmission problem for the Brinkman system

−�u± + λ±u± + ∇ p± = 0, ∇ · u± = 0 in �±, (1)

a+u+ − a−u− = g, b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = f on ∂�. (2)

If u = (u1, . . . , um) is a velocity field, p is a pressure, denote

T (u, p) = 2∇̂u − pI

the corresponding stress tensor. Here, I denotes the identity matrix and

∇̂u = 1

2

[
∇u + (∇u)T

]

D
ow

nl
oa

de
d 

by
 [

M
at

em
at

ic
ky

 U
st

av
 A

v 
C

r]
, [

M
rs

 D
ag

m
ar

 M
ed

ko
vá

] 
at

 0
2:

11
 0

6 
Fe

br
ua

ry
 2

01
4 



Complex Variables and Elliptic Equations 3

is the strain tensor, with (∇u)T as the matrix transposed to ∇u = (∂ j uk), (k, j = 1, . . . , m).
Denote ∇ · u = ∂1u1 + · · · + ∂mum the divergence of u.

Now, we define an L2-solution of the transmission problem. Let G be an open set with
Lipschitz boundary. If x ∈ ∂G, a > 0 denote the non-tangential approach region of opening
a at the point x by

�G
a (x) := { y ∈ G; |x − y| < (1 + a) dist( y, ∂G)}.

If now v is a vector function defined in G, we denote the non-tangential maximal function
of v on ∂G by

v∗
G(x) := sup

{
|v( y)|; y ∈ �G

a (x)
}

.

If x ∈ ∂G, �(x) = �G
a (x), then

v(x) = lim
y → x

y ∈ �(x)

v( y)

is the non-tangential limit of v with respect to G at x.
Let g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm). We say that u±, p± defined on �± is an

L2-solution of the transmission problem (1) and (2) if u±, p± satisfy (1); u∗±, p∗±, (∇u)∗±
are from L2(∂�, R1); for almost all x ∈ ∂� there exist the non-tangential limits of u±,
∇u±, p± at x and the condition (2) is fulfilled in the sense of the nontangential limit a.e.
on ∂�.

3. The surface potentials

We shall look for a solution of the transmission problem by the integral equation method.
The aim of this section is to assemble some basic facts on surface potentials for the Brinkman
system.

For λ ≥ 0 denote by Eλ(x) = {Eλ
i j (x)}i, j=1,...,m , Qλ(x) = {Qλ

j (x)} j=1,...,m the
fundamental matrix for the Brinkman system

−�u + λu + ∇ p = 0, ∇ · u = 0 (3)

such that Eλ(x) → 0, Qλ(x) → 0 as |x| → ∞. If j is fixed, u = (E1 j , . . . , Emj ), p = Q j

then u, p is a solution of the Brinkman system (3) in Rm \{0}. If λ = 0 then the fundamental
matrix for the Stokes system is given by

E0
i j (x) = 1

2ωm

[
δi j

|x|2−m

m − 2
+ xi x j

|x|m
]
, Q0

j (x) = x j

ωm |x|m ,

where ωm denotes the surface of the unit sphere in Rm . (See [6] or [4].) The fundamental
matrix for λ > 0 is studies in Chapter 2 of [6]:

Qλ(x) = Q0(x),

Eλ
i j (x) = 1

ωm

[
δi j

|x|m−2
A1

(√
λ|x|

)
+ xi x j

|x|m A2

(√
λ|x|

) ]
,

A1(t) = tm/2−1 Km/2−1(t)

2m/2−1�(m/2)
+ tm/2−2 Km/2(t)

2m/2−1�(m/2)
− 1

t2
,
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4 D. Medková

A2(t) = m

t2
− tm/2−1 Km/2+1(t)

2m/2−1�(m/2)
,

where Kν is the modified Bessel function of order ν. If λ > 0 then

|Eλ (x) | = O
(|x|−m)

, |∇Eλ (x) | = O
(
|x|1−m

)
as |x| → ∞.

Since Eλ ∈ C∞ (
Rm \ {0}; Rm×m

)
, Qλ ∈ C∞(Rm \ {0}; Rm), we can define for

� ∈ L2(∂�, Rm) the single-layer potential with density � by

(
Eλ

��
)
(x) =

∫
∂�

Eλ(x − y)�( y) dHm−1( y) (4)

and the corresponding pressure by

(
Qλ

��
)
(x) =

∫
∂�

Qλ (x − y)� ( y) dHm−1( y). (5)

Then, Eλ
�� ∈ C∞ (Rm \ ∂�, Rm), Qλ

�� ∈ C∞ (
Rm \ ∂�, R1

)
, ∇Qλ

�� − �Eλ
�� +

λEλ
�� = 0, ∇ · Eλ

�� = 0 in Rm \ ∂�.
Eλ

�� can be defined for almost all x ∈ ∂� and Eλ
��(x) is the non-tangential limit of

Eλ
��. The non-tangential maximal function of Eλ

��, ∇Eλ
�� and Qλ

�� with respect to �+
and �− is in L2(∂�) (see [13], Lemma 2.1.4). Moreover, Eλ

� is a bounded linear operator
from L2(∂�, Rm) to W 1,2(∂�, Rm). (For λ = 0 see [4], for λ > 0 see for example [8].)

Denote
K λ

� ( y, x) = −Tx
(
Eλ (x − y) , Qλ (x − y)

)
n�(x).

For � ∈ L2 (∂�, Rm) define

K ′
�,λ�(x) = lim

ε↘0

∫
∂�\B(x;ε)

K λ
� ( y, x)�( y) dHm−1( y),

where B (x; ε) = { y; |x− y| < ε}. Then, K ′
�,λ is a bounded linear operator on L2(∂�, Rm).

If � ∈ L2 (∂�, Rm), then there exist the non-tangential limits
[∇Eλ

��(x)
]
±,

[
Qλ

��)(x)
]
±

of ∇Eλ
��, Qλ

�� with respect to �± at almost all x ∈ ∂�, and

[
T

(
Eλ

��, Qλ
��

)]
+ n� = 1

2
� − K ′

�,λ�, (6)

[
T

(
Eλ

��, Qλ
��

)]
− n� = − 1

2
� − K ′

�,λ�. (7)

(For λ = 0 see [4], for λ > 0 see for example [8]. See also [14].)
Now, we define a double layer potential. For � ∈ L2(∂�, Rm) define in Rm \ ∂�

(
Dλ

��
)
(x) =

∫
∂�

K λ
� (x, y) �( y) dHm−1( y), (8)

and the corresponding pressure by

(
�λ

��
)
(x) =

∫
∂�

�λ
� (x, y)�( y) dHm−1( y), (9)
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Complex Variables and Elliptic Equations 5

where

�λ
� (x, y) = 1

ωm

{
− ( y − x)

2m ( y − x) · n�( y)
| y − x|m+2

+ 2n�( y)
| y − x|m − λ

|x − y|2−m

m − 2
n�( y)

}
.

Then, Dλ
�� ∈ C∞(Rm \ ∂�, Rm), �λ

�� ∈ C∞(Rm \ ∂�, R1) and ∇�λ
�� − �Dλ

�� +
λDλ

�� = 0, ∇ · Dλ
�� = 0 in Rm \ ∂�.

Define

K�,λ�(x) = lim
ε↘0

∫
∂�\B(x;ε)

K λ
�(x, y)�( y)dHm−1( y), x ∈ ∂�.

Then, K�,λ is a bounded linear operator on L2(∂�; Rm) (adjoint to K ′
�,λ). There exists the

non-tangential limit [Dλ
��]+(x) of Dλ

�� with respect to �+ and the non-tangential limit
[Dλ

��]−(x) of Dλ
�� with respect to �− for almost all x ∈ ∂� and

[
Dλ

��
]
+ (x) = 1

2
�(z) + K�,λ�(z),

[
Dλ

��
]
− (x) = − 1

2
�(z) + K�,λ�(z). (10)

If � ∈ W 1,2(∂�, Rm) then
[|Dλ

��|]∗
�± +[|∇Dλ

��|]∗
�± ∈ L2(∂�) and at almost all points

of ∂� there exist the non-tangential limits of ∇Dλ
�� with respect to �+ and with respect

to �−. Moreover,
[
T

(
Dλ

��,�λ
��

)]
+ n� = [

T
(
Dλ

��,�λ
��

)]
− n�. (For λ = 0 see [4],

for λ > 0 see for example [8].)

4. Behaviour at infinity

Proposition 4.1 Let λ ≥ 0, u1, . . . , uk and p be tempered distributions in Rk, k ≥ 2,
u = (u1, . . . , uk). If −�u + λu + ∇ p = 0, ∇ · u = 0 in the sense of distributions in Rk,
then u1, . . . , uk and p are polynomials.

Proof Denote by F f the Fourier transformation of f . Since −�u + λu + ∇ p = 0,
∇ · u = 0, the Fourier transformation gives

|x|2Fu(x) + λFu(x) + xF p(x) = 0, (11)

x · Fu(x) = 0. (12)

Using (11) and (12)

0 = x ·
[(

|x|2 + λ
)

Fu + xF p(x)
]

= |x|2F p(x).

Thus, F p = 0 on Rk \ {0}. If x ∈ Rk \ {0} then

0 = |x|2Fu (x) + λFu (x) + xF p (x) =
(
|x|2 + λ

)
Fu.

Therefore, Fu j = 0 in Rk \ {0}. According to [15], Chapter II, Section 10, there exist
n ∈ N0 and constants aα such that

Fu j =
∑
|α|≤n

aα∂αδ0.
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6 D. Medková

Set
Pj (x) =

∑
|α|≤n

aα(−i x)α.

Then
F Pj =

∑
|α|≤n

aαF [
(−i x)α1

] =
∑
|α|≤n

aα∂αδ0 = Fu j .

Since the Fourier transform is an isomorphism on the space of tempered distributions, we
infer that u j = Pj . Similarly for p. �

Proposition 4.2 Let u, p be a bounded solution of the Brinkman system −�u + λu +
∇ p = 0, ∇ · u = 0 in Rm \ F, where F is a compact subset of Rm, m > 2, λ ≥ 0.
Then, there exist p∞ ∈ R1, u∞ ∈ Rm such that p(x) → p∞, u(x) → u∞ as |x| → ∞.
Moreover, |p(x)− p∞| = O(|x|1−m), |u(x)−u∞| = O

(|x|2−m
)
, |∇u(x)| = O

(|x|1−m
)

as |x| → ∞. If λ > 0 then u∞ = 0.

Proof Fix ϕ ∈ C∞(Rm) such that ϕ = 0 on a neighbourhood of F and ϕ = 1 on
Rm \ B(0; r) for some r > 0. Define ũ = ϕu, p̃ = ϕp on Rm \ F ; ũ = 0, p̃ = on F .
Denote ( f1, . . . , fm)T = −�ũ + λũ + ∇ p̃, fm+1 = ∇ · ũ, f = ( f1, . . . , fm+1)

T . Define
the (m + 1) × (m + 1) matrix function Ẽλ by Ẽλ

i j = Eλ
i j , Ẽλ

m+1, j = Ẽλ
j,m+1 = Qλ

j for

i, j ≤ m, Ẽm+1,m+1(x) = δ(x) + λ|x|2−m/ [(m − 2)ωm]. Denote (v1, . . . , vm, q)T =
Ẽλ ∗ f , v = (v1, . . . , vm)T , where ∗ means the convolution. Then, −�v + λv + ∇q =
( f1, . . . , fm)T , ∇ · v = fm+1 by [6], Section 2.1. According to a behaviour of Ẽλ at
infinity we see that |v(x)| = O

(|x|2−m
)
, |∇v(x)| + |q(x)| = O

(|x|1−m
)

as |x| → ∞.
Since the functions u j − v j , p − q are bounded, they are tempered distributions (see [16],
Example 14.22). Since −� (ũ − v) + λ (ũ − v) + ∇( p̃ − q) = 0, ∇ · (u − v) = 0 in Rm ,
Proposition 4.1 gives that ũ j −v j , p̃−q are polynomials. Since ũ j −v j , p̃ −q are bounded
there exist p∞ ∈ R1, u∞ ∈ Rm such that p̃ − q = p∞, ũ − v = u∞. If λ > 0 then
0 = −�(ũ − v) + λ(ũ − v) + ∇( p̃ − q) = λu∞ and thus u∞ = 0. �

5. Solution of the transmission problem

Put b̃± = b±/a±, c̃+ = c+/a+. If ũ± = a±u±, p̃± = a± p± then u±, p± is an L2-solution
of the transmission problem (1) and (2) if and only if ũ±, p̃± is an L2-solution of the
transmission problem

�ũ± + λ±ũ± + ∇ p̃± = 0, ∇ · ũ± = 0 in �±, (13)

ũ+ − ũ− = g, b̃+T (ũ+, p̃+) n − b̃−T (ũ−, p̃−) n + c̃+ũ+ = f on ∂�. (14)

Let � ∈ W 1,2 (∂�, Rm), � ∈ L2 (∂�, Rm). Put

ũ± = Dλ±
� � + Eλ±

� �, p̃± = �
λ±
� � + Qλ±

� � in �±, (15)

τ
λ+,λ−
1 (�,�) = � + K�,λ+� − K�,λ−� + Eλ+

� � − Eλ−
� �,

τ
λ+,λ−,b̃+,b̃−,c̃+
2 (�,�) = b̃+

[
� − K ′

�,λ+

]
− b̃−

[−� − K�,λ−
] + c̃+Eλ+

� �

+ b̃+
[
T

(
Dλ+

� �,�
λ+
� �

)]
+ n� − b̃−

[
T

(
Dλ−

� �,�
λ−
� �

)]
− n�.
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Complex Variables and Elliptic Equations 7

The operator τλ+,λ−,b̃+,b̃−,c̃+ =
[
τ

λ+,λ−
1 , τ

λ+,λ−,b̃+,b̃−,c̃+
2

]
is a bounded linear operator on

W 1,2 (∂�, Rm) × L2 (∂�, Rm). The functions ũ±, p̃± given by (15) are an L2-solution of
the transmission problem (13) and (14) such ũ−(x) → 0, p̃−(x) → 0 as |x| → ∞ if and
only if τλ+,λ−,b̃+,b̃−,c+(�,�) = [g, f ].

Lemma 5.1 Denote Rm = {v(x) = Ax + b; b ∈ Rm, A = (ai j ) an antisymmetric
matrix, i.e. ai j = −a ji } the space of rigid motions. Let u ∈ Rm, M = {x; u(x) = 0}. If
Hm−1(M) > 0 then u ≡ 0.

Proof There exists a matrix A = (ai j )with ai j = −a ji and b ∈ Rm such that u(x) = Ax+
b. Suppose first ai j �= 0 for some indices i, j . Denote Li = {x; ai1x1+· · ·+aim xm+bi = 0},
L j = {x; a j1x1 + · · · + a jm xm + bi = 0}. Since aii = a j j = 0, a ji = −ai j �= 0 we have
Hm−1(Li ∩ L j ) = 0. This contradicts to M ⊂ Li ∩ L j . Hence, A = 0 and u is constant.
M �= ∅ forces u ≡ 0. �

Proposition 5.2 Let u±, p± be an L2-solution for the transmission problem (1) and (2).
If f = 0, g = 0 and u−(x) → 0, p−(x) → 0 as |x| → ∞ then u± ≡ 0, p± ≡ 0.

Proof |p(x)| = O(|x|1−m), |u(x)| = O(|x|2−m), |∇u(x)| = O(|x|1−m) as |x| → ∞
(see Proposition 4.2). Using Green’s formula

0 =
∫
∂�

u+ · [b+T (u+, p+)n − b−T (u−, p−)n + c+u+] dHm−1

= b+
∫

∂�−

u+ · T (u+, p+) n�+ dHm−1 +
∫

∂�−

c+|u+|2 dHm−1

+ lim
r→∞ b−

a−
a+

∫
∂(�−∩B(0;r))

u− · T (u−, p−) n�−

= b+
∫

�+

[
2|∇̂u+|2 + λ+|u+|2

]

+
∫

∂�−

c+|u+|2 dHm−1 + b−a−
a+

∫
�+

[
2|∇̂u+|2 + λ−|u+|2

]
dHm .

Denote u = u± on �±. Then, ∇̂u = 0 in Rm\∂�. Denote by ω0, ω1, . . . , ωk all components
of Rm \ ∂�, where ω0 is the unbounded component. According to [17], Lemma 3.1, there
exist antisymmetric matrices A j and vectors B j such that u(x) = A j x + B j in ω j . Since
u(x) → 0 as |x| → ∞, we deduce that u = 0 in ω0. If ∂ω0 ∩ ∂ω j �= ∅, then the
condition a+u+ = a−u− gives that A j x + B j = 0 on ∂ω0 ∩ ∂ω j . Lemma 5.1 gives that
A j x + B j ≡ 0. We can continue by this way and prove that u = 0. �

Proposition 5.3 The operator τλ+,λ−,b̃+,b̃−,c̃+ is an isomorphism on the space W 1,2

(∂�, Rm) × L2(∂�, Rm).
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8 D. Medková

Proof The operator τ 0,0,b̃+,b̃−,0 is a Fredholm operator with index 0 on W 1,2(∂�, Rm) ×
L2(∂�, Rm) by [4]. If λ ≥ 0 then K�,λ − K�,0 is compact on W 1,2(∂�, Rm), K ′

�,λ −
K ′

�,0 is compact on L2(∂�, Rm), Eλ
� − E0

� is a compact operator from L2(∂�, Rm) to
W 1,2(∂�, Rm) (see [8], Theorem 3.4). Since E0

� is a bounded operator from L2(∂�, Rm)

to W 1,2(∂�, Rm), it is a compact linear operator on L2(∂�, Rm). Thus τλ+,λ−,b̃+,b̃−,c̃+ −
τ 0,0,b̃+,b̃−,0 is a compact operator on W 1,2(∂�, Rm)×L2(∂�, Rm). Hence, τλ+,λ−,b̃+,b̃−,c+

is a Fredholm operator with index 0. Therefore, it is enough to prove that τλ+,λ−,b̃+,b̃−,c̃+

is injective.
Let (�,�) ∈ W 1,2 (∂�, Rm)× L2 (∂�, Rm), τλ+,λ−,b̃+,b̃−,c̃+ (�,�) = 0. Let ũ±, p̃±

be given by (15). Then, ũ±, p̃± is an L2-solution of the problem (13) and (14) with g = 0,
f = 0 such that ũ−(x) → 0, p̃−(x) → 0 as |x| → ∞. Proposition 5.2 gives that ũ± = 0,
p̃± = 0. Thus ũ±, p̃± is an L2-solution of the problem (13),

ũ+ − ũ− = 0, T (ũ+, p̃+)n − T (ũ−, p̃−)n = 0 on ∂�.

Denote λ̃+ = λ−, λ̃− = λ+,

v+ = Dλ−
� � + Eλ−

� �, q+ = �
λ−
� � + Qλ−

� �, in �+,

v− = −Dλ+
� � − Eλ+

� �, q+ = −�
λ+
� � − Qλ+

� �, in �−.

Using boundary behaviour of potentials, we obtain on ∂�

v+ = � + ũ− = �,

v− = − [−� + ũ+] = �,[
T (v+, q+) n�

]
+ = � + [

T (ũ−, p̃−) n�
]
− = �,[

T (v−, q−) n�
]
− = −[−� + [

T (ũ+, p̃+) n�
]
+ = �.

Therefore, v±, q± is a solution of the transmission problem

−�v± + λ̃±v± + ∇q± = 0, ∇ · v± = 0 in �±,

v+ − v− = 0, T (v+, q+)n − T (v−, q−)n = 0 on ∂�,

v−(x) → 0, q−(x) → 0 as |x| → ∞.

Proposition 5.2 gives that v± ≡ 0, q± ≡ 0. We have on ∂�

� = v+ = 0,

� = [
T (v+, q+) n�

]
+ = 0.

�

Theorem 5.4 Let g ∈ W 1,2 (∂�, Rm), f ∈ L2 (∂�, Rm). Then, there exists an
L2-solution of the transmission problem (1) and (2). If u±, p± is an L2-solution of the
problem then there exist p∞ ∈ R1, u∞ ∈ Rm such that u−(x) → u∞, p−(x) → p∞ as
|x| → ∞. If λ− > 0 then u∞ = 0. Fix p∞ ∈ R1, u∞ ∈ Rm. If λ− > 0 suppose that
u∞ = 0. Then, there exists a unique L2-solution u±, p± of the transmission problem (1)
and (2) such that u−(x) → u∞, p−(x) → p∞ as |x| → ∞.
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Complex Variables and Elliptic Equations 9

Proof If u±, p± is an L2-solution of the problem then there exist p∞ ∈ R1, u∞ ∈ Rm

such that u−(x) → u∞, p−(x) → p∞ as |x| → ∞. If λ− > 0 then u∞ = 0. (See
Proposition 4.2).

Fix p∞ ∈ R1, u∞ ∈ Rm . If λ− > 0 suppose that u∞ = 0. Put u− = v− + u∞,
u+ = v+, p− = q− + p∞, p+ = q+. Then, u±, p± is a solution of the problem (1) and
(2), u−(x) → u∞, p−(x) → p∞ if and only if v±, q± is a solution of the transmission
problem (1),

a+v+ − a−v− = g + a−u∞, b+T (v+, q+)n − b−T (v−, q−)n + c+v+ = f − b− p∞n,

v−(x) → 0, q−(x) → 0. According to Proposition 5.3 there exist � ∈ W 1,2(∂�, Rm),
� ∈ L2(∂�, Rm) such that

v± = a−1±
[

Dλ±
� � + Eλ±

� �
]
, q± = a−1±

[
�

λ±
� � + Qλ±

� �
]

in �±

is a solution of the problem. The uniqueness of a solution follows from Proposition 5.2. �

6. Robin-transmission problem

Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary, � = �+ be a
bounded open set with Lipschitz boundary such that � ⊂ G. Denote �− = G \ �, and by
n± the outward unit normal of �±. Let λ± and c± be non-negative constants and a± and
b± be positive constants. We shall study the Robin-transmission problem for the Brinkman
system (1) and (2) accompanied with the condition

T (u−, p−)n− + c−u− = h on ∂G. (16)

Let g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm), h ∈ L2(∂G, Rm). We say that u±, p±
defined on �± is an L2-solution of the Robin-transmission problem (1), (2) and (16) if
u±, p± satisfy (1); u∗±, p∗±, (∇u)∗± are from L2(∂�±, R1); for almost all x ∈ ∂�± there
exist the non-tangential limits of u±, ∇u± and p± at x and the conditions (2) and (16) are
fulfilled in the sense of the non-tangential limit a.e. on ∂�−.

Put b̃± = b±/a± and c̃+ = c+/a±. If ũ± = a±u±, p̃± = a± p± then u±, p± is an
L2-solution of the Robin-transmission problem (1), (2) and (16) if and only if ũ±, p̃± is an
L2-solution of the Robin-transmission problem (13) and (14),

T (ũ−, p̃−)n− + c−ũ− = a−h on ∂G. (17)

Let � ∈ W 1,2(∂�, Rm), � ∈ L2(∂�, Rm), � ∈ L2(∂G, Rm). Let ũ+, p̃+ be given
by (15),

ũ− = Dλ−
� � + Eλ−

� � + Eλ−
G �, p̃− = �

λ−
� � + Qλ−

� � + Qλ−
G � in �−. (18)

Then ũ±, p̃± is an L2-solution of the Robin-transmission problem (13), (14) and (17) if
and only if

Rλ+,λ−,b̃+,b̃−,c̃+,c−(�,�,�) = [g, f , a−h],
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10 D. Medková

where

Rλ+,λ−,b̃+,b̃−,c̃+,c− (�,�,�)

=
[
τ

λ+,λ−
1 (�,�) − Eλ−

G �, τ
λ+,λ−,b̃+,b̃−,c̃+
2 (�,�) − b̃−T

(
Eλ−

G �, Qλ−
G �

)
n+,

1

2
� − K ′

G,λ−� + T
(

Eλ−
� � + Dλ−

� �, Qλ−
G �

)
n−

+ c−
(

Eλ−
G � + Eλ−

� � + Dλ−
� �

)]
.

Lemma 6.1 The operator Rλ+,λ−,b̃+,b̃−,c̃+,c− is a Fredholm operator with index 0 on
W 1,2(∂�, Rm) × L2(∂�, Rm) × L2(∂G, Rm).

Proof R : (�,�,�) �→ [τλ+,λ−
1 (�,�), τ

λ+,λ−,b̃+,b̃−,c̃+
2 (�,�), 1

2� − K ′
G,0�] is a

Fredholm operator with index 0 on W 1,2(∂�, Rm) × L2(∂�, Rm) × L2(∂G, Rm) by [4]
and Proposition 5.3. If λ ≥ 0 then K ′

G,λ − K ′
G,0 is compact on L2(∂G, Rm), Eλ

G − E0
G is a

compact operator from L2(∂G, Rm) to W 1,2(∂G, Rm) (see [8], Theorem 3.4). Since E0
G is

a bounded operator from L2(∂G, Rm) to W 1,2(∂G, Rm), it is a compact linear operator on
L2(∂G, Rm). Thus, Rλ+,λ−,b̃+,b̃−,c̃+,c−−R is a compact operator. Hence, Rλ+,λ−,b̃+,b̃−,c̃+,c−

is a Fredholm operator with index 0. �

Lemma 6.2 Let ũ+, p̃+ be given by (15), and ũ−, p̃− by (18). If ũ± = 0, p̃± = 0 in �±
then � = 0, � = 0, � = 0.

Proof Define

v = Dλ−
� � + Eλ−

� � + Eλ−
G �, q = �

λ−
� � + Qλ−

� � + Qλ
G� in ω = Rm \ G.

Continuity of a single-layer potential gives that v = u− = 0 on ∂G. Since v(x) =
O(|x|2−m), |∇v(x)| + |q(x)| = O(|x|1−m) as |x| → ∞ then Green’s formula gives

0 =
∫
∂ω

v · T (v, q)nω dHm−1 =
∫
ω

[
|2∇̂v|2 + λ−|v|2

]
dHm .

Since ∇̂v = 0 we have v ∈ Rm by [17], Lemma 3.1. Behaviour of potentials at infinity
gives that v(x) → 0 as |x| → ∞. This forces that v ≡ 0. Since ∇q = �v − λ−v = 0 we
deduce that q is constant. Behaviour of potentials at infinity gives that q ≡ 0.

By virtue of (6) and (7)

� = T (ũ−, p̃−)n− − T (v, q)n− = 0.

Denote ω+ = �+, ω− = Rm \ ω+. If ũ±, p̃± is given by (15) in ω± then ũ±, p̃± is an
L2-solution of the transmission problem

−�ũ± + λ±ũ± + ∇ p̃± = 0, ∇ · ũ± = 0 in ω±,

ũ+ − ũ− = 0, b̃+T (ũ+, p̃+)n+ − b̃−T (ũ−, p̃−)n+ + c̃+ũ+ = 0 on ∂ω+.

In particular, τ
λ+,λ−,b̃+,b̃−,c̃+
2 (�,�) = 0. Proposition 5.3 gives that � = 0, � = 0. �
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Complex Variables and Elliptic Equations 11

Proposition 6.3 Let u±, p± be an L2-solution of the Robin-transmission problem (1),
(2) and (16) with g = 0, f = 0, h = 0.

• If λ+ + λ− + c+ + c− > 0 then u± ≡ 0, p± ≡ 0.
• If λ+ + λ− + c+ + c− = 0 then p± ≡ 0 and there exists a rigid motion v ∈ Rm

such that u± = v/a±.

Proof Using Green’s formula

0 = b−1−
∫

∂�

u− · [b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+] dHm−1

+
∫

∂G

u− · [T (u−, p−)n− + c−u−] dHm−1 =
∫

�−

[
2|∇̂u−|2 + λ−|u−|2

]
dHm

+ a+b+
a−b−

∫
�+

[
2|∇̂u+|2 + λ+|u+|2

]
dHm +

∫
∂G

c−|u−|2 dHm−1 +
∫

∂�

c+a+|u+|2
a−

dHm−1.

Thus ∇̂u± = 0, λ±u± = 0 in �±, c+u+ = 0 on ∂�, c−u− = 0 on ∂G. Define v = a±u±
on �±. Denote by ω1, . . . , ωk all components of G \ ∂�. According to [17], Lemma 3.1
there exist antisymmetric matrices A j and vectors B j such that v(x) = A j x + B j in ω j .
If ∂ω j ∩ ∂ωi �= ∅, ω j ⊂ �+, ωi ⊂ �− then a+u+ − a−u− = 0 gives (A j x + B j ) −
(Ai x + Bi ) = 0 on ∂ω j ∩ ∂ωi . Lemma 5.1 gives that (A j x + B j ) − (Ai x + Bi ) = 0 in
Rm . Thus, v ∈ Rm . If λ+ + λ− + c+ + c− > 0 then Lemma 5.1 gives that v ≡ 0.

Since ∇ p± = �u± − λ±u± = 0, there exist constant d1, . . . , dk such that p = d j

on ω j , where p = p± on �±. If ∂ω j ∩ ∂ωi �= ∅, ω j ⊂ �+, ωi ⊂ �− then 0 =
b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ = (bi di − b+d j )n+. Therefore, there is a
constant d such that p± = d/b±. On ∂G we have 0 = T (u−, p−)n− = −dn−/b−. This
gives d = 0. �

Theorem 6.4 Let λ++λ−+c++c− > 0. Then, Rλ+,λ−,b̃+,b̃−,c̃+,c− is an isomorphism on
W 1,2(∂�, Rm)× L2(∂�, Rm)× L2(∂G, Rm). Let g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm),
h ∈ L2(∂G, Rm). Then, there exists a unique L2-solution u±, p± of the Robin-transmission
problem (1), (2) and (16). Moreover, u± ∈ H3/2(�±, Rm), p± ∈ H1/2(�±) and

‖u+‖H3/2(�+) + ‖u−‖H3/2(�−) + ‖p+‖H1/2(�+) + ‖p−‖H1/2(�1)

≤ C
[‖g‖W 1,2(∂�,Rm ) + ‖ f ‖L2(∂�,Rm ) + ‖h‖L2(∂G,Rm ),

]
where C does not depend on g, f and h.

Proof Rλ+,λ−,b̃+,b̃−,c̃+,c− is a Fredholm operator with index 0 by Lemma 6.1.
Let Rλ+,λ−,b̃+,b̃−,c̃+,c−(�,�,�) = 0. Let ũ+, p̃+ be given by (15), and ũ−, p̃− by (18).
Then ũ± = 0, p̃± = 0 by Proposition 6.3. Lemma 6.2 gives � = 0, � = 0, � = 0. Since
Rλ+,λ−,b̃+,b̃−,c̃+,c− is a Fredholm operator with index 0, we infer that Rλ+,λ−,b̃+,b̃−,c̃+,c− is
an isomorphism.

Let g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm), h ∈ L2(∂G, Rm) be fixed. Put

(�,�,�) = (Rλ+,λ−,b̃+,b̃−,c̃+,c−)−1[g, f , a−h].
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12 D. Medková

Define ũ+, p̃+ by (15), and ũ−, p̃− by (18). Then, ũ±, p̃± is an L2-solution of the Robin-
transmission problem (13), (14) and (17). Denoting u± = ũ±/a±, p± = p̃±/a± we
obtain an L2 solution of the problem (1), (2) and (16). The uniqueness follows from
Proposition 6.3. The rest is a consequence of the fact that Eλ±

�± : L2(∂�±, Rm) →
H3/2(�±, Rm), Dλ±

�± : W 1,2(∂�±, Rm) → H3/2(�±, Rm), Qλ±
�± : L2(∂�±, Rm) →

H1/2(�±, Rm), �
λ±
�± : W 1,2(∂�±, Rm) → H1/2(�±, Rm) are bounded linear operators

(see [8] and [4]). �

Theorem 6.5 Let λ+ = λ− = c+ = c− = 0, g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm),
h ∈ L2(∂G, Rm). Then, there exists an L2-solution u±, p± of the Robin-transmission
problem (1), (2) and (16) if and only if

∫
∂�

v · f dHm−1 +
∫
∂G

b−v · h dHm−1 = 0 ∀v ∈ Rm . (19)

The general from of an L2-solution of the problem (1), (2) and (16) is

u± + v/a±, p±, v ∈ Rm . (20)

Proof Let u±, p± be an L2-solution of the Robin-transmission problem (1), (2) and (16),
v ∈ Rm . Then,

∫
∂�±

v · T (u±, p±)n�± dHm−1 = 0

(see [4]). Thus

0 = b+
∫

∂�+

v · T (u+, p+)n+ + b−
∫

∂�−

v · T (u−, p−)n− =
∫
∂�

v · f +
∫
∂G

b−v · h.

Denote by Xb− the space of [g, f , h] ∈ X = W 1,2(∂�, Rm) × L2(∂�, Rm) ×
L2(∂G, Rm) satisfying (19). We have proved that R0,0,b̃+,b̃−,0,0(X) ⊂ Xb̃− . Therefore,
codim R0,0,b̃+,b̃−,0,0(X) ≥ codim Xb̃− = dim Rm .

Let [�,�,�] ∈ Ker R0,0,b̃+,b̃−,0,0. Let ũ+, p̃+ be given by (15), and ũ−, p̃− by
(18). According to Proposition 6.3, there exists v ∈ Rm such that ũ± = v, p̃± = 0.
If v = 0 then � = 0, � = 0, � = 0 by Lemma 6.2. Thus, dim Ker R0,0,b̃+,b̃−,0,0 ≤
dim Rm . Since R0,0,b̃+,b̃−,0,0 is a Fredholm operator with index 0 by Lemma 6.1, we
deduce that dim Ker R0,0,b̃+,b̃−,0,0 = codim R0,0,b̃+,b̃−,0,0(X) = dim Rm . Therefore,
R0,0,b̃+,b̃−,0,0(X) = Xb̃− .

Let now [g, f , h] ∈ X . We have proved that there exist [�,�,�] such that
R0,0,b̃+,b̃−,0,0[�,�,�] = [g, f , a−h]. Let ũ+, p̃+ be given by (15), and ũ−, p̃− by (18),
u± = ũ±/a±, p± = p̃±/a±. Then, u±, p± is an L2-solution of the Robin-transmission
problem (1), (2) and (16). Easy calculation yields that (20) gives another solution of the
problem. Proposition 6.3 gives that each solution of the problem is of the form (20). �
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Complex Variables and Elliptic Equations 13

7. Regular Dirichlet-transmission problem

Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary, � = �+ be a non-
empty bounded open set with Lipschitz boundary such that � ⊂ G. Denote �− = G \ �,
and by n± the outward unit normal of �±. Let λ± and c+ be non-negative constants and
a± and b± be positive constants. We shall study the regular Dirichlet-transmission problem
for the Brinkman system (1) and (2) accompanied with the condition

u− = h on ∂G. (21)

Let g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm) and h ∈ W 1,2(∂G, Rm). We say that u±, p±
defined on �± is an L2-solution of the regular Dirichlet-transmission problem (1), (2) and
(21) if u±, p± satisfy (1); u∗±, p∗±, (∇u)∗± are from L2

(
∂�±, R1

)
; for almost all x ∈ ∂�±

there exist the non-tangential limits of u±, ∇u±, p± at x and the conditions (2) and (21)
are fulfilled in the sense of the non-tangential limit a.e. on ∂�−.

Put b̃± = b±/a±, c̃+ = c+/a±. If ũ± = a±u±, p̃± = a± p± then u±, p± is an
L2-solution of the regular Dirichlet-transmission problem (1), (2) and (21) if and only if
ũ±, p̃± is an L2-solution of the regular Dirichlet-transmission problem (13) and (14):

ũ− = a−h on ∂G. (22)

Let � ∈ W 1,2(∂�, Rm), � ∈ L2(∂�, Rm) and � ∈ L2(∂G, Rm). Let ũ+, p̃+ be
given by (15), and ũ−, p̃− be given by (18). Then, ũ±, p̃± is an L2-solution of the regular
Dirichlet-transmission problem (13), (14) and (22) if and only if

Rλ+,λ−,b̃+,b̃−,c̃+
D (�,�,�) = [g, f , a−h],

where

Rλ+,λ−,b̃+,b̃−,c̃+
D (�,�,�) =

[
τ

λ+,λ−
1 (�,�) − Eλ−

G � , τ
λ+,λ−,b̃+,b̃−,c̃+
2 (�,�)

− b̃−T (Eλ−
G �, Qλ−

G �)n+, Dλ−
� � + Eλ−

� � + Eλ−
G �

]
.

Proposition 7.1 Let u±, p± be an L2-solution of the regular Dirichlet-transmission
problem (1), (2) and (21) with g = 0, f = 0, h = 0. Then, there exists a constant c such
that u± = 0, p± = c/b±.

Proof Using Green’s formula

0 = b−1−
∫
∂�

u− · [b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+] dHm−1

+
∫
∂G

u− · T (u−, p−)n− dHm−1

=
∫

�−

[
2|∇̂u−|2 + λ−|u−|2

]
dHm

+a+b+
a−b−

∫
�+

[
2|∇̂u+|2 + λ+|u+|2

]
dHm +

∫
∂�

c+a+|u+|2
a−

dHm−1.
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14 D. Medková

Thus ∇̂u± = 0. According to [17], Lemma 3.1, there exist an antisymmetric matrix A and a
vector B such that u−(x) = Ax + B. Since u− = 0 on ∂G, Lemma 5.1 gives that u− = 0.
Since ∇ p− = �u− − λ−u− = 0, there exists a constant c such that p− = c/b−. Let ω

be a component of �+. According to [17], Lemma 3.1 there exist an antisymmetric matrix
A and a vector B such that u+(x) = Ax + B in ω. Since u+ = a−u−/a+ = 0 on ∂ω,
Lemma 5.1 gives that u+ = 0 in ω. Since ∇ p+ = �u+−λ+u+ = 0, there exists a constant
C such that p+ = C in ω. We have 0 = b+T (u+, p+)n+ − b−T (u−, p−)n+ + c+u+ =
−b+Cn+ + b−(c/b−)n+ on ∂ω. Hence, p+ = C = c/b+. �

Theorem 7.2 Let g ∈ W 1,2(∂�, Rm), f ∈ L2(∂�, Rm), h ∈ W 1,2(∂G, Rm). There
exists an L2-solution u±, p± of the regular Dirichlet-transmission problem (1), (2) and
(21) if and only if ∫

∂�

n+ · g dHm−1 + a−
∫
∂G

n− · h dHm−1 = 0. (23)

The general form of a solution of the problem is u±, p± + c/b±, where c is a constant.

Proof Suppose that u±, p± be an L2-solution u±, p± of the regular Dirichlet-transmission
problem (1), (2) and (21). Then,

0 = a+
∫
∂�

n+ · u+ + a−
∫
∂G

n− · u− =
∫
∂�

n+ · g dHm−1 + a−
∫
∂G

n− · h dHm−1.

R : (�,�,�) �→ [τλ+,λ−
1 (�,�), τ

λ+,λ−,b̃+,b̃−,c̃+
2 (�,�), E0

G�] is a Fredholm opera-
tor with index 0 from X = W 1,2(∂�, Rm)× L2(∂�, Rm)× L2(∂G, Rm) to the space Y =
W 1,2(∂�, Rm) × L2(∂�, Rm) × W 1,2(∂G, Rm) by [4] and Proposition 5.3. If λ ≥ 0, then
Eλ

G − E0
G is a compact operator from L2(∂G, Rm) to W 1,2(∂G, Rm) (see [8], Theorem 3.4).

Thus, Rλ+,λ−,b̃+,b̃−,c̃+
D − R is a compact operator. Hence, Rλ+,λ−,b̃+,b̃−,c̃+

D is a Fredholm op-
erator from X to Y with index 0. Denote by Z(a−) the set of all [g, f , h] ∈ Y satisfying (23).

We have proved that Rλ+,λ−,b̃+,b̃−,c̃+
D (X) ⊂ Z(1). Thus, codim Rλ+,λ−,b̃+,b̃−,c̃+

D (X) ≥ 1.

Let now Rλ+,λ−,b̃+,b̃−,c̃+
D (�,�,�) = 0. Let ũ+, p̃+ be given by (15), and ũ−, p̃− be

given by (18). Then, ũ±, p̃± is an L2-solution of the regular Dirichlet-transmission problem
(13), (14) and (22) with g = 0, f = 0, h = 0. Proposition 7.1 gives that there exists a con-
stant c such that u± = 0, p± = c/b̃±. If c = 0 then � = 0, � = 0, � = 0 by Lemma 6.2.

Therefore, dim Ker Rλ+,λ−,b̃+,b̃−,c̃+
D ≤ 1. Hence 1 ≤ codim Rλ+,λ−,b̃+,b̃−,c̃+

D (X) =
dim Ker Rλ+,λ−,b̃+,b̃−,c̃+

D ≤ 1. This forces Rλ+,λ−,b̃+,b̃−,c̃+
D (X) = Z(1).

Suppose now that (23) is fulfilled. We have proved that there exists [�,�,�] ∈ X

such that Rλ+,λ−,b̃+,b̃−,c̃+
D (�,�,�) = [g, f , a−h]. Let ũ+, p̃+ be given by (15), and ũ−,

p̃− be given by (18). Then, ũ±, p̃± is an L2-solution of the regular Dirichlet-transmission
problem (13), (14) and (22). So u± = ũ±/a±, p± = p̃±/a± is an L2-solution of (1), (2)
and (21). If c is a constant, then easy calculation gives that u±, p± + c/b± is a solution of
the problem, too. Proposition 7.1 gives that each solution of the problem has this form. �
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