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UPPER BOUND THEOREM FOR ODD-DIMENSIONAL FLAG

MANIFOLDS

MICHAŁ ADAMASZEK AND JAN HLADKÝ

ABSTRACT. We prove that among all flag triangulations of manifolds of odd di-
mension 2r − 1 with sufficiently many vertices the unique maximizer of the entries
of the f -, h-, g- and γ-vector is the balanced join of r cycles. Our proof uses meth-
ods from extremal graph theory.

1. INTRODUCTION

The classification of face numbers ( f -vectors) of various classes of simplicial
complexes, especially triangulations of spheres, balls and manifolds, is a classical
topic in enumerative combinatorics. The Charney–Davis conjecture [5] and its
generalization by Gal [10] sparkled the interest in similar questions for the class
of flag triangulations. In this paper we prove a general upper bound theorem for
flag triangulations of odd-dimensional manifolds.

A simplicial complex K is flag if every set of vertices pairwise adjacent in the
1-skeleton of K spans a face of K or, equivalently, if K is the clique complex of
its 1-skeleton. Flag complexes appear prominently in Gromov’s approach to non-
positive curvature (see [13] and [4] for an exposition). In this context Charney and
Davis proposed their famous conjecture [5] that a certain linear combination of the
face numbers of any odd-dimensional flag homology sphere is non-negative. Sub-
sequently, Gal [10] introduced a modification of the f -vector called the γ-vector,
which seems well-suited to the study of flag homology spheres, and is conjec-
turally non-negative. Since then a number of conjectures have been made about
the structure of γ-vectors of flag spheres, with many of them verified in special
cases [2, 3, 10, 14, 16, 18, 19]. Note that a flag complex is completely determined by
its 1-skeleton, and thus its face vector is the clique vector of the underlying graph.
Paradoxically, this only adds to the complexity of the problem. For example, face
vectors of arbitrary simplicial complexes are characterized by the Kruskal–Katona
theorem, while the clique vectors of general graphs are not so well understood [9].

Our contribution is an upper bound theorem for odd-dimensional flag homol-
ogy manifolds, a class which includes flag simplicial manifolds and flag homology
spheres. We exhibit a unique maximizer of any reasonable linear combination of
face numbers. For any r ≥ 1 and n ≥ 4r let Jr(n) be the n-vertex flag complex
obtained as a join of r copies of the circle S1, each one a cycle with ⌊ n

r ⌋ or ⌈ n
r ⌉

vertices. This complex is a flag simplicial (2r − 1)-sphere. To phrase our main the-
orem we say that a real-valued function F defined on simplicial complexes is a face
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function in dimension ℓ if it can be written as F(K) = cℓ fℓ(K) + cℓ−1 fℓ−1(K) + . . . +
c0 f0(K) + c−1 with ci ∈ R and cℓ > 0, where fi(K) is the number of i-dimensional
faces of K.

Theorem 1 (Main theorem). For every even number d ≥ 4 and every face function F

in dimension ℓ, where 1 ≤ ℓ ≤ d
2 − 1, there exists a constant n0 for which the following

holds. If M is a flag homology manifold of dimension d − 1 with n ≥ n0 vertices then

F(M) ≤ F(J d
2
(n))

and equality holds if and only if M is isomorphic to J d
2
(n).

In this context the standard statistics based on face numbers are the f -vector
( f−1, f0, . . . , fd−1), the h-vector (h0,h1, . . . , hd), the g-vector (g0, g1, . . . , g d

2
) and the

γ-vector (γ0, γ1, . . . , γ d
2
). Theorem 1 specializes to an upper bound statement for

all of those simultaneously.

Corollary 2. For every even number d ≥ 4 there is a constant N0 for which the following
holds. If M is a flag homology manifold of dimension d − 1 with n ≥ N0 vertices then

fi(M) ≤ fi(J d
2
(n)) for 1 ≤ i ≤ d − 1,

hi(M) ≤ hi(J d
2
(n)) for 2 ≤ i ≤ d − 2,

gi(M) ≤ gi(J d
2
(n)) for 2 ≤ i ≤ d

2 ,

γi(M) ≤ γi(J d
2
(n)) for 2 ≤ i ≤ d

2 .

Moreover, equality in any of these inequalities implies that M is isomorphic to J d
2
(n).

For all other values of the index i, as well as for face functions in dimension
0 or −1 in Theorem 1, the corresponding inequalities are trivially satisfied with
equality for all M.

The only previously known case of Corollary 2 was d = 4 (for any n) due to
Gal [10], with the uniqueness part (for large n) following from [2]. In this case all
inequalities follow from f1(M) ≤ f1(J2(n)). Our upper bound for the γ-vector
confirms for large n a conjecture of Lutz and Nevo [17, Conjecture 6.3] and pro-
vides supporting evidence for a question of Nevo and Petersen [18, Problem 6.4]
(see Section 5 for details). We also previously conjectured the upper bound on f1
for arbitrary even d in [2].

For arbitrary (not necessarily flag) odd-dimensional homology manifolds tight
upper bounds for fi were obtained by Novik [20, Theorem 1.4]. In this case the
maximum is attained by the boundary of the d-dimensional cyclic polytope with
n vertices (the maximizer is not unique). For the subclass of simplicial spheres this
had been known before by the celebrated upper bound theorem of Stanley [23]. In
the flag case our result is new even for flag simplicial spheres.

2. PRELIMINARIES

We recommend the reader [24] and [20] as references for face numbers of trian-
gulations of manifolds and spheres.

An abstract simplicial complex K with vertex set V is a collection K ⊆ 2V such that
σ ∈ K and τ ⊆ σ imply τ ∈ K. The elements of K are called faces. The dimension
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of σ is |σ| − 1 and the dimension of K is the maximal dimension of any of its faces.
The link of a face σ is the subcomplex lkK(σ) = {τ ∈ K : τ ∩ σ = ∅, τ ∪ σ ∈ K}.

A simplicial complex K is a simplicial manifold (resp. simplicial sphere) of di-
mension q if the geometric realization |K| is homeomorphic to a connected, com-
pact topological q-manifold without boundary (resp. to the sphere Sq). Most
known results involving face numbers of simplicial manifolds hold for more gen-
eral objects, which we now introduce. A simplicial complex K is a homology man-
ifold if for any point p ∈ |K| and any i 6= dim K, Hi(|K|, |K| − p; Z) = 0 and
Hdim K(|K|, |K| − p; Z) = Z. This is equivalent to saying that for every nonempty
face σ ∈ K the link lkK(σ) has the homology of the sphere Sq−|σ| (equivalence
follows from the excision axiom, see [15, Lemma 3.3]). A homology sphere is a ho-
mology manifold K such that K itself has the homology of a sphere. It is easy to see
that if K is a homology q-manifold then for every nonempty face σ ∈ K the link
lkK(σ) is a homology (q − |σ|)-sphere. Clearly every simplicial manifold (resp.
simplicial sphere) is a homology manifold (resp. homology sphere).

A complex K of dimension q is called Eulerian if for every face σ ∈ K (including
the empty one) the link lkK(σ) has the same Euler characteristic as the sphere
Sq−|σ|. Every homology manifold satisfies Poincaré duality; as a consequence the
Euler characteristic of an odd-dimensional homology manifold M equals 0 and so
M is Eulerian.

For a (d − 1)-dimensional complex K with n vertices let fi(K) be the number of
i-dimensional faces. The vector ( f−1, f0, . . . , fd−1) is called the f -vector of K (note
that f−1(K) = 1 and f0(K) = n). The h-vector (h0, h1, . . . , hd) of K is a convenient
modification of the f -vector defined by the identity

(2.1)
d

∑
i=0

fi−1xi(1 − x)d−i =
d

∑
i=0

hix
i.

Note h0(K) = 1 and h1(K) = n − d. An Eulerian simplicial complex satisfies the
Dehn–Sommerville equations hi(K) = hd−i(K) for 0 ≤ i ≤ d. In that case one can
define the γ-vector (γ0, . . . , γ⌊ d

2 ⌋
) of K by the identity

(2.2)
d

∑
i=0

hix
i =

⌊d/2⌋

∑
i=0

γix
i(x + 1)d−2i.

Here γ0(K) = 1 and γ1(K) = n− 2d. The γ-vector was first introduced by Gal [10]
for flag homology spheres, for which it is conjectured to be non-negative. This
conjecture generalizes the Charney–Davis conjecture, which in this language as-
serts that γ d

2
(K) is non-negative for a (d − 1)-dimensional flag homology sphere

K with d even. Another classical invariant, studied mostly for simplicial spheres
and balls, is the g-vector (g0, g1, . . . , g⌊ d

2 ⌋
) given by g0 = 1 and gi = hi − hi−1 for

1 ≤ i ≤ ⌊ d
2 ⌋.

Suppose now that d is even and let M be a homology (d − 1)-manifold. For any
i the function fi(M) is clearly a face function in dimension i. For any 0 ≤ i ≤ d

we have hi = ∑
i
j=0(−1)j−i(d−j

i−j) f j−1, so hi(M) is a face function in dimension i − 1.

By the Dehn–Sommerville equations if d
2 ≤ i ≤ d then hi(M) = hd−i(M) can be

expressed as a face function in dimension d − i − 1. For any 0 ≤ i ≤ d − 1 we have
fi = ∑

i+1
j=0 (

d−j
i+1−j)hj. If d

2 ≤ i ≤ d − 1 the Dehn–Sommerville equations imply that
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fi is a linear combination of (h d
2
, . . . , h0) with leading term ( d/2

i+1−d/2)h d
2
, so by the

previous observations fi(M) is equal to a face function in dimension d
2 − 1. Finally

both γi and gi are linear combinations of (hi, . . . , h0) with leading term hi, hence
γi(M) and gi(M) are face functions in dimension i − 1. Using these observations
the proof of Corollary 2 from Theorem 1 is immediate.

Let us now move towards flag complexes. If G = (V, E) is a finite, simple,
undirected graph then the clique number ω = ω(G) of G is the cardinality of the
largest clique (complete subgraph) in G and the clique vector of G is the sequence
(e0(G), e1(G), . . . , eω(G)), where ei(G) is the number of cliques of cardinality i (in
particular e0(G) = 1, e1(G) = |V| and e2(G) = |E|). The clique complex of G, de-
noted X(G), is the simplicial complex with vertex set V whose faces are all cliques
in G. We have dim X(G) = ω(G) − 1 and fi(X(G)) = ei+1(G). Note that the
1-skeleton of X(G) is G. A simplicial complex is flag if it is the clique complex of a
graph. A flag homology manifold (resp. flag homology sphere) is a flag complex which
is a homology manifold (resp. a homology sphere).

By abuse of language we will say that G triangulates a homology manifold (resp.
sphere) if X(G) is a flag homology manifold (resp. sphere).

Fix n, r ∈ N. We write Tr(n) for the r-partite Turán graph of order n, that is
a graph with n vertices partitioned into sets V1, V2, . . . , Vr, each of size either ⌊ n

r ⌋
or ⌈ n

r ⌉, with no edge inside any Vi and with a complete bipartite graph between
every two Vi and Vj, i 6= j. Further, for n ≥ 4r we define Jr(n) to be the graph
obtained from Tr(n) by declaring that each of the parts Vi induces a cycle of length
|Vi|. The condition n ≥ 4r guarantees that each part is a cycle of length at least
4, hence a flag triangulation of S1. Of course we have Jr(n) = X(Jr(n)) and this
complex is a flag simplicial (2r − 1)-sphere.

We say that a real-valued function F defined on graphs is a clique function of
order k, if F can be written as F(G) = ckek(G) + ck−1ek−1(G) + · · ·+ c1e1(G) + c0
where ci ∈ R and ck > 0. Theorem 1 can be equivalently rephrased as follows.

Theorem 3 (Main Theorem, Graph formulation). For every r ≥ 2 and every clique
function F of order k, where 2 ≤ k ≤ r, there exists a constant n0 for which the following
holds. If G is a graph with n ≥ n0 vertices which triangulates a (2r − 1)-dimensional
homology manifold then

F(G) ≤ F(Jr(n))

and equality holds if and only if G is isomorphic to Jr(n).

Let us first fix some additional notation. The neighborhood of a vertex v in a
graph G is the set NG(v) = {w : vw ∈ E(G)} and for a clique σ in G we define
the link of σ in G as the induced subgraph lkG(σ) = G[

⋂

v∈σ NG(v)]. This notation
is designed so that X(lkG(σ)) = lkX(G)(σ). For a vertex v ∈ V(G) and a subset
W ⊂ V(G) we write degG(v) = |NG(v)| and degG(v, W) = |NG(v) ∩ W|. The
subscript G will be omitted if there is no risk of confusion.

2.1. Properties of flag homology manifolds. Below, we record two basic proper-
ties of flag homology manifolds that we need for our proof of the Main Theorem.

Lemma 4. For every r ≥ 1 there is a constant Cr such that every n-vertex graph G
triangulating a (2r − 1)-dimensional homology manifold satisfies er+1(G) ≤ Crnr.
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Proof. The Dehn–Sommerville relation hr+1(X(G)) = hr−1(X(G)) expressed in
terms of face numbers implies that fr(X(G)) is a linear combination of entries
of the vector ( fr−1(X(G)), . . . , f−1(X(G))) = (er(G), . . . , e0(G)) with coefficients
depending only on r. Since ei(G) ≤ (n

i ) ≤ nr for 0 ≤ i ≤ r, we get er+1(G) =
fr(X(G)) ≤ Crnr for a suitable Cr. �

Let Kr
3 := Tr(3r) denote the complete r-partite graph with all parts of size 3. A

graph G is H-free if it does not contain H as a subgraph. The crucial geometric
ingredient of our arguments is provided by the next lemma.

Lemma 5. Fix r ≥ 1. If G triangulates a homology sphere of dimension 2(r − 1) then G
is Kr

3-free.

Proof. By a result of Galewski and Stern [11, Corollary 1.9], if X(G) is a homology
2(r− 1)-sphere then the double suspension Σ2X(G) is homeomorphic to S2r. Now
if G contained Kr

3 then Σ2X(G) would contain an embedded X(Kr+1
3 ), formed by

the original Kr
3 and any three of the four suspending vertices. That contradicts the

theorem of van Kampen and Flores [25, 8] (see also [26, Section 2.4]) that X(Kr+1
3 )

is not embeddable in S2r. �

In our arguments we are going to apply Lemma 5 to links of faces in a homology
manifold. For example, we get that if G triangulates a homology (2r− 1)-manifold
then for every vertex v the link lkG(v) is Kr

3-free.

2.2. Extremal graph theory. The remaining tools for our proof come entirely from
extremal graph theory. An approach to face enumeration via extremal graph the-
ory was pioneered in [2] where we classified all flag homology 3-manifolds M
with a sufficiently large number n of vertices which are almost extremal for f1 or
γ2. Thus, the main technical contribution of our current work is in connecting fur-
ther tools from extremal graph theory (namely Zykov’s inequalities (Theorem 8)
and the Removal lemma (Theorem 9)) to the area of face enumeration.

The following definition introduces a distance — sometimes called the edit dis-
tance — on the set of n-vertex graphs.

Definition 6. We say that two graphs with the same number of n vertices are ǫ-
close if there exists an identification of their vertex sets, so that then one graph can
be obtained from the other by editing (i.e., adding or deleting) less than ǫn2 edges.

The celebrated Stability Theorem of Erdős and Simonovits [6, 22] below says
that a Kr+1-free graph whose number of edges is close to the Turán bound must
actually be close to the Turán graph in the edit distance.

Theorem 7. Suppose that r ≥ 2 and ǫ > 0 are given. Then there exists δ > 0 such that
whenever H is an n-vertex, Kr+1-free graph with e2(H) > (1 − δ)e2(Tr(n)) then H is
ǫ-close to Tr(n).

We will also make use of the following result.

Theorem 8. Let r ≥ 1 and suppose than H is an n-vertex, Kr+1-free graph. Then we
have

1 =
e1(H)

e1(Tr(n))
≥

e2(H)

e2(Tr(n))
≥ . . . ≥

er(H)

er(Tr(n))
.
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Theorem 8 generalizes the result of Zykov [27] that ek(H) ≤ ek(Tr(n)), which
in turn generalizes Turán’s Theorem stating e2(H) ≤ e2(Tr(n)). A nice proof of
Theorem 8 using symmetrization can be found in [12, Theorem 3.1].

Let us now motivate the Removal lemma. A graph of order n can contain at
most ( n

r+1) = Θ(nr+1) copies of Kr+1. If the graph is not complete then of course it
contains less copies. However, we think of the graph H as “essentially Kr+1-free”
if er+1(H) = o(nr+1). It is then tempting to say that by removing a few edges we
can delete all the copies of Kr+1. This is true, yet far from trivial, and a subject
of the famous Removal lemma, a form of which first appeared in [21], and which
was later formulated in its full strength in [7].

Theorem 9. Suppose that r ≥ 1 and α > 0 are given. Then there exists β > 0 such that

whenever H is an n-vertex graph with er+1(H) ≤ βnr+1 then by deleting a suitable set

of less than αn2 edges H can be made Kr+1-free.

2.3. Outline of the proof of Theorem 3. Suppose G triangulates a homology (2r−
1)-manifold and the number of vertices n is large. First, note that if k ≤ r then

ek(Tr(n)) ≈ (r
k)
(

n
r

)k and ek(Jr(n)) = ek(Tr(n)) + O(nk−1) = (r
k)
(

n
r

)k
+ O(nk−1).

Now if G is such that ek(G) ≤ (1 − α)ek(Tr(n)), for a fixed (but arbitrary) α > 0
then the inequality F(G) ≤ F(Jr(n)) follows just by comparing the terms of order
nk in F. That leaves us only with the case where ek(G) ≈ ek(Tr(n)), in which case
we can also deduce e2(G) ≈ e2(Tr(n)) by Theorem 8. By Lemma 4, G is “sparse in
(r+ 1)-cliques”, i.e., it has only O(nr) = o(nr+1) many Kr+1’s, yet at the same time
very dense (close to the maximal number of edges allowed for a Kr+1-free graph
by Turán’s Theorem). At this point Theorem 7 shows that G must be similar to
Tr(n). Additional geometric properties of X(G) allow us to conclude from there
that F(G) is maximized by F(Jr(n)).

2.4. Organisation of the paper. As said earlier, the difficult cases Theorem 3 are
those when G is close to Tr(n). We will analyze their structure more closely in the
next section. In Section 4 we give a proof of Theorem 3. We then conclude with
open problems stemming from this work in Section 5.

3. ANALYSIS OF ALMOST EXTREMAL GRAPHS

For any r ≥ 1 denote [r] = {1, . . . , r}. We denote by H[X] the subgraph of H
induced by a set of vertices X and by H[X, Y] the bipartite sugbraph of H with
parts X, Y ⊂ V(H), X ∩ Y = ∅.

In this section we deal with almost extremal cases, that is, with triangulations
of homology (2r − 1)-manifolds that are close to Tr(n). These graphs fall into the
class of (η, r)-extremal graphs introduced below.

Definition 10. Let 0 ≤ η < 1 and r ≥ 1 be given. We say that an n-vertex graph H
is (η, r)-extremal if the vertices of H can be partitioned into sets V0, V1, . . . , Vr such
that

(a) |V0| ≤
1

30rr ηn and ⌊(1 − 1
30r η) n

r ⌋ ≤ |Vi| ≤ ⌈(1 + 1
30r η) n

r ⌉ for i ∈ [r],
(b) H[Vi] is triangle-free, for i ∈ [r],
(c) H[Vi] has maximum degree at most 2, for i ∈ [r],
(d) for each i, j ∈ [r], i 6= j, and any v ∈ Vi we have degH(v, Vj) ≥ (1 − η)|Vj |,
(e) each vertex of V0 is either of Type 1 or Type 2, where
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we say a vertex v is of Type 1 if there exist two distinct indices g, h ∈ [r] such that
degH(v, Vg) ≤ 2 and degH(v, Vh) ≤ (1 − 1

2 η)|Vh |, and it is of Type 2 if there exist
two distinct indices g, h ∈ [r] such that degH(v, Vg) ≤ 3rη|Vg | and degH(v, Vh) ≤
3rη|Vh |.

For small η, graphs with the above structure resemble Jr(n) up to some error.
That is, we allow that a small fraction of edges missing in each H[Vi, Vj], that the
parts are slightly unbalanced and we admit a small set of exceptional vertices V0.
In the next definition we introduce a class of graphs that resemble Jr(n) even bet-
ter.

Definition 11. We say that a graph is r-radical if it is (0, r)-extremal, and for each
i ∈ [r] every vertex of H[Vi] has degree 2.

If H is r-radical then V0 = ∅, each Vi is of size ⌊ n
r ⌋ or ⌈ n

r ⌉ for i ∈ [r] and each
graph H[Vi, Vj] is complete bipartite for i, j ∈ [r], i 6= j. An r-radical graph is (η, r)-
extremal for any 0 ≤ η < 1. Note that if H is any n-vertex r-radical graph then
F(H) = F(Jr(n)) for every clique function F.

Lemma 12. If H is an r-radical graph with n vertices which triangulates a homology
(2r − 1)-manifold then H is isomorphic to Jr(n).

Proof. For all i = 1, . . . , r − 1 pick any edge in H[Vi]. The endpoints of these r − 1
edges form a clique of order 2r − 2 whose link is H[Vr ]. However, in a homology
(2r − 1)-manifold the link of a face of size 2r − 2 is a homology 1-sphere, that is a
cycle. It means that H[Vr ] is a cycle. The same argument shows that all H[Vi] are
cycles and therefore H is isomorphic to Jr(n). �

The next lemma is used to find copies of Kr
3 in (η, r)-extremal graphs.

Lemma 13. Fix r ≥ 1 and η > 0. Suppose H is a graph with n ≥ 2rη−1 vertices
and a partition V(H) = V0 ⊔ V1 ⊔ . . . ⊔ Vr which satisfies conditions (a) and (d) of
Definition 10. Let w1, w2, w3 ∈ V1 be any three fixed vertices. For i ∈ {2, . . . , r} let
Ai ⊆ Vi be sets with |Ai| ≥ 3rη|Vi |. Then the subgraph of H induced by {w1, w2, w3} ∪
⋃r

i=2 Ai contains a Kr
3 with 3 vertices in each part Vi, i ∈ [r].

Proof. We will construct by induction 3-element subsets {wi
1, wi

2, wi
3} ⊆ Ai such

that for each l ∈ [r] the subgraph of H induced by wi
j with j = 1, 2, 3 and i = 1, . . . , l

contains Kl
3. For l = r this proves the lemma. When i = 1 the vertices w1

j = wj are
already given.

Suppose we have constructed the vertices {wi
1, wi

2, wi
3}

l
i=1 for some l ≤ r− 1. By

condition (d) the common neighborhood Nl+1 of these 3l vertices satisfies |Nl+1 ∩
Vl+1| ≥ (1 − 3lη)|Vl+1|. It follows that

|Al+1 ∩ Nl+1| ≥ |Al+1| − |Vl+1 \ Nl+1| ≥ 3rη|Vl+1| − 3lη|Vl+1|

≥ 3η|Vl+1| ≥ 3η
n

2r
≥ 3,

where the last line uses condition (a) of Definition 10 and the bound n ≥ 2rη−1. It
means that we can pick three distinct vertices wl+1

1 , wl+1
2 , wl+1

3 ∈ Al+1 ∩ Nl+1 and
the induction step is complete. �

We can now prove that graphs triangulating homology (2r − 1)-manifolds are
(η, r)-extremal as soon as they are sufficiently close to Tr(n).
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Lemma 14. For every r ≥ 2 and 0 < η <
1
7r set ǫ = η2

120rr+3 . If a graph H with

n ≥ 2rη−1 vertices triangulates a homology (2r − 1)-manifold and H is ǫ-close to Tr(n)
then H is (η, r)-extremal.

Proof. If H is ǫ-close to Tr(n) then the vertices of H can be partitioned into r sets
X1, . . . , Xr , each of size ⌊ n

r ⌋ or ⌈ n
r ⌉, such that

∑
i<j

e2(H[Xi, Xj]) + ∑
i

e2(H[Xi]) ≤ ǫn2.

Here e2(H[Xi, Xj]) is the number of edges missing between Xi and Xj, that is
e2(H[Xi, Xj]) = |Xi| · |Xj| − e2(H[Xi, Xj]). For every i 6= j let

Xi,j = {v ∈ Xi : deg(v, Xj) ≤ (1 −
2
3

η)|Xj |}.

Every vertex in Xi,j contributes to the number of missing edges ē(H[Xi, Xj]) as
follows

ǫn2 ≥ e2(H[Xi, Xj]) ≥ ∑
v∈Xi,j

(|Xj| − deg(v, Xj)) ≥
2
3

η|Xj | · |Xi,j| ≥
1
2

η
n

r
· |Xi,j|,

hence |Xi,j| ≤ 2ǫrη−1n. Consider a new partition V(H) = Y0 ⊔ Y1 ⊔ . . . ⊔ Yr ,

Y0 =
⋃

i 6=j

Xi,j, Yi = Xi \ Y0 for i ∈ [r].

We have |Y0| ≤ r2 · 2ǫrη−1n = 1
60rr ηn and, for i ∈ [r],

⌈
n

r
⌉ ≥ |Xi| ≥ |Yi| ≥ |Xi| − |Y0| ≥ (1 − 1

30r η)
n

r
.

By definition, for every vertex v ∈ Y0 there exists an index j ∈ [r] such that
deg(v, Xj) ≤ (1 − 2

3 η)|Xj |. Let Zj ⊂ Y0 consists of those vertices for which j is
the only such index, formally:

Zj =
{

v ∈ Y0 : deg(v, Xk) ≤ (1 − 2
3 η)|Xk| iff k = j for k ∈ [r]

}

.

We now define the final partition of V(H) as

V0 = Y0 \
⋃

j

Zj, Vi = Yi ∪ Zi for i ∈ [r].

We claim that the partition V(H) = V0 ⊔ V1 ⊔ . . . ⊔ Vr witnesses (η, r)-extremality
of H. We have |V0| ≤ |Y0| ≤

1
30rr ηn and |Vi| ≥ |Yi| ≥ (1 − 1

30r η) n
r for i ∈ [r].

Moreover,

|Vi| = |Yi|+ |Zi| ≤ |Yi|+ |Y0| ≤ ⌈ n
r ⌉+

1
30rr ηn ≤ (1 + 1

30r η)
n

r
.

That proves condition (a) of Definition 10. Next we verify condition (d). Pick any
vertex v ∈ Vi, i ∈ [r]. Regardless of whether v ∈ Yi or v ∈ Zi we have that
deg(v, Xj) ≥ (1 − 2

3 η)|Xj | for all j 6= i. That yields

deg(v, Vj) ≥ deg(v, Yj) ≥ deg(v, Xj)− |Y0| ≥ (1 − 2
3 η)|Xj| − |Y0|

≥ (1 − 2
3 η − η

30rr−1 )
n

r
≥ (1 − 2

3 η − η

30rr−1 )(1 +
1

30r η)−1|Vj|

≥ (1 − η)|Vj |.
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To prove property (b), suppose, without loss of generality, that H[V1] contains a
triangle t = {w1, w2, w3}. For i = 2, . . . , r let Ai = NH(w1) ∩ NH(w2) ∩ NH(w3) ∩
Vi. By the already proven property (d) we have |Ai| ≥ (1 − 3η)|Vi| ≥ 3ηr|Vi | (the
last inequality uses η <

1
7r ). Since n ≥ 2rη−1 Lemma 13 now yields that the link

lkH(t) contains Kr−1
3 as a subgraph. This is a contradiction to Lemma 5, since

lkH(t) triangulates a homology sphere of dimension 2r − 1 − 3 = 2(r − 2).
Similarly, to prove (c), suppose v ∈ V1 has three distinct neighbors w1, w2, w3 ∈

V1. Applying Lemma 13 with w1, w2, w3 and Ai = NH(v) ∩ Vi for i = 2, . . . , r,
where |Ai| ≥ (1 − η)|Vi | ≥ 3ηr|Vi|, we get that lkH(v) contains a Kr

3. This contra-
dicts the fact that lkH(v) triangulates a homology 2(r − 1)-sphere.

We now turn to verifying (e). Let us start with an auxiliary claim.

Claim. Let v ∈ V0 be any vertex and suppose j ∈ [r] is any index such that
deg(v, Xj) ≤ (1 − 2

3 η)|Xj |. Then deg(v, Vj) ≤ (1 − 1
2 η)|Vj |.

Proof. We have

deg(v, Vj) ≤ deg(v, Yj) + |Zj| ≤ deg(v, Xj) + |Y0|

≤ (1 − 2
3 η)⌈ n

r ⌉+
1

30rr ηn ≤ (1 − 2
3 η + 1

15rr−1 η) n
r

≤ (1 − 2
3 η + 1

15rr−1 η)(1 − 1
30r η)−1|Vj| ≤ (1 − 1

2 η)|Vj|.

�

Now suppose that some vertex v ∈ V0 is not of Type 2. Then, without loss of
generality, deg(v, Vi) > 3ηr|Vi| for i = 2, . . . , r. Suppose that deg(v, V1) ≥ 3 and let
w1, w2,w3 ∈ NH(v)∩V1 be three distinct vertices. We already proved properties (a)
and (d), so we can apply Lemma 13 with w1, w2, w3 and Ai = NH(v) ∩ Vi for
i = 2, . . . , r to conclude that lkH(v) contains a Kr

3, a contradiction to Lemma 5.
Therefore, deg(v, V1) ≤ 2. By the definition of V0, there exist an index j 6= 1
such deg(v, Xj) ≤ (1 − 2

3 η)|Xj|. The above Claim then gives that deg(v, Vj) ≤

(1 − 1
2 η)|Vj|. This proves that v is of Type 1. Condition (e) follows.

This completes the proof of the lemma. �

Our last lemma says that for among (η, r)-extremal graphs, the graph Jr(n)
maximizes any clique function of order up to r (for sufficiently large n). Note
that in this part of the proof we do not assume that H triangulates a homology
manifold.

Lemma 15. Let r ≥ 2 and let F be a clique function of order k, 2 ≤ k ≤ r. Set η = 1
14rr .

Then there exists a number m0 such that the following holds. If H is a graph with n ≥ m0
vertices then F(H) ≤ F(Jr(n)) and equality is attained only when H is r-radical.

Proof. Let the clique function be F(G) = ckek(G) + ck−1ek−1(G) + . . . + c1e1(G) +
c0. The value of m0 will be chosen during the proof in such a way that (3.1), (3.2),
(3.3), (3.4) and (3.5) are satisfied for all n ≥ m0. Among all (η, r)-extremal graphs
with n vertices, let us consider a graph H that maximizes F(H). We will show that
H is r-radical.

Claim. For each i, j ∈ [r], i 6= j, the bipartite graph H[Vi, Vj] is complete.

Proof. Suppose for a contradiction and without loss of generality that there exist
vertices v1 ∈ V1 and v2 ∈ V2 that do not form an edge. Let us now add that edge
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to H. Observe that the modified graph H′ is still (η, r)-extremal. We will now
find a lower bound for the number of cliques in H′ which contain the edge v1v2.
By condition (d), v1 and v2 are both adjacent to at least (1 − 2η)|V3| ≥ (1 − 3η) n

r
vertices v3 in V3. In general, given vertices v1 ∈ V1, v2 ∈ V2, . . . , vℓ ∈ Vℓ there are
at least (1 − ℓη)|Vℓ+1| ≥ (1 − (ℓ+ 1)η) n

r vertices vℓ+1 in Vl+1 adjacent to each of
v1, v2, . . . , vℓ. This sequential extension gives at least ((1 − kη) n

r )
k−2 > ( 1

2 · n
r )

k−2

many k-cliques containing both v1 and v2 in H′. For each t = 2, . . . , k − 1, the
number of t-cliques increased by at most nt−2, and the number of vertices did not
change. So, in total,

(3.1) F(H′)− F(H) ≥ ck

( n

2r

)k−2
−

k−1

∑
t=2

|ct|n
t−2

> 0 ,

since the coefficients ct are fixed and n ≥ m0 is large enough. This is a contradic-
tion to the assumption that H maximizes F. �

Claim. The set V0 does not contain any Type 1 vertex.

Proof. Suppose that v ∈ V0 is a Type 1 vertex. Let g and h be the two indices as
in the definition of Type 1 in Definition 10. Since the average size of the sets Vi,
i ∈ [r], is n−|V0|

r , there is an index j ∈ [r] so that |Vj | <
n
r . We construct a new graph

H′ by deleting v (and its incident edges) from V0 and introducing a new vertex w
into the set Vj. We make w adjacent to all the vertices in

⋃

i∈[r]\j Vi, and to no other.
The modified graph H′ is (η, r)-extremal.

The vertex w is contained in at least (r−1
k−1)⌊(1 − 1

30r η) n
r ⌋

k−1 many k-cliques in
H′. Indeed, we can choose an arbitrary (k − 1)-element set {p1, p2, . . . , pk−1} ⊂
[r] \ j, and this choice gives us at least ⌊(1 − 1

30r η) n
r ⌋

k−1 choices of vertices w1 ∈
Vp1 , . . . , wk−1 ∈ Vpk−1 . By the previous Claim, for any such choice {w, w1, . . . , wk−1}
is a clique.

Let us now upper-bound the number of k-cliques in H containing v. The num-
ber of cliques containing v and some other vertex of V0 is at most |V0| · nk−2 ≤

1
30rr ηnk−1. The number of k-cliques through v and through a vertex from the set
Vg is at most 2nk−2 by the definition of Type 1. By Definition 10(c) and (d), if k ≥ 3
the number of cliques containing v and at least two vertices from a fixed Vi, i ∈ [r],
is at most e2(H[Vi]) · nk−3 ≤ |Vi| · nk−3. Therefore the number of k-cliques that
touch some of the sets Vi in at least two vertices is upper bounded by nk−2. It
remains to upper-bound the number of k-cliques in H through v that contain no
vertex from (V0 \ {v}) ∪ Vg , and that intersect each of the sets Vi in at most one
vertex. Trivially, this number is at most (r−1

k−1)⌈(1 +
1

30r η) n
r ⌉

k−1. However, the fact
that deg(v, Vh) ≤ (1 − 1

2 η)|Vh | allows us to refine this upper-bound to
(

r − 2
k − 1

)

⌈(1 + 1
30r η) n

r ⌉
k−1 +

(

r − 2
k − 2

)

⌈(1 + 1
30r η) n

r ⌉
k−2(1 − 1

2 η)⌈(1 + 1
30r η) n

r ⌉

= ⌈(1 + 1
30r η) n

r ⌉
k−1

((

r − 1
k − 1

)

− 1
2 η ·

(

r − 2
k − 2

))

=

(

r − 1
k − 1

)

⌈(1 + 1
30r η) n

r ⌉
k−1(1 − η

2 · k−1
r−1 ) .
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Putting these bounds together, we get

ek(H′)− ek(H)

≥

(

r − 1
k − 1

)

⌊(1 − 1
30r η) n

r ⌋
k−1 −

(

r − 1
k − 1

)

⌈(1 + 1
30r η) n

r ⌉
k−1(1 − η

2 · k−1
r−1 )

− 1
30rr ηnk−1 − 3nk−2 .

Using the inequality ⌊(1 − 1
30r η) n

r ⌋ > ⌈(1 + 1
30r η) n

r ⌉(1 −
1

10r η) we can write

ek(H′)− ek(H)

>

(

r − 1
k − 1

)

⌈(1 + 1
30r η) n

r ⌉
k−1[(1 − 1

10r η)k−1 − 1 + η
2 · k−1

r−1 ]

− 1
30rr ηnk−1 − 3nk−2 .

By Bernoulli’s inequality the coefficient in the square brackets is at least

1 −
k − 1
10r

η − 1 +
η

2
·

k − 1
r − 1

> −
k − 1
10r

η +
k − 1

2r
η =

2
5
·

k − 1
r

η .

That gives

ek(H′)− ek(H) >

(

r − 1
k − 1

)

nk−1

rk−1 ·
2
5
·

k − 1
r

η −
1

30rr
ηnk−1 − 3nk−2

=
1
rr

ηnk−1
(

2
5

(

r − 1
k − 1

)

(k − 1)rr−k − 1
30

)

− 3nk−2

≥
1
rr

ηnk−1( 2
5 −

1
30 )− 3nk−2 = 11

30rr ηnk−1 − 3nk−2 .

The number of cliques of size t changed by at most nt−1 for t = 2, . . . , k − 1.
That implies

(3.2) F(H′)− F(H) > 11
30rr ηcknk−1 − 3cknk−2 −

k−1

∑
t=2

|ct|n
t−1

> 0

since n ≥ m0 is sufficiently large. That contradicts the maximality of H and proves
the claim. �

Claim. The set V0 does not contain any Type 2 vertex.

Proof. We proceed similarly as in the previous case. Suppose that v ∈ V0 is a
Type 2 vertex. Let g and h be the two indices as in Definition 10. We delete v
from V0 and introduce a new vertex w in some set Vj, j ∈ [r] with |Vj| <

n
r which

we make adjacent to all the vertices in
⋃

i∈[r]\{j} Vi, and to no other. Let H′ be the
resulting (η, r)-extremal graph. As before, the new vertex w belongs to at least
(r−1

k−1)⌊(1 −
1

30r η) n
r ⌋

k−1 cliques of size k in H′.
Next we upper-bound the number of cliques containing v in H. The number of

k-cliques through v and through a vertex from the set Vg ∪ Vh ∪ V0 \ {v} is at most
(|Vg ∩ NH(v)|+ |Vh ∩ NH(v)|+ |V0|)n

k−2 ≤ 7ηnk−1 by the definition of Type 2.
The number of k-cliques through v that touch at least two vertices in some Vi is at
most nk−2, as in the previous claim. Last, the number of k-cliques through v that
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do not intersect Vg ∪ Vh ∪ (V0 \ {v}) and contain at most one vertex from each Vi

is upper-bounded by
(

r − 2
k − 1

)

⌈(1 + 1
30r η) n

r ⌉
k−1 =

r − k

r − 1

(

r − 1
k − 1

)

⌈(1 + 1
30r η) n

r ⌉
k−1

(in particular it must be 0 when k = r). Proceeding as in the proof of the previous
claim we get

ek(H′)− ek(H)

≥

(

r − 1
k − 1

)

⌊(1 − 1
30r η) n

r ⌋
k−1 − r−k

r−1

(

r − 1
k − 1

)

⌈(1 + 1
30r η) n

r ⌉
k−1 − 7ηnk−1 − nk−2

≥

(

r − 1
k − 1

)

⌈(1 + 1
30r η) n

r ⌉
k−1[(1 − 1

10r η)k−1 − r−k
r−1 ]− 7ηnk−1 − nk−2.

The expression in the square brackets is at least

1 −
k − 1
10r

η − 1 +
k − 1
r − 1

> (k − 1)
(

1
r
−

1
10r

η

)

>
9(k − 1)

10r
≥

9
10r

.

Hence we get

ek(H′)− ek(H) ≥ nk−1
(

9
10rk

(

r − 1
k − 1

)

− 7η

)

− nk−2
>

1
3rr

nk−1 − nk−2 ,

where we used 7η ≤ 1
2rr , and finally

(3.3) F(H′)− F(H) >
1

3rr
cknk−1 − cknk−2 −

k−1

∑
t=2

|ct|n
t−1

> 0 ,

because n ≥ m0. �

Thus, by the three claims above, the vertex set of H is partitioned into sets
V1, . . . , Vr, all pairs of which form complete bipartite graphs. Recall that the graphs
H[Vi] are triangle-free and of maximum degree at most 2.

Claim. For each i ∈ [r], we have e2(H[Vi]) = |Vi|.

Proof. The condition that the maximum degree of H[Vi] is at most 2 implies that
e2(H[Vi]) ≤ |Vi|. Suppose now that e2(H[Vi]) < |Vi|. We replace the subgraph
H[Vi] with the graph consisting of a path with e2(H[Vi]) edges followed by |Vi| −
e2(H[Vi])− 1 isolated vertices. Let H′ be the resulting graph. Note that H′ is (η, r)-
extremal, and since H[Vi] was triangle-free we have eℓ(H′) = eℓ(H) for all ℓ. Next,
we create H′′ by adding one edge to H′[Vi], so that we get a longer path or a cycle.
We still have that H′′ is (η, r)-extremal.

The number of k-cliques increased from H′ to H′′ by at least (r−1
k−2)⌊(1−

1
30r η) n

r ⌋
k−2 ≥

( n
2r )

k−2. At the same time, the total number of cliques of order t = 2, . . . , k − 1 in-
creased by at most nt−2. Hence

(3.4) F(H′′)− F(H) = F(H′′)− F(H′) ≥
( n

2r

)

k−2 −
k−1

∑
t=2

|ct|n
t−2

> 0

for n ≥ m0, a contradiction to the supposed maximality of H. �

Claim. For each 1 ≤ i < j ≤ r, we have |Vi| − 1 ≤ |Vj| ≤ |Vi|+ 1.
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Proof. Consider the class of all (η, r)-extremal graphs G with sufficiently many ver-
tices which are partitioned into classes V(G) = V0(G)⊔V1(G)⊔ . . .⊔Vr(G) which
satisfy all the previous claims, i.e. V0(G) = ∅, G[Vi(G), Vj(G)] is complete bipar-
tite for i, j ∈ [r], i 6= j, each G[Vi(G)] is triangle-free and e2(G[Vi(G)]) = |Vi(G)|
for i ∈ [r]. Let σj(x1, . . . , xr) = ∑1≤i1<···<i j≤r xi1 · · · xi j

denote the j-th elementary
symmetric polynomial in r variables. For a graph G in the above class we have

eℓ(G) =
ℓ

∑
i=0

( i
ℓ−i) σi (|V1(G)|, . . . , |Vr(G)|) , ℓ = 0, . . . , 2r.

It follows that there are constants c′k, . . . , c′0 depending only on F and r such that
c′k = ck > 0 and F(G) = ∑

k
i=0 c′iσi(|V1(G)|, . . . , |Vr(G)|) for all graphs G in the

class. Now suppose, without loss of generality, that in the maximizer H we have
|V1(H)| − |V2(H)| ≥ 2. Take any graph H′ in the same class with parts of size
(|V1| − 1, |V2|+ 1, |V3|, . . . , |Vr|). For any numbers x1, . . . , xr have

σj(x1 − 1, x2 + 1, x3, . . . , xr)− σj(x1, . . . , xr) = (x1 − x2 − 1)σj−2(x3, . . . , xr)

and hence

F(H′)− F(H) = (|V1| − |V2| − 1)
k

∑
i=2

c′iσi−2(|V3|, . . . , |Vr |)

≥ c′k

(

r − 2
k − 2

)

( n

2r

)

k−2 −
k−1

∑
t=2

|c′t|

(

r − 2
t − 2

)

⌈(1 + 1
30r η)

n

r
⌉t−2

> 0(3.5)

for sufficiently large n ≥ m0, again a contradiction to the maximality of H. �

The claims above clearly prove the lemma. �

4. PROOF OF THE MAIN THEOREM

We can now prove Theorem 3. Fix r ≥ k ≥ 2 and a clique function F(G) =

∑
k
i=0 ciei(G) with ck > 0.
Let η = 1

14rr and m0 be the constants provided by Lemma 15 given r and F. Let

ǫ = η2

120rr+3 be the constant provided by Lemma 14 given r and η.
Let δ be the constant from Theorem 7 for input parameters r and 1

2 ǫ. Define
α = min{ 1

4 (
r
k)

1
rk δ, 1

2 ǫ} and let β be the constant from Theorem 9 for input r and

α. Let m1 be such that for n ≥ m1 we have (1 − 1
4 δ)F(Tr(n)) < F(Jr(n)). Let m2

be such that for each n ≥ m2 and each n-vertex graph G the condition F(G) >

(1 − 1
4 δ)F(Tr(n)) implies ek(G) > (1 − 1

2 δ)ek(Tr(n)). The existence of m1 and
m2 follows by observing that for n-vertex graphs G we have F(G) = ckek(G) +

O(nk−1) and moreover F(Tr(n)) = ck(
r
k)
(

n
r

)k
+ O(nk−1), F(Jr(n)) = ck(

r
k)
(

n
r

)k
+

O(nk−1). Finally let Cr be the constant from Lemma 4. We claim that Theorem 3
holds for n0 = max{m0, m1, m2, Crβ−1, 2rη−1}.

Suppose H is any graph with n ≥ n0 vertices which triangulates a homology
(2r − 1)-manifold. First, suppose that F(H) ≤ (1 − 1

4 δ)F(Tr(n)). Since n ≥ m1
this implies F(H) < F(Jr(n)), and the result is proved (in that case, equality is
impossible).
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That leaves us with the case F(H) > (1 − 1
4 δ)F(Tr(n)). Since n ≥ m2 we get

ek(H) > (1 − 1
2 δ)ek(Tr(n)). By Lemma 4 we have er+1(H) ≤ Crnr ≤ βnr+1.

Theorem 9 now shows that we can remove at most αn2 edges from H to obtain a
Kr+1-free subgraph G with the same vertex set. The removal of one edge destroys
at most nk−2 cliques of size k, therefore

ek(G) ≥ ek(H)− αnk ≥ (1 − 1
2 δ)ek(Tr(n))−

1
4

δ

(

r

k

)

1
rk

nk ≥ (1 − δ)ek(Tr(n)),

where in the last step we used ek(Tr(n)) ≥
1
2 (

r
k)

nk

rk . Theorem 8 now gives e2(G) ≥

(1 − δ)e2(Tr(n)). By Theorem 7 the graph G is 1
2 ǫ-close to Tr(n). Since H arises

from G by adding at most αn2 ≤ 1
2 ǫn2 edges, we conclude that H is ǫ-close to

Tr(n). From Lemma 14, we have that H is (η, r)-extremal. As n ≥ m0, Lemma 15
now shows that F(H) ≤ F(Jr(n)). That ends the proof of the inequality.

If F(H) = F(Jr(n)) then by Lemma 15 the graph H is r-radical. Since H trian-
gulates a homology (2r − 1)-manifold, Lemma 12 yields that H is isomorphic to
Jr(n). That proves the uniqueness part.

5. CONJECTURES

First of all, it is natural to expect that the conclusion of Corollary 2 holds for
flag triangulations of any size, not just sufficiently large. For the γ-vector this was
conjectured in [17]. Moreover, we conjecture that the extremum is stable, in the
sense that if F(M) is sufficiently close to F(J d

2
(n)) then M is still a join of cycles of

total length n and of individual lengths close to n
d/2 , but not necessarily all equal

(see also [2, Conjecture 5.1]).
As mentioned in the introduction, Gal [10] conjectures that for flag homology

spheres M the γ-vector γ(M) is non-negative. This is known to be true in a num-
ber of special cases (see [14, 18, 19] and the references therein). One method of
showing non-negativity is to exhibit a simplicial complex of which γ(M) is the
f -vector. In particular, Nevo and Petersen [18, Problem 6.4] asked if for every n-
vertex flag homology sphere M there exists a graph G such that the γ-vector of
M is the clique vector of G. Our result γi(M) ≤ γi(Jr(n)) supports this claim in
odd dimension 2r − 1. Indeed, one checks that γ1(M) = n − 4r and γi(Jr(n)) =
ei(Tr(n − 4r)). If the conjectural graph G exists, then it is Kr+1-free, has n − 4r ver-
tices, and thus by Zykov’s theorem γi(M) = ei(G) ≤ ei(Tr(n − 4r)) = γi(Jr(n)),
which is what we showed.

Having proved that F(M) ≤ F(Jr(n)) it is tempting to conjecture, for the classi-
cal enumeration vectors (i.e. the f -, h-, g- or γ-vector), a generalization in the spirit
of Theorem 8. We pose this as an open problem.

Problem 16. Let (v1, . . . , vr) be any of ( f0, . . . , fr−1), (h1, . . . , hr), (g1, . . . , gr) or
(γ1, . . . , γr). Is it true that for sufficiently large n the inequalities

(5.1) 1 =
v1(M)

v1(Jr(n))
≥

v2(M)

v2(Jr(n))
≥ . . . ≥

vr(M)

vr(Jr(n))

hold for any flag homology (2r − 1)-manifold (or sphere) M with n vertices?
If vi = γi and M is a homology (2r − 1)-sphere the positive answer to Prob-

lem 16 would follow directly from the conjecture of Nevo and Petersen mentioned
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earlier. In this case the inequalities (5.1) are equivalent to those of Theorem 8 for
some graph G such that γ(M) = e(G).

It is very likely that Jn(r) is the maximizer of face numbers for a wider class of
(2r− 1)-dimensional flag weak pseudomanifolds. A weak pseudomanifold of dimen-
sion d − 1 is a pure (d − 1)-dimensional simplicial complex in which every face of
dimension d − 2 belongs to exactly two maximal faces. For X(G) the condition
translates to saying that every maximal clique in G has size d and for every clique
σ of size d − 1 the link lkG(σ) consists of two isolated vertices.

Problem 17. Let r ≥ 2. Is it true that:

(i) for every n-vertex flag weak (2r− 1)-pseudomanifold M with n sufficiently
large we have fi(M) ≤ fi(Jr(n)) for i = 1, . . . 2r − 1? This is open even for
i = 1.

(ii) for every β > 0 there is a constant n0 such that for every flag weak (2r− 1)-
pseudomanifold M with n ≥ n0 vertices we have fr(M) ≤ βnr+1 ?

Recall that for homology manifolds condition (ii), guaranteed by Lemma 4 and
ultimately by the middle Dehn–Sommerville equation, is the weakest possible as-
sumption which allows us to initiate the stability method for dense graphs. The
first author proved in [1] that for families of flag weak (2r − 1)-pseudomanifolds
which satisfy a stronger condition fr(M) ≤ Cnr for some fixed C we have f1(M) ≤
f1(Jr(n)) for sufficiently large n.

In even dimensions the situation seems to be more complicated. For r ≥ 1 let
J∗r (n) be the graph obtained from Jr(n − 2) by adding two new vertices adjacent
to all of Jr(n − 2). Then the clique complex J∗r (n) := X(J∗r (n)) is a flag simplicial
2r-sphere.

Conjecture 18. Fix r ≥ 2. For every flag homology 2r-sphere M with n vertices we have
fi(M) ≤ fi(J

∗
r (n)) for i = 0, . . . , 2r and γi(M) ≤ γi(J

∗
r (n)) for i = 0, . . . , r.

This statement is obviously true when r = 1, since ( f0(M), f1(M), f2(M)) =
(n, 2n − 4, 3n − 6) and all the inequalities are equalities for every M. Also for
r ≥ 2 the conjecture (if true) cannot be augmented by a uniqueness statement. To
see this, consider the subgraph of J∗r (n) induced by Vi ∪ {a, b}, where Vi is any
part of V(Jr(n − 2)) = V1 ⊔ · · · ⊔ Vr and a, b are the two additional vertices. It is a
flag triangulation of S2 as the suspension of a cycle. Upon replacing this subgraph
by any other flag triangulation of S2 with the same number of vertices one gets a
flag simplicial 2r-sphere with the same face numbers as J∗r (n).
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