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Abstract

We derive an a priori error estimate for the numerical solution obtained by time and space dis-
cretization by the finite volume/finite element method of the barotropic Navier—Stokes equations. The
numerical solution on a convenient polyhedral domain approximating a sufficiently smooth bounded
domain is compared with an exact solution of the barotropic Navier—Stokes equations with a bounded
density. The result is unconditional in the sense that there are no assumed bounds on the numeri-
cal solution. It is obtained by the combination of discrete relative energy inequality derived in [17]
and several recent results in the theory of compressible Navier-Stokes equations concerning blow up
criterion established in [26] and weak strong uniqueness principle established in [10].

Key words: Navier-Stokes system, finite element numerical method, finite volume numerical method,
error estimates

AMS classification 35Q30, 656N12, 65N30, 76N10, 76N15, 76M10, 76M12

1 Introduction

We consider the compressible Navier-Stokes equations in the barotropic regime in a space-time cylinder
Qr = (0,T) x Q, where T > 0 is arbitrarily large and Q C R? is a bounded domain:

0o + divy(ou) = 0, (1.1)

O¢(ou) + divy(pu ® u) + Vyp(o) = div,S(Vu), (1.2)

In equations (1.1-1.2) o = o(t,x) > 0 and u = u(t,z) € R, t € [0,T), € Q are unknown density and
velocity fields, while S and p are viscous stress and pressure characterizing the fluid via the constitutive
relations

S(Vzu) = (Vzu +Via - ;div:CuH) , >0, (1.3)
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European Union’s Seventh Framework Programme (FP7/2007-2013)/ ERC Grant Agreement 320078. The Institute of
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?'(o)

p € C*(0,00) N C0,00), p(0) =0, p'(0) >0 for all p >0, lim S =P > 0, (1.4)
0—00 0
where v > 1.
Assumption p’(0) > 0 excludes constitutive laws behaving as ¢7 as ¢ — 01. Error estimate stated in

p'(0)
o1

Theorem 3.8 however still holds in the case lim,_,o+ > 0 at the price of some additional difficulties,
see [17] for more details.

Equations (1.1-1.2) are completed with the no-slip boundary conditions

ulsn =0, (1.5)

and initial conditions -
0(0,-) = 00, u(0,-) =ug, go >0 in Q. (1.6)

We notice that under assumption (1.3), we may write
div,S(Vyu) = pAu + %deivxu. (1.7)

The results on error estimates for numerical schemes for the compressible Navier-Stokes equations are
in the mathematical literature on short supply. We refer the reader to papers of Liu [24], [25], Yovanovic
[31], Gallouet et al. [17].

In [17] the authors have developed a methodology of deriving unconditional error estimates for the
numerical schemes to the compressible Navier-Stokes equations (1.1-1.6) and applied it to the numerical
scheme (3.5-3.7) discretizing the system on polyhedral domains. They have obtained error estimates for
the discrete solution with respect to a classical solution of the system on the same (polyhedral) domain.
In spite of the fact that [17] provides the first and to the best of our knowledge so far the sole error
estimate for discrete solutions of a finite volume/finite element approximation to a model of compressible
fluids that does not need any assumed bounds on the numerical solution itself, it has two weak points:
1) The existence of classical solutions on at least a short time interval to the compressible Navier-Stokes
equations is known for smooth C® domains (see Valli, Zajaczkowski [28] or Cho, Choe, Kim [2]) but may
not be in general true on the polyhedral domains. 2) The numerical solutions are compared with the
classical exact solutions (as is usual in any previous existing mathematical literature). In this paper we
address both points raised above and to a certain extent remove the limitations of the theory presented
in [17].

More precisely, we generalize the result of Gallouet et al. [17, Theorem 3.1] in two directions:

(1) The physical domain {2 filled by the fluid and the numerical domain €, h > 0 approximating the
physical domain do not need to coincide.

(2) If the physical domain is sufficiently smooth (at least of class C®) and the C®— initial data satisfy
natural compatibility conditions, we are able to obtain the unconditional error estimates with
respect to any weak exact solution with bounded density.

As in [17], and in contrast with any other error estimate literature dealing with finite volume or mixed
finite volume/finite element methods for compressible fluids (Yovanovich [31], Cances et al [5], Eymard
et al. [9], Villa, Villedieu [30], Rohde, Yovanovich [29], Gastaldo et al. [18] and others) this result does
not require any assumed bounds on the discrete solution: the sole bounds needed for the result are
those provided by the numerical scheme. Moreover, in contrast with [17] and with all above mentioned
papers, the exact solution is solely weak solution with bounded density. This seemingly weak hypothesis
is compensated by the regularity and compatibility conditions imposed on initial data that make possible
a (sophisticated) bootstrapping argument showing that weak solutions with bounded density are in fact
strong solutions in the class investigated in [17].
These results are achieved by using the following tools:



(1) The technique introduced in [17] modified in order to accommodate non-zero velocity of the exact
sample solution on the boundary of the numerical domain.

(2) Three fundamental recent results from the theory of compressible Navier-Stokes equations, namely

e Local in time existence of strong solutions in class (2.11-2.12) by Cho, Choe, Kim [2].
e Weak strong uniqueness principle proved in [10] (see also [14]).

e Blow up criterion for strong solutions in the class (2.11-2.12) by Sun, Wang, Zhang [26].

The three above mentioned items allow to show that the weak solution with bounded density
emanating from the sufficiently smooth initial data is in fact a strong solution defined on the large
time interval [0,7).

(3) Bootstrapping argument using recent results on maximal regularity for parabolic systems by Danchin
[8], Denk, Pruess, Hieber [3] and Krylov [21]. The last item allows to bootstrap the strong solution
in the class Cho, Choe, Kim [2] to the class needed for the error estimates in [17], provided a
certain compatibility condition for the initial data is satisfied.

2 Preliminaries
2.1 Weak and strong solutions to the Navier-Stokes system

We introduce the notion of the weak solution to system (1.1-1.4):

Definition 2.1 (Weak solutions). Let gg : Q — [0,+00) and ug : Q — R3 with finite energy Ey =
Jo(Gooluol* + H(oo)) dz and finite mass 0 < Mo = [, 00 dw. We shall say that the pair (o,u) is a weak
solution to the problem (1.1)—(1.6) emanating from the initial data (0o, wo) if:

(a) 0 € Cyear ([0, T); LYQ)), for a certain a > 1, 0> 0 a.e. in (0,T), and u € L*(0,T; W01’2(Q;R3)).

(b) the continuity equation (1.1) is satisfied in the following weak sense
/ Qgpdx‘; = / / (g@tgo + ou - chp) dxdt, V7 € [0,T), Vo € C([0,T] x Q). (2.1)
Q 0 Jo

(c) ou € Cyeak([0, T]; LP(Q;R3)), for a certain b > 1, and the momentum equation (1.2) is satisfied in
the weak sense,

/Qu-godac
Q

- / / (,uVu : Veedrdt+(p+ )x)divudivgp) dzdt, V1 € [0,T], Vo € C([0,T] x Q;R3).
0 Ja
(2.2)

:/ /(Qu'atcp+gu®u:ch—I—p(Q)divgo)d:cdt
0 0 Jao

(d) The following energy inequality is satisfied
1 T T
/ (fg|u]2+H(g)> dx’ —i—/ / (u\Vu]Q—i—(p,—i—/\)]diqu) dzdt <0, for a.a. 7€ (0,7T), (2.3)
0 \2 o Jo Ja

with H(p) = Q/g p(z)dz. (2.4)

1Z2

Here and hereafter the symbol / gdz |j is meant for / g(m,x)dz — / go(z) dx.
Q Q Q
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In the above definition, we tacitly assume that all the integrals in the formulas (2.1)—(2.3) are defined
and we recall that Cyeak ([0, T]; L*(€2)) is the space of functions of L>°([0,T]; L*(€2)) which are continuous
as functions of time in the weak topology of the space L*(£2).

We notice that the function g — H(p) is a solution of the ordinary differential equation oH’(o) —
H(p) = p(o) with the constant of integration fixed such that H(1) = 0.

Note that the existence of weak solutions emanating from the finite energy initial data is well-known
on bounded Lipschitz domains provided v > 3/2, see Lions [23] for ‘large’ values of +, Feireisl and
coauthors [13] for v > 3/2.

Proposition 2.1. Suppose the Q C R? is a bounded domain of class C>. Let r, V be a weak solution to
problem (1.1-1.6) in (0,T) x Q, originating from the initial data

ro € C3(Q), 1o > 0 in Q, (2.5)
Vo € C3(; RY), (2.6)
satisfying the compatibility conditions
Voloa =0, Vup(ro)laa = diveS(V.Vo)laq, (2.7)
and such that
0<7r<7aa in(0,T)x Q. (2.8)

Then r, V is a classical solution satisfying the bounds:
1L/7lloqoryay + 17 llor o sy + 18 VarlleqoriLesrsy) + 107 | oqoryze @) < D; (2.9)

IVl o.rixgias) + IVIcqomcz@rey + 10:Ve Viloqoryre@rssy + 105 Vilz2oriLs@) < D, (2.10)

where D depends on Q, T, ¥, and the initial data o, Vo (via |](7“0,V0)H03(§,R4) and min, g ro(x)).

Proof:
The proof will be carried over in several steps.
Step 1
According to Cho, Choe, and Kim [2], problem (1.1-1.6) admits a strong solution unique in the class
r e C([0,Ta); WH(Q)), 9y € C([0,Tar); L8 (Q)), 1/r € L=(Qr), (2.11)
V e C([0, To); W2(Q; R®)) N L2(0, Tar; W2S(Q; R)), 9,V € L2(0, Tar; Wy (€4 R%)). (2.12)

defined on a time interval [0,Th), where T3 > 0 is finite or infinite and depends on the initial data.
Moreover, for any T, < Ty, there is a constant ¢ = ¢(T};) such that

7\l Lo 0,75, ;w18 (9)) + 19¢7l[ oo (0,77, 58 ) + 11/ 7| Lo (@) (2.13)
I Vlizeryw22@rs)) + [ VIiezory,w2e@rs) + [10:Viz2 01, wi2)
< c(lIrollwro@ + IVollwez) )-

Step 2

By virtue of the weak-strong uniqueness result stated in [10, Theorem 4.1] (see also [14, Theorem
4.6]), the weak solution r, V coincides on the time interval [0, Ts) with the strong solution, the existence
of which is claimed in the previous step. According to Sun, Wang, Zhang [26, Theorem 1.3], if Th < oo
then

lim sup |[r(¢)|| Lo () = oo
t—Tp—



Since (2.8) holds, we infer that Ty = T. At this point we conclude that couple (r, V) possesses regularity
(2.11-2.12) and that that the bound (2.13) holds with ¢ dependent solely on 7.

Step 3

Since the initial data enjoy the regularity and compatibility conditions stated in (2.5-2.7), a straight-
forward bootstrap argument gives rise to better bounds, specifically, the solution belongs to the Valli-
Zajaczkowski (see [28, Theorem 2.5]) class

re C([0,T]; W32(Q)), dr € L*(0,T; W2(Q)), (2.14)

V e C([0,T]; W32(Q)) N L*(0, T; W*2(Q; R®)), 9,V € L*(0,T; W?%(Q; R%)), (2.15)
where, similarly to the previous step, the norms depend only on the initial data, 7, and T

Step 4
We write equation (1.2) in the form

1 1
OV — ~diveS(VaV) = =V ViV + ~Vap(r), (2.16)

where, by virtue of (2.15) and a simple interpolation argument, V. € C1+7([0,T] x €; R3*3), and, by
the same token r € C1([0,7T] x Q) for some v > 0. Consequently, by means of the standard theory
of parabolic equations, see for instance Ladyzhenskaya et al. [22], we may infer that r, V is a classical
solution,

drV, V2V Holder continuous in [0, 7] x €. (2.17)
and, going back to (1.1),
Oyr Holder continuous in [0, 7] x Q. (2.18)
Step 5
We write

Vo0 = =V, V - Vor — V- V2r — Vordiv,V — rV,div, V;
whence, by virtue (2.14), (2.17), (2.18), and the Sobolev embedding W2 — L6,
opr € C([0,T]; WhH5(Q)). (2.19)

Next, we differentiate (2.16) with respect to t. Denoting Z = 9;V we therefore obtain

1 1 1
Od — ;divxS(VxZ) +V - -V.,Z =0 <r> div,S(V,V) =9,V - V.,V + 0, (Tvxp(r)> , (2.20)
where, in view of (2.19) and the previously established estimates, the expression on the right-hand side is

bounded in C([0,7T7]; L5(£2; R?)). Thus using the LP—maximal regularity (see Denk, Hieber, and Pruess
[3], Krylov [21] or Danchin [8, Theorem 2.2] ), we deduce that

OV =07 € L*(0,T; LS R?)), 9,V =27 € C([0,T]; WHo(; R?)). (2.21)

Finally, writing
B} = OV - Vur — V- 9V,r — 9yrdiv, V — rdydiv, V,
and using (2.19), (2.21), we obtain the desired conclusion

07y € C([0,T]; L5(2)).

O
Here and hereafter, we shall use notation a S band a~b. the symbol a < b means that there exists
c=1¢(Q,T,u,v) > 0 such that a < ¢b; a ~ b means a Sband bR a.



2.2 Extension lemma

Lemma 2.1. Under the hypotheses of Proposition 2.1, the functions r and V can be extended outside
Q in such a way that:

(1) The extended functions (still denoted by r and V) are such that V is compactly supported in
[0,7] x R3 and r > 1 > 0.

(2)
IVl o= rrey + I VIicqocarsze) + 105V Viieqormormerexe)) + 107 Vlr2 0,120 (%))
(2.22)
SN VIlerqoaarsy + IVlcqorier@rsy) + 10V Viieoryzs@srsay) + 102 ViL20miLs @)
(3) ,
7l o, xr3) + 10V arllego.m; Lo (r3: 7)) + 11947 | c(o,1;6 (R3Y) (2.23)
~ Il o,y + 10:Var loqoryzoirey + 107l e ooy +
Hvucl([o,T]xﬁ;RS) + HVHc([o,T];c2(§;RS)) + H8tvccv||C([0,T];L6(Q;R3X3)) + ”at2,tVHL2(0,T;L6(Q))§
(4)

Or 4 div,(rV) = 0 in (0,T) x R3. (2.24)

Proof: We first construct the extension of the vector field V. To this end, we follow the standard
construction in the flat domain, see Adams [1, Chapter 5, Theorem 5.22] and combine it with the
standard procedure of ‘flattening’ of the boundary and the partition of unity technique, we get (2.22)
Once this is done, we solve on the whole space the transport equation (2.24). It is easy to show that the
unique solution r of this equation possesses regularity and estimates stated in (2.23). ]

Remark 2.1. Here and hereafter, we denote X7(R3) a subset of L?((0,T) x R?) of couples (r, V), r >0
with finite norm

H(T7V)HXT(R3) = ”THCI([O,T]xR3) + ”athT’HC([O,T];LG(R3;R3)) + HagtrHC([O,T];LG(R?’)) (2.25)

Vo1 o< rem3) + IV loomsczre:rey) + 100V Vileqommore:rexsy) + 107Vl 20,700 (r%)

We notice that the first component of the couple belonging to X7(R3) is always strictly positive on
[0,T] x R? and set

0 <7 =miny e mxre”(t:2), T =maxg ;e rxrsr(t,z) < oo (2.26)

2.3 Physical domain, mesh approximation

The physical space is represented by a bounded domain  C R? of class C3. The numerical domains €,

are polyhedral domains, -
Qp =Uger K, (2.27)

where 7 is a set of tetrahedra which have the following property: If K N L # 0, K # L, then K N L is

either a common face, or a common edge, or a common vertex. By £(K'), we denote the set of the faces

o of the element K € 7. The set of all faces of the mesh is denoted by &; the set of faces included in

the boundary 09, of 2, is denoted by Eext and the set of internal faces (i.e £ \ Eext) is denoted by Ein.
Further, we ask

V;, € 09, a vertex = V), € 0N. (2.28)



Furthermore, we suppose that each K is a tetrahedron such that
¢[K]| = diam[K] =~ h, (2.29)

where ¢[K] is the radius of the largest ball contained in K.
The properties of this mesh needed in the sequel are formulated in the following lemma, whose (easy)
proof is left to the reader.

Lemma 2.2. There exists a positive constant dq depending solely on the geometric properties of OS2
such that
dist[x, 0Q] < doh?,

for any x € 0Qy,. Moreover,
(0 \ Q) U (Q\ )| ~ B,

We find important to emphasize that Qp ¢ €2, in general.

2.4 Numerical spaces

We denote by Qr(€2;,) the space of piecewise constant functions:
Qn() = {g € L*()| VK € T, g € R}. (2.30)

For a function v in C(£2,), we set

1
VK = & /dex for K € T and Hgv(x) = Z vrli(x), x € Q. (2.31)
KeT

Here and in what follows, 1k is the characteristic function of K.
We define the Crouzeix-Raviart space with ‘zero traces’

Vio(Q) = {v € L*(Q), VK € T, vjx € P1(K), (2.32)

!
Vo € &nt, 0 = K|L, /U|KdS:/deS, Va/eé’ext,/vdS:()},

and ‘with general traces’
Vh(Qh) = {1} S LQ(Q), VK €T, VK S Pl(K), Vo € Ent, 0 = K‘L, /UK ds = / v|L dS} (2.33)

We denote by HX the standard Crouzeix-Raviart projection, and HKO the Crouzeix-Raviart projection
with ‘zero trace’, specifically,

Iy C(Qm) — Va(n), /

g

I [¢] S, = / ¢ dS, for all o € &,

I} o : C(Qm) — Vi(Q), / I} [¢] dS, = / ¢ dS, for all o € &y, / I} o[¢] dSy = 0 whenever o € Eexs.

If v € WhH(Qy,), we set

1
Vo = o] / vdS for o € €. (2.34)
g g
Each element v € V3(£2) can be written in the form
v(x) = ZUUSOU($)7 z € Qp, (2'35)
oe€



where the set {¢s}oee C Vi (24) is the classical Crouzeix-Raviart basis determined by

1
V(o,0’) € £2, ,‘/ Yo dS = 6500. (2.36)
g o!
Similarly, each element v € V}, ¢(€2),) can be written in the form
= Z Vopo(x), x € Q. (2.37)
Uegint

We first recall in Lemmas 2.3-2.7 the standard properties of the projection HZ. The collection of
their proofs in the requested generality can be found in the Appendix of [17] with exception of Lemma
2.8 and its Corollary 2.1. We refer to the monograph of Brezzi, Fortin [4], the Crouzeix’s and Raviart’s
paper [6], Gallouet, Herbin, Latché [16] for the original versions of some of these proofs. We present the
proof of Lemma 2.8 dealing with the comparison of projections HhV and HKO that we did not find in the
literature.

Lemma 2.3. The following estimates hold true:

T [ e )+ 1T o[ v 16) ~ Il oe i) (2.38)
forall K € T and ¢ € C(K);

6 — I0 () Lo () = WVl o sepesy, s =1,2, 1 <p < o0, (2.39)
and
1V (6 = T (8D Lo (reamey < B IVBll ooy, s = 1,2, 1 < p < o0, (2.40)

forall K € T and ¢ € C*(K).
Lemma 2.4. Let 1 < p < oco. Then

> lolhlvs P = [[0]17, (2.41)
oe€

with any v € Vi,(Qp,).
Lemma 2.5. The following Sobolev-type inequality holds true:
lolftsin, = Y [ 1VaoPda, (242
KeT
with any v € Vi o(Q).
Lemma 2.6. There holds:

> / g divII}[v ]dx—/q div v dz, (2.43)

KeT
for all v € CY(Q,,RY) and all ¢ € Q1 ().

Lemma 2.7 (Jumps over faces in the Crouzeix-Raviart space). For all v € V},((S2p,) there holds

> / Vsn, dS & Z/ Vov|*da, (2.44)

el KeT

where [V]gn, is a jump of v with respect to a normal n, to the face o,

_ : _J vlk(@) —v|L(z) if ne = nok
Veeo=K|L €&y, [Von,(r)= { ol(2) — V(@) if g = mrs

(no i is the normal of o, that is outer w.r. to element K ) and

Ve € o € ext, [Vom, (x)=1v(z), with n, an exterior normal to OLY.



We will need to compare the projections HZ and HZO. Clearly they coincide on ‘interior’ elements
meaning K € 7, KNoQy, = (). We have the following lemma for the tetrahedra with non void intersection
with the boundary.

Lemma 2.8. We have

T} (0] = Ty o[l oe i) + 2l Vo (T8 (6] = T o[ DN oo (icamsy = sup (@] oeo) if K € T, K N, # 0,

UCKmth

(2.45)
for any ¢ € C(K).

Proof: We recall the Crouzeix-Raviart basis (2.36) and the fact that II}" and HKO differ only in
basis functions corresponding to o € Eqxt. We have

I (@] — I}, 0[] | oo i) < ] /¢d5 <c(K)  sup  |Bllpe), (2.46)

UEE(K)ﬁgext O'EE(K)ﬁgext

and
PV (I 6] — 1Y o [6]) | e ) < Voprror | 88|
O'ES( )mgext )
Sch s [l6liee) > Vaps

oCKNoQ o €E(K)NEext Loo(K)

The proof is completed by || >, ce(x)ngn Voo llrex) < c(K)h=t. O

In fact, in the derivation of the error estimates we will use the consequence of the above observations
formulated in the following two corollaries.

Corollary 2.1. Let ¢ € C'(R?) such that ¢|pq = 0. Then we have,

L} (6] — L} o [@][| oo i) = 0 if K € T, K N g, =0, (2.47)

T[] — I} (@]l £ (10 + BlIV o (LY [@] — TIY [0l e (16 29) ~ B2 V|l oo (R3;Ro) (2.48)
if K €T, KNOQ, #0, 0K ¢ 09.

Proof: Relation (2.47) follows immediately from (2.45), as there is an empty sum on the right hand
side for ‘interior’ elements (K N oy, = 0).
For any x € 09, there exists y € 09 (and thus ¢(y) = 0) such that

|6(2)] < dist[z, y)[|Vad |l Lo (r3irs) ~ B[Vl Lo (r3:5), (2.49)

where we used Lemma 2.2 for the latter inequality. The proof is completed by taking supremum over
K € 7;, and combining with (2.49). Note that the mesh regularity property (2.29) supplies a uniform
estimate of constants ¢(K) from the previous lemma, which enables to write the latter inequality in
(2.49). O

Corollary 2.2. For any ¢ € C(R?),

ITTY 6] = Ty o[l o (ae) ~ W71l e 1 < P < 00, (2.50)



Proof: Apply inverse estimates (see e.g. [20, Lemma 2.9]) to (2.45). O
We will frequently use the Poincaré, Sobolev and interpolation inequalities on tetrahedra reported
in the following lemma.

Lemma 2.9.

(1) We have,
lo = vkl o) ~ BIIVOllLo (i), (2.51)

Vo € E(K), [lv—voll o) ~ hlIVVll o), (2.52)
for any v € WIP(K), where 1 < p < oo.

(2) There holds

v = vkl Lo (k) S Vvl e (k) (2.53)
Vo € E(K), v = voll o i) ~ V0l r(r0), (2.54)
for any v € WP(K), 1 < p < d, where p* = ddfpp.
(3) We have,
o = vkl gy < B2 IV0l ey (2.55)
1o = vl Lagrey < e’V 0l| oy, (2.56)

for any v e WIP(K), 1 < p < d, where % :%+ 110_*6'

We finish the section of preliminaries by recalling two algebraic inequalities 1) the ‘imbedding’ in-

equality
a 1/p L 1/q
(Z \%I”) < (Z \ailq) : (2.57)
i=1 i=1

for all a = (ay,...,ar) € R, 1 < ¢ < p < oo and the discrete Holder inequality

L L 1/q /& 1/p
> laillbid < (D laal?) (D lail?) (2.58)
i=1 =1 =1

for all @ = (ay,...,ar) € R, b= (by,...,br) € RE, %—}—%:1.

3 Main result
Here and hereafter we systematically use the following abbreviated notation:
o =T07(¢], én=T0[¢], éno =TT} [0 (3.1)
For a function v € C([0,T], L'(2)) we set
v () = v(tn, x), (3.2)

where tg =0 <t; < ... <tp_1 <tp <tpy1 <...ty =T is a partition of the interval [0, T]. Finally, for
a function v € V,,(€,) we denote

Viv(z) = Y Vevo()lg(x), divpv(z) =) divev(z)lx(z). (3.3)

KeT KeT
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In order to ensure the positivity of the approximate densities, we shall use an upwinding technique
for the density in the mass equation. For ¢ € Qn(Q) and uw € V4, 0(2; R?), the upwinding of ¢ with
respect to w is defined, for 0 = K|L € &y by

, (3.4)

g

wp _ gk if us -ngr >0
qr if Uy - na,KSO

and we denote

Upk (g, u) = Z 5" Us - MoK = Z (QK[UU g k] +qrlug - nU,K]_>a
O’E(S‘(K)Cﬁgint aEE(K)ﬂ&nt
where a® = max(a,0), a~ = min(a,0).

3.1 Numerical scheme

We consider a couple (o, u™) = (o™AHM) w™ALR)Y of (numerical) solutions of the following algebraic
system (numerical scheme):
Qn GQh(Qh), Qn >07 u” e Vmo(Qh;RB), n:O,l,...,N, (3.5)

Z|K|QK cic b+ Y > ol (u} ne k)b =0 for any ¢ € Qu(Q) andn=1,..., N,

KeT KeT oe&(K)

(3.6)
‘K| n aAn n—1,n—1 n,up 2, n,u n
> E(QKUK — 0} Uk ) ok Y Y olar™aruy cne k] - vk (3.7)
KeT KeT oeé(K)
=S pek) Y lolvo nngz/ V' Vo de
KeT oce&(K) KeT

MZ/dIVU dive dz = 0, for any v € Vi, 0(Q; R*) andn =1,...,N.
KeT

The numerical solutions depend on the size h of the space discretisation and on the time step At. For
the sake of clarity and in order to simplify notation we will always systematically write in all formulas
(0", u") instead of (o™ (At g (Ath)Y,

Existence of a solution to problem (3.5-3.7) is well known together with the fact that any solution
(0")1<n<n C (Qr(Q))N satisfies o™ > 0 provided ¢ > 0 thanks to the upwind choice in (3.6) (see e.g.
[15, 20]).

Remark 3.1. Throughout the paper, q5° is defined in (3.4), where u is the numerical solution constructed
in (3.5-3.7).
3.2 Error estimates

The main result of this paper is announced in the following theorem:

Theorem 3.1. Let Q C R? be a bounded domain of class C3 and let the pressure satisfy (1.4) with
v > 3/2. Let {0",u"}o<n<n be a family of numerical solutions resulting from the scheme (3.5-3.7).
Moreover, suppose there are initial data [ro, Vo] belonging to the regularity class specified in Proposition

11



2.1 and giving rise to a weak solution [r, V| to the initial-boundary value problem (1.1-1.6) in (0,T) x Q
satisfying
0<r(t,x) <T a.a. in (0,7) x Q.

Then [r, V] is reqular and there exists a positive number

C = C(MQ, Eo, r, ?, ’p/|01[ﬁﬂ’ H (8tr, V’F, V, 8tV, VV, V2V) ”LOO(QT;R45)7

HangLl(O,T;LV/(Q))v H8terL2(O,T;L67/5W*6(Q;R3))’ H@fV, 8NVHL2 (0,T;L8/5(Q;R12))> )

such that
sup / [;g”]ﬁ" V()4 H ") — H (1t ) (0" — r(tn, ) — H(r(tn))] dz (38
1<n<N JONQ,,

+AL > / IViu" — Vo V(t,, ) do

L <men /0N

<c <¢E+ | . Bgomo Vol + H(o") — H (1) (e — 7o) — H<ro>>} dx) ,

where

3 1
if B <~v<2 a= 5 otherwise. (3.9)

Note that for v = 3/2 Theorem 3.1 gives only uniform bounds on the difference of exact and numerical
solution, not the convergence.

4 Uniform estimates
If we take ¢ = 1 in formula (3.6) we get immediately the conservation of mass:
Vn=1,..N, g”dm:/ o’ dx. (4.1)
Q Qs
Next Lemma reports the standard energy estimates for the numerical scheme (3.5-3.7), see again
[15, 20].

Lemma 4.1. Let (0", u"™) be a solution of the discrete problem (3.5-3.7) with the pressure p satisfying
(1.4). Then there exist

0y € [min(ok, o), max(¢f, of)], 0 = K|L € &y, n=1,..., N,

—n—1n

o) "€ min(oft, o), max(oy ', 0k)), K €T, n=1,...,N,
such that

1 1
> K| (Gerlur? + Hew) = D 1K (5ekluk? + Hdk))
KeT KeT

+Atz Z (/L/K|qu"|2da:+(u—i-)\)/K|divu”]2dx)
n=1KeT
+ [Dfime ™ + [Diinie ] + D5l + DRl = 0, (4.2)

time time space space
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forallm=1,..., N, where

| 2

1A |u
(D) Z N 1Ko I—K , (4.3a)
n=1KeT
‘AQ| KH// 7n 1,n ‘QK |2 43b
Dmia = 35 5 (kg 2k g ()
n=1KeT
A % (ul —u})?
D =ars Y el R g (130
n=1 0’=K|L€gim
A a (0% — 0})?
[Dl’ﬁice@' Atz Z ’U|H"(?Z)% lug - 04 K| (4.3d)

n=1 0'=K|LE€1nt
We have the following corollary of Lemma 4.1 (see [17, Lemma 4.1, Lemma 4.2]):
Corollary 4.1. Under assumptions of Lemma 4.1, we have:

(1) There ezists ¢ = ¢(Mo, Eo) > 0 (independent of n, h and At) such that

N
kZ/ Vou"Pdz < c, (4.4)
n=1"%
N
n=1
n An2
Sup,—o,..n 0" u" || L1, < c (4.6)
(2)

sup,—o,..nll0" |27 (0n) < € (4.7)

(3) If the pair (r,U) belongs to the class (2.25) there is ¢ = c(Mo, Eo,r,7, |U, VU poo(qrr12) > 0
such that for alln=1,..., N,

supp,—o,.nE(0", @"|7(tn), U(tn)) < ¢, (4.8)

where

Elouzv) = [ (olu=vP+ Blel2))de. Blole) = H(e) = H'(:)(o = 2) = H(2)

(4) There ezists ¢ = c(Mo, Eo, 1, |[p'|c1,71) > 0 such that

n lisn
n n\2 {ez>1} n .
At g 1 KE|L65 lo|(ok — o) [[max{g;(, o T + 1{§g<1}} luy -ner| <c ifyell,2), (4.9)
n=lo= int

m
AtY N Jol(dk — 0f)? lup ekl <c  ify>2

n=1 o=K|LEEiys
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5 Discrete relative energy inequality
The starting point of our error analysis is the discrete relative energy inequality derived for the numerical
scheme (3.5-3.7) in [17, Theorem 5.1].

Lemma 5.1. Let (0", u"™) be a solution of the discrete problem (3.5-3.7) with the pressure p satisfying
(1.4). Then there holds for allm=1,..., N,

1
> Il (oRlug — URP - oluf — UX2) + D IK|(EeRIrg) - E(ok k)
KeT KeT
6 (5.1)

+Atz Z / Ve(u" — U™)?dz + = / |div(u U”)]de) <>'T,
n=1KeT =1
for any 0 < 1™ € Qn(), U™ € Vio(Q;R3), n=1,..., N, where

T = Atz Z / VU™ : U" —u")dx + 3/ divU"div(U"™ — u") da:),
K

n=1KeT

n—1 n—1 n
Tz—AtZ:IKZ:T]Iﬂ o T U (UK ]
n €

:—Atzz > ol ”up(UK+Un a?“p)- i [uG - 1o,k

n=1 KeT ce&(K)
o=K|L

:—Atzz > olp(ef) U7 - no k],

n=1 KeT gc&(K)
oc=K|L

1-aryS S Wl g (6 - w03,

n= lKGT

TG_AtZZ > lolep™ H (r ) [up - no k).

n=1KeT 0c&(K)
oc=K|L

6 Approximate discrete relative energy inequality

In this section, we transform the right hand side of the relative energy inequality (5.1) to a form that
is more convenient for the comparison with the strong solution. This transformation is given in the
following lemma.

Lemma 6.1 (Approximate relative energy inequality). Let (o™, u™) be a solution of the discrete problem
(3.5-3.7), where the pressure satisfies (1.4) with v > 3/2. Then there exists

c— C(MO, Eo, 2.7 0|t jp.: 106, V1, V, 0V, Y V)| e (0 imts)

198710 13 ey 1907205100 00539 ) > O,
such that for allm=1,..., N, we have:

m|~m Yalls m|am ~ -0 o
| (@ = Vil + B )ae = [ (£l = Vigh + B1*)da
h h

6
OIS S (o [ IV - ViR [ vt - VigIar) < D8+ A

n=1 KeT K i=1

(6.1)
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for any couple (r, V) belonging to the class (2.25), where

Sy = Atzz /v Vi Ve(Vig—u")de+ 7 /dlvVhOdlv(VhO—u )dx),

n=1KeT
n— VZ,O,K - VZBIK n n
:Atzz |K’QK1 At — ( h,O,K_uK)v
n=1KeT
Atz Z Z ’U|Qnup(VZSI; '&Z’UP) ( hoo — Vh0K>VZSI; MoK
n=1KeT oef(K (6.2)
S4——AtZ/ p(o") div V" dx:
n=1"
S5 = AtZ/ ™ —o") )[&gr] " dx,
——AtZ/ —p'(F")u" - Vr'dz
n=1 Qn e
and .
|G™| < cAtZE(g”,iL” f”,Vn), |Rpiadl < c(VAE + 17, (6.3)

n=1

with the power a defined in (3.9) and with the functional € introduced in (4.8).

Proof: We take as test functions U" = Vio and ™ = 7" in the discrete relative energy inequality (5.1).
We keep the left hand side and the first term (term 77) at the right hand side as they stay. The trans-
formation of the remaining terms at the right hand side (terms T5—Tg) is performed in the following steps:

Step 1: Term T>. We have

n n—1

. = 2 Viorx =V
To = Ty + Raa + Rao, with Ty = Aty S |K|of =505 (Vi o i), (6.4)
n=1KeT
and
R21 = Atz Z R21 ) R22 —AtZRQQ’
n=1KeT
where
RE L Vo — VhOK) LS (V= V0. k)?
L9 ok At 2 5 %K At ’
and

n

n—1
n o _ K n—th707K — Vh,O,K . n—1 n
22 = — | K| o At Up  —Ug ).
KeT

We may write by virtue of the first order Taylor formula applied to function ¢ — V(¢,x),

n _ yrn—1 tn
e =l Ll aveeed, Ja

)

- [ [ /t:"l[atvw]w( )] da] < 10 VInol e ey < 10V,
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where we have used the property (2.38) of the projection II} ; on the space V}, (). Therefore, thanks
to the mass conservation (4.1), we get

(6.5)

n, K MO
‘RQ,l ‘ < 7‘K’AtH8tVH%oo(O7T;Loo(Q;R3))-

To treat term Ry, we use the discrete Holder inequality and identity (4.1) in order to get
n 2 1/2 n—1, n—1 n |2 1/2 .
[R50 < At eMol|O:V || 700 (0. 1m0 7y + Mo ( Z |K o |uyg ™ — uk| ) 10V | oo (0,700 (2m3))
KeT

whence, by virtue of estimate (4.2) for the upwind dissipation term (4.3a), one obtains

|R22| < VAt (Mo, Eo, [|0:V || oo (rr3))- (6.6)

Step 2: Term T5. Employing the definition (3.4) of upwind quantities, we easily establish that

T35 =131+ R31,

with T31 = Ati > 3 \U]gg’uI’('&Z’uP V’,ﬁjg“;) Vo xul ek, Rsp _Atz S Ry,

n=1KeT oe&(K) n=10EE
Viox — Vil Vios— Vil
and R = [ofgh 01 UL [ g ) o] O RO |

ul ny )", Vo = K|L € Ep.
Writing
Viok = Vior=Vho—Vilk + Vig = Vi + VL= Vi,
Ve = Via+t Vi = Vi + Vi = Viole, 0 = K|L € &,

and employing estimates (2.47) (if K N 9Qy, = 0), (2.48) (if K N9Qy, # () to evaluate the L>°-norm of
the first term, (2.51) then (2.40)s—; and (2.52) after (2.40)s=; to evaluate the L*°-norm of the second
and third terms, and performing the same tasks at the second line, we get

IViox = Viorliekurrs) < AIVVI oo (kurire); (6.7)

consequently
[RET| < B2 el VV I w01y w01 (0K + 0L )ugl, Yo = K|L € &,

whence

5/6
|Ra1| < h e VVIE e 0.0 xm) < Y. D ok +ef )6/5) X
KeT o=K|Le&(K)

A (X3 wotunt®) )" < e Eo. 19V e ).

n=1 Ke7 ce&(K)

(6.8)

provided v > 6/5, thanks to the discrete Holder inequality, the equivalence relation (2.29), the equiva-
lence of norms (2.41) and energy bounds listed in Corollary 4.1.
Clearly, for each face 0 = K|L € &y, Ul - Mok + Ul - 0, 1, = 0; whence, finally

L=aty Y 3 \a\gnup( P = Vion) - (Viok = Vioo ) s - no. (6.9)

n=1KeT oc&(K

Before the next transformation of term 73, we realize that

hok — Vhoo =[Vio = Vil + Viixk = Vi + Vi, = Vi . +[Vi = Violos
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whence by virtue of (2.47-2.48), (2.51-2.52) and (2.40)s=, similarly as in (6.7),
IVio.x = Vioollrexrs) < cbl[Va VLo or,mo@:r3)), 0 C K. (6.10)
Let us now decompose the term 731 as

m
T371 = T372 + R3,2, with R372 = At Z Rg’27

n=1

n,up R N
T2 = Atz Yo D loleyt (Vhoa U?UP) . ( hoo ~ VZ,O,K)UQ’UP ‘Mg, and

n=1KeT oc&(K)

73,U ,up up n n n ~ n,up
R32_Z Z o]0t p(Vhoa— Uy’ )'(Vh,o,a—vh,o,K)(ua—ua )'na,K-

KeT oe&(K)

By virtue of discrete Hélder’s inequality and estimate (6.10), we get

n,u /
RS ,| < el V'V Lo (opim) (Z Z oo |ane — pr )1 2
KeT océ(K
X ( >y h|0\|92’up|7°) /( ) ( >y h|0|‘u q>1/q,
KeT oe&(K) KeT o0eé(K)

where 1 5+ 27 + 2 =1, 70 = min{v, 2} and v > 3/2. For the sum in the last term of the above product,

we have
Z n—aptP <CZ Z hlo||ul — u|?
KeT oeé(K) KeT ce&(K)
q/2
<o(¥ ¥ (uuz—u"umms 3 ], o) < b0 (D IV o)
KeT 0es(K KeT KeT

where we have used the definition (3.4), the discrete Minkowski inequality, interpolation inequalities
(2.55-2.56) and the discrete ‘imbedding’ inequality (2.57). Now we can go back to the estimate of R,
taking into account the upper bounds (4.4), (4.7-4.8), in order to get

|R3,2| S ha C(MD,EO, HVVHLQQ(QT,RQ))’ (611)

provided v > 3/2, where a is given in (6.3).
Finally, we rewrite term 73 o as

m
T30 =T33+ R33, with R33 = At Z Ry 5,

n=1

n,up n,up
T33_Atz Z Z |o]og™ (Vh()a uauP> : (VZ,O,O' VhOK>VhOU Mok, and (6.12)
n=1 KeT ce&(K)
n,up R ~_M,up
R3 3 = Z Z |o]og ™ (Vh()a — Uy p) : (VZ,O,U - VZ,O,K) (Ug’up - Vh,(),a) "N K
KeT ce&(K)

whence
m

|Rss| < c(|VV | o (p ) A Y E(Q" 0" [, V). (6.13)

n=1
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Step 3: Term T4. Integration by parts over each K € 7 gives
fAtZ Z / p(of)div,Vy o dz.
n=1KeT

We may write
1dive (VG — Vi)llzee () < chlIVaV | oo (0,1;00 (%)) (6.14)

where we have used (2.47-2.48). Therefore, employing identity (2.43) we obtain

Ty="T41+ Ry, T41——AtZZ/ p(o%)div, V™ d, (6.15)
n=1Ke7T
R41——AtZZ/ p(o%)dive (Vo — Vi) da.
n=1KeT

Due to (1.4) and (4.7), p(o") is bounded uniformly in L>°(L!(€2)); employing this fact and (6.14) we
immediately get
|Ra1| < h c(Eo, Mo, [V V|| Lo (0,7;15 (:R9)))- (6.16)

Step 4: Term T5. Using the Taylor formula, we get

_ _ 1 _
/() = H'(r7) = B () — i) = SH () — 77 )2

where 7% € [min(ri !, r%), max(r !, % )]; we infer

n—

m / n n
_ ) —
Ts =Ts1 + Rs 1, with T5 1 = At E g |K|(r?(—g7}<)p(nK) K AtK , Rs1 = At E E R51 , an
n=1KeT "K n=1KeT

Kk 1 (= 1)2
R = LI ) R g ),

Consequently, by the first order Taylor formula applied to function ¢ +— r(t,z) on the interval (¢,—1,t,)
and thanks to the mass conservation (4.1)

‘R571| < At C(M(],z, r, |p/|Cl([Lﬂ7 Haﬁ"HLoo(QT)). (6.17)

Let us now decompose 715 1 as follows:

T51—T52+R52, WlthT52—AtZZ/ ’I“K—QK) ( )[aﬂ“] d$ R52—AtZZR52,a
n=1KeT n=1KeT
Rn,K _ / (,rn _ Qn )p,(r?{) (TK_TTIL( ! [a ’I”]n>d.%'
5,2 K K K T% At t ‘

(6.18)
In accordance with (3.2), here and in the sequel, [0;7]"(x) = Oyr(t,, ). We write using twice the Taylor
formula in the integral form and the Fubini theorem,

tn tn
|p (o (o — i) / / 021 (2)dzdsdz
K Jtn,_1Js

n tn
< P (rk / / |0k —rK\‘82 ‘dmdzds

Tk

52
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P(ri)y n "
< (nK)HQ — 7 HLW(K)/ 1077 (2| L 1y dzds.

TK tn—1
Therefore, by virtue of Corollary 4.1, we have estimate

|Rs5,2| < At ¢(Mo, Eo, 1, T, ‘p/‘Cl([Eﬂv ”8t2rHL1(()7T;LW'(Q))' (6.19)

Step 5: Term Tg. We decompose this term as follows:

=Ts1+ Re 1, Rﬁl—AtZZ Z RnaK, with

n=1 KeT occ&(K)

To1 = Atz Z Z lo|o% (H’(r’}{l) _ H’(r§—1)>ug “Ng i, and

n=1KeT o=K|LeE(K)
Ry = Jo| (ab™® = o ) (H' (i) = B/ 057 )y - g i, for o = KL € .

We will now estimate the term Rgf K We shall treat separately the cases v < 2 and v > 2. The ‘simple’

case v > 2 is left to the reader. The more complicated case v < 2 will be treated as follows: We first
write

1s5n
n,o, K n,u n n>1 n
|R6,1 | < Vh IV H,(T)||L°°(QT;R3)‘U||QJ P — okl [ te }(2,7)/2 + 1{§g<1}} \/ [u? - ng | X

[max{ox, or}]

Ligy=nymax{er, or}]®77% + 1{§3<1}} Vi g - mo k.

where we have employed the first order Taylor formula applied to function = — H'(r(t,—1,2). Conse-
quently, the application of the discrete Holder and Young inequalities yield

|Re,1| < Vhe||VH (r)]| 1 (QrR¥) X

AtZ ( > > ‘U’h[ (ar>ymax{or, 0} + L <1}} |ug - nax\)w

n=1 Ke7T oe&(K)

1ysn /
( Z Z lo|h (05" 97}()2[[ {oz21) = + 1{53<1}] lug - ng,K|)1 i

KET o=K|Le&(K) max{ox, or}]

<Vhe|VH' (r)]| oo () ¥

Atf}{[|szhré+(z|a|h<d;{)2< H(Z Z ol hfu naK|>é

KeT oce&(K

Lign> /
SO lolher - g 22 2,7+1{@g<1}}|u2-n0,;(}”

KeT o=K|LeE(K) max{ox, or}]

< VR VH (1) popimn | Atz [ + (3 lolhter) 2¢) ] (3 lotntuzl®)

KeT el

+ Atz [ Z Z o |h (o™ g?()2 [[ Lign>1y = + 1{@g<1}} lul - na,K|]}

n=1 KeT o=K|Le&(K) max{ox, or}]

< \/E C(MOa Eo,r,7, |p |C([£,?])7 ”VTHLOO(QT;Rs))a

where, in order to get the last line, we have used the estimate (4.9) of the numerical dissipation to
evaluate the second term, and finally equivalence of norms (2.41),—¢ together with (4.5) and (4.7), under
assumption v > 12/11, to evaluate the first term.
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Let us now decompose the term 751 as

Ts1 = Too + Re o, with Tgo = Atz Yo > lolekH i = r D ul - ng k],
n=1KeT o=K|Lc&(K)

Ay Y > REGE, an

n=1KeKoe&(K
Ryg™ = |olok (H’(rK- )= () = H (i)t = v ) [l - mg )

Therefore, by virtue of the second order Taylor formula applied to function H’, the Holder inequality,
(2.41), and (4.5), (4.7) in Corollary 4.1, we have, provided v > 6/5,

|[Re2| < hC(|H"\c<[m) + |H"'!c<[m>) V7| oo (@) A > 1™ i 1™ | 2o (0, %)

n=1

< h (Mo, Eo, 1,7, [P'| o1 (1r70)s IV oo (0m3))- (6.20)

Let us now deal with the term Tg>. Noting that / vt lde = Z lo|(r2=t — P g i, we
K
cel(K)
may write T52 = Tg 3 + Rg 3, with

T63——AtZZ/ o H" (r7= 1u -Vrtlde,

n=1KeT

Re3 = Atz > / H (Y (u - ul) - Vet de

n=1KeT

m
FAT ST ST ol B (Y (5 — e ) (ul — ul) - ok

n=1KeT oe&(K)

Consequently, by virtue of Holder’s inequality, interpolation inequality (2.55) (to estimate ||u"—uk | L% (R

by h(10-6)/(270) IVau™ || 12k ro)> 70 = min{y,2}) in the first term, and by the Taylor formula applied to

function « — r(t,—1, ), then Hélder’s inequality and (2.55-2.56) (to estimate ||u}} — u’}(HL%(K.st) by
h{510=6)/(20) IVau™|| L2k ie)), We get
— 5’)/0 —6
|Re 3| < h* e(Mo, Eo,r, 7, | |1 (ipip | V7|l oo (@pm3y)s 0 = o (6.21)

provided v > 6/5, where we have used at the end the discrete imbedding and Holder inequalities (2.57—
2.58) and finally estimates (4.4) and (4.7).
Finally we write Tg 3 = T 4 + Rg.4, with

T64——At22/ "p ”-vr"dx,

n=1KeT (622)
Rg= Atz Z / o H// _ H//(T%—l)vrn—l) " dz,
n=1KeT
where by the same token as in (6.19),
|Re,4] < At e(Mo, Eo, 1,7, 0| e (g, V7, 06| oo (0wt 106V 7 (| 120 7,167/ 6v—0) (.m5))) (6.23)
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provided v > 6/5.

We are now in position to conclude the proof of Lemma 6.1: we obtain the inequality (6.1) by
gathering the principal terms (6.4), (6.12), (6.15), (6.18), (6.22) and the residual terms estimated in
(6.5), (6.6), (6.8), (6.11), (6.13), (6.17), (6.19), (6.20), (6.21), (6.23) at the right hand side Z?:1Ti of
the discrete relative energy inequality (5.1).

O

7 A discrete identity satisfied by the strong solution

This section is devoted to the proof of a discrete identity satisfied by any strong solution of problem (1.1-
1.6) in the class (2.9-2.10) extended eventually to R?® according to Lemma 2.1. This identity is stated in
Lemma 7.1 below. It will be used in combination with the approximate relative energy inequality stated
in Lemma 6.1 to deduce the convenient form of the relative energy inequality verified by any function
being a strong solution to the compressible Navier-Stokes system. This last step is performed in the
next section.

Lemma 7.1 (A discrete identity for strong solutions). Let (0", u™) be a solution of the discrete problem
(3.5-8.7) with the pressure satisfying (1.4), where v > 3/2. There exists

¢= c(MO, Eo,r, 7 9|0t [|@er, V1, V, 0V, YV V2V | e 0 85)-

||at2r”L1(07T;L’V )’ ||atV7“HL2 0,T;L67/57=6((;R3)) ||62V atVVHL2 (0,T;L8/5(8 R12))> >0,

such that for allm=1,..., N, we have:

6
> S+ Ryar =0, (7.1)
=1
where
S = Atzz /v Vi Va(Vig— )dx+3/ divVy odiv(Vy, — ”)dx),
n=1KeT
v o Vn—l
:At;éwr?{l R (Vi — ).
S = Atz > > |‘7‘TnuP<VZEIZr AnuP) : (Vz,o,a Vh0K>VZ(1)u;' 0. K
n=1KeT ge&(K
= —AtZ/ ") div V" da,
Qp
S5 =0,
= —AtZ/ -Vr'dz,
and

Ritad < e(H7° + At),

for any couple (r, V) belonging to (2.25) and satisfying the continuity equation (1.1) on (0,T) x R® and
momentum equation (1.2) with boundary conditions (1.5) on (0,T) x Q in the classical sense.
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Before starting the proof we recall an auxiliary algebraic inequality whose straightforward proof is
left to the reader, and introduce some notations.

Lemma 7.2. Let p satisfies assumptions(1.4). Let 0 < a < b < co. Then there exists ¢ = c(a,b) > 0
such that for all p € [0,00) and r € [a,b] there holds

B(olr) = c(a, ) (1r,\o/22(0) + 6" 1\ a2.(0) + (0 = )10 201 (0) ).
where E(o|r) is defined in (4.8).

If we take in Lemma 7.2 9 = ¢"(x), r = #"(z), a = r, b =T (where r is a function belonging to class
(2.25) and r, 7 are its lower and upper bounds, respectively), we obtain

E(o" ()" () = ¢(r, ?)<1R+\[z/z,zﬂ(Q”(w))Jr(Q”)”(w)lm\[ﬁ/z,zﬂ(9”(96))+(9"(96)—f"(x))zl[z/z,m(@"(w)))-

(7.2)
Now, for fixed numbers r and 7 and fixed functions ¢", n = 0,..., N, we introduce the residual and
essential subsets of Q (relative to ¢") as follows:
1
Ni = o e Q| 1r < ") < 27}, NI = Q\ NG, (73)

and we set
[9less () = g(@)Ing, (%), [glres(2) = g(2)1np, (2), =€ Q, g€ L(Q).
Integrating inequality (7.2) we deduce

2

e(r,7) KEE;T/K (M L+ [(g")”} o+ [g" - f”] ) da < E(o", u" |7, V™), (7.4)

for any pair (r, V') belonging to the class (2.25) and any 0" € Qx(Q4), 0™ > 0.
We are now ready to proceed to the proof of Lemma 7.1.

Proof: Since (r, V) satisfies (1.1) on (0,7) x © and belongs to the class (2.25), Equation (1.2) can
be rewritten in the form

rOV +rV -VV +Vp(r) — pAV — p/3VdivV =0 in (0,7) x Q.

From this fact, we deduce the identity

7

5
7, = Ro, (7.5)
—

where

-y
n=1

. n ILL : n n n _ & n n n n
Tl:At;/Qh (MAV +§Vd1vV )-(V,Lofu ) dez, E—At;/ﬂhr [OV]" - (Vi —u")du,

o (r”[@tV]" + V. VV" £ Vp(r") — pAV" — %V div V”) (Vo —u")du,
h

T = AtZ/Q VYV (Vi —u)de, Ty = Atz ; Vp(r") - Vi o dz,
n=1 h = h

75 =0, Ts = —Atz Vp(r™) - u" dz.
1Y
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In the steps below, we deal with each of the terms R and 7;.

Step 0: Term Ry. By the Holder inequality

[Rol <120\ QU (T, [P lcgpm, [ (0er, Vi, VYV, VPV | e opminy A D (6™ | 1s@,) + Vil (2))

n=1

< h5/3 C(M(]a E07 T, |p/|C’[LF]7 || (8tra VT, Va VV, V2V) HLOC (Qr;R*3)» (76)
where we have used (4.5) and (2.47-2.48), (2.38).
Step 1: Term 7;. Integrating by parts, we get:

Ty =T+ R,

with Typ = Aty - / (HVVig: (Vi — ") + Ediv Vi div(Vig —u")) da.
n=1keT 'K

and Rl,l =11 + Iy, with

< n n n n /1/ : n n : n n
I = At E E (MV(V V3o V(Vie—u") + 5 div(V" =V} ) div(Vy g —u )) dz, (7.7)
n=1KeT 'K 3

[2:—Atzz Z /(uan-VV"-( Z7o—un)+%divV"( Z’O—u")-ngvK>dS

n=1KeT ce&(K)"°

—ay 3

n=1 ce£”°

(,ng VA [ ho— u”} + %div V”[ ho— u”] : ng> ds,

o,Ng o,Ng
where in the last line n, is the unit normal to the face o and -], , is the jump over sigma (with respect
to n,) defined in Lemma 2.7.

To estimate I, we use the Cauchy-Schwartz inequality, decompose V" — V', = V" — Vp 4+ V' —
Vi o and employ estimates (2.40)s=2, (2.47-2.48) to evaluate the norms involving V(V" —V3,), and
decompose V}! ; = V! =V} 4V} use (2.47-2.48), (2.39) =1, (4.4), the Minkowski inequalityt to estimate
the norms involving V(V;;O —u"). We get

’11’ S h C(M07 E07 HVV7 VZVHLOO(O7T;L<>O(Q;R36))).

Since the integral over any face o € &py of the jump of a function from Vj, o(£2p,) is zero, we may write

~I—%<div V"~ (div V”)U> [u" - 270] - ng) ds;

o,ng

whence by using the first order Taylor formula applied to functions x — VV™(z) to evaluate the
differences VV" — (VV"),, div V" — [div V"],, and Hoélder’s inequality,

B < ALh e[| V2V | poigpmery D D VIolVA (\/15 | =vio] L%-Rs))
n=1oc€&nt e 7
< ALh el|VV |l g D D (|0|h+%mun_ ZvOL,nU iz(g;R:s))‘

n=1lo€ int
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Therefore,
’Rl,l‘ < h (Mo, Eo, HV7 VvV, V2VHL°°(QT,R39))7 (78)

where we have employed Lemma 2.7, (4.4) and (2.47-2.48), (2.39).

Step 2: Term 75. Let us now decompose the term 75 as

To =11+ R,
: - n—an — Vn_l n n < n,K
with 731 = Atz Z Kr A (Vio—u")dz, Ro1= Atz Z Ray1 s
n=1KeT n=1KeT
n n n— n n n n— n v — Vn_l n n
andRQ;{(:/(r — DBV (Vi — )daz+/ r[ov] - ) - (Vi — ") da.
K K

The remainder RglK can be rewritten as follows

tn

n 1 _ tn tn
RQ;{(:/ [ ot )at] [0v) Z’O—un)daz—l—At/ " 1[/ OFV (2, -)dzds (Vi g—u") da
K trn—1 K t

n—1+YS$

whence, by the Holder inequality,

Ryl < A'f[(ll?”HLoo(QT) + 1100 2@ ) 10V | oo ety LI O (™ sy + Vol o (1))

HIO7 V™ )| pors(mey) (1" sy + 1V ollzs )|

Consequently, by the same token as in (6.19) or (6.23),
Ra1| < AtC<M0a Eo, 7, [[(Owr, V, 0V, VV)HLOO(QT;Rm)v ||8152VHL2(0,T;L6/5(Q;R3))>> (7.9)

where we have used the discrete Holder and Young inequalities, the estimates (2.38), (2.47-2.48) and
the energy bound (4.4) from Corollary 4.1.

Step 2a: Term 75;. We decompose the term 73 as

To1 =Tro+ Rop,

with ,2—272 _ Ati Z /K,,Q;L(IVW_AE/R_I . ( 270 — u”) dz, RQQ = Ati Z 7—\’,3:2[(,

n=1KeT n=1KeT

n,K n— n— V" — anl n n
and Ry = /K(r ! —Tg 1)7At - ( ho — U ) dz;

therefore,

K
’Rg2| = | Z R;a ’ < hc||V7‘||Loo(QT;R3)||8tV||Loo(QT;R3)||u" — VZ,0||L6(Q;R3)‘
KeT

Consequently, by virtue of formula (4.5) for u™ and estimates (2.38), (2.47-2.48),

[Ra2l < he(Mo, Eo, [[(Vr, V.0V, VV)| e (@rii))- (7.10)

24



Step 2b: Term 75 5. We decompose the term 735 as

Too =Tr3+ Rags,

w1th723—AtZZ/ o Vo tV ( u")de, Rzg_AtZZR23,

n=1KeT n=1KeT

marsf = [ (U [ ;Y“m Vg

L (], ] e - v

)

We calculate carefully

1= [ [oveh-aved, - i - wids}a

n—1
1 fn
< — /
= K
At P

Summing over polyhedra K € 7 we get simply by using the discrete Sobolev inequality

tn / / /
S < i [ Vi ) (3 10V @0V o, )
-1 " KeT KeT (KR

KeT

[0Vl = BV (2)lno)] |

L6/5(K'R3) HV’Z/’O - unHLS(K,RB)dZ'

Loy ™
S ALK 1/t » IVho = w"ll Lo, o) 1104V (2)]n — [atv(z)]’“o‘ L85 )

h5/6
< At/t HVZ,O_unHLG(Qh;R?’)HatV(Z)HLoo(Qh;R?’)dZ,
n—1

where we have used estimate (2.50) to obtain the last line.
As far as the term I, K is concerned, we write

tn tn
I15* At K / : (2) Z]h [ t V() Z} h,K) (u ho) d
hoy [
: At'K /tn—l ’ [(%V(z)}h‘ L6/5(K;R3)Hu = Violl oz,

where we have used the Fubini theorem, Hoélder’s inequality and (2.51), (2.40)s—=1. Further, employing
the Sobolev inequality on the Crouzeix-Raviart space Vj, () (2.42), the Holder inequality and estimate
(2.40) =1, we get

VxﬁtV(z)‘

h tn
I < Ve /
5 1< e = Vil |

L6/5 0 ‘R?)
KeT ( hs )

We reserve the similar treatment to the term I IK . Resuming these calculations and summing over n
from 1 to m we get by using Corollary 4.1 and estimates (2.47-2.48), (2.38),

’R2,3| < h5/6 C(M(Jv Eo, H (Ta V,VV, 8tv) HLOO(QT;R16)7 HatvvHLQ(O,T;L6/5(Q;R9)))' (7'11)
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Step 2c: Term Ty 3. We rewrite this term in the form

m
To3="To4+Rous, Rosa=At Z Z RZ,’f,
n=1KeT
- nox —Viok
ith 75 4 = At n—1 U, 0K on v d 712
e N

n _ anl
and R;l:f — /Kr?{l h,O,KAt h,0,K <(un o unK) - (VZ,O o VZ,O,K)) da.

: . Viox—Vio. :
First, we estimate the L norm of —25—"0K 45 in (6.5). Next, we decompose

n n _ n n n n n n
ho = Vioxk =Vio—Vr+Vy=Vik+[Vh—Violk,

and use (2.51)p=2 to estimate u" — uf, (2.51)p=c0, (2.40)s=1 to estimate Vi — Vi ;- and (2.47-2.48) to
evaluate [V, = V7 o]kl poo(km3) < IV = Vi ollpoo(r3y- Thanks to the Holder inequality and (4.4)

we finally deduce
|’R2,4| <h C(Mo, Ey, 7, H (V, oV, VV)||L°°(QT;R15))‘ (713)

Step 3: Term 73. Let us first decompose 73 as

T3 =131 +R3,
m m

with T30 = At> > / PViox YV (Vi g —ufe)de, Rap=At> Y Ry,
n=1KeT 'K n=1 KeT

and Ry = /K (" — PRV TV - (Vi — ) de + /K (V" = Vi) - TV (Vi —u") da

+ [ Vi = Vigs) - TV (Vi — ) da
+ /K rVios YV (Vi = Vigx — (" —uj)) da.

We have
n n < n
7" = 75l Loo () ~ PIVT™ || oo ().

by the Taylor formula,
<
v - Z,OHLO@(K;R")) ~ h||VVnHL°°(K;R9)7

by virtue of (2.39)s=; and (2.47-2.48),

HVZ,O - Z,O,KHLM(K;R?’) < ”Vz,o - ZL,||L00(K;R3) + V5 — Z,KHLOO(K;R?’)

+[Vi - VZ,O]KHLOO(K;RS) S h||VVn||Loo(K;R9)
by virtue of (2.51), (2.39)s=1 (2.40)5—=1 and (2.47-2.48),
n n < n
Ju" — UKHLOO(K;]R3) ~ hl[Vu HLoo(K;Rg)-

Consequently by employing several times the Holder inequality (for integrals over K) and the discrete
Holder inequality (for the sums over K € 7), and using estimate (4.4), we arrive at

|’R371‘ < h ¢(My, Ey,T, H(VT, Vv, VV)HLOO(QT;RK’))' (7.14)
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Now we shall deal wit term 73 ;. Integrating by parts, we get:

/K Vg YV (Vi —ul)do= 3 [olrk[Viox o rlVE - (Vi — ulk)
ceé(K)

= Y oIk Viox morl(Vi = Vig) - (Vig - uk),

ceé(K)

thanks to the the fact that 3 cex) [, Vi k- DoxdS = 0.

Next we write

m
Ts1=Ts2+ R32, Rso=At Z R 9,

n=1

732_&22 Z o175 Vi - o] (Vi = Vi i) - (Vi — ™),

n=1 KeT cc&(K
and Ry 5 = Z Z ol(rk = F5"™)[Viox - 0ok](Ve = Vi k) (Viox — uk)
KEeT ge&(K)
+ Z Z o]y P [(VhOK VZ 3%) 'na,K} (Vo — VZ,K) : (VZ,K —ug)

KeT oe&(K

+3 Z ra|r"“pv§i§‘; Nk (Va = Vi) (Vi = Viow) — (wh = @73)).

KeT oecé(K

We may write

Vo = Viox =Vo = V' + V" = Vi 4+ Vi = Vi e +[Vi = Violx

(7.15)

and use several times the Taylor formula along with (2.39)s=1, (2.51), (2.40)s=1, (2.47-2.48)(in order to

estimate 77 — 7", VI — Viox: Vix — Vzgp) to get the bound

3
RS | < helrllwrocio) (14 IV Iwregopas) ) 2 blollukl
KeT

tellrlwniy (14 1V Iy ) 2 > o~

KeT oce&(K

We have by the Holder inequality

> hlolfuil < e hyauuw)”ﬁ <[ (X = wills KR3)>1/6

KeT oeT KeT
/ /
(X 1) ] < e X 19l 2 )
KeT KeT
/
S oy~ < e[(X It - ke
KeT oe€(K) KeT
n n|2 1/2 2 1/2
+< Z Z Hu o U'UHL2(K;R3)) } < hC( Z ||vun||L2(K;R9)) )
KeT oeé(K) KeT
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where we have used (2.53)p=2, (2.51-2.52),—>. Consequently, we may use (4.4) to conclude
R < hc(Mo,Eg,F, IV, V, VVHLOO(QT;RB)). (7.16)

Finally, we replace in T35 Vg — Vi o by Vi . — Vi o . We get

m
T32="T33+Rs3, Rsz=At Z R33,

n=1
Typ = AtZ > Z o175 Vi 1okl (Viige = Viiox) - (Vi —a5™), (7.17)
n=1 KeT cc&(K
and
R3 3= Z Z o|(rg — 7o up)VZ,o,K LN ([Vn - Vh,O]g — [V — Z,O]K) (VZ,S,I; —a,"P),
KeT ge&(K)
committing error
Ry, =< hc<M0,E0,?, VeV, VVHLOO(QT;RM))), (7.18)
as in the previous step.
Step 4: Terms 7, We write
Ty =Tiy +Ran, Ty =— Vp(r") - V'dz,
Qp
Rap= [ Vp(r")- (V" =Vi,)da;
Q '
whence
Ran| < he(@, [P o m) V7| oo (@rir?)): (7.19)

by virtue of (2.39)s=1, (2.47-2.48).
Next, employing the integration by parts

Tao=Tio+Ru2, Tao= / p(r") div V" dz,
Qp

Z Z / "Ny gdS = Z Z / VZ,070> ‘N, gdS.

KeT 0e&(K),0€0, KeT 0e&(K),0€0Qy,

Writing
V= V3o =V = Vi + Vi = Vi, + Vi = Vil

we deduce by using (2.39)s—1, (2.40)s=1, (2.52)p=co, (2.47), (2.48),
V" — VZ,O,GHLOO(K;RS) S h||VVnHLoo(K;R3), o€k,

Now, we employ the fact that

> Y [as~

KeT oe&(K),0edy,

whence

[Raz2| < he(T, Iplop: IV V| Lo (@rire)) (7.20)
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Finally,
Tis = Tis+Ras, Ths — / () div Vi de,  Ras — / (p(r™) — p(F™)) div V™ dz;  (7.21)
Qp Qp

whence

Rl < he(lp o V7, VV) oo (rimiz))- (7.22)

Step 5: Term 7Tz We decompose Tg as

Te = To,1 + Re,1, with Tg 1 = —Atz Z / P (F")u" - Vr™dz,
n=1KeT K

m (7.23)
Rai =AY Y [ 06 - p(m) u O o
n=1KeT K
Consequently, by the Taylor formula, Holder inequality and estimate (4.5),
IRe1| < he(Mo, Eo, 7,7, ‘pllcl([fﬂ)v HVTHLOO(QT;R%)- (7.24)

Gathering the formulae (7.7), (7.12), (7.17), (7.21), (7.23) and estimates for the residual terms (7.8),
(7.9-7.13), (7.14-7.18), (7.19), (7.20), (7.22), (7.24) concludes the proof of Lemma 7.1. O

8 A Gronwall inequality

In this Section we put together the relative energy inequality (6.1) and the identity (7.1) derived in the
previous section. The final inequality resulting from this manipulation is formulated in the following
lemma.

Lemma 8.1. Let (o",u™) be a solution of the discrete problem (3.5-3.7) with the pressure satisfying
(1.4), where v > 3/2. Then there exists a positive number

= C(MO, Eo, v, 7, [P |01, [0, V1, V, 0V, YV, V2 V)| e 0 85),

HaterLl(O,T;L’YI(Q))? HBtVTHLQ(O,T;LG'V/‘B'V*G(Q;RS))7 ”atzv, atvv”L2(07T;L6/5(Q;R12))> s
such that for allm =1,..., N, there holds:

m , m|am yr v H - n n \|2
£ Va3 5 [ 19t = Vig)Pax

< e[h + VAL+ €0, ul7(0), Vo 0))] + e ALY E(" ul i, Vi),
n=1

with any couple (r, V) belonging to (2.25) and satisfying the continuity equation (1.1) on (0,T) x R? and
momentum equation (1.2) with boundary conditions (1.5) on (0,T) x  in the classical sense, where a
is defined in (6.3) and £ is given in (4.8).

Proof. We observe that

,f.TL n

S N fn_gn n n % NG -0 n n n
56—86:At2/9hp/(r )TV -Vr d:z:—i—AtZ/th/(r )——(u" = V") Vr'dz.
n=1 n=1

,)2

29



Gathering the formulae (6.1) and (6.2), one gets

(" [ Vi)~ (e £ (0). V0 (0) 40 3 3 [V

n=1KeT

LQ(K iR3)

4
=1

where

V7 -V
- 30 S it -y e VEK (v ),

n=1KeT At

:miz S oo - ) (VA - ) - (Vg -

n n,up
o h,O,K) Vh,O,a ‘MoK,
n=1KeT o=K|Lefk

Py = —Ati/ (p(Q") —p' (") (" — ") —p(f”))divV”,
Py = Atz > /

n=1KeT
Q= Rh,At + Rh,At +G™.

(u - V™). Vr'da,

Now, we estimate conveniently the terms P;, i = 1,...,4 in four steps.

v Vn 1
Step 1: Term P;. We estimate the L norm of —“25_—ROK by [°° norm of 9,V in the same
manner as in (6.5

:5). According to Lemma 7.2, [0 — 7| 1, \[r/2.27(0) < c(p)EP(o|r), with any p > 1; in
particular,

lo— (51 R\ (rj2.21 (0) < cE(olr) (8.2)
provided v > 6/5.

We get by using the Holder inequality,

Vv _anl
|3 IRl =i R (v

A7 hK — uK)‘ < )0V | poo (im3y X
KeT

(32 1ok = v o)+ (32 1l =5 o1 mCon)) |

KeT KeT

" |6 1/6 o om 11 w1
(S 1Kl Vios —ui] ) < cll@V)llpw(gpezsy) (€2 a1 Vg )
KeT

L 1/6
0L VD) (0 IVRek — wklsgems)
KeT

where we have used (8.2) and estimate (4.8) to obtain the last line. Now, we write V} j , — ul =
([Vho —u"lk — (Vo —u")) + (Vo — u") and use the Minkowski inequality together with formulas
(2.53), (2.42) to get

/ /
(X IViok i) < (X IV~ 0" ez

KeT KeT

Finally, employing Young’s inequality, and estimate (4.8), we arrive at

[P1l < (8, Mo, Eo, r, 7, [(V, VV, 0V oo (@ r15))

X (Atﬁ(go, Wi, Vi o) + AL (0", |, V’;O)) +at 33 |v(
n=1

un)Hi2(K;R3)a (8'3)
n=1KeT
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with any 6 > 0.

Step 2: Term Pa. We rewrite Vi — Vi o = Vi = Vi +[Vig—Vile + [V~ Vilk
and estimate the L> norm of this expression by h|[VV|| e (g .re) by virtue of (2.47-2.48), (2.51-2.52),
(2.40)s=1. Now we write Py = At Y " |, Py where Lemma 7.2 and the Holder inequality yield, similarly
as in the previous step,

5] < et 7 IV [ o ity X
S D0 lolh (B ) + B (i ) Vil Vi — @

KeT ce&(K)
/
< el IV, V) ) [ (0 \o\h( (oplip))
KeT ce&(K
u /
+(Z Z lo|hE( ”“Wup) } (Z 3 |a|h‘VZOPU " )16,
KeT oe&(K KeT oe&(K

provided v > 3/ 2. Next, we observe that the contribution of the face o = K|L to the sums ) ,r

> oee(K) lo|hE(05"|fe"™) and Y- e r doocs(K ]a|h]VZSI; i) "P|% is less or equal than 2|o|h(E (0% |7 )+
E(0}|77)), and than 2|o|h(|V] o ¢ — wik|® + ’Vh,O,L — u?|%), respectively. Consequently,we get by the
same reasoning as in the previous step, under assumption v > 3/2,

|Ps| < (6, My, Eg, 1, T, ||(V,VV)||L00(QT;R12))AtZS(Qn’ﬁnW?VZ’O)qL(SAtZ Z IV ( Z,o—u”)H%g(K;Wy

n=1 n=1KeT
(8.4)
Step 3: Term P3. We realize that
p(ok) — ' (ri)(ek — rk) — p(rk) < e(r,7) E(ok|rK),
by virtue of Lemma 7.2 in combination with assumption (1.4). Consequently,
P3| < || div V|| o () AtZg O A V). (8.5)

n=1
Step 4: Term P;. We write u™ — V™ as the sum (u” — V7o) + (Vi ; — V") accordingly splitting Py
into two terms
_ n
Atz Z / (") 7r ( ) ‘Vridz  and Atz Z / ( Z,O—Vn)-Vr” dz.
n=1KeT n=1KeT

Reasoning similarly as in Step 2, we get

Pa| < h? (8, Mo, Eo, 7,7, [Pl o | (VT V)l e @:r9))

+ 0(5’ Hﬂv T, |p/‘C([LF]) ||VT||L°°(Q;R3)) At Z 5(Qn7 ﬂn’fn’ VZ,O) +d At Z Z HV( ZL,O - un)”i2(K;R3)~
n=1 n=1KeT

(8.6)
Gathering the formulae (8.1) and (8.3)-(8.6) with § sufficiently small (with respect to p), we conclude
the proof of Lemma 8.1. O
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9 End of the proof of the error estimate (Theorem 3.1)

Finally, Lemma 8.1 in combination with the bound (4.8) yields
m—1
E(o", @™, Viig) < c[h + VAL + At + (o, @17(0), Vao(0)| + At 3 (o™ a7, Vi o);
n=1

whence by the discrete standard version of the Gronwall lemma one gets at the first step
E(o™, @™, Viig) < e[h® + VAL + E(e, a17(0), V0(0))]

Going with this information back to Lemma 8.1, one gets finally

m
£ i Vi) + At 37 37 [ V- Vi P < e[t VAEE(, 4017 (0). Vo (0)] (9.1
n=1KeT K
Now, we write
o (ug — VZ,O,K)2 = ok (uf — V") + 20k V" (uf — Viox)+ox(V"— Vz,o,K)2,
where
<
an - Z,O,KHLOO K:R3) ™ an - ZHLOO K;R3) + HVZ - Z,KHLO@(K;R?’) + H[VZ - Z,O]KHLC’O(K;R?’)
( ) (
< <
~ h(HVmVnHLoo(K;Rg) + HerZHLOO(K;]Rg) + Vi — Z,OHLO@(K;RS) ~ hHVVnHLw(K;RG’)-

In the above calculation we have employed formula (2.39) to estimate the first term, estimates (2.51)s-1,
(2.40)5=1 to estimate the second term, and formulas (2.47) and (2.48) for K N9y, = 0 and K NoQYy, # 0,
respectively, to evaluate the last term. We conclude that

1
Z §‘K| (Q%U% - VZ:LO,K|2 - Q(I](\Ug( - V%,O,K|2> (9.2)
KeT

> / o™ (w™ — V™)2dr — / (w — V2dz + Ly,
QNQy, QN
where
Li| < h Mol[Va V| Lo (0,1 x0:9)-
Similarly, we find with help of (4.8),

|E (0% |[F") = E(0k, ")l Loe () < B (Mo, 7, 7, [plorpm V7|l oo (0 pim2))s
whence
> IKI(Bklin) - B@kl®) = [ B [ B@FOde L (93
Ker QnQy, QnQy,
where
|Lo| < hc(Mo,r, 7, |plerm, VTl oo (@rir3))-
Finally, by virtue of (2.47-2.48) and (2.40)s—2

HV( Z,O - Vn)HH(K;R?’) S h”(vvn7Van)HLOO(K;]Rm);
whence

m m
Ay Y / Vot = VEdx > AtY [ (Yt — Vv 2 + L, (9.4)
n=1KeT 'K n=1" N2
where
|Ls| < R2c([(VV", VAV || oo im12))-
Theorem 3.1 is a direct consequence of estimate (9.1) and identities (9.2-9.4). Theorem 3.1 is thus
proved.
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10 Concluding remarks

In the convergence proofs one usually needs to complete the numerical scheme by stabilizing terms, so
that the new numerical scheme reads

3 rK|QK QK o+ 3 S Jolol ™ (ul -y k) éx + Tu(6) = 0, (10.1)

KeT, KeT, o0& (K)

for any ¢ € Qp(Qp) and n=1,..., N,

K ~ 1n,u n
Z At| (QK’U'K - Q,'Il( 1u7]7‘< 1) VK + Z Z |O-|anupuo_v p[uO' . nU’K] “VE (102)
KeT KeT oe€(K)
- Z p(0%) Z lo|ve - ng Kk + p Z / Vu" : Vo dx
KeT oe&(K) KeT
I . g _ 3 _
+§ Z / divu"dive dz + T, (¢) = 0, for any v € V3 o(; R?) and n=1,..., N,
K

KeT

where

To(@) =0~ Y 1olle"lom [Dlon,,  Tm(@) = Y lolle"lom, 8" }o[dlom,, € € [0,1),

0€Ent 0€E

see Karlsen, Karper [19], Gallouet, Gastaldo, Herbin, Latché [15]. These terms are designed to provide
the supplementary positive term
1—
W'=Y ol m,

Jefmt

to the left hand side of the discrete energy identity (4.2). They contribute to the right hand side of the
discrete relative energy (5.1) by supplementary terms whose absolute value is bounded from above by

p1=e)/2 c(MO,EO, sup [|r", U", VU"|| o, .r13), SUP  sup [r”]g,ng/h)

n=0,...,N n=0,...,N c€€int

Consequently, they give rise to the contributions at the right hand side of the approximate relative energy
inequality (6.1) whose bound is

PU=/2 o Mo, By, |Ir, V7, U, VU o gz )

Similar estimates are true, if we replace in the numerical scheme everywhere classical upwind formula

(3.4)

Upk (g, u Z o Uo - No ¢ = Z (W([ua ‘0, k)" + qrlu, - na,Kr),
oe&(K ce&(K)
o=K|L

by the modified upwind suggested in [11]:

Upielaw) = > L5 (umo st h = g mic—h ')+ (g mg s b 5] g moic—h' 7] 7).
ce&(K)
o=K|L

(10.3)
where 0 = K|L € &y. We will finish by formulating the error estimate for the numerical problem (3.5),
(10.1), (10.2) or for (3.5), (3.6), (3.7) with modified upwind (10.3).

33



Theorem 10.1. Let Q, p, [ro, VY], [r, V] satisfy assumptions of Theorem 8.1. Let (0™, u")n—0.. N be
a family of numerical solutions to the scheme (3.5), (10.1), (10.2) or to the scheme (3.5), (3.6), (3.7)
with modified upwind (10.3), where € € [0,1). Then error estimate (3.8) holds true with the exponent

27v—3 1—¢ 1—¢

a:min{ ,
¥ 2

biri<a<2 a="ifyz2
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