Decentralized Supervisory Control with Communicating Supervisors Based on Top-Down Coordination Control

Jan Komenda Tomáš Masopust

Based on previous work with Jan H. van Schuppen Van Schuppen Control Research, Amsterdam, The Netherlands

IEEE CDC 2014, Los Angeles, CA, December 17, 2014

(日) (日) (日) (日) (日) (日) (日)

Motivation

- Very few constructive results in decentralized supervisory control
- Least restrictive solutions do not exist
- Reason: Lack of structure unlike modular control problems
- Idea: modular over-approximation and use of multi-level coordination control
- Local supervisors are assisted by coordinators: modular control with coordination
- For large number of components central coordinator requires too much coordination on the global level
- Therefore, multilevel coordination control is used

Procedure of Coordination Control

Given

$$G = G_1 || G_2$$
 with $G_i = (Q, A_i, \delta_i, q_0^i)$

and a (global) specification language *K*. Coordination control consists in:

- Set $A_k = A_1 \cap A_2$, natural projection: $P_k : A^* \to A_k^*$
- Extend A_k so that $K = P_{1+k}(K) ||P_{2+k}(K)||P_k(K)|^1$
- Construct a coordinator $G_k = P_k(G_1) || P_k(G_2)$ over $A_k \supseteq A_1 \cap A_2$
- Compute supervisor S_k for G_k with respect to $P_k(K)$
- Compute supervisors S_{i+k} for $G_i || [S_k/G_k]$ with respect to $P_{i+k}(K)$
- Construct a nonblocking coordinator for the computed supervisors

 ${}^{1}P_{1+k}: (A_1 \cup A_2)^* \to (A_1 \cup A_k)^*$

Conditional decomposability

Definition

A language *K* is said to be conditionally decomposable with respect to event sets A_1 , A_2 , A_k if it can be written as

$$K = P_{1+k}(K) || P_{2+k}(K) || P_k(K) \,.$$

There always exists such a A_k !

It is a good candidate for coordinator alphabet

Remarks:

1. For systems with many components central coordination requires too many events in A_k !

2. Can be checked in polynomial time in the number of agents!

Review of Coordination Control

- ► Consider generators G₁, G₂, G_k over A₁, A₂, A_k, respectively.
- Let $K \subseteq L_m(G_1 || G_2 || G_k)$ be a specification language.
- ► *G_k* makes *G*₁ and *G*₂ conditionally independent
- *K* and \overline{K} are conditionally decomposable wrt A_1, A_2, A_k .
- Aim: determine supervisors S₁, S₂, S_k so that the closed-loop system with the coordinator satisfies

$$L(S_1/[G_1||(S_k/G_k)]) || L(S_2/[G_2||(S_k/G_k)]) = \overline{K}$$

and

$$L_m(S_1/[G_1||(S_k/G_k)]) || L_m(S_2/[G_2||(S_k/G_k)]) = K.$$

(日) (日) (日) (日) (日) (日) (日)

Coordinator

Algorithm (Construction of a coordinator)

 G_1 and G_2 over A_1 and A_2 , respectively. Construct the event set A_k and the coordinator G_k as follows:

- 1. Set $A_k = A_1 \cap A_2$
- 2. Extend A_k so that K and \overline{K} are conditionally decomposable

(日) (日) (日) (日) (日) (日) (日)

- **3**. Extend A_k so that P_k is $L(G_i)$ -observer
- 4. Define $G_k = P_k(G_1) || P_k(G_2)$

Existence of the solution

Theorem. (Existential result) There exist supervisors S_1 , S_2 , S_k such that

 $L(S_1/[G_1||(S_k/G_k)]) || L(S_2/[G_2||(S_k/G_k)]) = \overline{K}$

if and only if *K* conditionally controllable with respect to generators G_1 , G_2 , G_k and event sets $A_{1,u}$, $A_{2,u}$, $A_{k,u}$. **Definition(Conditional Controllability.)** *K* is called conditionally controllable for G_1 , G_2 , G_k and $A_{1,u}$, $A_{2,u}$, $A_{k,u}$ if

- 1. $P_k(K)$ is controllable with respect to $L(G_k)$ and $A_{k,u}$,
- 2. $P_{1+k}(K)$ is controllable with respect to $L(G_1) || \overline{P_k(K)}$ and $A_{1+k,u}$,
- 3. $P_{2+k}(K)$ is controllable with respect to $L(G_2) \| \overline{P_k(K)}$ and $A_{2+k,u}$.

Multilevel control motivation

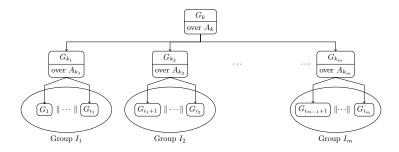
Centralized coordination suffers from several problems:

- For large *n* too many events must be included in A_k !
- Too many events need to be communicated among all subsystems
- Coordinator as well as its supervisor are too large
- Our solution: divide subsystems into groups and associate each group with group coordinators that need much less events
- Top level coordination then may have much fewer events as well

(ロ) (同) (三) (三) (三) (三) (○) (○)

Multilevel Hierarchy

Subsystems are organize into groups starting from the lowest level:



$$\begin{split} I_{j} &= \{i_{j-1}+1, i_{j-1}+2, \dots, i_{j}\} \\ &\bigcup_{k,\ell \in \{1,\dots,m\}}^{k \neq l} (A_{I_{k}} \cap A_{I_{\ell}}) \quad \text{smaller than} \quad \bigcup_{k,\ell \in \{1,\dots,n\}}^{k \neq l} A_{k} \cap A_{l})! \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

2 level Conditional decomposability

Definition (Two-level conditional decomposability)

A language $K = \overline{K} \subseteq A^*$ is called **two-level conditionally decomposable** with respect to alphabets A_1, \ldots, A_n , high-level coordinator alphabet A_k , and low-level coordinator alphabets $A_{k_1}, \ldots A_{k_m}$ if

$$K = \|_{r=1}^{m} P_{I_r+k}(K)$$
 and $P_{I_r+k}(K) = \|_{j \in I_r} P_{j+k_r+k}(K)$

for $r = 1, \dots, m$.

Example: 2 level CD vs. CD

Let $K_{12} \subseteq \{a_1, a_2\}^*$, $K_{34} \subseteq \{a_3, a_4\}^*$, and $K = K_{12} ||K_{34}$ (below).

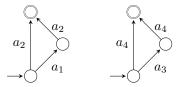


Figure: Generators of languages K_{12} and K_{34} , respectively

Hence, $K = P_{1+2}(K) || P_{3+4}(K)$, i.e. $A_k = \emptyset$. For $A_{k_1} = \{a_1\}$ and $A_{k_2} = \{a_4\}$: $K_{12} = P_{1+k_1}(K_{12}) || P_{2+k_1}(K_{12})$ and $K_{34} = P_{3+k_2}(K_{34}) || P_{4+k_2}(K_{34})$. To make *K* conditionally decomposable wrt $\{a_i\}$, i = 1, ..., 4 and $A_{k'}$, either a_1 or a_2 , and either a_3 or a_4 should be in $|A_{k'}| \ge 2$, whereas $|A_{k_1}| = |A_{k_2}| = 1$ enough for 2-level CD!

Special case of multilevel control problem

Example

Let $G = G_1 || \dots || G_4$ with $I_1 = \{1, 2\}$ and $I_2 = \{3, 4\}$. G_{k_1} is coordinator of G_1 and G_2 G_{k_2} is coordinator of G_3 and G_4 G_k is coordinator of G_{k_1} and G_{k_2} .

2 level CD: $K = P_{1+2+k}(K) ||P_{3+4+k}(K), P_{1+2+k}(K) = P_{1+k_1+k}(K) ||P_{2+k_1+k}(K),$ and $P_{3+4+k}(K) = P_{3+k_2+k}(K) ||P_{4+k_2+k}(K).$

Multilevel coordination control :

$$S_1/[G_1 \parallel (S_{k_1}/G_k \parallel G_{k_1})] \parallel S_2/[G_2 \parallel (S_{k_1}/G_k \parallel G_{k_1})] \parallel S_3/[G_3 \parallel (S_{k_2}/G_k \parallel G_{k_2})] \parallel S_4/[G_4 \parallel (S_{k_2}/G_k \parallel G_{k_2})].$$

<

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Problem of multilevel control

Problem formulation. Consider $G = G_1 || ... || G_n$ along with the two-level hierarchical structure of subsystems $I_j = \{i_{j-1} + 1, i_{j-1} + 2, ..., i_j\}, j = 1, ..., m \le n$, on the low level.

Determine supervisors S_i , $i \in I_j$, for groups $\{G_i \mid i \in I_j\}$, j = 1, ..., m, and supervisors for low-level coordinators combined with the high-level coordinator S_{k_i} , j = 1, ..., m, such that

$$\|_{j=1}^m\|_{i\in I_j} L(S_i/[G_i \parallel (S_{k_j}/G_k \parallel G_{k_j})]) = K \qquad \triangleleft$$

(日) (日) (日) (日) (日) (日) (日)

Main Existential result

Definition (Two level conditional controllability) $K \subseteq L(||_{i=1}^{n}G_{i} || G_{k})$ is **two-level conditionally controllable** wrt $G_{1}, \ldots, G_{n}, A_{1}, \ldots, A_{n}$, high-level coordinator alphabet A_{k} , low-level coordinator alphabets $A_{k_{1}}, \ldots A_{k_{m}}$, and A_{u} if

1. $P_{k_j+k}(K)$ is controllable with respect to $L(G_{k_j}||G_k)$ and $A_{k_j+k,u}$,

2. for j = 1, ..., m and $i \in I_j$, $P_{i+k+k_j}(K)$ is controllable with respect to $L(G_i) \parallel P_{k_j+k}(K)$ and $A_{i+k_j+k,u}$.

Theorem

There exist a set of multilevel supervisors such that such

$$\|_{j=1}^{m}\|_{i \in I_{j}} L(S_{i}/G_{i} \parallel (S_{k_{j}}/G_{k} \parallel G_{k_{j}})) = K$$
(1)

if and only if K is two-level conditionally controllable.

Computation of supremal cC sublanguages

Theorem If $\bigcap_{i \in I_j} P_{k_j}^{i+k_j}(\sup C_{i+k_j})$ is controllable with respect to $L(G_{k_j})$ and $A_{k_j,u}$, and if for all j = 1, 2, ..., m, $P_k^{k_j}$ is an L_{k_j} -observer and OCC for L_{k_j} , then $\sup 2cC(K, L, A_{i+k_j}) = ||_{j=1}^m ||_{i \in I_j} \sup C_{i+k_j}$, where $\sup C_{k_j} = \sup C(P_{k_j}(K), L(G_{k_j}), A_{k_j,u})$ $\sup C_{i+k_j} = \sup C(P_{i+k_j}(K), L(G_i) || \sup C_{k_j}, A_{i+k_j,u})$

Lemma

For all l = 1, 2, ..., m, let $M_l \subseteq A_{I_l}^*$ be conditionally controllable wrt G_i , for $i \in I_l$, and G_{k_l} , and conditionally decomposable wrt alphabets A_i , for $i \in I_l$, and A_{k_l} , and $A_{k_\ell} \supseteq A_k \supseteq \bigcup_{k \neq \ell} (A_{I_k} \cap A_{I_\ell})$. If for all l, $P_k^{k_l}$ is a L_{k_l} -observer and OCC for $P_{k_l}(M_l)$, then $\|_{l=1}^m M_l$ is two-level conditionally controllable wrt G_i , for $i \in I_l$, and G_{k_l} , for l = 1, 2, ..., m.

Sufficient Conditions

Corollary If for all j = 1, 2, ..., m, $P_k^{k_j}$ is an L_{k_j} -observer and OCC for L_{k_j} , and for all $i \in I_j$, $P_{k_j}^{i+k_j}(\sup C_{i+k_j}) = \sup C_{k_j}$, then $\sup 2cC(K, L, A_{i+k_j}) = ||_{j=1}^m ||_{i \in I_j} \sup C_{i+k_j}$. Moreover: Let $\forall j = 1, 2, ..., m$ and $i \in I_j P_{k_j}^{i+k_j}$ be an $(P_i^{i+k_j})^{-1}L(G_i)$ -observer and OCC for $(P_i^{i+k_j})^{-1}L(G_i)$. Then, for all j = 1, 2, ..., m, $\cap_{i \in I_j} P_{k_j}^{i+k_j}(\sup C_{i+k_j})$ is controllable with respect to $L(G_{k_j})$ and $A_{k_j,u}$.

Corollary

Let $\forall j = 1, 2, ..., m$, $P_k^{k_j}$ is an L_{k_j} -observer and OCC for L_{k_j} , and $P_{k_j}^{i+k_j}$ be an $(P_i^{i+k_j})^{-1}L(G_i)$ -observer and OCC for $(P_i^{i+k_j})^{-1}L(G_i)$. Then

 $\sup 2\mathbf{c}\mathbf{C}(K,L,A_{i+k_j}) = \|_{j=1}^m \|_{i \in I_j} \sup \mathbf{C}_{i+k_j}.$

Decentralized control

Idea: plunge decentralized control problem into coordination control problem by

$$A_i = \Sigma_{o,i}$$
 and $A_{c,i} = \Sigma_{o,i} \cap \Sigma_{c,i}$.

Note that conditional decomposability is just separability of *K* with respect to $(\Sigma_{o,i} \cup \Sigma_k)_{i=1}^n$.

Theorem

Let $\Sigma_{o,i} \cap \Sigma_c \subseteq \Sigma_{c,i}$, for i = 1, 2, ..., n. If $K = ||_{i=1}^n P_i(K)$ (separable) wrt $(\Sigma_{o,i})_{i=1}^n$, then $K \cap L$ is coobservable wrt $(\Sigma_{o,i})_{i=1}^n$ and L.

Due to $\Sigma_{c,i} \cap \Sigma_{c,j} \subseteq \Sigma_{c,i}$, for i, j = 1, 2, ..., n, $(A_i)_{i=1}^n$ and $(A_{c,i})_{i=1}^n$ defined above satisfy $A_i \cap A_{c,j} \subseteq A_{c,i}$, for all i, j = 1, 2, ..., n. Hence, separability implies coobservability

Main result of Decentralized control

Theorem

► Let $K \subseteq L$ and K be two-level CD wrt $(A_i)_{i=1}^n$, $A_{k,j}$, and A_k . Then

 $\|_{j=1}^{m}\|_{i \in I_{j}} \sup C_{i+k_{j}} \subseteq K$ is controllable wrt L and A_{u} , and coobservable wrt L and $(A_{i+k_{j}})_{j=1,...,m,\ i \in I_{j}}$.

 If ||^m_{j=1} ∩_{i∈Ij} P^{i+kj}_{kj} (supC_{i+kj}) is controllable wrt L(G_{kj}) and A_{kj,u}, and for all j = 1,2,...,m, P^{kj}_k is an L_{kj}-observer and OCC for L_{kj}, then ||^m_{j=1} ||_{i∈Ij} supC_{i+kj} = sup2cC(K,L,A_{i+kj}) is the largest controllable and coobservable language we can obtain using the two-level coordination.

Example: Plant

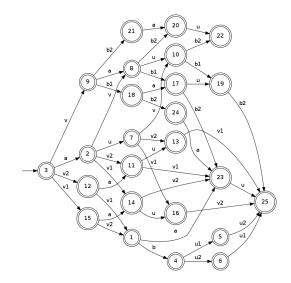


Figure: Plant L

Example: Specification

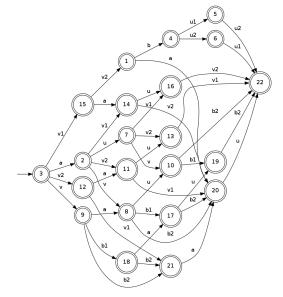


Figure: Specification K

<ロ> (四) (四) (三) (三) (三) (三)

Example: continued

K is not controllable wrt *L*, e.g. $v_2v_1b \in K\Sigma_u \cap L$, but $v_2v_1b \notin K$. *K* is coobservable wrt *L* and $\Sigma_{o,i}$, for i = 1, 2, 3, 4. $N = \sup C(K, L, \Sigma_u)$ is not coobservable wrt *L* and $\Sigma_{o,i}$, e.g. $v_1v_2 \in L$ and $v_2v_1 \in L$, $v_1v_2 \in N$, $v_2 \in N$, while $v_2v_1 \notin N$. Intuition: either agents 3 and 4 has to observe both v_1 and v_2 to issue a correct control decision.

Example continued

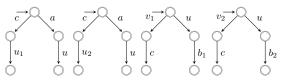


Figure: Projections $P_1(L), \ldots, P_4(L)$

 $\sup C_{1+k_1} \|\sup C_{2+k_1} \|\sup C_{3+k_2} \|\sup C_{4+k_2} = \sup 2cC(K, L, A_{i+k_j})$ is controllable with respect to *L* and *A_u* and coobservable with respect to *L* and *A*_{1+k_1,o}, *A*_{2+k_1,o}, *A*_{3+k_2,o}, *A*_{4+k_2,o}.

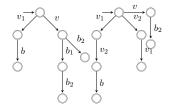


Figure: $P_{3+k_2}(K)$ and $P_{4+k+k_2}(\underline{K})$, we have $k_2 \in \mathbb{R}$. For $k_2 \in \mathbb{R}$

Conclusions and Perspectives

- Multilevel coordination control for modular systems proposed
- It is based on top-down approach, bottom-up approach also exists
- Extension to constructive results (supremal conditional controllable languages)
- Communications based on multi-level coordination approach are applied to decentralized supervisory control control

(ロ) (同) (三) (三) (三) (三) (○) (○)

Extension to partial observations