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Complex dynamics in the atmosphere

@ 1980’s low dimensional chaos (Nicolis & Nicolis, Tsonis &
Elsner, Fraedrich)
e criticism by Grassberger, Lorenz
e Palu$ & Novotna 1994: linearity of x(t) — x(t + 7)

interactions in temperature data
e x(t) — y(t) interactions — next talk by J. Hlinka

@ Tsonis 2012 subsystems of low dimensionality

@ long-range dependence, fractality (Koscielny-Bunde et al.,
1998, Bunde & Havlin 2002, Eichner et al., 2002 ...)

e criticism by Maraun et al., 2004

@ multifractality (Schmitt et al. 1995, Ashkenazy et al., 2003,
Zhou et al., 2010)
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Complex dynamics in the atmosphere

Cyclic phenomena hidden in colored noise
@ Monte Carlo SSA (Ghil et al., Allen & Smith)

@ Enhanced MC SSA (Palus & Novotnd) cycles of higher
regularity than filtered noise

@ detection and extraction of cycles — interactions

o Feliks et al.: phase synchronization in 7-8 yr cycles
between areas — teleconnection

e Palus & Novotna: phase synchronization in 7-8 yr cycles
between temperature and solar/geomagnetic activity —
solar-terrestrial relations

e Stein et al. 2011: phase synchronization of EI-Nifio and
annual cycle
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Emergent phenomena in complex systems

COMPLEX DYNAMICS
Not explained by a sum of properties of system components

INTERACTIONS OF SYSTEM COMPONENTS
EMERGENT PHENOMENA

STUDY OF INTERACTIONS
@ clues to understanding complex behaviour
@ facts for model building
@ characterization — diagnostics
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Measures from Information Theory

variable X, probability distribution p(x)

= - _p(x)log p(x (1)
XEZ
=> > p(x,y)logp(x, y) 2
XEZyeT
H(YIX) =~ p(x.y)logp(y|x) (3)
XEZyeT
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Mutual Information, Conditional Ml

I(X; Y) = H(X) + H(Y) — H(X, Y) (4)

I(X; Y|Z) = H(X|Z) + H(Y|Z) - H(X, Y|Z) (5)

(X Y|Z) = I(X; Y;Z) = I(X; Z) — I(Y; Z) (6)
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Estimating H(X), I(X,Y) from time series

Available online at www. irect.com
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Abstract

Synchronization, a basic nonlinear phenomenon, is widely observed in diverse complex systems studied in physical, biological
and other natural sciences, as well as in social sciences, economy and finance. While studying such complex s
not only to detect synchronized states, but also to identify relationships (i.e. who drives whom) between concerned (sub)
systems. The knowledge of information-theoretic measures (i.¢. mutual information, conditional entropy) is essential for the analysis

of information flow between two systems or between constituent subsystems of a complex system. However, the estimation of these
‘measures from a set of finite samples is not trivial. The current extensive literatures on entropy and mutual information estimation
provides a wide variety of approaches, from statistical, studying rate of or consistency of an estimator

for a general distribution, over learning algorithms operating on partitioned data space to heuristical approaches. The aim of this

paper is to provide a detailed overview of information theoretic approaches for measuring causal influence in multivariate time series

and to focus on diverse approaches to the entropy and mutual information estimation.

©2007 Elsevier B.V. All rights reserved. o =
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CONDITIONAL MUTUAL INFORMATION
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SCALE-SPECIFIC INTERACTIONS

OSCILLATORY PROCESS - specific frequency

BROAD-BAND SIGNALS

@ DIGITAL FILTERING

@ WAVELET DECOMPOSITION

e EMPIRICAL MODE DECOMPOSITION
@ SINGULAR SPECTRUM ANALYSIS

@ SCALE-SPECIFIC SYNCHRONIZATION

@ SCALE-SPECIFIC GRANGER CAUSALITY
@ CROSS-SCALE INTERACTIONS

@ CROSS-FREQUENCY COUPLING
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Phase dynamics approach

ANALYTIC SIGNAL

INSTANTANEOUS PHASE
_ 5(t)
¢(t) = arctan ) (8)
INSTANTANEOUS AMPLITUDE
A(t) = \/8(t)2 + s(t)? (9)

FILTERING — HILBERT TRANSFORM
COMPLEX CONTINUOUS WAVELET TRANSFORM
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CROSS-SCALE INTERACTIONS

Cross-frequency interactions
@ phase—phase
@ amplitude—amplitude
@ phase—amplitude

e neurophysiology: phase of slow oscillations (9, 6)
modulates the amplitude of fast oscillations ()
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CROSS-SCALE INTERACTIONS

CAUSAL PHASE — AMPLITUDE INTERACTIONS
in about a century long records of daily near-surface air
temperature records from European stations

@ phase ¢ of slow oscillations (around 10 year period)

@ amplitude A, of higher-frequency variability (periods 5
years and less)

(*] /(¢1(t), Ag(t + T)|A2(t), Ag(t — 77), ... ,Ag(t — mT]))
@ testing using surrogate data approach

e Fourier transform (FT) surrogate data (Theiler et al.)
e multifractal (MF) surrogate data (Palus)
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TESTING INTERACTIONS WITH & WITHIN
MULTISCALE PROCESSES

PRL 101, 134101 (2008)

PHYSICAL REVIEW LETTERS

week ending
26 SEPTEMBER 2008

Bootstrapping Multifractals: Surrogate Data from Random Cascades on Wavelet Dyadic Trees

Milan Palus*

Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod voddrenskou vézi 2, 182 07 Prague §, Czech Republic
(Received 30 March 2007; revised manuscript received 21 June 2008; published 25 September 2008)

A method for random resampling of time series from multiscale processes is proposed. Bootstrapped
series—realizations of surrogate data obtained from random cascades on wavelet dyadic trees—preserve
the multifractal properties of input data, namely, interactions among scales and nonlinear dependence
structures. The proposed approach opens the possibility for rigorous Monte Carlo testing of nonlinear
dependence within, with, between, or among time series from multifractal processes.

DOI: 10.1103/PhysRevLett. 101134101

The estimation of any quantity from experimental data,
with the aim to characterize an underlying process or its
change, is incomplete without assessing the confidence of
the obtained values or significance of their difference from
natural variability. With the increasing performance and
availability of powerful computers, Efron [1] proposed to
replace (not always possible) analytical derivations based
on (ot always realistic) narrow assumptions by computa-
tional estimation of empirical distributions of quantities
under interest using so-called Monte Carlo randomization
procedures. In statistics, the term “bootstrap” [2] s coined
for randam resamnling of eynerimental data_nsually with

PACS numbers: 05.45.Tp, 05.45.Df, 89.75.Da

data in combinations with some constraints. Possible non-
linear dependence between a signal s(1) and its history
s(t = m) is destroyed, as well as interactions among vari-
ous scales in a potentially hierarchical, multiscale process.
Multiscale processes that exhibit hierarchical information
flow or energy transfer from large to small scales, success-
fully described by using the multifractal concepts (see 7]
and references therein) have been observed in diverse fields
from turbulence to finance [8], through cardiovascular
physiology [9] or hydrology, meteorology, and climatology
[10]. Angelini e al. [11] express the need for resampling
technianes in evalnating data from atmoenherie trhnlence
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CAUSAL PHASE — AMPLITUDE INTERACTIONS

® [(p1(1); Ao(t + 7)[Ax(t), Ao(t — 1), ..., Ax(t — mm))

@ series length 32768

@ forward lags 7 = 1 — 750 days

@ backward condition lags n = 1/4 of the slow period

@ Gaussian process estimator

@ conditioning dimension: stable results from 3

@ raw data include annual cycle

@ seasonal mean and variance removed before surrogate

randomization

@ seasonal mean and variance added back to surrogate
realizations
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CAUSAL PHASE — AMPLITUDE INTERACTIONS
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CAUSAL PHASE — AMPLITUDE INTERACTIONS
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CAUSAL PHASE — AMPLITUDE INTERACTIONS
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EFFECT PHASE — AMPLITUDE COUPLING

@ HOW TO QUANTIFY THE EFFECT
OF PHASE — AMPLITUDE COUPLING ?

e EXTRACT THE CYCLE WITH PERIOD
AROUND 8 YEARS

@ EXTRACT ITS PHASE

e DIVIDE THE PHASE INTO 8 BINS

@ COMPUTE CONDITIONAL TEMPERATURE MEANS
< Tl¢p € (¢1,¢2) >
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SSA-extracted "7-8 yr cycle"
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EFFECT PHASE — AMPLITUDE COUPLING
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CONCLUSION

Thank you for your attention
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