# Active galaxy 4U 1344-60: Did the relativistic line dissappear?

Jiří Svoboda, European Space Astronomy Centre, Madrid, Spain

with S. Bianchi, M. Guainazzi, G. Matt, E. Piconcelli, V. Karas, M. Dovčiak

## Outline

- Introduction
- Recent observation with Suzaku
- Comparison with archival XMM-Newton data
- Conclusions

### Seyfert galaxies

- nearby galaxies with bright nuclei exhibiting strong spectral line emission from highly ionised gas
- black holes with 10<sup>7</sup>-10<sup>8</sup> solar masses in the nuclei
- optical spectral lines: narrow-line and broad-line region (Doppler effect due to orbital motion, extended accretion disc or molecular clouds)
- X-ray emission from hot corona where the thermal UV photons from an accretion disc are inversely Comptonised to higher enegies (power-law spectral shape)

### X-ray spectra of Seyfert galaxies



Fabian et al., 2006

#### Relativistic iron lines in Seyferts

• examples:

MCG -6-30-15

#### 1H 0707-495



# Which fraction of AGNs does show a relativistic iron line?

- study of samples (Guainazzi et al. 2006, Nandra et al. 2007, de La Calle Peréz et al. 2010, Bhayani & Nandra 2011, Guainazzi et al. 2012)
- FERO result on a flux-limited sample of AGN: (de La Calle Peréz et al. 2010)

| relativistic<br>line | number of sources | relative<br>number |
|----------------------|-------------------|--------------------|
| YES                  | 11                | 35%                |
| NO*                  | 4                 | 13%                |
| ?                    | 16                | 52%                |

\*EW < 40 eV



### *4U 1344-60*

- nearby (z=0.012) and bright (about 2 millicrabs)
  intermediate-type Seyfert galaxy
- low Galactic latitude (b=1.5°)
- proximity to a radio-loud galaxy Centaurus B
  - separation radius only 13'
- appeared at the EPIC-PN field of an archival XMM-Newton observation of Centaurus B (Piconcelli et al., 2006)

#### XMM-Newton observation

- performed in Aug 2001, 37 ks exposure time
- a mildly relativistic profile was revealed



Piconcelli et al. (2006)

### Suzaku observation

- performed in Jan 2011, 100 ks exposure time
- accompanied with 10 ks observation of Cen B
  - to estimate the contamination of HXD/PIN detector
- flux measurements [10<sup>-11</sup> erg cm<sup>-2</sup> s<sup>-1</sup>]:

|             | 2-10 keV | 15-60 keV |  |
|-------------|----------|-----------|--|
| 4U 1344-60  | 4        | 8         |  |
| Centaurus B | 0.4      | 0.8*      |  |

\* predicted from XIS measurements

- contribution from Cen B (Γ = 1.6) is negligible
  - less than 5% in HXD/PIN spectrum produced with the XIS-nominal position of 4U 1344-60

#### Suzaku view of 4U 1344-60



- model: an absorbed power law with  $\Gamma = 1.7$
- narrow iron line at E = 6.4 keV revealed

#### **Properties of the iron line**



 σ ~ 90 eV corresponds to FWHM 8800 km s<sup>-1</sup> (about twice larger than optical BLR)

# Comparison with the XMM-Newton spectrum



- XMM-Newton spectrum (blue) is harder than Suzaku XIS 0 and 3 (black), XIS 1 (red)
- changes in the photon index of the power law or the properties of the absorber?

### Variable power-law slope

- XMM flat power law
  - photon index  $\Gamma = 1.24 \pm 0.04$
  - iron line can be modelled with a relativistic profile
- issues:
  - narrow iron line in Suzaku observation
  - inconsistency with hard-X-ray flux measurements

| flux [10 <sup>-11</sup> erg cm <sup>-2</sup> s <sup>-1</sup> ] | 20-40 keV | 40-100 keV |  |
|----------------------------------------------------------------|-----------|------------|--|
| XMM flat Γ                                                     | 7.7(1)    | 19.0(2)    |  |
| Suzaku                                                         | 3.3(1)    | 4.1(1)     |  |
| Integral                                                       | 3.2(1)    | 4.1(2)     |  |
| Swift                                                          | 2.7(1)    | 4.0(2)     |  |

#### **Complex absorber's variability**

- power law remains the same ( $\Gamma = 1.7$ )
- an additional partially-covering absorber with a variable covering fraction is required (with  $N_{H} \sim 8 \times 10^{22}$  cm<sup>-2</sup>)



covering factor: • XMM ~ 45% • Suzaku <10%

# Comparison with the XMM-Newton spectrum II



#### A detailed look at the iron line



 some residuals at E ~ 6.1 keV still present in the XMM-Newton spectrum (blue)

#### Transient iron line feature

- can be explained as a temporarily enhanced emission from the innermost accretion disc
  - equivalent width ~ 100 eV
  - no timing study was possible with ~35ks exposure

| • | model by Gaussian line: | energy [keV]                      | 6.1 ± 0.1 |
|---|-------------------------|-----------------------------------|-----------|
|   |                         | width [keV]                       | 0.2 ± 0.1 |
|   |                         | normalisation [10 <sup>-5</sup> ] | 6 ± 2     |

- or decreased ionisation in the accretion disc?
- a similar transient feature at E ~ 6.1 keV was
  reported in NGC 3516 (Bianchi+ 04, Iwasawa+ 04)

# Conclusions I

- X-ray continuum of 4U 1344-60 is dominated by a power law with  $\Gamma = 1.7$
- harder XMM-Newton spectrum can be explained either by a variable photon index or by the presence of partially covering absorber
- the latter is more consistent with hard X-ray flux measurements and Suzaku observation

### Conclusions II

- iron line detected by Suzaku is relatively narrow without any relativistic signatures
- regarding this, we interpret the iron-line complex in the XMM-Newton spectrum as a narrow iron line (with the same parameters) as for Suzaku) plus an additional temporarily enhanced emission from the innermost accretion disc