# The relativistic iron line produced by a viscously spreading ring near a massive black hole

Vjačeslav Sochora

Astronomical Institute of Academy of Sciences of the Czech Republic

Prague, August 30th, 2012

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Outline

#### Introduction

#### The viscous diffusion

The diffusion equation and its solution The evolution of the surface density

#### The model of an iron spectral line

The initial parameters The evolution of the surface density The theoretical spectral profile The simulated data with LOFT

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- We consider a spectral line formed by an X-ray illumination of an accretion ring near a supermassive rotating black hole.
- The ring is assumed to be gradually dissolved by viscous processes.
- We consider a simple model spectrum consisting of a power-law primary continuum and K-alpha reflection line of iron, and we show how the observed spectral profile changes in time.
- Model parameters are view angle of the observer, spin of the black hole, the initial radius of the ring, and its viscosity parameter.

 The evolution of the surface density distribution Σ is given by a diffusion equation

$$\frac{\partial \Sigma}{\partial t} = \frac{3}{r} \frac{\partial}{\partial r} \left[ r^{1/2} \frac{\partial}{\partial r} \left( \nu \Sigma r^{1/2} \right) \right].$$

• We suppose the  $\alpha$ -prescription of the disk

$$\nu = \frac{2}{3} \frac{\alpha c_s^2}{\Omega_{\rm K}} = \frac{2}{3} \alpha \Omega_{\rm K} H^2,$$

where  $\nu$  is the kinematic viscosity,  $\alpha$  the viscosity parameter,  $c_{\rm s}$  the sound speed,  $\Omega_{\rm K}$  Keplerian angular velocity and H the thickness of the disk.

## The solution of $\frac{\partial \Sigma}{\partial t}$

The diffusion equation can be solved analytically using Green's function (Lynden-Bell & Pringle 1974) if the kinematic viscosity is a power-law function of the radius

$$\nu(r)=\nu_0\left(\frac{r}{r_0}\right)^n,$$

where the parameter n characterizes the accretion disk, 1/2 is a disk without cooling, 3/2 is an isothermal disk, 3/5 and 3/4are thin disks, (Shakura & Sunyaev 1973).

The diffusion equation can be rewritten in the form of Bessel function if we set the dimensionless variables

$$\xi \equiv \left(\frac{r}{r_0}\right)^{1/2}; \tau \equiv \frac{t}{t_0}; \sigma(\xi, \tau) \equiv \frac{\Sigma(r)}{\Sigma_0},$$

 $r_0$ ,  $\Sigma_0$  are constants and  $t_0$  corresponds to the diffusion timescale at  $r_0$ ,  $t_0 \equiv \frac{4r_0^2}{3\nu_0} = \frac{2r_0^2}{\alpha\Omega_V H^2}$ . くし ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) (

For δ-function type initial condition, σ(ξ, τ = 0) = δ(ξ − 1), the solution of the diffusion equation is

$$\sigma(\xi,\tau) = |\mu| \frac{\xi^{1/\mu - 9/2}}{\tau} \exp\left[-\frac{\mu^2(\xi^{1/\mu} + 1)}{\tau}\right] I_{|\mu|} \left[\frac{2\mu^2\xi^{1/(2\mu)}}{\tau}\right],$$

where  $\mu = \frac{1}{4-2n}$  and  $I_{|\mu|}$  is the modified Bessel function of first order.

Now we can calculate the evolution of the inner and outer radius of an accretion ring, respectively a belt or a disk.

## The evolution of $\Sigma$ for different n



#### The evolution of $\Sigma$ for different *n*



Fig. 2: The evolution of the surface density for different accretion disks.

## The initial parameters

- We need know the initial parameters to calculate the spectral profile changes of iron line in time for a specific case.
- The initial parameters are the initial radius r<sub>0</sub>, initial surface density Σ<sub>0</sub> and diffusion timescale t<sub>0</sub> at r<sub>0</sub>.
- If we suppose the accretion ring is formed from the debris of a tidally disrupted star by a massive black hole then
  - the initial radius is the tidal radius  $r_0 = R_{\rm T} = R_* (M_{\rm BH}/M_*)^{(1/3)}$
  - the initial surface density is  $\Sigma_0 = \frac{M}{2\pi r_0^2}$ , where  $M = 0.5M_*$ .
- ► The diffusion timescale is  $t_0 = \frac{2r_0^2}{\alpha \Omega_{\rm K} H^2}$ , where the thickness *H* can be estimated from the standard Shakura-Sunyaev model for the inner region,

$$H \ge 3.235 \left(rac{M_{
m BH}}{M_{\odot}}
ight)^{7/8} lpha^{-1/8} \left(1 - \sqrt{rac{6r_g}{r}}
ight) \, {
m m}.$$

▶ If we set  $\theta_o = 30$  deg,  $M_{\rm BH} = 10^7 M_{\odot}$ , spin a = 0.7,  $M_* = 1 M_{\odot}$ ,  $\alpha = 0.8$ , n = 3/4 and  $H \simeq 6 \text{x} 10^6$  m then

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- $M = 0.5 M_{\odot}$
- ▶  $r_0 = 10.145 R_g$
- >  $\Sigma_0 = 7.05 \mathrm{x10^6 \ kg/m^2}$
- ▶ t<sub>0</sub> = 83000 years

## The evolution of the surface density



Fig. 3: The evolution of the surface density.

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ● 臣 ● のへで

- ▶ The mass of a black hole  $M_{\rm BH}$  changes the initial radius  $r_0$ . For  $M_{\rm BH} > 10^8 M_{\odot}$  the initial radius can be below marginally stable orbit.
- The initial parametrs α, Ω<sub>K</sub> and H influence the timescale t<sub>0</sub>, how quick is the spreading of the ring.
- The parameter n influences the profile of the evolution of the surface density Σ and has an effect on the inner and outer radius of the ring.

### The theoretical spectral profile



## The simulated data with LOFT



Thank you for your attention.

<□ > < @ > < E > < E > E - のQ @