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Abstract

The aim of this work is to investigate and develop the theory of impulsive functional
dynamic equations on time scales. We prove that these equations represent a special case
of impulsive measure functional differential equations. Moreover, we present a relation
between these equations and measure functional differential equations and, also, a corre-
spondence between them and generalized ordinary differential equations. Also, we clarify
the relation between measure functional differential equations and functional dynamic
equations on time scales.

We obtain results on the existence and uniqueness of solutions, continuous dependence
on parameters, non-periodic and periodic averaging principles and stability results for
all these types of equations. Moreover, we prove some properties concerning regulated
functions and equiregulated sets in a Banach space which were essential to our purposes.

The new results presented in this work are contained in 7 papers, two of which have
already been published and one accepted. See [16], [32], [34], [36], [37], [38] and [84].
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Resumo

O objetivo deste trabalho é investigar e desenvolver a teoria de equações dinâmicas
funcionais impulsivas em escalas temporais. Mostramos que estas equações representam
um caso especial de equações diferenciais funcionais em medida impulsivas. Também,
apresentamos uma relação entre estas equações e as equações diferenciais funcionais em
medida e, ainda, mostramos uma relação entre elas e as equações diferenciais ordinárias
generalizadas. Relacionamos, também, as equações diferenciais funcionais em medida e
as equações dinâmicas funcionais em escalas temporais.

Obtemos resultados sobre existência e unicidade de soluções, dependência contínua,
método da média periódico e não-periódico bem como resultados de estabilidade para
todos os tipos de equações descritos anteriormente. Também, provamos algumas pro-
priedades relativas às funções regradas e aos conjuntos equiregrados em espaços de Ba-
nach, que foram esssenciais para os nossos propósitos.

Os resultados novos apresentados neste trabalho estão contidos em 7 artigos, dos quais
dois já foram publicados e um aceito. Veja [16], [32], [34], [36], [37], [38] e [84].



x



Contents

Introduction 1

1 Regulated functions 9

1.1 Characterizations of compact sets in G([a, b],Rn

) . . . . . . . . . . . . . . 14

1.2 Characterizations of compact sets in G([a, b], X) . . . . . . . . . . . . . . . 17

2 Generalized ODEs 23

2.1 The Kurzweil integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Generalized ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Dynamic equations on time scales 33

3.1 Time scales calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Darboux and Riemann delta-integrals . . . . . . . . . . . . . . . . . . . . . 40

3.4 Kurzweil-Henstock delta integrals . . . . . . . . . . . . . . . . . . . . . . . 48

4 Correspondences between equations 51

4.1 Measure FDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Measure FDEs and generalized ODEs . . . . . . . . . . . . . . . . . . . . . 53

xi



xii CONTENTS

4.3 Measure FDEs and functional dynamic equations on time scales . . . . . . 67

4.4 Impulsive measure FDEs and measure FDEs . . . . . . . . . . . . . . . . . 75

4.5 Impulsive functional differential and dynamic equations on time scales . . . 82

5 Existence and uniqueness 91

5.1 Existence and uniqueness theorem for generalized ODEs . . . . . . . . . . 91

5.2 Measure FDEs and functional dynamic equations on time scales . . . . . . 95

5.3 Existence and uniqueness for impulsive equations . . . . . . . . . . . . . . 100

6 Continuous dependence of solutions on parameters 105

6.1 Continuous dependence on parameters . . . . . . . . . . . . . . . . . . . . 105

6.2 Continuous dependence of solutions involving variable time scales . . . . . 121

7 Averaging principles 131

7.1 Non-periodic averaging principles . . . . . . . . . . . . . . . . . . . . . . . 132

7.1.1 Measure FDEs and functional dynamic equations on time scales . . 133

7.1.2 Impulsive measure FDEs and impulsive functional dynamic equa-
tions on time scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2 Periodic averaging principles . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.2.1 Generalized ODEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.2.2 Measure FDEs and functional dynamic equations on time scales . . 159

7.2.3 Impulsive measure FDEs and impulsive functional dynamic equa-
tions on time scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

8 Various types of stability concepts 173

8.1 Stability for measure FDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.2 Measure FDEs regarded as generalized ODEs . . . . . . . . . . . . . . . . 176



8.3 Stability for generalized ODEs . . . . . . . . . . . . . . . . . . . . . . . . . 179

8.4 Relations between stability concepts for measure FDEs and generalized ODEs184

8.5 Stability for impulsive measure FDEs . . . . . . . . . . . . . . . . . . . . . 190

8.6 Stability for impulsive functional dynamic equations on time scales . . . . 196

9 Open and developing problems 205

References 209



xiv CONTENTS



Introduction

The theory of time scales is a recent theory and it was developed by Stefan Hilger,
on his doctor thesis (see [62]), in order to unify the discrete and continuous analysis. It
is worth mentioning that this theory is a powerful tool which does not only unify the
discrete and continuous cases, but it also unifies other cases, depending on the chosen
time scale.

It is a known fact that many results found in the theory of ordinary differential equa-
tions (continuous case) can be easily translated to their analogues in the theory of differ-
ence equations (discrete case). However, there are a lot of results for differential equations
which are completely different from their analogues for difference equations. In this way,
the theory of time scales was developed in order to avoid that some results are proved
twice, once for differential equations and another time for difference equations.

The main idea of the theory of dynamic equations on time scales is to prove the
results for a type of equations, called dynamic equations, which encompass differential
equations and difference equations. This goal is achieved because the domain of the
unknown function, called time scale, can be any closed and nonempty subset of the real
numbers. Thus, depending on the chosen time scale, we obtain a result for a different
type of equation. For instance, if the time scale is the set of the integer numbers, we
obtain a result for difference equations. On the other hand, if the time scale is the set of
the real numbers, we obtain a result for differential equations.

Other kinds of equations can also be considered. If we choose the time scale to be
qZ = {qz; z 2 Z} [ 0, where q > 1, for instance, then we obtain the theory for quantum
calculus, which is the basis of quantum physics. Although, these are only some examples,
since there are several closed and nonempty subsets of the real numbers (for example,
the Cantor set can be a time scale), it is clear that we can have more general results
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depending on the chosen time scale.

For example, a dynamic equation on time scale can model insects populations which
are continuous in a certain season, and die out in another one, and, while they die out,
their eggs are incubating or dormant, coming to hatch in a different season, giving rise to
a nonoverlapping population. See [17], for instance, for details.

Another application of dynamic equations on time scales is the improvement of the
study of economic models, since they are much more flexible and realistic models than
the ones that are restricted only to the continuous or discrete cases. Also, it is worth
noticing that most dynamic optimization problems in economics are described as follows:
a consumer has a goal to maximize his lifetime subject utility to certain constraints. Thus,
during each period of his life, he should make a decision concerning how much he is willing
to give up today to increase consumption tomorrow. This problem is usually described by
an optimal control model and its solution is a function which describes optimal behavior
for an individual. The solution says how much one should consume during each period
of his life in order to ensure that one achieves maximum lifetime consumption. This
problem becomes a dynamic one, since a consumer should make decisions not only at one
period of his life, but during a sequence of them. In the paper [6], the authors present
the above economic problem described by three different models (discrete, continuous
and time-scales models). In order to obtain more realistic models, they take into account
that a consumer has a limited amount of resources and there is also a trade-off between
consuming today and consuming tomorrow.

The discrete model, presented in [6], considers that a consumer has to make a decision
about consuming at moments equally spaced, however, we know that in real life, the
consumption might occur at unequally spaced moments which turns this model a restricted
one. Also, the continuous model presented in [6] does not predict precisely the events
which may occur at unequally spaced intervals, not reflecting the reality as well. On the
other hand, the time-scales model presented in [6] encompasses the previous ones and
gives a more complex analysis concerning the economic models, allowing the hypothesis
when the consumption occurs at unequally spaced moments, turning it more realistic. For
more details, see [6].

Thus, the theory of time scales has been shown to be a powerful tool to model several
economic problems in a more realistic way, since they allow including paychecks, dividend
payments and rent payments which usually occurs at unequally spaced points of time.

However, it is difficult to deal directly with the theory of dynamic equations on time
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scales, since it involves a new calculus and tools which are unusual to us. The same
happens when we try to study difference equations. The difficulties come from the fact
that we are working with another calculus with unusual tools. Due to this fact, many
researchers tried different ways to relate difference equations with other types of equations
in order to facilitate the obtention of good results for these equations.

In 1983, A. B. Mingarelli, in his manuscript [85], investigated the possibility to obtain a
correspondence between difference equations and measure differential equations (Volterra-
Stieltjes equations). His work emphasizes the study of second order equations. Later, in
1994, I. Györi, in his work [51], described an approach to delay difference equations
(discrete case) by delay differential equations in order to improve the development of the
theory of discrete equations. The result presented in his work is useful to researchers
who deal with difference equations. Later, in 2012, A. Slavík extended these relations.
Instead of relating only discrete equations with other types of equations, he obtained a
more general correspondence, describing a correspondence between dynamic equations on
time scales and measure differential equations. See [98], for instance. As we mentioned
before, dynamic equations on time scales encompass difference equations and, thus, the
correspondence presented by A. Slavík generalizes the previous ones.

In the present work, our main goal is to establish the theory concerning impulsive
functional dynamic equations on time scales. This is a recent theory and it generalizes
the classical theory of impulsive functional differential equations, which is described ex-
tensively in the literature. Our interest in developing this theory lies on the fact that it is
a powerful tool for applications, because the most realistic and deterministic models are
frequently described by equations involving delays, which apply the causality principle
and involve a lag between cause and effect.

In order to facilitate our objective, we focus our attention on the development of the
theory of functional dynamic equations on time scales. Inspired by Slavík’s paper [98],
we investigated the extension of the correspondence presented by him to other types of
equations. In this direction, in 2012, we described a correspondence between measure
functional differential equations and functional dynamic equations on time scales, which
can be found in [36]. With this correspondence, we were able to establish some interesting
results for functional dynamic equations on time scales, such as existence and uniqueness of
solutions, continuous dependence of solution on the initial data, non-periodic and periodic
averaging principles and also stability results.

Notice that functional dynamic equations on time scales are really important tools
for applications, since they encompass functional differential equations and extend them,
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allowing more realistic models in several fields of knowledge. The theory about these
equations is really scarce, since they were introduced in the literature recently and there
are a lot of results to be developed.

Also, the literature concerning measure functional differential equations is not well-
developed yet. By the way, measure functional differential equation can be described by
equations of the form

Dx = f(x
t

, t)Dg, t 2 [t0, t0 + �], (0.0.1)

where �, r > 0, x
t

(✓) = x(t + ✓), for ✓ 2 [�r, 0], Dx and Dg are the distributional
derivatives in the sense of L. Schwartz with respect to x and g. The integral form of
(0.0.1) is given by

x(t) = x(t0) +

Z
t

t0

f(x
s

, s)dg(s), t 2 [t0, t0 + �].

We point out that measure functional differential equations are more general than
functional differential equations and they encompass functional dynamic equations on
time scales, depending on the chosen function g. These are good reasons to study measure
functional differential equations. In Chapter 4, we describe with more details all these
types of equations.

Because functional dynamic equations on time scales are not simple to deal with, we
established a correspondence between the solutions of a measure functional differential
equation and the solutions of a generalized ordinary differential equation (See [36] and
Chapter 4 of this work). It turns out that the framework of abstract generalized ordi-
nary differential equations is much simpler to deal with than the above specific setting
of differential equations given by (0.0.1). Therefore, this correspondence facilitates the
development of the theory of functional dynamic equations on time scales.

With the correspondences between the solutions of a functional dynamic equation on
time scales and the solutions of a measure functional differential equation and these last
ones and the solutions of a generalized ordinary differential equation, we were able to
prove a lot of interesting results for these types of equations, such as local existence and
uniqueness of solutions, continuous dependence of solutions on parameters and periodic
averaging principles. All these results can be found in [36] and they will be described with
more details in Chapters 5, 6 and 7.

After this, we decided to improve the class of equations on time scales which we were
dealing with. Since impulsive differential equations are powerful tools for applications and,
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using them, it is possible to model systems involving controls and jumps in a more realistic
way, we proved that the measure functional differential equations that we were dealing
with are general enough to encompass impulsive behavior. Thus, we were able to relate
measure functional differential equations and impulsive measure functional differential
equations (see [37] and Chapter 4). And, using this fact, we could prove a relation
between these last ones and impulsive functional dynamical equations on time scales (see
Chapter 4).

Thus, we obtained an indirect correspondence between impulsive functional dynamic
equations on time scales and generalized differential equations, so that we were able to
extend all the results concerning existence and uniqueness, continuous dependence and
periodic averaging for impulsive measure functional differential equations and impulsive
functional dynamic equations on time scales. All these results can be found in [37] and
will be described in Chapters 5, 6 and 7.

Moreover, using these correspondences, we proved non-periodic averaging principles for
measure functional differential equations, functional dynamic equations on time scales, im-
pulsive measure functional differential equations and impulsive functional dynamic equa-
tions on time scales. See [34] and Chapter 7, for instance. Later, in [38], we developed
stability results for all these equations. Such results are described in Chapter 8. Moreover,
we also proved a continuous dependence result for impulsive functional dynamic equations
on time scales for variable time scales. See [16] and Chapter 6, for instance.

The present work is divided in nine chapters and it is organized as follows. In the first
chapter, we present the basic concepts and main properties of regulated functions and
equiregulated sets in Rn and we extend them for general Banach spaces. Also, we present
a version of Arzelá-Ascoli Theorem for regulated functions taking values in a Banach
space. Almost of all results presented in this chapter are new and they can be found in
[32].

The second and third chapters are devoted to presenting the necessary preliminaries
to the understanding of the results described in this thesis. The second chapter concerns
Kurzweil integration and generalized ordinary differential equations and the third one
deals with the theory of dynamic equations on time scales. Readers familiar with these
theories can skip these chapters and follow directly to Chapter 4.

The fourth chapter is divided in five sections. The first one is devoted to introducing
measure functional differential equations and their properties. The second section brings
a correspondence between the solutions of a measure functional differential equation and



6

the solutions of a generalized ordinary differential equation. The third section presents
a correspondence between the solutions of a measure functional differential equation and
the solutions of a functional dynamic equation on time scales. In the fourth section, we
prove that measure functional differential equations are general enough to encompass im-
pulsive behavior. In other words, we prove that impulsive measure functional differential
equations represent a special type of measure functional differential equations. Finally,
in the last section, we establish a correspondence between the solutions of an impulsive
measure functional differential equation and the solutions of an impulsive functional dy-
namic equations on time scales. This chapter contains the most important results of the
present work and, by using them, we are able to prove all the results presented in the
following chapters. Almost all the results presented in this chapter are original and they
can be found in [36] and [37].

The fifth chapter concerns local existence and uniqueness theorems for generalized or-
dinary differential equations, measure functional differential equations, impulsive measure
functional differential equations, functional dynamic equations on time scales and impul-
sive functional dynamic equations on time scales. Almost all the results of this chapter
are new and they can be found in [36] and [37].

The sixth chapter is divided in two sections. In the first one, we present results on
continuous dependence of solutions on the initial data for generalized ordinary differential
equations, measure functional differential equations, functional dynamic equations on
time scales, impulsive measure functional differential equations and impulsive functional
dynamic equations on time scales. In the second section, we present results on continuous
dependence of solutions involving variable time scales for impulsive functional dynamic
equations on time scales. Most of the results presented in this chapter are new and can
be found in [16], [32], [36] and [37].

Chapter 7 is devoted to averaging principles. It is divided in three sections. The
first one concerns non-periodic averaging principles for measure functional differential
equations, functional dynamic equations on time scales, impulsive measure functional
differential equations and impulsive functional dynamic equations on time scales. The
second section presents periodic averaging principle for generalized ordinary differential
equations, measure functional differential equations, functional dynamic equations on
time scales, impulsive measure functional differential equations and impulsive functional
dynamic equations on time scales. Finally, in the last section, we present some examples
to illustrate the averaging principles. Almost all results presented in this chapter are new
and they can be found in [34], [36], [37] and [84].
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In Chapter 8, we present new concepts of stability of the trivial solution of measure
functional differential equations, functional dynamic equations on time scales, impulsive
measure functional differential equations, impulsive functional dynamic equations on time
scales and generalized ordinary differential equations, as well the relations between the
various concepts of stability. All the results presented in this chapter are new and they
are contained in [38].

In the last chapter, we present several open and developing problems which may
motivate future and interesting projects.





Chapter

1
Regulated functions

In this chapter, we state and prove some fundamental results concerning regulated
functions which will be essential to our purposes. The majority of the results presented
here are new and they can be found in [32]. The basic references to this chapter are [32],
[46], [64] and [94].

Let X be a Banach space with norm k · k.

A function f : [a, b] ! X is called regulated, if the lateral limits

lim

s!t

�
f(s) = f(t�), t 2 (a, b], and lim

s!t

+
f(s) = f(t+), t 2 [a, b) (1.0.1)

exist. The space of all regulated functions f : [a, b] ! X will be denoted by G([a, b], X),
and it is a Banach space under the usual supremum norm kfk1 = sup

atb

kf(t)k. The
subspace of all continuous functions f : [a, b] ! X will be denoted by C([a, b], X). It is
clear that C([a, b], X) ⇢ G([a, b], X) and, in C([a, b], X), we consider the norm induced
by G([a, b], X). Moreover, we denote by G�

([a, b],R) the set of regulated functions f :

[a, b] ! X which are left-continuous.

The finite sets d = {t0, t1, . . . , tm} of points in the closed interval [a, b] such that
a = t0 < t1 < . . . < t

m

= b are called partitions of [a, b]. Given a partition of [a, b], its
elements are usually denoted by t0, t1, . . . , tm. The set of all partitions of [a, b] is denoted
by D[a, b]. Moreover, we call a pair (⌧

i

, [t
i�1, ti]) by tagged interval, where ⌧

i

2 [t
i�1, ti] is

a tag of [t
i�1, ti].

Let � > 0, we say that a partition of [a, b] is �-fine, if for every i = 1, 2, . . . ,m, we
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have |t
i

� t
i�1| < �. And also, a tagged interval (⌧

i

, [t
i�1, ti]) with ⌧

i

2 [t
i�1, ti] is �-fine, if

[t
i�1, ti] ⇢ (⌧

i

� �(⌧
i

), ⌧
i

+ �(⌧
i

)). For more details, the reader may consult Chapter 2 or
[94].

A function f : [a, b] ! X is called a finite step function, if there is a finite partition
a = t0 < t1 < . . . < t

m

= b such that in every open interval (t
i�1, ti), i = 1, . . . ,m, the

function is identically equal to an element c
i

2 X.

Given a function f : [a, b] ! X, its variation varb
a

f on the interval [a, b] is defined by

varb
a

f = sup

d2D[a,b]

mX

i=1

kf(t
i

)� f(t
i�1)k,

that is, the supremum is taken over all �-fine partitions d = {t0, t1, . . . , tm} 2 D[a, b] of
[a, b]. If varb

a

f < 1, we say that f is of bounded variation on the interval [a, b]. Also,
BV ([a, b], X) denotes the Banach space of functions f : [a, b] ! X of bounded variation
on [a, b], equipped with the variation norm

f 2 BV ([a, b], X) 7! kfk
BV

= kf(a)k+ varb
a

f.

It is a well-known fact that every function which is regulated on [a, b] is bounded
on this interval and is the uniform limit of finite step functions. See [64], for instance.
Moreover, every function of bounded variation on [a, b] is regulated on [a, b].

A set A ⇢ G([a, b], X) is called equiregulated, if it has the following property: for every
" > 0 and t0 2 [a, b], there is � > 0 such that

1. If x 2 A, t0 2 [a, b] and t0 � � < t0 < t0, then kx(t0�)� x(t0)k < ".

2. If x 2 A, t00 2 [a, b] and t0 < t00 < t0 + �, then kx(t00)� x(t0+)k < ".

The next result describes a property of regulated functions. It is a generalization of
Proposition 1.9 from [46] for Banach space-valued functions and its proof follows the same
steps as the proof of Proposition 1.9 from [46].

Lemma 1.1. Let x : [a, b] ! X be a regulated function. Then for every " > 0, there is a
�-fine partition

a = t0 < t1 < . . . < t
n

= b

such that
kx(t00)� x(t0)k < ", (1.0.2)
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for t
i�1 < t0 < t00 < t

i

and i = 1, 2, . . . , n.

Proof. Let " > 0 be given and denote by C the set of all ⌧ 2 (a, b] such that there is a
�-fine partition on [a, ⌧ ], a = t0 < t1 < . . . < t

k

= ⌧ , satisfying (1.0.2) with k instead of n.

Since x is regulated, the limit lim

t!a

+ x(t) = x(a+) exists and it guarantees the exis-
tence of � > 0 such that

kx(t)� x(a+)k < "/2, for t 2 (a, �).

Then, for every a < t0 < t00 < �, we get

kx(t00)� x(t0)k  kx(t00)� x(a+)k+ kx(t0)� x(a+)k < ".

As a result, we obtain � 2 C.

Denote c = supC. Then c > a.

Since the limit x(c�) = lim

t!c

� x(t) exists, there is � > 0 such that |x(t)�x(c�)| < "/2

for every t 2 (c � �, c). Take � 2 C \ (c � �, c). Since � 2 C, there is a finite sequence
a = t0 < t1 < . . . < t

k

= � such that (1.0.2) holds with k instead n.

Without loss of generality, we can take t
k+1 = c. Then

kx(t00)� x(t0)k  kx(t00)� x(c�)k+ kx(t0)� x(c�)k < ",

for t
k

= � < t0 < t00 < c = t
k+1 which implies that (1.0.2) holds also for n = k + 1.

Therefore c 2 C.

Using the same idea as in the beginning of this proof, it can be shown that if c < b,
then there is t > c which belongs to C. However, this contradicts the fact that c is the
supremum of C. Therefore c = b and we obtain the desired result.

The next result gives a characterization of equiregulated functions for the Banach
space-valued case. It is a new result and it can be found in [32]. The proof is inspired in
Lemma 2.1 from [46].

Theorem 1.2. A set A ⇢ G([a, b], X) is equiregulated, if and only if, for every " > 0

there is a �-fine partition a = t0 < t1 < . . . < t
n

= b such that

kx(t0)� x(t)k  ", (1.0.3)



12 Regulated functions

for every x 2 A and [t, t0] ⇢ (t
j�1, tj), for j = 1, 2, . . . , n.

Proof. ()) Let " > 0 be given and let D be the set of all � 2 (a, b] such that there is a
partition a = t0 < t1 < . . . < t

k

= � for which (1.0.3) holds with k instead of n.

Since A is equiregulated, there is �1 2 (0, b � a] such that kx(t) � x(a+)k  "/2, for
every x 2 A and t 2 (a, a + �1). Denote d1 = a + �1, a = t0 < t1 = d1. Thus, for
[t, t0] ⇢ (a, d1) and x 2 A, the inequalities

kx(t)� x(t0)k  kx(t)� x(a+)k+ kx(t0)� x(a+)k  ",

holds and we have d1 2 D.

Let ˜d be the supremum of set D. Since x 2 A, x is regulated. Then there is � > 0

such that
kx( ˜d�)� x(t)k  "

2

for every x 2 A and t 2 (

˜d� �, ˜d) \ [a, b].

Let d 2 D \ (

˜d� �, ˜d) and a partition a = t0 < t1 < . . . < t
k

= d be such that (1.0.3)
holds with k instead of n. Denote t

k+1 =

˜d. Then for [t, t0] ⇢ (t
k

, t
k+1) and x 2 A, we

have
kx(t)� x(t0)k  kx(t)� x( ˜d�)k+ kx(t0)� x( ˜d�)k  ",

which implies ˜d 2 D. Thus we have two possibilities: either ˜d = b or ˜d < b. In the first
case, we finish the proof. On the other hand, for the second case, we can use a similar
argument as before to find d2 2 (d, b] such that d2 2 D and, in this case, this contradicts
the fact that d = supD. Thus ˜d = b and we finished the proof.

(() Reciprocally, given " > 0, there is a �-fine partition a = t0 < t1 < . . . < t
k

= b

such that
kx(t0)� x(t)k  ", (1.0.4)

for every x 2 A and [t, t0] ⇢ (t
j�1, tj), for j = 1, 2, . . . , k.

Let ⌧
j

be a tag of (t
j�1, tj). Since (t

j�1, tj) is �-fine, it can be rewritten by (⌧
j

��, ⌧
j

+�).
Therefore, the inequality (4.2.3) holds, for t, t0 2 (⌧

j

� �, ⌧
j

+ �). Taking t = ⌧�
j

and
t0 2 (⌧

j

��, ⌧
j

], then the inequality (4.2.3) remains true. Also, if t = ⌧+
j

and t0 2 [⌧
j

, ⌧
j

+�),
the inequality (4.2.3) is fulfilled. Then, by definition, it follows that A is equiregulated.

The next result describes a property of an equiregulated set A ⇢ G([a, b], X). The
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proof of this result is inspired in [46], Lemma 2.2.

Theorem 1.3. Assume that a set A ⇢ G([a, b], X) is equiregulated and for any t 2 [a, b]

there is a number �
t

such that

kx(t)� x(t�)k  �
t

, t 2 (a, b], and kx(t+)� x(t)k  �
t

, t 2 [a, b). (1.0.5)

Then there is a constant K > 0 such that kx(t) � x(a)k  K, for every x 2 A and
t 2 [a, b].

Proof. Let B be the set of all ⌧ 2 (a, b] such that there is K
⌧

> 0 such that

kx(t)� x(a)k  K
⌧

,

for any x 2 A and t 2 [a, ⌧ ].

Since the set A is equiregulated, there is � > 0 such that

kx(t)� x(a+)k  1,

for every x 2 A and t 2 (a, a+ �]. This fact together with the hypothesis imply that

kx(t)� x(a)k  kx(t)� x(a+)k+ kx(a+)� x(a)k  1 + �
a

= K(a+�),

for every t 2 (a, a+ �] and x 2 A. Hence (a, a+ �] ⇢ B.

Denote ⌧0 = supB. As a consequence of the equiregulatedness of A, there is �0 > 0

such that kx(t)� x(⌧�0 )k  1 for every x 2 A and t 2 [⌧0 � �0, ⌧0).

Let ⌧ 2 B \ [⌧0 � �0, ⌧0). Then

kx(t)� x(a)k  kx(t)� x(⌧�0 )k+ kx(⌧�0 )� x(⌧)k+ kx(⌧)� x(a)k 

 1 + 1 +K
⌧

= 2 +K
⌧

,

for x 2 A and t 2 (⌧, ⌧0). Also,

kx(⌧�0 )� x(a)k  kx(⌧�0 )� x(⌧)k+ kx(⌧)� x(a)k  1 +K
⌧

.

These inequalities and the hypotheses imply

kx(⌧0)� x(a)k  kx(⌧0)� x(⌧�0 )k+ kx(⌧�0 )� x(a)k  �
⌧0 + 1 +K

⌧

.
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Thus ⌧0 2 B, where K
⌧0 = �

⌧0 + 1 +K
⌧

.

If ⌧0 < b, then since A is equiregulated, there is �00 > 0 such that

kx(t)� x(⌧+0 )k  1, for any x 2 A, t 2 (⌧0, ⌧0 + �00],

which implies

kx(t)� x(a)k  kx(t)� x(⌧+0 )k+ kx(⌧+0 )� x(⌧0)k+ kx(⌧0)� x(a)k 

 1 + �
⌧0 +K

⌧0 = K(⌧0+�

00),

for t 2 (⌧0, ⌧0 + �00) and f 2 A. Thus ⌧0 + �00 2 B which contradicts the fact that
⌧0 = supB. Therefore ⌧0 = b and we have the desired result.

1.1 Characterizations of compact sets in G([a, b],Rn)

In this section, we present some properties concerning the compact sets in G([a, b],Rn

).
Also, we present a known Arzelá-Ascoli-type theorem for regulated functions taking values
in finite dimensional spaces. This result was establish by Daná Fraňková in 1991 in the
paper [46] which is the main reference to the present section.

We start this section by presenting a result which describes a necessary and sufficient
condition for a subset of G([a, b],Rn

) to be relatively compact. Such result can be found
in [46], Proposition 2.3.

We denote any norm in Rn by | · |.

Theorem 1.4. A set A ⇢ G([a, b],Rn

) is relatively compact, if and only if, it is equireg-
ulated and for any t 2 [a, b], there is a number �

t

such that

|x(t)� x(t�)|  �
t

, t 2 (a, b], and |x(t+)� x(t)|  �
t

, t 2 [a, b). (1.1.1)

and there is ↵ > 0 such that |x(a)|  ↵ for any x 2 A.

As an immediate consequence of the previous theorem, we obtain the following result
which can be found in [46], Corollary 2.4.

Corollary 1.5. A set A ⇢ G([a, b],Rn

) is relatively compact, if and only if, it is equireg-
ulated and, for every t 2 [a, b], the set {x(t); x 2 A} is bounded in Rn.
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The next theorem is a crucial result to prove our main results concerning continuous
dependence of solutions on parameters in Chapter 6. A proof of it can be found in [46],
Theorem 2.14.

Theorem 1.6. For an arbitrary function x : [a, b] ! Rn, the following conditions are
equivalent:

(i) x is a regulated function.

(ii) There is a continuous function y : [0, 1] ! Rn and an increasing function v such
that v(0) = 0, v(1) = 1 satisfying x(t) = y(v(t)) for every t 2 [0, 1].

(iii) There is an increasing continuous function ⌘ : [0, 1] ! [0,1), ⌘(0) = 0 and an
increasing function v : [a, b] ! [0, 1] such that

|x(t2)� x(t1)|  ⌘(v(t2)� v(t1)),

for every a  t1  t2  b.

Remark 1.7. It is worth noticing that every nondecreasing function v : [a, b] ! R can be
bounded by an increasing function, that is, if v : [a, b] ! R, 0 < a < b is a nondecreasing
function, then the inequality

v(t)  v(t) + t = h(t)

is fulfilled, where the function h given above is increasing. ⇤

The next result follows as an immediate consequence of Remark 1.7 and Theorem 1.6.

Corollary 1.8. For an arbitrary function x : [a, b] ! Rn, the following conditions are
equivalent:

(i) x is a regulated function.

(ii) There is an increasing continuous function ⌘ : [0, 1] ! [0,1), ⌘(0) = 0 and a
nondecreasing function v : [a, b] ! [0, 1] such that

|x(t2)� x(t1)|  ⌘(v(t2)� v(t1)),

for every a  t1  t2  b.
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The following theorem is an essential result to our purposes, since it gives sufficient
conditions for a subset of the space of regulated function to be equiregulated and to satisfy
condition (1.1.1).

Theorem 1.9 ([45], Theorem 2.17). For any set A ⇢ G([a, b],Rn

), the following proper-
ties are equivalent:

(i) A is equiregulated and satisfies (1.1.1);

(ii) There is an increasing function v : [0, 1] ! [0, 1] such that v(0) = 0, v(1) = 1 and
an increasing continuous function ⌘ : [0,1) ! [0,1), ⌘(0) = 0 such that

|x(t00)� x(t0)|  ⌘(v(t00)� v(t0)), (1.1.2)

for every x 2 A, 0  t0 < t00  1.

(iii) There is an increasing function v : [0, 1] ! [0, 1] such that v(0) = 0, v(1) = 1 and
an equicontinuous set B ⇢ C([0, 1],Rn

) such that A ⇢ B�v, that is, for every x 2 A
there is a continuous function y 2 B such that x = y � v.

The next result is a generalization of the Arzelá-Ascoli theorem for regulated functions.
It is the most important result of this section and it can be found in [46], Theorem 2.18.

Theorem 1.10. For any set of regulated functions A ⇢ G([a, b],Rn

), the following prop-
erties are equivalent:

(i) A is relatively compact in G([a, b],Rn

);

(ii) A is equiregulated, satisfies (1.1.1) and

there is ↵ > 0 such that |x(0)|  ↵ for any x 2 A. (1.1.3)

(iii) The set A satisfies (1.1.2) and (1.1.3).

(iv) There is an increasing function v : [0, 1] ! [0, 1] such that v(0) = 0, v(1) = 1 and a
compact set of continuous functions B ⇢ C([a, b],Rn

) such that A ⇢ B � v.

Using the previous result and Remark 1.7, the next result follows immediately.

Corollary 1.11. The following conditions are equivalent:
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(i) A ⇢ G([a, b],Rn

) is relatively compact.

(ii) The set {x(a); x 2 A} is bounded and there is an increasing continuous function
⌘ : [0,1) ! [0,1), ⌘(0) = 0 and a nondecreasing function v : [a, b] ! R such that

|x(t2)� x(t1)|  ⌘(v(t2)� v(t1)),

for every x 2 A, a  t1  t2  b.

(iii) A is equiregulated and for every t 2 [a, b], the set {x(t); x 2 A} is bounded.

1.2 Characterizations of compact sets in G([a, b], X)

In this section, we investigate an extension of Arzelá-Ascoli Theorem for regulated
functions taking values in a general Banach space X. Throughout this section, we will
consider that X is a Banach space endowed with norm k · k.

All the results presented here are new and they can be found in [32].

One cannot expect to prove a version of Theorem 1.11 for a general Banach space using
similar hypotheses, because the equiregulatedness of A ⇢ G([a, b], X) and the bounded-
ness of the set {x(t); x 2 A} in X, for every t 2 [a, b], are not sufficient to guarantee that
a set A is relatively compact. Below, we present an example which illustrates this fact.

Example 1.12. Let [a, b] = [0, 1] and Z ⇢ X be a set which is bounded, but not
relatively compact in X. Given " > 0, there is a sequence {z

n

;n 2 N} ⇢ Z such that
kz

n

k  K and kz
n

� z
m

k � ", n 6= m for some constant K > 0. Therefore the set
B = {y

n

: [0, 1] ! X, y
n

(t) = tz
n

; n 2 N} is bounded, since z
n

is bounded. Also, by
definition, B is equiregulated and {y

n

(0);n 2 N} is relatively compact in X. But B is
not relatively compact in G([0, 1], X).

However, we can add one hypothesis in order to guarantee that the set A is relatively
compact. For instance, we can suppose for every t 2 [a, b], the set {x(t); t 2 A} is
relatively compact in X. In this way, A is relatively compact in G([a, b], X). This is the
content of the next result which is a type of Árzela-Ascoli theorem for regulated functions
taking values in a Banach space. Such result is original and can be found in [32].

Theorem 1.13. Let A ⇢ G([a, b], X) be equiregulated and, for every t 2 [a, b], let the
set {x(t); t 2 A} be relatively compact in X. Then the set A is relatively compact in
G([a, b], X).
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Proof. Let {x
n

;n 2 N} ⇢ A be a given sequence. Denote k
n

= n, for every n 2 N and
consider the sequences of indexes {kq

n

;n 2 N} for q = 0, 1, . . . , r�1, where r 2 N, kq

n

2 N,
kq

n+1 > kq

n

.

Since A is equiregulated, there is a �-fine partition a = ↵r

0 < ↵r

1 < . . . < ↵r

2pr = b such
that

kx
n

(t0)� x
n

(t)k <
1

r
,

for every n 2 N and ↵r

2i�2 < t < t0 < ↵r

2i.

By assumption, the set {x
n

(↵r

i

), n 2 N} is relatively compact in X for every i =

0, 1, 2, . . . , 2
pr . Then the set

{x
k

r�1
n

(↵r

i

), n 2 N}

is also relatively compact in X for every i. Therefore we can find a subsequence of indexes
{kr

n

;n 2 N} ⇢ {kr�1
n

;n 2 N} and elements {yr
i

; i = 01, 2, . . . , 2p
r

} ⇢ X satisfying kr

n

2 N,
kr

n+1 > kr

n

, yr
i

= lim

n!1
x
k

r
n
(↵r

i

) and

��x
k

r
n
(↵r

i

)� yr
i

�� <
1

r
,

for every n 2 N.

Without loss of generality, we can fix an r 2 N. Then we extend the result inductively
for every r 2 N. Denote k

r

= kr

1, for r 2 N. Thus,

kx
kq(↵

r

i

)� yr
i

k <
1

r
,

for any q � r and i = 1, 2, . . . , 2p
r

.

Now, let t 2 [a, b] and let " > 0 be given. Then we can find r 2 N such that 1/r < "/4.

Let q 2 N be such that q > r. Then either t = ar
i

for some i 2 {0, 1, 2, . . . , 2
pr} and,

in this case, we have

kx
kr(t)� x

kq(t)k  kx
kr(↵

r

i

)� yr
i

k+ kx
kq(↵

r

i

)� yr
i

k <
2

r
,

or t 2 (↵r

2i�1, ↵
r

2i) for some i 2 {0, 1, . . . , p
r

} and, in this case, we have

kx
kr(t)�x

kq(t)k  kx
kr(t)�x

kr(↵
r

2i�1)k+kx
kq(t)�x

kq(↵
r

2i�1)k+kx
kr(↵

r

2i�1+x
kq(↵

r

2i�1)k <

<
1

r
+

1

r
+

2

r
< ".
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Thus, for t 2 [a, b], the sequence {x
kr(t); r 2 N} ⇢ X satisfies the Cauchy condition.

Then, since the space X is complete and the sequence {x
kr(t); r 2 N} is a Cauchy sequence,

the limit lim

r!1
x
kr(t) exists. Let x0(t) = lim

r!1
x
kr(t). Therefore x

kr ◆ x0 on [a, b], which
means that x0 is the limit of the subsequence {x

kr} in G([a, b], X). Hence any sequence
{x

n

} ⇢ A has a convergent subsequence which means that A is relatively compact.

The next result concerns an important property of an equiregulated sequence of Banach
space-valued functions. It is an original result which can be found in [32].

Lemma 1.14. Let {x
k

}1
k=1 be a sequence of functions from [a, b] to X. If the sequence x

k

converges pointwisely to x0 and the sequence {x
k

}1
k=1 is equiregulated, then x

k

converges
uniformly to x0.

Proof. Since the sequence of functions {x
k

}1
k=1 is equiregulated, we obtain, by Theorem

1.2, that given " > 0, there exist a �-fine partition a = s0 < s1 < . . . < s
m

= b such that

kx
k

(t)� x
k

(s)k < "/3,

for k 2 N and s
i�1 < s < t < s

i

.

Let ⌧
i

2 (s
i�1, si). Since the sequence x

k

converges pointwisely to x0, it follows that
x
k

(s
i

) ! x0(si) and x
k

(⌧
i

) ! x0(⌧i), for every i = 1, 2, . . . ,m. Therefore, given " > 0,
there exists k0 2 N such that if k > k0, we have

kx
k

(s
i

)� x0(si)k < "/3 and kx
k

(⌧
i

)� x0(⌧i)k < "/3,

for every i = 1, 2, . . . ,m.

Now, let t 2 [a, b] be given. Thus, either t = s
i

for some i, or t 2 (s
i�1, si) for some i.

In the first case, we have
kx

k

(t)� x0(t)k < "/3.

On the other hand, the second case implies

kx
k

(t)� x0(t)k  kx
k

(t)� x
k

(⌧
i

)k+ kx
k

(⌧
i

)� x0(⌧i)k+ kx0(⌧i)� x0(t)k < ",

which means that kx
k

� x0k1 < " and hence x
k

! x0 uniformly on [a, b] and we have the
desired result.

The next lemma is a new result and it will be essential to our purposes.
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Lemma 1.15. Let {x
k

}1
k=1 be a sequence of functions from [a, b] to X.

(i) If the sequence of functions x
k

converges uniformly to x0 as k ! 1 on [a, b], then
x
k

(t�) ! x0(t�), for t 2 (a, b], and x
k

(t+) ! x0(t+), for t 2 [a, b).

(ii) If the sequence of functions x
k

converges pointwisely to x0 as k ! 1 on [a, b] and
x
k

(t�) ! x0(t�), for t 2 (a, b], and x
k

(t+) ! x0(t+), for t 2 [a, b). Also, assume
that x0 is a regulated function, then the sequence x

k

converges uniformly to x0 as
k ! 1.

Proof. Let us prove item (i). Since the sequence of functions x
k

converges uniformly
to x0, it follows from Moore-Osgood Theorem that x

k

(t�) ! x0(t�), for t 2 (a, b] and
x
k

(t+) ! x0(t+), for t 2 [a, b).

Now, let us prove item (ii). Note that it is enough to prove that the set {x
k

: [a, b] !
X, k 2 N} is equiregulated, since by Lemma 1.14, it follows that x

k

converges uniformly
to x0.

Since x0 is a regulated function, its lateral limits exist.

Let t0 2 [a, b] and " > 0 be given. Then there is � > 0 such that, for every t 2 [a, b],
we have

• If t0 � �  t < t0, then kx0(t0�)� x0(t)k < ",

• If t0 < t  t0 + �, then kx0(t)� x0(t0+)k < ".

By hypotheses, there is an integer n0 such that for every n � n0, we get the following
inequalities:

kx
n

(t0 � �)� x0(t0 � �)k < ", kx
n

(t0)� x0(t0)k < ", kx
n

(t+0 )� x0(t
+
0 )k < ",

kx
n

(t0 + �)� x0(t0 + �)k < " and kx
n

(t�0 )� x0(t
�
0 )k < ".

If t 2 [a, b] is such that t0 � �  t < t0, then, for every n � n0, we have

0  kx
n

(t�0 )� x
n

(t)k  kx
n

(t�0 )� x0(t
�
0 )k+ kx0(t

�
0 )� x0(t)k+

+kx0(t)� x
n

(t)k < "+ "+ " = 3".
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If t 2 [a, b] is such that t0 < t  t0 + �, then, for every n � n0, we obtain

0  kx
n

(t)� x
n

(t+0 )k  kx
n

(t)� x0(t)k+ kx0(t)� x0(t
+
0 )k+

+kx
n

(t+0 )� x0(t
+
0 )k < "+ "+ " = 3",

which implies that the sequence {x
n

} is equiregulated and we have the desired result.

The next lemma is also a new result and it guarantees that, if a sequence of func-
tions {x

k

}1
k=1 is bounded by an equiregulated sequence of functions, then {x

k

}1
k=1 is also

equiregulated.

Lemma 1.16. Let {x
k

}1
k=1 be a sequence of functions from [a, b] to X. Suppose, for each

k = 1, 2, . . ., the function x
k

satisfies

kx
k

(s2)� x
k

(s1)k  |h
k

(s2)� h
k

(s1)| (1.2.1)

for every s1, s2 2 [a, b], where h
k

: [a, b] ! R for each k = 1, 2, . . . and the sequence
{h

k

}1
k=1 is equiregulated. Then the sequence {x

k

}1
k=1 is equiregulated.

Proof. Let " > 0 be given. Since the sequence {h
k

}1
k=1 is equiregulated, it follows from

Theorem 1.2 that there is a �-fine partition a = t0 < t1 < . . . < t
m

= b such that

|h
k

(t0)� h
k

(t)|  ",

for every k 2 N and [t, t0] ⇢ (t
j�1, tj), for j = 1, 2, . . . ,m. Using (1.2.1), there is a �-fine

partition a = t0 < t1 < . . . < t
m

= b such that

kx
k

(t0)� x
k

(t)k  ",

for every k 2 N and [t, t0] ⇢ (t
j�1, tj) for j = 1, 2, . . . ,m. Therefore Theorem 1.2 implies

that the sequence {x
k

}1
k=1 is equiregulated.

The next result is an immediate consequence of Lemmas 1.14 and 1.16 and it will be
essential to prove results concerning continuous dependence of solutions on parameters in
Chapter 6. It is a new result which can be found in [32].

Corollary 1.17. Let {x
k

}1
k=1 be a sequence of functions from [a, b] to X and suppose the

function x
k

satisfies condition (1.2.1) for every k = 1, 2, . . . and s1, s2 2 [a, b], where h
k

:
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[a, b] ! R and the sequence {h
k

}1
k=1 is equiregulated. If the sequence {x

k

}1
k=1 converges

pointwisely to a function x0, then the sequence {x
k

}1
k=1 converges uniformly to x0.



Chapter

2
Generalized ODEs

This chapter is divided in two sections. The first section is devoted to presenting
basic concepts and main properties about the Kurzweil integral. In the second section,
we present the basic theory about generalized ordinary differential equations (general-
ized ODEs, for short), which appear in the context of the Kurzweil integral. The main
references for this chapter are [72], [73] and [94].

2.1 The Kurzweil integral

We start this section by introducing some basic concepts concerning the Kurzweil
integral.

Let �1 < a < b < +1 be given and consider the interval [a, b] ⇢ R. Let J be a
compact interval such that J ⇢ [a, b]. Then any point-interval pair (⌧, J) is called a tagged
interval, where ⌧ 2 [a, b] is a tag of J .

A finite collection {(⌧
j

, J
j

), j = 1, 2, . . . , k} of tagged intervals is called a system in
[a, b] if ⌧

j

2 J
j

⇢ [a, b], for every j = 1, . . . , k and the intervals J
j

are nonoverlapping,
that is, Int(J

i

) \ Int(J
j

) = ;, for i 6= j, where Int(J
j

) denotes the interior of an interval
J
j

.

A system {(⌧
j

, J
j

), j = 1, 2, . . . , k} is called a tagged partition of [a, b], whenever

k[

j=1

J
j

= [a, b].



24 Generalized ODEs

We say that a positive function � : [a, b] ! (0,+1) is a gauge on [a, b] and a tagged
interval (⌧, J) with ⌧ 2 [a, b] is �-fine, if

J ⇢ (⌧ � �(⌧), ⌧ + �(⌧)).

We say that a tagged partition {(⌧
j

, J
j

), j = 1, . . . , k} is �-fine, if the point-interval
pair (⌧

j

, J
j

) is �-fine, for every j = 1, . . . , k.

Using these concepts and terminology, we are able to present the concept of Kurzweil
integrable function.

Let X be a Banach space with norm k · k.

Definition 2.1. A function U : [a, b] ⇥ [a, b] ! X is called Kurzweil integrable on [a, b],
if there is an element I 2 X such that given " > 0, there is a gauge � on [a, b] such that

�����

kX

i=1

[U(⌧
i

, s
i

)� U(⌧
i

, s
i�1)]� I

����� < ",

for every �-fine tagged partition of [a, b]. In this case, I is called the Kurzweil integral of
U over [a, b] and it will be denoted by

R
b

a

DU(⌧, t).

Alternatively, we denote the expression
P

k

i=1(U(⌧
i

, s
i

)�U(⌧
i

, s
i�1)) by S(U,D), where

D represents the chosen tagged partition, that is, D = {(⌧
i

, [s
i�1, si]), i = 1, 2, . . . , k}.

The definition above generalizes the well-known Kurzweil-Henstock integral of a func-
tion f : [a, b] ! Rn, which is obtained by setting U(⌧, t) = f(⌧)t. The Kurzweil-Henstock-
Stieljtes integral of a function f : [a, b] ! Rn with respect to a function g : [a, b] ! R,
which appears in the definition of a measure differential equation, corresponds to the
choice U(⌧, t) = f(⌧)g(t) and will be denoted by

R
b

a

f(s) dg(s).

We point out that it is possible to extend the concept of Kurzweil-Henstock-Stieltjes
integral to unbounded intervals given by (�1, c] or even [c,+1). Let �(�1) and �(1)

be positives numbers. We consider the �-neighborhoods of �1 and of +1 as follows

[�1,�1/�(�1)) and (1/�(1),1].

Then, �1 and 1 are necessarily the tags of these �-neighborhoods with respect to
any given gauge defined on the extended real line R.
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Then, in order to obtain a definition for the following integral

Z +1

�1
f(t)dg(t),

we consider f(�1) = f(1) = 0, which implies that given a �-fine tagged partition of R,
we obtain from the Riemann sum

k(d)X

i=1

f(⌧
i

)[g(t
i

)� g(t
i�1)]

that the first and last terms of the sum equal zero, since ⌧1 = t0 = �1 and ⌧
k(d) = +1.

Here, we use the convention 0 · 1 = 0. For other details, the reader may want to consult
[65].

It is important noticing that Definition 2.1 makes sense only if, for a given gauge � of
[a, b], there exists at least one �-fine tagged partition D of [a, b]. This is the content of
the next result and a proof can be found in [60], Theorem 4.1.

Lemma 2.2 (Cousin Lemma). Given a gauge � on [a, b], there is a �-fine tagged partition
D of [a, b].

Similarly to Riemann and Lebesgue integrals, the Kurzweil integral has the usual prop-
erties of linearity, additivity with respect to adjacent intervals, integrability on subinter-
vals, among others.

The next result is known as Saks-Henstock Lemma. It receives this name, since it was
formulated first by the mathematician S. Saks and later, this result was reformulated by
R. Henstock for generalized integrals using Riemann-sums.

Lemma 2.3 (Saks-Henstock - [94], Lemma 1.13). Let U : [a, b]⇥ [a, b] ! X be Kurzweil
integrable on [a, b]. Given " > 0, let � be a gauge on [a, b] such that

�����

kX

j=1

[U(⌧
j

, ↵
j

)� U(⌧
j

, ↵
j�1)]�

Z
b

a

DU(⌧, t)

����� < ", (2.1.1)

for every �-fine tagged partition D = {(⌧
j

, [↵
j�1, ↵j

]), j = 1, 2, . . . , k} of [a, b]. If

a  �1  ⇠1  �1  �2  ⇠2  �2  . . .  �
m

 ⇠
m

 �
m

 b
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represents a �-fine system {(⇠
j

, [�
j

, �
j

]), j = 1, 2, . . . ,m}, that is,

⇠
j

2 [�
j

, �
j

] ⇢ (⇠
j

� �(⇠
j

), ⇠
j

+ �(⇠
j

)), j = 1, 2, . . . ,m,

then �����

mX

j=1

"
U(⇠

j

, �
j

)� U(⇠
j

, �
j

)�
Z

�j

�j

DU(⌧, t)

#����� < ". (2.1.2)

The next Hake-type theorem concerns the Cauchy extension for the Kurzweil integral.
It is a generalization of Theorem 1.14 from [94] for Banach space-valued functions. The
proof follows analogously to the Rn-valued case.

Theorem 2.4 (Cauchy Extension - [94], Theorem 1.14). If U : [a, b] ⇥ [a, b] ! X is a
function such that for every c 2 [a, b), U is Kurzweil integrable on [a, c] and the limit

lim

c!b

�

Z
c

a

DU(⌧, t)� U(b, c) + U(b, b)

�
= I 2 X

exists, then the function U is Kurzweil integrable on [a, b] and it satisfies

Z
b

a

DU(⌧, t) = I.

Similarly, if the function U is Kurzweil integrable on [c, b] for every c 2 (a, b] and the
limit

lim

c!a

+

Z
b

c

DU(⌧, t) + U(a, c)� U(a, a)

�
= I 2 X

exists, then the function U is Kurzweil integrable on [a, b] and we have

Z
b

a

DU(⌧, t) = I.

The following Hake-type theorem for the Kurzweil-Henstock-Stieltjes integral is a spe-
cial case of Theorem 2.4. This result will be essential to prove our main results.

Corollary 2.5. Consider a pair of functions f : [a, b] ! Rn and g : [a, b] ! R.

(i) Assume that the Kurzweil-Henstock-Stieltjes integral
R

t

a

f(s) dg(s) exists for every
t 2 [a, b) and

lim

t!b

�

✓Z
t

a

f(s) dg(s) + f(b)(g(b)� g(t))

◆
= I.

Then
R

b

a

f(s)dg(s) = I.
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(ii) Assume that the Kurzweil-Henstock-Stieltjes integral
R

b

t

f(s) dg(s) exists for every
t 2 (a, b] and

lim

t!a

+

✓Z
b

t

f(s) dg(s) + f(a)(g(t)� g(a))

◆
= I.

Then
R

b

a

f(s)dg(s) = I.

Proof. We will prove only item (i), since item (ii) follows analogously. Define the function
U : [a, b]⇥ [a, b] ! X by

U(⌧, t) = f(⌧)g(t).

Since the integral
R

t

a

f(s)dg(s) exists for every t 2 [a, b), then U is Kurzweil integrable
over [a, t] for every t 2 [a, b). Also, since

lim

t!b

�

✓Z
t

a

f(s) dg(s) + f(b)[g(b)� g(t)]

◆
= I,

then, from the definition of U , we obtain

lim

t!b

�

Z
t

a

DU(⌧, s)� U(b, t) + U(b, b)

�
= I.

Thus all hypotheses of Theorem 2.4 are satisfied and we have

Z
b

a

DU(⌧, t) = I,

which implies the desired result.

If U : [a, b]⇥ [a, b] ! X is Kurzweil integrable, it is not always true that its indefinite
integral

R
s

a

DU(⌧, t), s 2 [a, b], is continuous. The next theorem describes the behavior of
its indefinite integral.

Theorem 2.6 ([94], Theorem 1.16). Let U : [a, b]⇥ [a, b] ! X be Kurzweil integrable over
[a, b] and let c 2 [a, b]. Then,

lim

s!c

Z
s

a

DU(⌧, t)� U(c, s) + U(c, c)

�
=

Z
c

a

DU(⌧, t).

and
lim

s!c

Z
b

s

DU(⌧, t)� U(c, s) + U(c, c)

�
=

Z
b

c

DU(⌧, t).
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The next result is a special case of Theorem 2.6 for the Kurzweil-Henstock-Stieltjes
integral. It will be essential to prove our main results.

Corollary 2.7. Let f : [a, b] ! Rn and g : [a, b] ! R be a pair of functions such that
g is regulated and the Kurzweil-Henstock-Stieltjes integral

R
b

a

f(s)dg(s) exists. Then the
functions

h(t) =

Z
t

a

f(u) dg(u) and k(t) =

Z
b

t

f(u) dg(u), t 2 [a, b]

are regulated on [a, b] and satisfy

h(t+) = h(t) + f(t)�+g(t), t 2 [a, b),

h(t�) = h(t)� f(t)��g(t), t 2 (a, b],

k(t+) = k(t)� f(t)�+g(t), t 2 [a, b),

k(t�) = k(t) + f(t)��g(t), t 2 (a, b].

Proof. Using the fact that the integral
R

b

a

f(u) dg(u) exists, we have, by Corollary 2.5, for
t 2 [a, b)

lim

s!t

+

Z
s

a

f(u)dg(u)� f(t)g(s) + f(t)g(t)

�
=

Z
t

a

f(u)dg(u)

that is,

lim

s!t

+

Z
s

a

f(u)dg(u)

�
=

Z
t

a

f(u)dg(u) + f(t)(g(t+)� g(t)).

Therefore, for t 2 [a, b), we obtain

h(t+) = h(t) + f(t)�+g(t).

To prove the other equalities, we just have to apply similar arguments.

We recall that a function f : [a, b] ! X is a finite step function, if there is a finite
division a = �0 < �1 < . . . < �

m

= b such that, in every open interval (�
i�1, �i),

i = 1, 2, . . . ,m, the function f is identically equal to an element c
i

2 X.

Remark 2.8. If f : [a, b] ! Rn is a finite step function and g : [a, b] ! R is of bounded
variation, then the Kurzweil-Henstock-Stieltjes integral

R
b

a

f(s)dg(s) exists and it is pos-
sible to calculate it by the formula

Z
b

a

f(s)dg(s) = f(a)[g(a+)� g(a)] +
mX

j=1

f(�
j

)[g(�+
j

)� g(��
j

)]+
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+f(b)[g(b)� g(b�)] +
mX

j=1

c
j

[g(��
j

)� g(�+
j�1)].

For a proof of this result, see [94], Proposition 1.33. ⇤

As a consequence of this result, we can obtain a more general result concerning the
existence of the Kurzweil-Henstock-Stieltjes integral

R
b

a

f(s)dg(s). This result can be
found in [94], Corollary 1.34.

Theorem 2.9. If f : [a, b] ! Rn is a regulated function on [a, b] and g : [a, b] ! R is a
nondecreasing function, then the Kurzweil-Henstock-Stieltjes integral

R
b

a

f(s)dg(s) exists.

We finish this section by mentioning an important inequality for the Kurzweil-Henstock-
Stieltjes integral. It is a Gronwall-type inequality and it will be essential to prove our
main results. For a proof of this result, the reader may want to consult [94], Corollary
1.43.

Theorem 2.10. Let h : [a, b] ! [0,1) be a nondecreasing left-continuous function, k > 0

and l � 0. Assume that  : [a, b] ! [0,1) is bounded and satisfies

 (⇠)  k + l

Z
⇠

a

 (⌧) dh(⌧), ⇠ 2 [a, b].

Then  (⇠)  kel(h(⇠)�h(a)) for every ⇠ 2 [a, b].

This result remains true if we replace the left-continuity of the function h by its right-
continuity. In this case, we obtain

 (⇠)  kel(h(b)�h(⇠)), ⇠ 2 [a, b].

For a proof of this result, see [94], Corollary 1.44.

After having presented the basis of the Kurzweil integration theory and the particu-
larities of the Kurzweil-Henstock-Stieltjes integral, we no longer mention explicitly that
R

b

a

DU(⌧, t) stands for the Kurzweil integral and that
R

b

a

f(s)dg(s) stands for the Kurzweil-
Henstock-Stieltjes integral, because we understand that the reader will not be confused
by them.
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2.2 Generalized ODEs

In this section, we introduce the basic concepts concerning generalized ordinary differ-
ential equations (generalized ODEs, for short). A basic source of the theory of generalized
ordinary differential equations is the book [94] and it is the main reference used here.

Consider a set O ⇢ X, an interval I ⇢ R and a function G : O⇥ I ! X. We say that
x : I ! O is a solution of the generalized ordinary differential equation

dx

d⌧
= DG(x, t) (2.2.1)

on the interval I, whenever

x(b)� x(a) =

Z
b

a

DG(x(⌧), t), (2.2.2)

for every a, b 2 I.

It is important noticing that the notation used in equation (2.2.1) is only symbolical.
The letter D indicates that (2.2.1) is a generalized ordinary differential equation, this

concept being defined via its solutions. Even the notation
dx

d⌧
does not mean that the

solution has a derivative.

Without loss of generality, we can always assume that the right-hand side of a gener-
alized ODE satisfies G(x, 0) = 0 for every x 2 O. Otherwise, we let

˜G(x, t) = G(x, t)�G(x, 0), x 2 O and t 2 I,

and consider the equation
dx

d⌧
= D ˜G(x, t).

Then, we have ˜G(x, 0) = 0, for every x 2 O, and it follows directly from the definition of
the Kurzweil integral that this new equation has the same set of solutions as the original
one.

In order to obtain reasonable results for generalized ODEs, we will restrict ourselves
to the following class of functions G : O ⇥ I ! X.

Definition 2.11. Let O ⇢ X, I ⇢ R an interval of the real line, ⌦ = O ⇥ I. Assume
that h : I ! R is a nondecreasing function. We say that a function G : ⌦ ! X belongs
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to the class F(⌦, h), if it satisfies the inequalities

kG(x, s2)�G(x, s1)k  |h(s2)� h(s1)|, (2.2.3)

for every x 2 O and every s1, s2 2 I, and

kG(x, s2)�G(x, s1)�G(y, s2) +G(y, s1)k  kx� yk · |h(s2)� h(s1)|, (2.2.4)

for every x, y 2 O and every s1, s2 2 I.

The next result describes the integral equation fulfilled by a solution of generalized
ordinary differential equation whenever it exists. For a proof of this result, see [94].

Proposition 2.12 ([94], Proposition 3.5). Let x : [a, b] ! X be a solution of generalized
ordinary differential equation

dx

d⌧
= DG(x(⌧), t) (2.2.5)

on [a, b], then for every fixed � 2 [a, b], we have

x(s) = x(�) +

Z
s

�

DG(x(⌧), t), s 2 [a, b]. (2.2.6)

Reciprocally, if x : [a, b] ! X satisfies the integral equation (2.2.6) for any � 2 [a, b], then
x is a solution of generalized ordinary differential equation (2.2.5).

The next result describes the solutions of (2.2.5) depending on the function G : ⌦ !
X. In particular, if the function G is continuous with respect to the second variable, then
any solution x : [a, b] ! X of the generalized ODE (2.2.5) is a continuous function.

Proposition 2.13 ([94], Proposition 3.6). Let x : [a, b] ! X be a solution of generalized
ordinary differential equation (2.2.5) on [a, b]. Then

lim

s!�

[x(s)�G(x(�), s) +G(x(�), �)] = x(�), (2.2.7)

for every � 2 [a, b].

The following lemma combines two statements from [94] (see Lemma 3.9 and Corollary
3.16) for Banach space-valued functions. It is an important result.

Lemma 2.14. Let O ⇢ X, ⌦ = O ⇥ [a, b]. Assume that G : ⌦ ! X belongs to the class
F(⌦, h). If x : [a, b] ! O is a regulated function, then the integral

R
b

a

DG(x(⌧), t) exists
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and ����
Z

b

a

DG(x(⌧), t)

����  h(b)� h(a).

The next lemma guarantees that the solutions of generalized ordinary differential equa-
tion (2.2.5) are of bounded variation, whenever the function G satisfies condition (2.2.3).
It combines Lemma 3.10 and Corollary 3.11, both from [94]

Lemma 2.15. Suppose G : ⌦ ! X satisfies condition (2.2.3). If [↵, �] ⇢ [a, b] and
x : [↵, �] ! X is a solution of (2.2.5), then the inequality

kx(s1)� x(s2)k  |h(s2)� h(s1)| (2.2.8)

holds for every s1, s2 2 [↵, �]. Also, x is of bounded variation on [↵, �] and

var�
↵

x  h(�)� h(↵) < +1.

Moreover, if h is continuous at t 2 [↵, �], then t is a point of continuity of the solution
x : [↵, �] ! X.

Finally, we present the last result of this chapter. It describes the discontinuities of
the solutions of a generalized ordinary differential equation given by (2.2.5), whenever
the function G satisfies condition (2.2.3). It describes the "jumps" of the solutions. This
result can be found in [94], Lemma 3.12. For a proof of this result in a Banach space
setting, the reader may consult [48].

Lemma 2.16. If x : [a, b] ! X is a solution of (2.2.5) and G : ⌦ ! X satisfies condition
(2.2.3), then

x(s+)� x(s) = lim

�!s

+
x(�)� x(s) = G(x(s), s+)�G(x(s), s)

for s 2 [a, b) and

x(s)� x(s�) = x(s)� lim

�!s

�
x(�) = G(x(s), s)�G(x(s), s�)

for s 2 (a, b] where G(x, s+) = lim

�!s

+ G(x, �) for s 2 [a, b) and G(x, s�) = lim

�!s

� G(x, �)

for s 2 (a, b].



Chapter

3
Dynamic equations on time scales

The theory of time scales is a recent theory which started to be developed by Stefan
Hilger on his doctor thesis (see [62]) in order to unify the discrete and continuous analysis.
When we are dealing with the equations provided by this theory, the idea is to obtain a
result for a dynamic equation where the domain of the unknown function is a time scale.
A time scale is a closed nonempty subset of the real numbers. For instance, if the time
scale is taken as the set of the real numbers, we have the continuous case and, hence,
results for ordinary differential equations. On the other hand, if the time scale is taken
as the set of the integer numbers, we are in the discrete case and, hence, the results can
be applied to difference equations. Also, we can obtain a lot of results depending on the
chosen time scale.

In the present chapter, our goal is to introduce the basic concepts concerning this
theory and present some fundamental results found in the literature. This chapter is
divided in four sections. In the first one, we introduce the basic concepts concerning
this theory. The second section is devoted to the basic concepts and properties of delta-
derivatives and delta-differentiable functions. The third section presents Riemann delta-
integrals and their properties. Finally, the last section is devoted to the basic concepts
on Kurzweil-Henstock delta-integrals and their properties.

The basis of the theory of time scales can be found in the books [17] and [18] and
these references are used here in order to develop the Sections 4.1, 4.2 and 4.3. For the
last section, namely Section 4.4, main reference is [90].
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3.1 Time scales calculus

A time scale is a closed nonempty subset of the real numbers. Therefore the sets

[a, b], Z, N, R, Cantor set

are examples of time scales, whereas open intervals, half-open intervals and Q are not
examples of time scales, since these sets are not closed in R. We denote a time scale by
T.

Let T be a time scale. We assume that a time scale T has the topology that it inherits
from the real numbers with the standard topology.

For t 2 T, we define the forward jump operator � : T ! T by

�(t) = inf{s 2 T; s > t}

and the backward jump operator ⇢ : T ! T by

⇢(t) = sup{s 2 T; s < t}.

In the above definitions, we take inf ; = supT and sup ; = inf T, which imply that
�(t) = t, if T has a maximum t and ⇢(t) = t, if T has a minimum t.

We say that t 2 T is a right-scattered point, if �(t) > t, and t 2 T is a left-scattered
point, if ⇢(t) < t. If t is right-scattered and left-scattered point at the same time, then t

is called an isolated point.

We say that t 2 T is right-dense point, whenever �(t) = t, and t is called left-dense, if
⇢(t) = t. If t is right-dense and left-dense point at the same time, then t is called a dense
point.

In order to illustrate these concepts, we present some examples. All these examples
can be found in [17].

Example 3.1. If T = R, then for t 2 R, we obtain

�(t) = inf{s 2 R; s > t} = inf(t,+1) = t,

⇢(t) = sup{s 2 R; s < t} = sup(�1, t) = t.
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Thus t is a right-dense and left-dense point and, hence, t is a dense point. ⇤

Example 3.2. If T = Z, then for any t 2 Z, we have

�(t) = inf{s 2 Z : s > t} = inf{t+ 1, t+ 2, t+ 3, . . .} = t+ 1 > t

⇢(t) = sup{s 2 Z : s < t} = sup{t� 1, t� 2, t� 3, . . .} = t� 1 < t.

Thus t is a right-scattered and left-scattered point and, hence, t is an isolated point. ⇤

Example 3.3. If T = qZ [ {0}, q > 1, we get

�(t) = inf{s 2 T : s > t} = inf{qt, q2t, q3t, . . .} = qt > t, for t 6= 0,

⇢(t) = sup{s 2 T : s < t} = sup{t/q, t/q2, t/q3, . . .} = t/q < t, for t 6= 0.

Therefore, t 6= 0 is right-scattered and left-scattered at the same time. On the other hand,
if t = 0, it follows that t is right-dense. ⇤

In the sequel, we define the graininess function µ : T ! [0,1) by

µ(t) := �(t)� t.

By Examples 3.1, 3.2 and 3.3, it is clear that

• If T = R, then µ(t) = 0, for all t 2 T;

• If T = Z, then µ(t) = 1, for all t 2 T;

• If T = qZ [ {0}, then µ(t) = (q � 1)t, for every t 6= 0 2 T and µ(0) = 0.

In what follows, we present two more examples concerning backward and forward jump
operators and graininess function. These examples can be found in [17].

Example 3.4. Let a, b > 0 and consider the time scale:

P
a,b

=

1[

k=0

[k(a+ b), k(a+ b) + a].
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It is clear that

�(t) =

(
t, if t 2

S1
k=0[k(a+ b), k(a+ b) + a),

t+ b, if t 2
S1

k=0{k(a+ b) + a}.

Then, we have

µ(t) =

(
0, if t 2

S1
k=0[k(a+ b), k(a+ b) + a),

b, if t 2
S1

k=0{k(a+ b) + a}

using the fact that µ(t) = �(t)� t. ⇤

Example 3.5. Consider the time scale given by

T = N2
0 = {n2

: n 2 N0}.

Then, for each n 2 N0, we obtain

�(n2
) = (n+ 1)

2

and
µ(n2

) = �(n2
)� n2

= (n+ 1)

2 � n2
= n2

+ 2n+ 1� n2
= 2n+ 1.

By the definition of forward jump operator, we have

�(t) = inf{n2
: n2 > t}.

Also, since t 2 T, then t = m2, for m 2 N0. As a consequence, we obtain

�(t) = (

p
t+ 1)

2

and
µ(t) = (

p
t+ 1)

2 � t = t+ 2

p
t+ 1� t = 2

p
t+ 1,

for every t 2 T. ⇤

Since any time scale T is a closed subset of the real numbers, it is clear from the
definition that the values �(t) and ⇢(t) belong to T, for every t 2 T.
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We define the set Tk which is derived from the time scale T as follows:

Tk

=

(
T\(⇢(supT), supT], if supT < 1,

T, if supT = 1.

Let a, b 2 T such that a  b. We denote and define an interval [a, b] in T by

[a, b]T = {t 2 T : a  t  b}.

Analogously, we define open intervals, half-open intervals, etc. If b is a left-dense point,
then [a, b]Tk = [a, b]T and, if t is a left-scattered point, then [a, b]Tk = [a, b)T = [a, ⇢(b)]T.

3.2 Differentiation

In this section, we introduce the basic properties about delta derivative of a function
f : T ! R.

Let f : T ! R be a function. We define the so-called delta (or Hilger) derivative of f
at a point t 2 Tk as follows.

Definition 3.6. Assume f : T ! R is a function and let t 2 Tk. Then, we define f�
(t)

to be the number (provided it exists) with the property that, given any " > 0, there is a
neighborhood U of t (that is, U = (t� �, t+ �) \ T for some � > 0) such that

|[f(�(t))� f(s)]� f�
(t)[�(t)� s]|  "|�(t)� s|, for every s 2 U.

We call f�
(t) the delta (or Hilger) derivative of f at t. Moreover, we say that f is

delta (or Hilger) differentiable on Tk, provided f�
(t) exists for all t 2 Tk. The function

f�
: Tk ! R is called the delta-derivative of f on Tk.

In what follows, we present some examples to illustrate this definition. These examples
can be found in [17].

Example 3.7. Let f : T ! R be a function defined by

f(t) = ↵, for every t 2 T,
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where ↵ 2 R is constant. Then f� ⌘ 0. Indeed, for every " > 0, we have

|f(�(t))� f(s)� 0 · (�(t)� s)| = |↵� ↵� 0| = 0  "|�(t)� s|,

for all s 2 T. ⇤

Example 3.8. Let f : T ! R be a function defined by

f(t) = t, for every t 2 T.

Then f� ⌘ 1. In fact, for every " > 0, we have

|f(�(t))� f(s)� 1 · (�(t)� s)| = |�(t)� s� (�(t)� s)| = 0  "|�(t)� s|,

for every s 2 T. ⇤

Example 3.9. Let f : T ! R be a function defined by

f(t) = t2, for all t 2 T.

Then f�
(t) = t + �(t) for every t 2 Tk. This fact follows since for every " > 0, there

exists a neighborhood U of t, say, U = (t� �, t+ �) \ T for some � > 0, such that

|f(�(t))� f(s)� (t+ �(t)) · (�(t)� s)| = |�(t)2 � s2 � (t� s+ �(t) + s) · (�(t)� s)| 

 |�(t)2 � s2 � (�(t)2 � s2)� (t� s) · (�(t)� s)| =

= |t� s| · |�(t)� s| < �|�(t)� s|  "|�(t)� s|,

for every s 2 U . ⇤

The next result describes some useful properties of delta derivatives. A proof of it can
be found in [17], Theorem 1.16.

Theorem 3.10. Assume f : T ! R is a function and let t 2 Tk. Then the following
assertions hold:

(i) If f is �-differentiable at t, then f is continuous at t.
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(ii) If f is continuous at t and t is right-scattered, then f is �-differentiable at t with

f�
(t) =

f(�(t))� f(t)

µ(t)
.

(iii) If t is a right-dense point, then f is �-differentiable at t, if and only if, the limit

lim

s!t

f(t)� f(s)

t� s

and is finite. In this case,

f�
(t) = lim

s!t

f(t)� f(s)

t� s
.

(iv) If f is �-differentiable at t, then

f(�(t)) = f(t) + µ(t)f�
(t).

The next result describes the properties of �-derivatives of sum, product and quotient
of two functions. A proof of it can be found in [18], Theorem 1.20.

Theorem 3.11. Assume f, g : T ! R are �-differentiable at t 2 Tk. Then:

(i) The sum f + g : T ! R is �-differentiable at t with

(f + g)�(t) = f�
(t) + g�(t).

(ii) For any constant ↵, ↵f : T ! R is �-differentiable at t with

(↵f)�(t) = ↵f�
(t).

(iii) The product fg : T ! R is �-differentiable at t with

(fg)�(t) = f�
(t)g(t) + f(�(t))g�(t) = f(t)g�(t) + f�

(t)g(�(t)).
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(iv) If f(t)f(�(t)) 6= 0, then 1/f is �-differentiable at t with

✓
1

f

◆�

(t) =
�f�

(t)

f(t)f(�(t))
.

(v) If g(t)g(�(t)) 6= 0, then f/g is �-differentiable at t and

✓
f

g

◆�

(t) =
f�

(t)g(t)� f(t)g�(t)

g(t)g(�(t))
.

Now, we present an example which illustrates the properties above. Such example is
borrowed from [17].

Example 3.12. Let q > 1 and consider the following sets

qZ := {qk : k 2 Z} and qZ := qZ [ {0}.

Let T = qZ and f : T ! R be a function. As it was explained before, t 2 T \ {0} is
right-scattered. Then by the definition of delta-derivative, we have

f�
(t) =

f(�(t))� f(t)

µ(t)
=

f(qt)� f(t)

(q � 1)t
, for every t 2 T \ {0}.

On the other hand, t = 0 is a right-dense minimum. Therefore, when t = 0, we have

f�
(0) = lim

s!0

f(�(t))� f(s)

�(t)� s
= lim

s!0

f(0)� f(s)

0� s
= lim

s!0

f(s)� f(0)

s
,

provided the limit exists. ⇤

3.3 Darboux and Riemann delta-integrals

In this section, we present the basic concepts and properties about Darboux and
Riemann delta-integrals. As before, we denote a time scale by T and, for a, b 2 T, we
denote the time scale interval by [a, b]T.

We start this section by introducing two basic concepts which are fundamental to
describe a class of functions which are Riemann �-integrable.

Definition 3.13. A function f : T ! R is called regulated, provided its right-sided limits
exist (finite) at all right-dense points in T and its left-sided limits exist (finite) at all
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left-dense points in T.

Definition 3.14. A function f : T ! R is called rd-continuous (right-dense continuous),
provided it is continuous at right-dense points in T and its left-sided limits exist (finite)
at left-dense points in T.

We denote the set of rd-continuous functions f : T ! R by

C
rd

= C
rd

(T) = C
rd

(T,R).

We point out that if T = R, the Definitions 3.13 and 3.14 coincide with the usual
definitions of regulated and continuous functions respectively, since every point in T = R
is right-dense and left-dense at the same time.

We say that a partition P of [a, b]T is any finite ordered set

P = {t0, t1, . . . , tn} ⇢ [a, b]T,

where a = t0 < t1 < . . . < t
n

= b. The number n depends on the partition and we write
n = n(P ). The set of all partitions of [a, b]T will be denoted by P = P(a, b).

Let f be a real-valued bounded function on [a, b]T and consider

M = sup{f(t) : t 2 [a, b)T} and m = inf{f(t) : t 2 [a, b)T}.

Define, for 1  i  n,

M
i

= sup{f(t) : t 2 [t
i�1, ti)T} and m

i

= inf{f(t) : t 2 [t
i�1, ti)T}.

Using these concepts, we can define the upper Darboux �-sum U(f, P ) and the lower
Darboux �-sum L(f, P ) of f with respect to P by

U(f, P ) =

nX

i=1

M
i

(t
i

� t
i�1) and L(f, P ) =

nX

i=1

m
i

(t
i

� t
i�1),

respectively. Also, by the definition, it follows

U(f, P ) 
nX

i=1

M(t
i

� t
i�1) = M(b� a)
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and

L(f, P ) �
nX

i=1

m(t
i

� t
i�1) = m(b� a),

which implies
m(b� a)  L(f, P )  U(f, P )  M(b� a). (3.3.1)

In this way, we define the upper and lower Darboux �-integral of f from a to b as follows

U(f) = inf{U(f, P ) : P 2 P (a, b)}

and
L(f) = sup{L(f, P ) : P 2 P (a, b)},

respectively. By (3.3.1) and the definition of upper and lower Darboux �-integrals, it
follows that U(f) and L(f) are finite real numbers.

We say that f is �-integrable (or delta-integrable) from a to b (or on [a, b]T), provided
L(f) = U(f), and we write

R
b

a

f(t)�t for this value, in this case. We call this integral by
Darboux �-integral.

We denote by P
�

= P
�

(a, b) the set of all P 2 P(a, b) which have the following property:
For each i 2 {1, 2, . . . , n} either

t
i

� t
i�1  �

or
t
i

� t
i�1 > � and ⇢(t

i

) = t
i�1,

where a = t0 < t1 < . . . < t
n

= b.

In what follows, we present the definitions of Riemann �-sums and �-integrals.

Definition 3.15. Let f be a bounded function on [a, b]T and let P 2 P(a, b) be given
by a = t0 < t1 < . . . < t

n

= b. In each interval [t
i�1, ti)T with 1  i  n, we choose an

arbitrary point ⇠
i

and form the sum

S =

nX

i=1

f(⇠
i

)(t
i

� t
i�1).

S is called a Riemann �-sum of f corresponding to P 2 P .

We say that f is Riemann �-integrable on [a, b]T, if there exists a number I with the
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following property: For every " > 0, there exists � > 0 such that

|S � I| < ",

for every Riemann �-sum S of f corresponding to any P 2 P
�

(a, b) and independent of
⇠
i

2 [t
i�1, ti)T for 1  i  n. It is clear that such a number I is unique and is the Riemann

�-integral of f from a to b.

We point out that this definition makes sense only if for every � > 0, there exists at
least one partition P 2 P

�

(a, b). This is the content of the next result. For a proof of it,
the reader may consult [18], Lemma 5.7.

Lemma 3.16. For every � > 0, there exists some partition P 2 P(a, b) given by a = t0 <

t1 < . . . < t
n

= b such that for each i 2 {1, 2, . . . , n} either

t
i

� t
i�1  �

or
t
i

� t
i�1 > � and ⇢(t

i

) = t
i�1.

In the definition of the Riemann �-integral, we can suppress the restriction a < b

assuming the following equalities:

Z
a

a

f(t)�t = 0 and
Z

b

a

f(t)�t = �
Z

a

b

f(t)�t, if a > b. (3.3.2)

If f is a bounded function, the previous definition concerning Riemann �-integral is
equivalent to definition of Darboux �-integral. This is the content of the next result.

Theorem 3.17 ([18], Theorem 5.11). A bounded function f on [a, b]T is Riemann �-
integrable, if and only if, it is Darboux �-integrable, in which case the values of the
integrals are equal.

The next result concerns the �-integrability of constant functions. It can be found in
[18], Theorem 5.12.

Theorem 3.18. Assume that a, b 2 T. Every constant function f : T ! R is �-integrable
from a to b and Z

b

a

c�t = c(b� a). (3.3.3)
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Now, we present a theorem which summarizes the properties of �-integrals. See [17],
Theorem 1.77.

Theorem 3.19. If a, b, c 2 T, ↵ 2 R and f, g 2 C
rd

, then

(i)
Z

b

a

[f(t) + g(t)]�t =

Z
b

a

f(t)�t+

Z
b

a

g(t)�t;

(ii)
Z

b

a

(↵f)(t)�t = ↵

Z
b

a

f(t)�t;

(iii)
Z

b

a

f(t)�t = �
Z

a

b

f(t)�t;

(iv)
Z

b

a

f(t)�t =

Z
c

a

f(t)�t+

Z
b

c

f(t)�t;

(v)
Z

b

a

f(�(t))g�(t)�t = (fg)(b)� (fg)(a)�
Z

b

a

f�
(t)g(t)�t;

(vi)
Z

b

a

f(t)g�(t)�t = (fg)(b)� (fg)(a)�
Z

b

a

f�
(t)g(�(t))�t;

(vii)
Z

a

a

f(t)�t = 0;

(viii) If |f(t)|  g(t) on [a, b)T, then

����
Z

b

a

f(t)�t

���� 
Z

b

a

g(t)�t;

(ix) If f(t) � 0 for every a  t < b, then
Z

b

a

f(s)�t � 0.

Remark 3.20. The previous theorem remains true when we replace the hypothesis of
rd-continuity of functions f and g by their �-integrability.

The next theorem is a useful result. A proof of it can be found in [18], Theorem 5.13.

Theorem 3.21. Let f : T ! R and t 2 T. Then f is integrable from t to �(t) and

Z
�(t)

t

f(s)�s = µ(t)f(t). (3.3.4)

In the sequel, we present an example borrowed from [18].
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Example 3.22. Let a, b 2 T. If T = hZ, then every function f defined on hZ is �-
integrable from a to b and

Z
b

a

f(t)�t =

8
>>>>>>>><

>>>>>>>>:

b/h�1X

t=a/h

f(kh)h, if a < b,

0, if a = b,

�
a/h�1X

t=b/h

f(kh)h, if a > b.

Let a < b. Then b = a+ ph, for some p 2 N. Consider P ⇤ 2 P(a, b) given by

a = t0 < t1 < . . . < t
p

= b,

where t
k

= a+ kh, for 0  k  p. Then, P ⇤ contains all points of [a, b]T and [t
i�1, ti)T =

{t
i�1} for all 1  i  p. Also,

U(f, P ⇤
) =

pX

i=1

M
i

(t
i

� t
i�1) =

pX

i=1

f(t
i�1)h

and

L(f, P ⇤
) =

pX

i=1

m
i

(t
i

� t
i�1) =

pX

i=1

f(t
i�1)h,

which implies

U(f, P ⇤
) = L(f, P ⇤

) =

pX

i=1

f(t
i�1)h =

pX

i=1

f(a+ (i� 1)h)h

=

pX

i=1

f
⇣a
h
h+ (i� 1)h

⌘
h =

pX

i=1

f
⇣⇣a

h
+ (i� 1)

⌘
h
⌘
h

=

b/h�1X

k=a/h

f(kh)h.

Hence, f is integrable from a to b and

Z
b

a

f(t)�t =
b/h�1X

k=a/h

f(kh)h
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for the case b > a. Now, suppose b = a. Then (3.3.2) implies

Z
b

a

f(t)�t = 0.

Finally, if a > b, then

Z
b

a

f(t)�t = �
Z

a

b

f(t)�t = �

2

4
a/h�1X

k=b/h

f(kh)h

3

5

and the result follows. ⇤

In what follows, we present some examples which illustrate the indefinite �-integrals.
They can be found in [17].

Example 3.23. If T = Z, we evaluate the indefinite �-integral
Z

at�t,

where a 6= 1 is a constant. Since

✓
at

a� 1

◆�

= �

✓
at

a� 1

◆
=

at+1 � at

a� 1

= at,

then Z
at�t =

at

a� 1

+ C,

where C is an arbitrary constant. ⇤

Example 3.24. If T = Z, we evaluate the indefinite �-integral
Z
(t+ ↵)�t,

where ↵ 2 R. We have
✓
(t+ ↵)2

2

� t

2

◆�

= �

✓
(t+ ↵)2

2

� t

2

◆
=

✓
(t+ 1 + ↵)2 � (t+ 1)� (t+ ↵)2 + t

2

◆

=

(t+ 1 + ↵ + t+ ↵)(t+ 1 + ↵� t� ↵)� 1

2

=

2t+ 2↵ + 1� 1

2

= t+ ↵.
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Then, Z
(t+ ↵)�t =

(t+ ↵)2

2

� t

2

+ C,

where C is an arbitrary constant. ⇤

The next result summarizes the �-integrability of certain functions. For a proof of
this result, see [18], Theorem 5.18, Theorem 5.19, Theorem 5.20 and Theorem 5.21.

Theorem 3.25. Let a, b 2 T. The following assertions hold:

1. Every continuous function f on [a, b]T is �-integrable.

2. Every bounded function on [a, b]T with only finitely many discontinuities is �-integrable.

3. Every regulated function f on [a, b]T is �-integrable.

4. Every monotone function on [a, b]T is �-integrable.

Finally, we present the Fundamental Theorem of Calculus for Riemann �-integrals.
It can be found in [18], Theorems 5.34 and 5.36.

Theorem 3.26 (Fundamental Theorem of Calculus - Part I). Let g be a continuous
function on [a, b]T such that g is �-differentiable on [a, b)T. If g� is �-integrable from a

to b, then Z
b

a

g�(t)�t = g(b)� g(a).

Theorem 3.27 (Fundamental Theorem of Calculus, Part II). Let f be a function which
is �-integrable from a to b. For t 2 [a, b]T, define

F (t) =

Z
t

a

f(s)�s.

Then F is continuous on [a, b]T. If t0 2 [a, b)T and if f is continuous at t0 provided t0 is
right-dense, then F is �-differentiable at t0 and

F�
(t0) = f(t0).



48 Dynamic equations on time scales

3.4 Kurzweil-Henstock delta integrals

In this section, we present the Kurzweil-Henstock delta-integral and its most important
properties. This concept is relatively new and the literature concerning it is scarce. In
2005, this concept was introduced for the first time by A. Peterson and B. Thompson in
[90]. This section is based on this reference.

Let T be a time scale and consider the time scale interval [a, b]T with a, b 2 T.

We say that � = (�
L

, �
R

) is a �-gauge of [a, b]T, provided �
L

(t) > 0 on (a, b]T, �R(t) > 0

on [a, b)T, �L(a) � 0, �
R

(b) � 0 and �
R

(t) � µ(t) for all t 2 [a, b)T.

We say that P is a tagged partition of [a, b]T if

P = {a = t0  ⇠1  t1  . . .  t
n�1  ⇠

n

 t
n

= b}

with t
i

> t
i�1 for 1  i  n and t

i

, ⇠
i

2 T. We call the points ⇠
i

"tag points" and the
points t

i

"end points". We denote such a tagged partition by P = {[t
i�1, ti]T : ⇠

i

}, where
[t
i�1, ti]T denotes a usual interval in P and ⇠

i

is the associated tag point in [t
i�1, ti]T.

If � is a �-gauge for [a, b]T, then a partition P is called �-fine if

⇠
i

� �
L

(⇠
i

)  t
i�1 < t

i

 ⇠
i

+ �
R

(⇠
i

)

for 1  i  n = n(P ).

In what follows, we define the Kurzweil-Henstock delta integral.

Definition 3.28. We say that f : [a, b]T ! R is Kurzweil-Henstock delta integrable (or
KH delta-integrable) on [a, b]T, if there is a number I such that given " > 0 there exists
a �-gauge � of [a, b]T such that

�����I �
nX

i=1

f(⇠
i

)(t
i

� t
i�1)

����� < "

for all �-fine tagged partitions P of [a, b]T. In this case, we write I = KH
R

b

a

f(t)�t.

Clearly, Definition 3.28 only makes sense if, for a given �-gauge � on [a, b]T, there
exists at least one �-fine tagged partition P of [a, b]T. This is the content of next result.
It is a generalization of Cousin Lemma for a �-gauge of a time scale interval.
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Lemma 3.29 ([90], Lemma 1.9). If � is a �-gauge on [a, b]T, then there is a �-fine tagged
partition P of [a, b]T.

Finally, we state a result which establishes fundamentals properties on Kurzweil-
Henstock �-integrals. It can be found in [90].

Theorem 3.30. Let f : [a, b]T ! R be a function. Then f is KH-delta integrable on
[a, b]T, if and only if, f is KH-delta integrable on [a, c]T and [c, b]T. In this case,

KH

Z
b

a

f(t)�t = KH

Z
c

a

f(t)�t+KH

Z
b

c

f(t)�t.

Moreover, if f, g : [a, b]T ! R are KH-delta integrable on [a, b]T, then ↵f +�g is KH-delta
integrable on [a, b]T and

KH

Z
b

a

(↵f(t) + �g(t))�t = ↵

✓
KH

Z
b

a

f(t)�t

◆
+ �

✓
KH

Z
b

a

f(t)�t

◆
.





Chapter

4
Correspondences between equations

In this chapter, we present correspondences between various types of equations. These
correspondences will be fundamental to our purposes.

In the present work, our aim is to develop the theory of impulsive functional dynamic
equations on time scales. However, as it was shown in Chapter 3, it is not easy to deal
directly with the theory of dynamic equations on time scales, since it requires a new
knowledge of calculus, which is not simple to work with. Thus, to facilitate dealing
with impulsive functional dynamic equations on time scales and to obtain good results
for them, we prove some correspondences between their solutions and solutions of an
impulsive measure functional differential equation. Also, we establish a correspondence
between these equations and measure functional differential equations and, finally, we
prove that impulsive functional dynamic equations on time scales represent a special case
of impulsive measure functional differential equations.

Then, we reduce our problem in such way that instead of working directly with im-
pulsive functional dynamic equations on time scales, we can prove the results for mea-
sure functional differential equations and, then, translate them to impulsive functional
dynamic equations on time scales. On the other hand, dealing directly with measure
functional differential equations is not simple, since they involve Stieltjes-type integrals
or distributional derivatives.

Because generalized ordinary differential equations are easy to deal with, we relate the
solutions of a measure functional differential equation and the solutions of a generalized
ordinary differential equation. Thus, we obtain an indirect correspondence between gen-
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eralized ODEs and impulsive functional dynamic equations on time scales, which allows
us to translate the known results from the theory of generalized ODEs to measure FDEs
and to impulsive functional dynamic equations on time scales.

The majority of the results presented in this chapter are new and they can be found
in the papers [36] and [37]. Also, to write this chapter, we use as main references the
papers [98] and [100].

This chapter is divided in five sections. The first section presents the measure func-
tional differential equations. In the second one, we present the correspondence between
generalized ODEs and measure FDEs. The third one is devoted to proving that functional
dynamic equations on time scales is a special case of measure FDEs. In fourth section, we
establish a correspondence between measure FDEs and impulsive measure FDEs, showing
that these last ones are a particular case of measure FDEs. Finally, in the fifth section,
we establish a correspondence between impulsive functional dynamic equations on time
scales and impulsive measure FDEs.

4.1 Measure FDEs

The theory of retarded functional differential equations is a branch of the theory of
functional differential equations concerned with problems of the form

ẋ = f(x
t

, t), t 2 [t0, t0 + �],

where r and � > 0 are given numbers, t0 2 R and f : P ⇥ [t0, t0 + �] ! Rn, where
P ⇢ G([�r, 0],Rn

), and x
t

is given by x
t

(✓) = x(t+✓), ✓ 2 [�r, 0], for every t 2 [t0, t0+�].
Its equivalent integral form is given by

x(t) = x(t0) +

Z
t

t0

f(x
s

, s) ds, t 2 [t0, t0 + �],

where the integral can be considered, for instance, in the sense of Riemann, Lebesgue or
Kurzweil-Henstock. For more details, the reader may want to consult [57], [71] and [89].

In the present work, we focus our attention on more general equations of the form

Dx = f(x
t

, t)Dg, t 2 [t0, t0 + �]

where Dx and Dg are the distributional derivatives, in the sense of L. Schwartz, of x and
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g, respectively. We call these equations by measure functional differential equations.

While the theories of measure differential equations (including the more general ab-
stract measure differential equations) and measure delay differential equations are well-
developed (see [24], [25], [26], [27], [28], [29], [30], [21], [68], [69], [85], [96], [97], for
instance), the literature concerning measure functional differential equations is scarce.
See [19], [36] and [37]. These equations encompass various types of equations as we will
prove later. This fact turns them a powerful tool to study other types of equations.

Also, it is a known fact that the measure functional differential equation given by

(
Dx = f(x

t

, t)Dg, t 2 [t0, t0 + �]

x
t0 = �

(4.1.1)

can be rewritten as follows
8
><

>:

x(t) = �(0) +

Z
t

t0

f(x
s

, s)dg(s), t 2 [t0, t0 + �],

x
t0 = �.

(4.1.2)

In the other words, the systems (4.1.1) and (4.1.2) are equivalent. Because of it, we will
refer to (4.1.2) by measure functional differential equation. For more details, the reader
may want to consult [24].

4.2 Measure FDEs and generalized ODEs

In this section, we present a correspondence between the solutions of a measure FDE
and the solutions of a generalized ODE. This correspondence is essential to our purposes,
since by applying it, we are able to translate the results from the theory of generalized
ODEs to measure FDEs. It worth mentioning that all the results presented in this section
are new and they can be found in [36].

Let O ⇢ G([t0 � r, t0 + �],Rn

) and P = {y
t

; y 2 O, t 2 [t0, t0 + �]} ⇢ G([�r, 0],Rn

).
Consider a nondecreasing function g : [t0, t0+�] ! R and a function f : P ⇥ [t0, t0+�] !
Rn. Here, we will show that, under certain assumptions, a measure functional differential
equation of the form

Dy = f(y
t

, t)Dg, (4.2.1)

where any solution y : [t0 � r, t0 + �] ! Rn is supposed to be a regulated function, can be
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converted into a generalized ordinary differential equation of the form

dx

d⌧
= DF (x, t), (4.2.2)

where x takes values in O, that is, we transform the original measure functional differential
equation (4.2.1), whose solutions take values in Rn, into a generalized ordinary differential
equation, whose solution takes values in an infinite-dimensional Banach space. The right-
hand side F of such generalized equation will be given by

F (x, t)(#) =

8
>>>>>><

>>>>>>:

0, t0 � r  #  t0,Z
#

t0

f(x
s

, s) dg(s), t0  #  t  t0 + �,

Z
t

t0

f(x
s

, s) dg(s), t  #  t0 + �,

(4.2.3)

for every x 2 O and t 2 [t0, t0 + �].

As we will show, the relation between the solution x of (4.2.2) and the solution y of
(4.2.1) is described by

x(t)(#) =

8
<

:
y(#), # 2 [t0 � r, t],

y(t), # 2 [t, t0 + �],
(4.2.4)

where t 2 [t0, t0 + �].

We introduce three conditions that the function f : P ⇥ [t0, t0 + �] ! Rn must fulfill:

(A) The integral
R

t0+�

t0
f(y

t

, t) dg(t) exists for every y 2 O.

(B) There exists a constant M > 0 such that
����
Z

v

u

f(y
s

, s)dg(s)

����  M [g(v)� g(u)]

for every y 2 O and every u, v 2 [t0, t0 + �].

(C) There exists a constant L > 0 such that
����
Z

v

u

[f(y
s

, s)� f(z
s

, s)]dg(s)

����  L

Z
v

u

ky
s

� z
s

k1dg(s)

for every y, z 2 O and every u, v 2 [t0, t0 + �].
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Before proceeding further, we need the following property of regulated functions. It is
a new result and it can be found in [36].

Lemma 4.1. If y : [t0 � r, t0 + �] ! Rn is a regulated function, then s 7! ky
s

k1 is
regulated on [t0, t0 + �].

Proof. We will show that lim

s!s0� ky
s

k1 exists for every s0 2 (t0, t0 + �]. The function
y is regulated, and, therefore, satisfies the Cauchy condition at s0 � r and s0: Given an
arbitrary " > 0, there exists a � 2 (0, s0 � t0) such that

|y(u)� y(v)| < ", u, v 2 (s0 � r � �, s0 � r) (4.2.5)

and
|y(u)� y(v)| < ", u, v 2 (s0 � �, s0). (4.2.6)

Now, consider a pair of numbers s1, s2 such that s0 � � < s1 < s2 < s0. For every
s 2 [s1 � r, s2 � r], it follows from (4.2.5) that

|y(s)|  |y(s2 � r)|+ "  |y
s2 |1 + ".

It is also clear that |y(s)|  ky
s2k1 for every s 2 [s2 � r, s1]. Consequently, ky

s1k1 
ky

s2k1+ ". Using (4.2.6) in a similar way, we obtain ky
s2k1  ky

s1k1+ ". It follows that

��ky
s1k1 � ky

s2k1
��  ", s1, s2 2 (s0 � �, s0),

that is, the Cauchy condition for the existence of lim
s!s0� ky

s

k1 is satisfied.

The existence of lim
s!s0+ ky

s

k1 for s0 2 [t0, t0 + �) can be proved similarly.

The next result ensures that if the function f : P⇥ [t0, t0+�] ! Rn satisfies conditions
(A), (B) and (C) and g : [t0, t0 + �] ! R is nondecreasing, then F belongs to the class
F(O ⇥ [t0, t0 + �], h), where h(t) = (L+M)(g(t)� g(t0)), t 2 [t0, t0 + �].

Lemma 4.2. Let O ⇢ G([t0�r, t0+�],Rn

) and P = {y
t

; y 2 O, t 2 [t0, t0+�]}. Assume
that g : [t0, t0 + �] ! R is a nondecreasing function and that f : P ⇥ [t0, t0 + �] ! Rn

satisfies conditions (A), (B) and (C). Then the function F : O ⇥ [t0, t0 + �] ! G([t0 �
r, t0 + �],Rn

) given by (4.2.3) belongs to the class F(O ⇥ [t0, t0 + �], h), where

h(t) = (L+M)(g(t)� g(t0)), t 2 [t0, t0 + �].
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Proof. Condition (A) implies that the integrals in the definition of F exist. Given y 2 O

and t0  s1 < s2  t0 + �, we have

F (y, s2)(#)� F (y, s1)(#) =

8
>>>>><

>>>>>:

0, t0 � r  #  s1,
Z

#

s1

f(y
s

, s) dg(s), s1  #  s2,
Z

s2

s1

f(y
s

, s) dg(s), s2  #  t0 + �.

Hence, for an arbitrary y 2 O and for t0  s1 < s2  t0 + �, it follows by condition (B)

kF (y, s2)� F (y, s1)k1 = sup

t0�r#t0+�

kF (y, s2)(#)� F (y, s1)(#)k =

= sup

s1#s2

kF (y, s2)(#)� F (y, s1)(#)k = sup

s1#s2

����
Z

#

s1

f(y
s

, s) dg(s)

���� 

 M [g(s2)� g(s1)]  h(s2)� h(s1).

Similarly, using (C), if y, z 2 O and t0  s1  s2  t0 + �, then

kF (y, s2)� F (y, s1)� F (z, s2) + F (z, s1)k1 =

= sup

s1#s2

����
Z

#

s1

[f(y
s

, s)� f(z
s

, s)] dg(s)

����  L sup

s1#s2

Z
#

s1

ky
s

� z
s

k1 dg(s) 

 ky � zk1
Z

s2

s1

L dg(s)  ky � zk1[h(s2)� h(s1)]

(note that the function s 7! ky
s

�z
s

k1 is regulated according to Lemma 4.1, and therefore
the integral

R
#

s1
Lky

s

� z
s

k1 dg(s) exists).

In what follows, we present a property which will be important for us, because it
ensures that if y 2 O, then x(t) 2 O for every t 2 [t0, t0 + �] and for y and x related by
(4.2.4).

Definition 4.3. Let O be a subset of G([t0 � r, t0 + �],Rn

). We will say that O has the
prolongation property, if for every y 2 O and every ¯t 2 [t0�r, t0+�], the function ȳ given
by

ȳ(t) =

8
<

:
y(t), t0 � r  t  ¯t,

y(¯t), ¯t < t  t0 + �

is also an element of O.
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For example, let B be an arbitrary subset of Rn. Then both the set of all regulated
functions f : [t0�r, t0+�] ! B and the set of all continuous functions f : [t0�r, t0+�] ! B

have the prolongation property.

The following statement is a slightly modified version of Lemma 3.3 from [40] (which
is concerned with the special case g(t) = t). However, the proof from [40] can be carried
over without any changes and we repeat it here.

Lemma 4.4. Let O be a subset of G([t0�r, t0+�],Rn

) with the prolongation property and
P = {y

t

; y 2 O, t 2 [t0, t0+�]}. Assume that � 2 P , g : [t0, t0+�] ! R is a nondecreasing
function and f : P ⇥ [t0, t0 + �] ! Rn is such that the integral

R
t0+�

t0
f(y

t

, t) dg(t) exists
for every y 2 O. Consider F given by (4.2.3) and assume that x : [t0, t0 + �] ! O is a
solution of

dx

d⌧
= DF (x, t)

with initial condition

x(t0)(#) =

(
�(#� t0), for # 2 [t0 � r, t0],

x(t0)(t0), for # 2 [t0, t0 + �].

If v 2 [t0, t0 + �] and # 2 [t0 � r, t0 + �], then

x(v)(#) = x(v)(v), # � v (4.2.7)

and
x(v)(#) = x(#)(#), v � #. (4.2.8)

Proof. Assume that # � v. Since x is a solution of

dx

d⌧
= DF (x, t),

we have
x(v)(v) = x(t0)(v) +

Z
v

t0

DF (x(⌧), t)(v)

and, similarly,

x(v)(#) = x(t0)(#) +

Z
v

t0

DF (x(⌧), t)(#).

Since x(t0)(#) = x(t0)(v), by the properties of the initial condition, we obtain

x(v)(#)� x(v)(v) =

Z
v

t0

DF (x(⌧), t)(#)�
Z

v

t0

DF (x(⌧), t)(v).
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It follows from the existence of the integral
R

v

t0
DF (x(⌧), t) that for every " > 0, there

is a gauge � on [t0, t0 + �] such that if {(⌧
i

, [s
i�1, si]), i = 1, . . . , k} is a �-fine tagged

partition of [t0, v], then
�����

kX

i=1

(F (x(⌧
i

), s
i

)� F (x(⌧
i

), s
i�1))�

Z
v

t0

DF (x(⌧), t)

�����
1

< ".

Therefore, we have
kx(v)(#)� x(v)(v)k < 2"+

+

�����

kX

i=1

(F (x(⌧
i

), s
i

)� F (x(⌧
i

), s
i�1))(#)�

kX

i=1

(F (x(⌧
i

), s
i

)� F (x(⌧
i

), s
i�1))(v)

����� .

By the definition of F in (4.2.3), it is a matter of routine to check that, for every
i 2 {1, . . . , k}, we have

F (x(⌧
i

), s
i

)(#)� F (x(⌧
i

), s
i�1)(#) = F (x(⌧

i

), s
i

)(v)� F (x(⌧
i

), s
i�1)(v),

and, consequently,
kx(v)(#)� x(v)(v)k < 2".

Since this holds for an arbitrary " > 0, the relation (4.2.7) is satisfied.

In order to prove the second statement, assume that #  v. Similarly to the first part
of the proof, we have

x(v)(#) = x(t0)(#) +

Z
v

t0

DF (x(⌧), t)(#)

and
x(#)(#) = x(t0)(#) +

Z
#

t0

DF (x(⌧), t)(#).

Hence,

x(v)(#)� x(#)(#) =

Z
v

#

DF (x(⌧), t)(#).

Now, if {(⌧
i

, [s
i�1, si]), i = 1, . . . , k} is an arbitrary tagged partition of [#, v], it is

straightforward to check by (4.2.3) that, for every i 2 {1, . . . , k}, we have

F (x(⌧
i

), s
i

)(#)� F (x(⌧
i

), s
i�1)(#) = 0.

This means that
R

v

#

DF (x(⌧), t)(#) = 0 and x(v)(#) = x(#)(#).
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The following two theorems describe the correspondence between the solutions of a
generalized differential equation and solutions of a measure functional differential equa-
tion. They are the most important results in this section. Their proofs are inspired by
similar proofs from the paper [40], which describes the special case g(t) = t, that is, the
usual type of functional differential equations. These results are new and are contained
in [36].

Theorem 4.5. Assume that X is a closed subspace of G([t0 � r, t0 + �],Rn

), O is a
subset of X with the prolongation property, P = {x

t

; x 2 O, t 2 [t0, t0 + �]}, � 2 P ,
g : [t0, t0 + �] ! R is a nondecreasing function and f : P ⇥ [t0, t0 + �] ! Rn satisfies
conditions (A), (B) and (C). Let F : O ⇥ [t0, t0 + �] ! G([t0 � r, t0 + �],Rn

) be given by
(4.2.3) and assume that F (x, t) 2 X for every x 2 O, t 2 [t0, t0 + �]. Let y 2 O be a
solution of the measure functional differential equation

(
Dy = f(y

t

, t)Dg, t 2 [t0, t0 + �],

y
t0 = �.

(4.2.9)

For every t 2 [t0 � r, t0 + �], let

x(t)(#) =

8
<

:
y(#), # 2 [t0 � r, t],

y(t), # 2 [t, t0 + �].

Then the function x : [t0, t0 + �] ! O is a solution of the generalized ordinary differential
equation

dx

d⌧
= DF (x, t)

with the initial condition

x(t0)(#) =

(
�(#� t0), t0 � r  #  t0,

x(t0)(t0), t0  #  t0 + �.
(4.2.10)

Proof. We will show that, for every v 2 [t0, t0 + �], the integral
R

v

t0
DF (x(⌧), t) exists and

x(v)� x(t0) =

Z
v

t0

DF (x(⌧), t).

Let an arbitrary " > 0 be given. Since g is nondecreasing, it can have only a finite number
of points t 2 [t0, v] such that �+g(t) � "/M . Denote these points by t1, . . . , tm.
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Consider a gauge � : [t0, t0 + �] ! R+ such that

�(⌧) < min

⇢
t
k

� t
k�1

2

, k = 2, . . . ,m

�
, ⌧ 2 [t0, t0 + �]

and
�(⌧) < min {|⌧ � t

k

|, |⌧ � t
k�1|, ⌧ 2 (t

k�1, tk), ; k = 2, . . . ,m} .

These conditions ensure that if a point-interval pair (⌧, [c, d]) is �-fine, then [c, d] contains
at most one of the points t1, . . . , tm, and, moreover, ⌧ = t

k

whenever t
k

2 [c, d].

Since y
tk
= x(t

k

)

tk
, it follows from Corollary 2.7 that

lim

s!tk+

Z
s

tk

Lky
s

� x(t
k

)

s

k1 dg(s) = Lky
tk
� x(t

k

)

tk
k1�

+g(t
k

) = 0

for every k 2 {1, . . . ,m}. Thus, the gauge � might be chosen in such a way that

Z
tk+�(tk)

tk

Lky
s

� x(t
k

)

s

k1 dg(s) <
"

2m+ 1

, k 2 {1, . . . ,m}.

Using Corollary 2.7 again, we have

ky(⌧+)� y(⌧)k = kf(y
⌧

, ⌧)�+g(⌧)k < M
"

M
= ", ⌧ 2 [t0, t0 + �]\{t1, . . . , tm}.

Thus, we can assume that the gauge � is such that

ky(⇢)� y(⌧)k  "

for every ⌧ 2 [t0, t0 + �]\{t1, . . . , tm} and ⇢ 2 [⌧, ⌧ + �(⌧)).

Assume now that {(⌧
i

, [s
i�1, si]), i = 1, . . . , l} is a �-fine tagged partition of the interval

[t0, v]. Using the definition of x, it can be easily shown that

⇥
x(s

i

)� x(s
i�1)
⇤
(#) =

8
>>>>>><

>>>>>>:

0, # 2 [t0 � r, s
i�1],

Z
#

si�1

f(y
s

, s) dg(s), # 2 [s
i�1, si],

Z
si

si�1

f(y
s

, s) dg(s), # 2 [s
i

, t0 + �].
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Similarly, it follows from the definition of F that

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(#) =

8
>>>>>><

>>>>>>:

0, # 2 [t0 � r, s
i�1],

Z
#

si�1

f(x(⌧
i

)

s

, s) dg(s), # 2 [s
i�1, si],

Z
si

si�1

f(x(⌧
i

)

s

, s) dg(s), # 2 [s
i

, t0 + �].

By combination of the previous equalities, we obtain

⇥
x(s

i

)� x(s
i�1)
⇤
(#)�

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(#) =

=

8
>>>>>><

>>>>>>:

0, # 2 [t0 � r, s
i�1],

Z
#

si�1

�
f(y

s

, s)� f(x(⌧
i

)

s

, s)
�
dg(s), # 2 [s

i�1, si],

Z
si

si�1

�
f(y

s

, s)� f(x(⌧
i

)

s

, s)
�
dg(s), # 2 [s

i

, t0 + �].

Consequently,

kx(s
i

)� x(s
i�1)�

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
k1 =

= sup

#2[t0�r,t0+�]

��⇥x(s
i

)� x(s
i�1)
⇤
(#)�

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(#)
��
=

= sup

#2[si�1,si]

����
Z

#

si�1

⇥
f(y

s

, s)� f(x(⌧
i

)

s

, s)
⇤
dg(s)

���� .

By the definition of x, x(⌧
i

)

s

= y
s

whenever s  ⌧
i

. Thus,

Z
#

si�1

⇥
f(y

s

, s)� f(x(⌧
i

)

s

, s)
⇤
dg(s) =

8
><

>:

0, # 2 [s
i�1, ⌧i],

Z
#

⌧i

⇥
f(y

s

, s)� f(x(⌧
i

)

s

, s)
⇤
dg(s), # 2 [⌧

i

, s
i

].

Then, condition (C) implies

����
Z

#

⌧i

⇥
f(y

s

, s)� f(x(⌧
i

)

s

, s)
⇤
dg(s)

����  L

Z
#

⌧i

ky
s

�x(⌧
i

)

s

k1 dg(s)  L

Z
si

⌧i

ky
s

�x(⌧
i

)

s

k1 dg(s).

Given a particular point-interval pair (⌧
i

, [s
i�1, si]), there are two possibilities:
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(i) The intersection of [s
i�1, si] and {t1, . . . , tm} contains a single point t

k

= ⌧
i

.

(ii) The intersection of [s
i�1, si] and {t1, . . . , tm} is empty.

In case (i), it follows from the definition of the gauge � that

L

Z
si

⌧i

ky
s

� x(⌧
i

)

s

k1 dg(s)  "

2m+ 1

,

that is,
kx(s

i

)� x(s
i�1)�

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
k1  "

2m+ 1

.

In case (ii), we have

ky
s

� x(⌧
i

)

s

k1 = sup

⇢2[⌧i,s]
|y(⇢)� y(⌧

i

)|  ", s 2 [⌧
i

, s
i

]

by the definition of the gauge �. Thus,

kx(s
i

)� x(s
i�1)�

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
k1  "L

Z
si

⌧i

dg(s).

Combining cases (i) and (ii) and using the fact that case (i) occurs at most 2m times,
we obtain

�����x(v)� x(t0)�
lX

i=1

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
�����
1

 "L

Z
t0+�

t0

dg(s) +
2m"

2m+ 1

.

Since " > 0 is arbitrary, it follows that

x(v)� x(t0) =

Z
v

t0

DF (x(⌧), t).

Theorem 4.6. Assume that X is a closed subspace of G([t0 � r, t0 + �],Rn

), O is a
subset of X with the prolongation property, P = {x

t

; x 2 O, t 2 [t0, t0 + �]}, � 2 P ,
g : [t0, t0 + �] ! R is a nondecreasing function and f : P ⇥ [t0, t0 + �] ! Rn satisfies
conditions (A), (B) and (C). Let F : O ⇥ [t0, t0 + �] ! G([t0 � r, t0 + �],Rn

) be given
by (4.2.3) and assume that F (x, t) 2 X for every x 2 O and t 2 [t0, t0 + �]. Let x :

[t0, t0 + �] ! O be a solution of the generalized ordinary differential equation

dx

d⌧
= DF (x, t),
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with the initial condition

x(t0)(#) =

8
<

:
�(#� t0), t0 � r  #  t0,

x(t0)(t0), t0  #  t0 + �.

Then the function y 2 O defined by

y(#) =

8
<

:
x(t0)(#), t0 � r  #  t0,

x(#)(#), t0  #  t0 + �

is a solution of the measure functional differential equation
(

Dy = f(y
t

, t)Dg, t 2 [t0, t0 + �],

y
t0 = �.

(4.2.11)

Proof. The equality y
t0 = � follows easily from the definitions of y and x(t0). It remains

to prove that for all v 2 [t0, t0 + �], we have

y(v)� y(t0) =

Z
v

t0

f(y
s

, s) dg(s).

Let v 2 [t0, t0 + �]. Using Lemma 4.4, we obtain

y(v)� y(t0) = x(v)(v)� x(t0)(t0) = x(v)(v)� x(t0)(v) =

✓Z
v

t0

DF (x(⌧), t)

◆
(v).

Thus,

y(v)� y(t0)�
Z

v

t0

f(y
s

, s) dg(s) =

✓Z
v

t0

DF (x(⌧), t)

◆
(v)�

Z
v

t0

f(y
s

, s) dg(s). (4.2.12)

Let an arbitrary " > 0 be given. Since g is nondecreasing, it can have only a finite
number of points t 2 [t0, v] such that �

+g(t) � "/(L + M). Denote these points by
t1, . . . , tm.

Consider a gauge � : [t0, t0 + �] ! R+ such that

�(⌧) < min

⇢
t
k

� t
k�1

2

, k = 2, . . . ,m

�
, ⌧ 2 [t0, t0 + �]

and
�(⌧) < min {|⌧ � t

k

|, |⌧ � t
k�1|, ; ⌧ 2 (t

k�1, tk), ; k = 2, . . . ,m} .
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As in the proof of Theorem 4.5, these conditions ensure that if a point-interval pair
(⌧, [c, d]) is �-fine, then [c, d] contains at most one of the points t1, . . . , tm, and, moreover,
⌧ = t

k

whenever t
k

2 [c, d].

Again, the gauge � might be chosen in such a way that

Z
tk+�(tk)

tk

Lky
s

� x(t
k

)

s

k1 dg(s) <
"

2m+ 1

, k 2 {1, . . . ,m}.

According to Lemma 4.2, the function F given by (4.2.3) belongs to the class F(O ⇥
[t0, t0 + �], h), where

h(t) = (L+M)[g(t)� g(t0)], t 2 [t0, t0 + �].

Since

|h(⌧+)� h(⌧)| = |(L+M)�

+g(⌧)| < ", ⌧ 2 [t0, t0 + �]\{t1, . . . , tm},

we can assume that the gauge � satisfies

|h(⇢)� h(⌧)|  " for every ⇢ 2 [⌧, ⌧ + �(⌧)).

Finally, the gauge � should be such that
�����

Z
v

t0

DF (x(⌧), t)�
lX

i=1

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
����� < " (4.2.13)

for every �-fine partition {(⌧
i

, [s
i�1, si]), i = 1, . . . , l} of [t0, v]. The existence of such a

gauge follows from the definition of the Kurzweil integral.

Choose a particular �-fine partition {(⌧
i

, [s
i�1, si]), i = 1, . . . , l} of [t0, v]. By (4.2.12)

and (4.2.13), we have
����y(v)� y(t0)�

Z
v

t0

f(y
s

, s) dg(s)

���� =
����

✓Z
v

t0

DF (x(⌧), t)

◆
(v)�

Z
v

t0

f(y
s

, s) dg(s)

���� <

< "+

�����

lX

i=1

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(v)�

Z
v

t0

f(y
s

, s) dg(s)

����� 

 "+
lX

i=1

����
⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(v)�

Z
si

si�1

f(y
s

, s) dg(s)

���� .
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The definition of F yields

⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(v) =

Z
si

si�1

f(x(⌧
i

)

s

, s) dg(s),

which implies
����
⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(v)�

Z
si

si�1

f(y
s

, s) dg(s)

���� =

=

����
Z

si

si�1

f(x(⌧
i

)

s

, s) dg(s)�
Z

si

si�1

f(y
s

, s) dg(s)

���� =
����
Z

si

si�1

[f(x(⌧
i

)

s

, s)� f(y
s

, s)] dg(s)

���� .

By Lemma 4.4, for every i 2 {1, . . . , l}, we have x(⌧
i

)

s

= x(s)
s

= y
s

for s 2 [s
i�1, ⌧i]

and y
s

= x(s)
s

= x(s
i

)

s

for s 2 [⌧
i

, s
i

]. Therefore,
����
Z

si

si�1

[f(x(⌧
i

)

s

, s)� f(y
s

, s)] dg(s)

���� =
����
Z

si

⌧i

[f(x(⌧
i

)

s

, s)� f(y
s

, s)] dg(s)

���� =

=

����
Z

si

⌧i

[f(x(⌧
i

)

s

, s)� f(x(s
i

)

s

, s)] dg(s)

����  L

Z
si

⌧i

kx(⌧
i

)

s

� x(s
i

)

s

k1 dg(s),

where the last inequality follows from condition (C).

Again, we distinguish two cases:

(i) The intersection of [s
i�1, si] and {t1, . . . , tm} contains a single point t

k

= ⌧
i

.

(ii) The intersection of [s
i�1, si] and {t1, . . . , tm} is empty.

In case (i), it follows from the definition of the gauge � that

L

Z
si

⌧i

ky
s

� x(⌧
i

)

s

k1 dg(s)  "

2m+ 1

,

that is,
����
⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(v)�

Z
si

si�1

f(y
s

, s) dg(s)

���� 
"

2m+ 1

.

In case (ii), we use Lemma 2.15 to obtain the estimate

kx(s
i

)

s

� x(⌧
i

)

s

k1  kx(s
i

)� x(⌧
i

)k1  h(s
i

)� h(⌧
i

)  ",
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for every s 2 [⌧
i

, s
i

] and, thus,
����
⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(v)�

Z
si

si�1

f(y
s

, s) dg(s)

����  "L

Z
si

⌧i

dg(s).

Combining cases (i) and (ii) and using the fact that case (i) occurs at most 2m times,
we obtain

lX

i=1

����
⇥
F (x(⌧

i

), s
i

)� F (x(⌧
i

), s
i�1)
⇤
(v)�

Z
si

si�1

f(y
s

, s) dg(s)

���� 

 "

Z
t0+�

t0

L dg(s) +
2m"

2m+ 1

< " (1 + L(g(t0 + �)� g(t0))) .

Consequently,
����y(v)� y(t0)�

Z
v

t0

f(y
s

, s) dg(s)

���� < " (2 + L(g(t0 + �)� g(t0))) ,

which completes the proof.

Remark 4.7. It follows from Lemma 4.4 that the relation

y(#) =

8
<

:
x(t0)(#), t0 � r  #  t0,

x(#)(#), t0  #  t0 + �

found in the previous theorem can be replaced by a single equality

y(#) = x(t0 + �)(#),

for t0 � r  #  t0 + �. ⇤

Remark 4.8. Before proceeding further, we stop for a moment to discuss conditions (A),
(B) and (C), which appear in the statements of Theorem 4.5 and Theorem 4.6.

Condition (A) requires the existence of the Kurzweil-Henstock-Stieltjes integral

Z
t0+�

t0

f(y
t

, t) dg(t)

for every y 2 O. This class of integrable functions is quite large. For example, if g(t) = t,
the Kurzweil-Henstock-Stieltjes integral reduces to the well-known Kurzweil-Henstock in-
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tegral, which generalizes both Lebesgue and Newton integrals (see [49], for instance). For
a general nondecreasing function g, Theorem 2.9 provides a useful sufficient existence con-
dition: the Kurzweil-Henstock-Stieltjes integral exists whenever t 7! f(y

t

, t) is a regulated
function.

Conditions (B) and (C) can be replaced by weaker statements: an inspection of the
proofs of Theorem 4.5 and Theorem 4.6 shows that it is enough to assume the existence
of functions M,L : [t0, t0 + �] ! R which are Lebesgue integrable with respect to g such
that ����

Z
b

a

f(y
s

, s) dg(s)

���� 
Z

b

a

M(s)dg(s)

and ����
Z

b

a

[f(y
s

, s)� f(z
s

, s)] dg(s)

���� 
Z

b

a

L(s)ky
s

� z
s

k dg(s)

for every a, b 2 [t0, t0 + �], y 2 O.

For a proof of this result with these conditions, the reader may consult the references
[38] and [100]. Although we consider conditions (A), (B) and (C) in all results presented
in the present work, it is possible to replace them by more general ones without significant
modifications in the proofs. ⇤

4.3 Measure FDEs and functional dynamic equations on
time scales

In this section, we prove that functional dynamic equations on time scales can be
viewed as measure functional differential equations. The majority of the results presented
in this section are new and are contained in [36].

Here, we use the same notation as in [98]. Given a real number t  supT, let

t⇤ = inf{s 2 T; s � t}.

Notice that t⇤ might be different from �(t). The following example illustrates this fact.

Example 4.9. Let T = Z and t 2 T, then

t⇤ = inf{s 2 Z; s � t} = inf{t, t+ 1, t+ 2, . . .} = t
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and
�(t) = inf{s 2 Z; s > t} = inf{t+ 1, t+ 2, . . .} = t+ 1.

Thus �(t) 6= t⇤, for any t 2 T = Z. ⇤

Coming back to time scales T, we recall the reader that T is a closed set. Then, clearly,
t⇤ 2 T. Let

T⇤
=

(
(�1, supT], if supT < 1,

(�1,1), otherwise.

Given a function f : T ! Rn, we consider its extension f ⇤
: T⇤ ! Rn defined by

f ⇤
(t) = f(t⇤), t 2 T⇤.

Similarly, given an open set O ⇢ X and a function f : O ⇥ T ! Rn, we define

f ⇤
(x, t) = f(x, t⇤), t 2 T⇤.

To understand better the definition above, see the next pictures. The first one illustrate
the function f : T ! Rn and its extension f ⇤

: T⇤ ! Rn. Notice that while the function f

is only defined in T, its extension f ⇤ is defined in whole interval (�1, supT] if supT < 1
and in whole real line, otherwise.

The next result can be found in [98], Lemma 4. It is a useful result, because it describes
the extension f ⇤ based on the properties of f .

Lemma 4.10. If f : T ! Rn is a regulated function, then f ⇤
: T⇤ ! Rn is also regulated.

If f is left-continuous on T, then f ⇤ is left-continuous on T⇤. If f is right-continuous on
T, then f ⇤ is right-continuous at right-dense points of T.

Proof. At first, let us calculate lim

t!t

�
0
f ⇤
(t), for t0 2 T⇤. If t0 2 T and t0 is left-dense,
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then
lim

t!t

�
0

f ⇤
(t) = lim

t!t

�
0

f(t).

If t0 2 T and t0 is left-scattered, then

lim

t!t

�
0

f ⇤
(t) = f(t0) = f ⇤

(t0).

Finally, if t0 62 T, then
lim

t!t

�
0

f ⇤
(t) = f(t⇤0) = f ⇤

(t0).

Now, consider lim

t!t

+
0
f ⇤
(t), where t0 2 T⇤ and t0 < supT⇤. If t0 2 T and it is

right-dense, then
lim

t!t

+
0

f ⇤
(t) = lim

t!t

+
0

f(t).

If t0 2 T and it is right-scattered, then

lim

t!t

+
0

f ⇤
(t) = f(�(t0)).

Finally, if t0 62 T, then
lim

t!t

+
0

f ⇤
(t) = f(t⇤0) = f ⇤

(t0).

According to the following theorem, the �-integral of a time scale function f is in
fact equivalent to the Kurzweil-Henstock-Stieltjes integral of the extended function f ⇤.
It can be found in [98], Theorem 5. Since this result is a crucial result to prove the
correspondences presented in this chapter, we will repeat its proof here.

Theorem 4.11. Let f : T ! Rn be a rd-continuous function. Choose an arbitrary a 2 T
and define

F1(t) =

Z
t

a

f(s)�s, t 2 T,

F2(t) =

Z
t

a

f ⇤
(s) dg(s), t 2 T⇤,

where g(s) = s⇤ for every s 2 T⇤. Then F2 = F ⇤
1 . In particular, F2(t) = F1(t) for every

t 2 T.

Proof. Note that the functions F1 and F2 are well-defined. In fact, it is clear that since f

is rd-continuous, the Riemann �-integral in the definition of F1 exists and also, since f ⇤
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is regulated and g is nondecreasing, the Kurzweil-Henstock-Stieltjes integral exists. To
complete this proof, it is enough to prove the following two statements:

(1) F1(t) = F2(t), for every t 2 T;

(2) If t 2 T and s = sup{u 2 T; u < t}, then F2 is constant on [s, t).

At first, we will prove the second statement, since it is easier to prove: If u, v 2 (s, t]

and u < v, then

F2(v)� F2(u) =

Z
v

u

f ⇤
(s)dg(s) = 0,

where the last equality follows from the definition of Kurzweil-Henstock-Stieltjes integral
and the fact that g is constant on [u, v].

Now, let us prove the first statement. Note that, by definition, F1(a) = F2(a) = 0 and,
thus, it is sufficient to show that F1

�
(t) = F2

�
(t) for every t 2 T, since any two functions

with the same �-derivatives differ only by a constant. By the properties of the Riemann
�-integral, F�

1(t) = f(t), and it remains to evaluate F�
2.

If t is a right-dense point, then f is continuous at t and

lim

s!t

f ⇤
(s) = f ⇤

(t) = f(t),

by Lemma 4.10. Therefore, given an arbitrary " > 0, there is a � > 0 such that kf ⇤
(s)�

f(t)k < " whenever |s� t| < �.

Now, consider a sequence of time scale points {t
k

}1
k=1 such that lim

k!1 t
k

= t. We
can find a k0 2 N such that |t

k

� t| < � whenever k � k0. Thus, for every k � k0, we
obtain ����

F2(tk)� F2(t)

t
k

� t
� f(t)

���� =
����

1

t
k

� t

Z
tk

t

f ⇤
(s)dg(s)� f(t)

���� =

=

����
1

t
k

� t

Z
tk

t

(f ⇤
(s)� f(t))dg(s)

���� < "
g(t

k

)� g(t)

t
k

� t
= "

since g(t
k

) = t
k

and g(t) = t. It follows that

lim

k!1

F2(tk)� F2(t)

t
k

� t
= f(t),

that is, F�
2(t) = f(t).

On the other hand, when t is a right-scattered point, we have

F2(�(t)) = F2(t
+
) = F2(t) + f(t)�+g(t),
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where the first equality follows from the fact that F2 is constant on (t, �(t)] and the second
equality is a consequence of Theorem 4.11. But �+g(t) = g(t+)� g(t) = �(t)� t = µ(t),

and it follows that
F�

2(t) =
F2(�(t))� F2(t)

µ(t)
= f(t).

and the result follows.

In what follows, we present a result which will be essential to prove our correspondence.
It says that the Kurzweil-Henstock-Stieltjes integral

R
b

a

f ⇤
(s)dg(s) does not change if we

replace f ⇤ by a different function which coincides with f on [a, b]\T. This is a new result
and it is contained in [36].

Theorem 4.12. Let T be a time scale, g(s) = s⇤ for every s 2 T⇤, [a, b] ⇢ T⇤. Consider
a pair of functions f1, f2 : [a, b] ! Rn such that f1(t) = f2(t) for every t 2 [a, b] \ T.
If
R

b

a

f1(t) dg(t) exists, then
R

b

a

f2(t) dg(t) exists as well and both integrals have the same
value.

Proof. Denote I =

R
b

a

f1(s)dg(s). Given an arbitrary " > 0, there is a gauge �1 : [a, b] !
R+ such that �����

kX

i=1

f1(⌧i)[g(si)� g(s
i�1)]� I

����� < ",

for every �1-fine tagged partition {(⌧
i

, [s
i�1, si]), i = 1, . . . , k}.

Let

�2(t) =

8
<

:
�1(t) t 2 [a, b] \ T,

min {�1(t), 12 inf {|t� s|, s 2 T}}, t 2 [a, b]\T.

Note that each �2-fine tagged partition is also �1-fine. Consider an arbitrary �2-fine tagged
partition {(⌧

i

, [s
i�1, si]), i = 1, . . . , k}.

For every i 2 {1, . . . , k}, there are two possibilities: either [s
i�1, si]\T = ;, or ⌧

i

2 T.
In the first case, g(s

i�1) = g(s
i

), and, therefore,

f2(⌧i)[g(si)� g(s
i�1)] = 0 = f1(⌧i)[g(si)� g(s

i�1)].

In the second case, f1(⌧i) = f2(⌧i) and

f2(⌧i)[g(si)� g(s
i�1)] = f1(⌧i)[g(si)� g(s

i�1)].
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Thus, we have
�����

kX

i=1

f2(⌧i)[g(si)� g(s
i�1)]� I

����� =

�����

kX

i=1

f1(⌧i)[g(si)� g(s
i�1)]� I

����� < ".

Then, since " > 0 can be taken arbitrarily small, we conclude that
R

b

a

f2(t) dg(t) = I.

We point out that when we are dealing with dynamic equations on time scales such
that the �-derivative of the unknown function x : T ! Rn at t 2 T depends on the values
of x(s), where s 2 [t � r, t] \ T, we deal with one difficulty. Unlike the classical case,
the function x

t

is now defined on a subset of [�r, 0], and this subset may depend on t.
We overcome this problem by considering the function x⇤

t

instead. Throughout this and
the following sections, x⇤

t

stands for (x⇤
)

t

. Clearly, x⇤
t

contains the same information as
x
t

, but it is defined on the whole interval [�r, 0]. Thus, it seems reasonable to consider
functional dynamic equations of the form

x�
(t) = f(x⇤

t

, t).

This equation is equivalent to a certain measure functional differential equation as it will
be showed in the next new result.

The symbol C([a, b]T,Rn

) will be used to denote the set of all continuous functions
f : [a, b]T ! Rn.

Theorem 4.13. Let [t0 � r, t0 + �]T be a time scale interval, t0 2 T, B ⇢ Rn, C =

C([t0 � r, t0 + �]T, B), P = {x⇤
t

; x 2 C, t 2 [t0, t0 + �]}, f : P ⇥ [t0, t0 + �]T ! Rn, � 2
C([t0�r, t0]T, B). Assume that for every x 2 C, the function t 7! f(x⇤

t

, t) is rd-continuous
on [t0, t0 + �]T. Define g(s) = s⇤ for every s 2 [t0, t0 + �]. If x : [t0 � r, t0 + �]T ! B is a
solution of the functional dynamic equation

x�
(t) = f(x⇤

t

, t), t 2 [t0, t0 + �]T, (4.3.1)

x(t) = �(t), t 2 [t0 � r, t0]T, (4.3.2)

then x⇤
: [t0 � r, t0 + �] ! B satisfies

x⇤
(t) = x⇤

(t0) +

Z
t

t0

f(x⇤
s

, s⇤) dg(s), t 2 [t0, t0 + �],

x⇤
t0

= �⇤
t0
.
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Conversely, if y : [t0 � r, t0 + �] ! B is a solution of the following equation

y(t) = y(t0) +

Z
t

t0

f(y
s

, s⇤) dg(s), t 2 [t0, t0 + �],

y
t0 = �⇤

t0
,

then y = x⇤, where x : [t0 � r, t0 + �]T ! B, satisfies (4.3.1) and (4.3.2).

Proof. Assume that
x�

(t) = f(x⇤
t

, t), t 2 [t0, t0 + �]T.

Then
x(t) = x(t0) +

Z
t

t0

f(x⇤
s

, s)�s, t 2 [t0, t0 + �]T,

and, by Theorem 4.11,

x⇤
(t) = x⇤

(t0) +

Z
t

t0

f(x⇤
s

⇤ , s⇤) dg(s), t 2 [t0, t0 + �].

Since f(x⇤
s

⇤ , s⇤) = f(x⇤
s

, s⇤) for every s 2 T, we can use Corollary 4.12 to conclude that

x⇤
(t) = x⇤

(t0) +

Z
t

t0

f(x⇤
s

, s⇤) dg(s), t 2 [t0, t0 + �].

Conversely, assume that y satisfies

y(t) = y(t0) +

Z
t

t0

f(y
s

, s⇤) dg(s), t 2 [t0, t0 + �].

Note that g is constant on every interval (↵, �], where � 2 T and ↵ = sup{⌧ 2 T; ⌧ < �}.
Thus y has the same property and it follows that y = x⇤ for some x : [t0�r, t0+�]T ! B.
Using Theorem 2.7, it is easy to see that x is continuous on [t0 � r, t0 + �]T. By reversing
our previous reasoning, we conclude that x satisfies (4.3.1) and (4.3.2).

Example 4.14. There is a fairly large number of papers devoted to delay dynamic equa-
tions of the form

x�
(t) = h(t, x(t), x(⌧1(t)), . . . , x(⌧k(t))), (4.3.3)

where ⌧
i

: T ! T are functions corresponding to the delays, that is ⌧
i

(t)  t for every
t 2 T and every i = 1, . . . , k, and where the function t 7! h(t, x(t), x(⌧1(t)), . . . , x(⌧k(t)))

is rd-continuous, whenever x is a continuous function.
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Suppose the delays are bounded, that is, there exists a constant r > 0 such that
t� r  ⌧

i

(t)  t, or equivalently �r  ⌧
i

(t)� t  0. Then, it is possible to write (4.3.3)
in the form

x�
(t) = f(x⇤

t

, t)

by taking
f(y, t) = h(t, y(0), y(⌧1(t)� t), . . . , y(⌧

k

(t)� t))

for every y : [�r, 0] ! Rn. Also, if x is continuous on [t0 � r, t0 + �]T, then the function
t 7! f(x⇤

t

, t) is rd-continuous on [t0, t0 + �]T.

An important special case is represented by linear delay dynamic equations of the form

x�
(t) =

kX

i=1

p
i

(t)x(⌧
i

(t)) + q(t),

where q, p1, . . . , pk and ⌧1, . . . , ⌧k are rd-continuous functions on [t0, t0 + �]T. The corre-
sponding functional dynamic equation is

x�
(t) = f(x⇤

t

, t),

where

f(y, t) =
kX

i=1

p
i

(t)y(⌧
i

(t)� t) + q(t)

for every y : [�r, 0] ! Rn. Again, we see that t 7! f(x⇤
t

, t) is rd-continuous on [t0, t0+�]T

whenever x is continuous on [t0 � r, t0 + �]T. Moreover, for each pair of functions y, z :

[�r, 0] ! Rn, we have

|f(y, t)� f(z, t)| 
kX

i=1

|p
i

(t)(y(⌧
i

(t)� t)� z(⌧
i

(t)� t))|


 

kX

i=1

|p
i

(t)|
!
ky � zk1  Lky � zk1

with

L = sup

t2[t0,t0+�]T

kX

i=1

|p
i

(t)|,

that is, f is Lipschitz-continuous in the first variable. ⇤
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4.4 Impulsive measure FDEs and measure FDEs

In this section, we present the impulsive measure functional differential equations.
Also, we describe the relation between them and measure functional differential equations.
All the results presented in this section are original and they are contained in [37].

As we mentioned earlier, an initial value problem for a measure functional differential
equation can be described in the form

(
Dx = f(x

s

, s)Dg(s), t 2 [t0, t0 + �],

x
t0 = �,

where Dx and Dg are the distributional derivatives, in the sense of L. Schwartz, taken
with respect to x and g respectively. Its integral form is given by

x(t) = x(t0) +

Z
t

t0

f(x
s

, s) dg(s), t 2 [t0, t0 + �],

x
t0 = �,

where the Kurzweil-Henstock-Stieltjes integral on the right-hand side is taken with respect
to a nondecreasing function g : [t0, t0 + �] ! R. These equations have been studied in
[36], [19], among others papers.

Let O ⇢ G([t0 � r, t0 + �],Rn

) be open and P = {y
t

: y 2 O, t 2 [t0, t0 + �]} be a
subset of G([�r, 0],Rn

).

Consider the impulsive measure functional differential equation given by

x(v)� x(u) =

Z
v

u

f(x
s

, s) dg(s), whenever u, v 2 J
k

for some k 2 {0, . . . ,m},

�

+x(t
k

) = I
k

(x(t
k

)), k 2 {1, . . . ,m},

x
t0 = �,

where g is a left continuous function and the moments of impulses t1, . . . , tm are pre-
assigned, where t0  t1 < · · · < t

m

< t0 + � and J0 = [t0, t1], J
k

= (t
k

, t
k+1] for

k 2 {1, . . . ,m� 1}, and J
m

= (t
m

, t0 + �]. Also, for every k 2 {1, . . . ,m}, let the impulse
at t

k

be described by the operator I
k

: Rn ! Rn. In other words, suppose the solution x

satisfies �

+x(t
k

) = I
k

(x(t
k

)).

Also, notice that the value of the integral
R

v

u

f(x
s

, s) dg(s), where u, v 2 J
k

, does
not change if we replace g by a function g̃ such that g � g̃ is a constant function on J

k
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(this follows easily from the definition of the Kurzweil-Henstock-Stieltjes integral). Thus,
without loss of generality, we can assume that g is such that �

+g(t
k

) = 0 for every
k 2 {1, . . . ,m}. Since g is a left-continuous function, it follows that g is continuous at
t1, . . . , tm. Under this assumption, our problem can be rewritten as

x(t) = x(t0) +

Z
t

t0

f(x
s

, s) dg(s) +
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)), t 2 [t0, t0 + �], (4.4.1)

x
t0 = �.

Indeed, the function t 7!
R

t

t0
f(x

s

, s) dg(s) is continuous at t1, . . . , tm (see Corollary 2.7)
and, therefore, �+x(t

k

) = I
k

(x(t
k

)) for every k 2 {1, . . . ,m}.

Alternatively, the sum on the right-hand side of (4.4.1) might be written in the form
P

m

k=1 Ik(x(tk))Htk
(t), where H

v

denotes the characteristic function of (v,1).

In the sequel, we start by presenting an important result for the Kurzweil-Henstock-
Stieltjes-integral. This result will be essential to prove the correspondence between mea-
sure functional differential equations and impulsive measure functional differential equa-
tions.

Lemma 4.15. Let m 2 N, a  t1 < t2 < · · · < t
m

 b. Consider a pair of functions
f : [a, b] ! R and g : [a, b] ! R, where g is regulated, left continuous on [a, b], and
continuous at t1, . . . , tm. Let ˜f : [a, b] ! R and g̃ : [a, b] ! R be such that ˜f(t) = f(t)

for every t 2 [a, b]\{t1, . . . , tm} and g̃ � g is constant on each of the intervals [a, t1],
(t1, t2], . . . , (tm�1, tm], (t

m

, b]. Then the integral
R

b

a

˜f(t) dg̃(t) exists, if and only if, the
integral

R
b

a

f(t) dg(t) exists. In this case, we have

Z
b

a

˜f(t) dg̃(t) =

Z
b

a

f(t) dg(t) +
X

k2{1,...,m},
tk<b

˜f(t
k

)�

+g̃(t
k

).

Proof. Using the definition of the Kurzweil-Henstock-Stieltjes integral, we obtain

Z
t1

a

˜f(t) d(g̃ � g)(t) = 0.

It follows from Corollary 2.5 and the definition of Kurzweil-Henstock-Stieltjes integral
that
Z

tk+1

tk

˜f(t) d(g̃� g)(t) = lim

⌧!tk+

Z
tk+1

⌧

˜f(t) d(g̃� g)(t)+ ˜f(t
k

)�

+
(g̃� g)(t

k

) =

˜f(t
k

)�

+g̃(t
k

),
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for every k 2 {1, . . . ,m� 1}. If t
m

= b, then
R

b

tm

˜f(t) d(g̃ � g)(t) = 0. Otherwise,

Z
b

tm

˜f(t) d(g̃ � g)(t) = lim

⌧!tm+

Z
b

⌧

˜f(t) d(g̃ � g)(t) + ˜f(t
m

)�

+
(g̃ � g)(t

m

) =

˜f(t
m

)�

+g̃(t
m

).

Consequently,
R

b

a

˜f(t) d(g̃ � g)(t) exists and

Z
b

a

˜f(t) d(g̃ � g)(t) =
X

k2{1,...,m},
tk<b

˜f(t
k

)�

+g̃(t
k

).

By Corollaries 2.5 and 2.7, we have

Z
t1

a

˜f(t) dg(t) = lim

⌧!t1�

Z
⌧

a

˜f(t) dg(t) = lim

⌧!t1�

Z
⌧

a

f(t) dg(t) =

Z
t1

a

f(t) dg(t),

Z
tk+1

tk

˜f(t) dg(t) = lim

�!tk+,

⌧!tk+1�

Z
⌧

�

˜f(t) dg(t) = lim

�!tk+,

⌧!tk+1�

Z
⌧

�

f(t) dg(t) =

Z
tk+1

tk

f(t) dg(t),

for k 2 {1, . . . ,m� 1} and

Z
b

tm

˜f(t) dg(t) = lim

⌧!tm+

Z
b

⌧

˜f(t) dg(t) = lim

⌧!tm+

Z
b

⌧

f(t) dg(t) =

Z
b

tm

f(t) dg(t).

These three relations might be read not only from left to right, but also from right to
left. In other words, the integrals on the left-hand sides exist, if and only if, the integrals
on the right-hand sides exist. Combining these three relations, it follows that

R
b

a

˜f(t) dg(t)

exists, if and only if,
R

b

a

f(t) dg(t) exists. In this case, their values are equal.

To conclude the proof, it is enough to notice that

Z
b

a

˜f(t) dg̃(t) =

Z
b

a

˜f(t) dg(t)+

Z
b

a

˜f(t) d(g̃�g)(t) =

Z
b

a

f(t) dg(t)+
X

k2{1,...,m},
tk<b

˜f(t
k

)�

+g̃(t
k

).

The following theorem shows that impulsive measure functional differential equations
of the form (4.4.1) can always be transformed into measure functional differential equa-
tions.

Theorem 4.16. Let m 2 N, t0  t1 < · · · < t
m

< t0 + �, B ⇢ Rn, I1, . . . , Im : B ! Rn,
P = G([�r, 0], B), f : P ⇥ [t0, t0+�] ! Rn. Assume that g : [t0, t0+�] ! R is a regulated
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left-continuous function which is continuous at t1, . . . , tm. For every y 2 P , define

˜f(y, t) =

8
<

:
f(y, t), t 2 [t0, t0 + �]\{t1, . . . , tm},

I
k

(y(0)), t = t
k

for some k 2 {1, . . . ,m}.

Moreover, let c1, . . . , cm 2 R be constants such that the function g̃ : [t0, t0 + �] ! R given
by

g̃(t) =

8
>>><

>>>:

g(t), t 2 [t0, t1],

g(t) + c
k

, t 2 (t
k

, t
k+1] for some k 2 {1, . . . ,m� 1},

g(t) + c
m

, t 2 (t
m

, t0 + �]

satisfies �

+g̃(t
k

) = 1 for every k 2 {1, . . . ,m}. Then, x 2 G([t0 � r, t0 + �], B) is a
solution of the problem

8
>><

>>:

x(t) = x(t0) +

Z
t

t0

f(x
s

, s) dg(s) +
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)), t 2 [t0, t0 + �],

x
t0 = �,

if and only if, x is also a solution of the problem
8
><

>:
x(t) = x(t0) +

Z
t

t0

˜f(x
s

, s) dg̃(s), t 2 [t0, t0 + �],

x
t0 = �.

Proof. According to Lemma 4.15, we have

Z
t

t0

˜f(x
s

, s) dg̃(s) =

Z
t

t0

f(x
s

, s) dg(s) +
X

k2{1,...,m},
tk<t

f(x
tk
, t

k

)�

+g̃(t
k

)

=

Z
t

t0

f(x
s

, s) dg(s) +
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)),

that is, the right-hand sides of (4.4.2) and (4.4.2) are indeed identical.

Remark 4.17. When g(t) = t for every t 2 [t0, t0 + �], equation (4.4.2) reduces to the
usual type of impulsive functional differential equation

x(t) = x(t0) +

Z
t

t0

f(x
s

, s) ds+
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)), t 2 [t0, t0 + �].
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Basic results concerning this type of equations were obtained by M. Federson and
Š. Schwabik in [40]; the main tool in their investigations was the theory of generalized
ordinary differential equations. The previous theorem suggests a different approach: im-
pulsive measure functional differential equations are a special case of measure functional
differential equations and, therefore, the existing theory of measure equations can be used
in the study of impulsive equations. ⇤

The next lemma describes how the Carathéodory and Lipschitz-type conditions con-
cerning the function f and the Lipschitz and boundedness conditions for the impulse
operators can be transferred to ˜f , when it is defined in Theorem 4.16.

Lemma 4.18. Let m 2 N, t0  t1 < · · · < t
m

< t0+�, B ⇢ Rn, I1, . . . , Im : B ! Rn, P =

G([�r, 0], B), O = G([t0�r, t0+�], B). Assume that g : [t0, t0+�] ! R is a left-continuous
nondecreasing function which is continuous at t1, . . . , tm. Let f : P ⇥ [t0, t0 + �] ! Rn

be a function such that the integral
R
t0+�

t0
f(y

t

, t) dg(t) exists for every y 2 O. For every
y 2 P , define

˜f(y, t) =

8
<

:
f(y, t), t 2 [t0, t0 + �]\{t1, . . . , tm},

I
k

(y(0)), t = t
k

for some k 2 {1, . . . ,m}.

Moreover, let c1, . . . , cm 2 R be constants such that the function g̃ : [t0, t0 + �] ! R given
by

g̃(t) =

8
>>><

>>>:

g(t), t 2 [t0, t1],

g(t) + c
k

, t 2 (t
k

, t
k+1] for some k 2 {1, . . . ,m� 1},

g(t) + c
m

, t 2 (t
m

, t0 + �]

satisfies �

+g̃(t
k

) = 1 for every k 2 {1, . . . ,m}. Then the following assertions hold:

1. Assume there exist a constant M1 > 0 such that
����
Z

u2

u1

f(y
t

, t) dg(t)

����  M1[g(u2)� g(u1)],

whenever t0  u1  u2  t0 + �, y 2 O, and a constant M2 > 0 such that

|I
k

(x)|  M2
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for every k 2 {1, . . . ,m} and x 2 B. Then
����
Z

u2

u1

˜f(y
t

, t) dg̃(t)

����  (M1 +M2)(g̃(u2)� g̃(u1))

whenever t0  u1  u2  t0 + � and y 2 O.

2. Assume there exists a constant L1 > 0 such that
����
Z

u2

u1

[f(y
t

, t)� f(z
t

, t)] dg(t)

����  L1

Z
u2

u1

ky
t

� z
t

k1 dg(t)

whenever t0  u1  u2  t0 + �, y, z 2 O, and a constant L2 > 0 such that

|I
k

(x)� I
k

(y)|  L2kx� yk

for every k 2 {1, . . . ,m} and x, y 2 B. Then
����
Z

u2

u1

h
˜f(y

t

, t)� ˜f(z
t

, t)
i
dg̃(t)

����  (L1 + L2)

Z
u2

u1

ky
t

� z
t

k1 dg̃(t)

whenever t0  u1  u2  t0 + � and y, z 2 O.

Proof. Since g is nondecreasing, it follows that g̃ is also nondecreasing. Moreover, we have

g̃(v)� g̃(u) � g(v)� g(u) (4.4.2)

whenever t0  u  v  t0 + �.

In order to prove the first statement, let t0  u1  u2  t0 + �, y 2 O. From Lemma
4.15, we obtain

Z
u2

u1

˜f(y
t

, t) dg̃(t) =

Z
u2

u1

f(y
t

, t) dg(t) +
X

k2{1,...,m},
u1tk<u2

I
k

(y(t
k

))�

+g̃(t
k

),

and therefore
����
Z

u2

u1

˜f(y
t

, t) dg̃(t)

����  M1[g(u2)� g(u1)] +M2

X

k2{1,...,m},
u1tk<u2

�

+g̃(t
k

) 

 M1[g̃(u2)� g̃(u1)] +M2[g̃(u2)� g̃(u1)] = (M1 +M2)[g̃(u2)� g̃(u1)].



4.4 Impulsive measure FDEs and measure FDEs 81

To prove the second statement, let t0  u1  u2  t0 + � and y, z 2 O. Using Lemma
4.15 again, we obtain

Z
u2

u1

h
˜f(y

t

, t)� ˜f(z
t

, t)
i
dg̃(t) =

Z
u2

u1

[f(y
t

, t)� f(z
t

, t)] dg(t)+

+

X

k2{1,...,m},
u1tk<u2

[I
k

(y(t
k

))� I
k

(z(t
k

))]�

+g̃(t
k

).

Consequently,
����
Z

u2

u1

h
˜f(y

t

, t)� ˜f(z
t

, t)
i
dg̃(t)

����  L1

Z
u2

u1

ky
t

�z
t

k1 dg(t)+L2

X

k2{1,...,m},
u1tk<u2

|y(t
k

)�z(t
k

)|�+g̃(t
k

).

Using equation (4.4.2) and the definition of Kurzweil-Henstock-Stieltjes integral, we
obtain Z

u2

u1

ky
t

� z
t

k1 dg(t) 
Z

u2

u1

ky
t

� z
t

k1 dg̃(t).

Now, we observe that the function

h(s) =

Z
s

t0

ky
t

� z
t

k1 dg̃(t), s 2 [t0, t0 + �],

is nondecreasing and �

+h(t
k

) = ky
tk
� z

tk
k1�

+g̃(t
k

) for k 2 {1, . . . ,m}. Therefore

L2

X

k2{1,...,m},
u1tk<u2

|y(t
k

)� z(t
k

)|�+g̃(t
k

)  L2

X

k2{1,...,m},
u1tk<u2

ky
tk
� z

tk
k1�

+g̃(t
k

)

= L2

X

k2{1,...,m},
u1tk<u2

�

+h(t
k

)  L2(h(u2)� h(u1)) = L2

Z
u2

u1

ky
t

� z
t

k1 dg̃(t),

and it follows that
����
Z

u2

u1

h
˜f(y

t

, t)� ˜f(z
t

, t)
i
dg̃(t)

����  (L1 + L2)

Z
u2

u1

ky
t

� z
t

k1 dg̃(t).
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4.5 Impulsive functional differential and dynamic equa-
tions on time scales

In this section, we present a correspondence between the solutions of an impulsive
measure FDE and the solutions of an impulsive functional dynamic equation on time
scales. All the results presented here are original and they are contained in [37].

We start by presenting a result which will be essential to obtain a generalization of
Theorem 4.11 in the sequel. Such result is original and can be found in [37], Theorem 4.5.

Theorem 4.19. Let f : [a, b]T ! Rn be an arbitrary function. Define g(t) = t⇤ for every
t 2 [a, b]. Then the Kurzweil-Henstock �-integral

R
b

a

f(t)�t exists, if and only if, the
Kurzweil-Henstock-Stieltjes integral

R
b

a

f ⇤
(t) dg(t) exists. In this case, both integrals have

the same value.

Proof. For an arbitrary tagged partition P of [a, b], say P = {(⌧
i

, [s
i�1, si]), i = 1, 2, . . . ,m},

let

S(P ) =

mX

i=1

f ⇤
(⌧

i

)[g(s
i

)� g(s
i�1)] =

mX

i=1

f(⌧ ⇤
i

)(s⇤
i

� s⇤
i�1). (4.5.1)

Assume that
R

b

a

f(t)�t exists. Then, given an arbitrary " > 0, there is a �-gauge
� = (�

L

, �
R

) on [a, b]T such that
�����

mX

i=1

f(⌧
i

)(s
i

� s
i�1)�

Z
b

a

f(t)�t

����� < "

for every �-fine tagged partition P = {(⌧
i

, [s
i�1, si]), i = 1, 2, . . . ,m} of [a, b]T.

Now, we construct a gauge ˜� : [a, b] ! R+ in the following way:

˜�(t) =

8
>>>>>><

>>>>>>:

min(�
L

(t), sup{d; t+ d 2 [a, b]T, d  �
R

(t)}), t 2 (a, b) \ T,

sup{d; a+ d 2 [a, b]T, d  �
R

(a)}, t = a,

�
L

(b), t = b,

1
2 inf {|t� s|, s 2 T}, t 2 [a, b]\T.

Let P = {(⌧
i

, [s
i�1, si]), i = 1, 2, . . . ,m} be an arbitrary ˜�-fine tagged partition of

[a, b]. Then, for every i 2 {1, . . . ,m}, there are two possibilities: either ⌧
i

2 T, or
[s

i�1, si] \ T = ;.
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The end-points s0, . . . , sm of subintervals [s
i�1, si], i = 1, 2, . . . ,m, and tags ⌧1, . . . , ⌧m

need not belong to T, but we can find a partition P 0 whose end-points of the subintervals
and tags belong to T with S(P ) = S(P 0

), and P 0 is �-fine. Indeed. We can prove this fact
by induction. Clearly, s0 = a 2 T. Now, consider an interval [s

i�1, si] with s
i�1 2 T. Since

[s
i�1, si] \ T 6= ;, we must have ⌧

i

2 T. If s
i

/2 T, we replace the partition point s
i

by s⇤
i

,
delete all partition points s

j

belonging to (s
i

, s⇤
i

), and also all tags ⌧
j

belonging to (s
i

, s⇤
i

).
This operation keeps the value of the integral sum (4.5.1) unchanged: the contributions
of the intervals [s

i�1, si] and [s
i�1, s⇤

i

] to the value of the sum are the same, and the
contributions of intervals [s

j�1, sj] contained in (s
i

, s⇤
i

) are zero because s⇤
j�1 = s⇤

j

= s⇤
i

.
It remains to check that the modified partition is �-fine.

Let M = sup([a, ⌧
i

+ �
R

(⌧
i

)] \ T). Obviously, M 2 [a, b]T. Since our original partition
was ˜�-fine, it follows that

s
i

 ⌧
i

+

˜�(⌧
i

)  ⌧
i

+ sup{d; ⌧
i

+ d 2 [a, b]T, d  �
R

(⌧
i

)} = M.

But s
i

/2 T and M 2 T implies s⇤
i

 M , because s⇤
i

is the smallest time scale point larger
than s

i

. Consequently, s⇤
i

 M  ⌧
i

+ �
R

(⌧
i

).

Now, P 0 is a �-fine tagged partition of [a, b]T, and therefore

����S(P )�
Z

b

a

f(t)�t

���� =
����S(P

0
)�

Z
b

a

f(t)�t

���� < ",

which proves that
R

b

a

f ⇤
(t) dg(t) exists and equals

R
b

a

f(t)�t.

Conversely, assume that
R

b

a

f ⇤
(t) dg(t) exists. Then, given an arbitrary " > 0, there is

a gauge ˜� : [a, b] ! R+ such that
�����

mX

i=1

f(⌧ ⇤
i

)(s⇤
i

� s⇤
i�1)�

Z
b

a

f ⇤
(t) dg(t)

����� < ",

for every ˜�-fine tagged partition of [a, b]. We construct a �-gauge � = (�
L

, �
R

) on [a, b]T

by letting �
L

(t) = ˜�(t) and �
R

(t) = max(

˜�(t), µ(t)) for every t 2 [a, b]T.

Consider an arbitrary �-fine tagged partition P of [a, b]T, say P = {(⌧
i

, [s
i�1, si]), i =

1, 2, . . . ,m}. As we proved above, we can assume, without loss of generality, that the
end-points of the subintervals [s

i�1, si], i = 1, 2, . . . ,m, and the tags ⌧
i

, i = 1, 2, . . . ,m

belong to the time scale T.

Our �-fine partition need not be ˜�-fine: for certain values of i 2 {1, . . . ,m}, it can
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happen that �
R

(⌧
i

)+ ⌧
i

� s
i

> ˜�(⌧
i

)+ ⌧
i

. In this case, we have �
R

(⌧
i

) = µ(⌧
i

), the point ⌧
i

is right-scattered, and s
i

= �(⌧
i

). We claim that it is possible to find a modified tagged
partition P 0 of [a, b] which is ˜�-fine and S(P ) = S(P 0

). To this end, replace the partition
point s

i

by ⌧
i

+

˜�(⌧
i

) while keeping ⌧
i

as the tag for the interval [s
i�1, ⌧i+ ˜�(⌧

i

)], and cover
the interval [⌧

i

+

˜�(⌧
i

), s
i

] by an arbitrary ˜�-fine partition. The equality S(P ) = S(P 0
)

follows from the fact that t⇤ = s
i

for every t 2 (⌧
i

, s
i

].

The proof is concluded by observing that
�����

mX

i=1

f(⌧
i

)(s
i

� s
i�1)�

Z
b

a

f ⇤
(t) dg(t)

����� =
����S(P )�

Z
b

a

f ⇤
(t) dg(t)

����

=

����S(P
0
)�

Z
b

a

f ⇤
(t) dg(t)

���� < ",

which implies that
R

b

a

f(t)�t exists and equals
R

b

a

f ⇤
(t) dg(t).

Remark 4.20. Several authors have been interested in Stieltjes-type integrals on time
scales (see, for instance, [66], [87]). For example, the definition of the Riemann-Stieltjes
�-integral

R
b

a

f(t)�g(t) of a function f : [a, b]T ! Rn with respect to a function g :

[a, b]T ! R can be obtained in a straightforward way by taking the definition of the
Riemann �-integral and replacing the usual integral sums by

mX

i=1

f(⌧
i

)[g(s
i

)� g(s
i�1)].

Alternatively, we can start with the definition of the Kurzweil-Henstock �-integral and
modify the integral sums in the same way. Using exactly the same reasoning as in the
proof of Theorem 4.19, one can show that the resulting Stieltjes-type �-integral satisfies

Z
b

a

f(t)�g(t) =

Z
b

a

f ⇤
(t) dg⇤(t).

Consequently, many properties of the �-integrals can be simply derived from the known
properties of the Kurzweil-Henstock-Stieltjes integrals. ⇤

The next result will be essential to our purposes. Such result is new and can be found
in [37], Lemma 4.4.

Lemma 4.21. Let a, b 2 T, a < b and g(t) = t⇤ for every t 2 [a, b]. If f : [a, b] ! Rn is
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such that the integral
R

b

a

f(t) dg(t) exists, then

Z
d

c

f(t) dg(t) =

Z
d

⇤

c

⇤
f(t) dg(t)

for every c, d 2 [a, b].

Proof. Using the definition of the Kurzweil-Henstock-Stieltjes integral and the fact that
g is constant on [c, c⇤] and on [d, d⇤], we obtain

R
c

⇤

c

f(t) dg(t) = 0 and
R

d

⇤

d

f(t) dg(t) = 0.
Therefore
Z

d

c

f(t) dg(t) =

Z
c

⇤

c

f(t) dg(t) +

Z
d

c

⇤
f(t) dg(t) +

Z
d

⇤

d

f(t) dg(t) =

Z
d

⇤

c

⇤
f(t) dg(t).

The next result generalizes Theorem 4.11. Notice that we suppressed the hypothesis
on the right-dense continuity of the function f . The only requirement on f is the �-
integrability in the sense of Kurzweil-Henstock. It is a new result and can be found in
[37].

Theorem 4.22. Let f : T ! Rn be a function such that the Kurzweil-Henstock �-integral
R

b

a

f(s)�s exists for every a, b 2 T, a < b. Choose an arbitrary a 2 T and define

F1(t) =

Z
t

a

f(s)�s, t 2 T,

F2(t) =

Z
t

a

f ⇤
(s) dg(s), t 2 T⇤,

where g(s) = s⇤ for every s 2 T⇤. Then F2 = F ⇤
1 .

Proof. The statement is a simple consequence of Lemma 4.21 and Theorem 4.19:

F2(t) =

Z
t

a

f ⇤
(s) dg(s) =

Z
t

⇤

a

f ⇤
(s) dg(s) =

Z
t

⇤

a

f(s)�s = F1(t
⇤
) = F ⇤

1 (t)

Several authors have already considered impulsive dynamic equations on time scales
(see, for example, [12], [13], [20], [50]). To this end, let t1, . . . , tm 2 T, t0  t1 < t2 <

· · · < t
m

< t0 + �, where � > 0, and I1, . . . , Im : Rn ! Rn. The usual condition which
can be found in the existing literature is that the solution should satisfy

x(t+
k

)� x(t�
k

) = I
k

(x(t�
k

)), k 2 {1, . . . ,m}. (4.5.2)
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The convention is that x(t+) = x(t) when t 2 T is a right-scattered point and x(t�) = x(t)

when t 2 T is left-scattered. Moreover, it is usually assumed that the solution x should
be left-continuous. In this case, equation (4.5.2) reduces to

x(t+
k

)� x(t
k

) = I
k

(x(t
k

)), k 2 {1, . . . ,m}. (4.5.3)

Note that if t
k

is right-scattered, then the left-hand side of equation (4.5.3) is zero. In
other words, it makes sense to consider impulses at right-dense points only (the same
assumption is made in [13] and [20]).

This motivates us to consider impulsive functional dynamic equations on time scales
of the form

x�
(t) = f(x⇤

t

, t), t 2 [t0, t0 + �]T\{t1, . . . , tm},

�

+x(t
k

) = I
k

(x(t
k

)), k 2 {1, . . . ,m},

x(t) = �(t), t 2 [t0 � r, t0]T,

where r, � > 0, t1, . . . , tm 2 T are right-dense points, t0  t1 < t2 < · · · < t
m

< t0+�, and
I1, . . . , Im : Rn ! Rn. The solution is assumed to be left-continuous. It is not difficult to
see that the above problem can be written more compactly in the form

x(t) = x(t0) +

Z
t

t0

f(x⇤
s

, s)�s+
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)), t 2 [t0, t0 + �]T,

x(t) = �(t), t 2 [t0 � r, t0]T.

Our immediate goal is to rewrite this equation as an impulsive measure functional
differential equation. In what follows, we present the following theorem which describes
the relation between impulsive functional dynamic equations and impulsive measure func-
tional differential equations. Such result is new and it can be found in [37].

Theorem 4.23. Let [t0 � r, t0 + �]T be a time scale interval, t0 2 T, B ⇢ Rn, f :

G([�r, 0], B) ⇥ [t0, t0 + �]T ! Rn and � 2 G([t0 � r, t0]T, B). Define g(s) = s⇤ for every
s 2 [t0, t0+�]. If x : [t0�r, t0+�]T ! B is a solution of the impulsive functional dynamic
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equation

x(t) = x(t0) +

Z
t

t0

f(x⇤
s

, s)�s+
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)), t 2 [t0, t0 + �]T, (4.5.4)

x(t) = �(t), t 2 [t0 � r, t0]T, (4.5.5)

then x⇤
: [t0 � r, t0 + �] ! B is a solution of the impulsive measure equation

y(t) = y(t0) +

Z
t

t0

f(y
s

, s⇤) dg(s) +
X

k2{1,...,m},
tk<t

I
k

(y(t
k

)), t 2 [t0, t0 + �], (4.5.6)

y
t0 = �⇤

t0
. (4.5.7)

Conversely, if y : [t0 � r, t0 + �] ! B satisfies (4.5.6) and (4.5.7), then it must have the
form y = x⇤, where x : [t0 � r, t0 + �]T ! B is a solution of (4.5.4) and (4.5.5).

Proof. Assume that x satisfies (4.5.4) and (4.5.5). Clearly, x⇤
t0
= �⇤

t0
. By Theorem 4.22,

we have

x⇤
(t) = x⇤

(t0) +

Z
t

t0

f(x⇤
s

⇤ , s⇤) dg(s) +
X

k2{1,...,m},
tk<t

⇤

I
k

(x(t
k

)), t 2 [t0, t0 + �].

We have t
k

2 T for every k 2 {1, . . . ,m}. It follows that x(t
k

) = x⇤
(t

k

) and t
k

< t⇤, if
and only if, t

k

< t. Moreover, since f(x⇤
s

⇤ , s⇤) = f(x⇤
s

, s⇤) for every s 2 T, we can use
Theorem 4.12 to conclude that

x⇤
(t) = x⇤

(t0) +

Z
t

t0

f(x⇤
s

, s⇤) dg(s) +
X

k2{1,...,m},
tk<t

I
k

(x⇤
(t

k

)), t 2 [t0, t0 + �],

which proves the first part of the theorem.

Conversely, assume that y satisfies (4.5.6) and (4.5.7). If t 2 T, t0 < u < t  t0 + �

and [u, t) \ T = ;, then g is constant on [u, t] and, therefore, y(u) = y(t). It follows
that y = x⇤ for some x : [t0 � r, t0 + �]T ! B. By reversing our previous reasoning, we
conclude that x satisfies (4.5.4) and (4.5.5).

The next lemma describes how the Carathéodory and Lipschitz-type conditions con-
cerning the Kurzweil-Henstock-Stieltjes integral of function f ⇤ with respect to g can be
transferred to the Kurzweil-Henstock �-integral of the function f .
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Lemma 4.24. Let [t0�r, t0+�]T be a time scale interval, t0 2 T, O = G([t0�r, t0+�], B)

and P = G([�r, 0], B), f : P⇥[t0, t0+�]T ! Rn be an arbitrary function. Define g(t) = t⇤

and f ⇤
(y, t) = f(y, t⇤) for every y 2 P and t 2 [t0, t0 + �].

1. If the integral
R

t0+�

t0
f(y

t

, t)�t exists for every y 2 O, then the integral

Z
t0+�

t0

f ⇤
(y

t

, t) dg(t)

exists for every y 2 O.

2. Assume there exists a constant M > 0 such that
����
Z

u2

u1

f(y
t

, t)�t

����  M(u2 � u1)

for every y 2 O and u1, u2 2 [t0, t0 + �]T, u1  u2. Then,
����
Z

u2

u1

f ⇤
(y

t

, t) dg(t)

����  M [g(u2)� g(u1)]

whenever t0  u1  u2  t0 + � and y 2 O.

3. Assume there exists a constant L > 0 such that
����
Z

u2

u1

[f(y
t

, t)� f(z
t

, t)]�t

����  L

Z
u2

u1

ky
t

� z
t

k1�t

for every y, z 2 O and u1, u2 2 [t0, t0 + �]T, u1  u2. Then,
����
Z

u2

u1

[f ⇤
(y

t

, t)� f ⇤
(z

t

, t)] dg(t)

����  L

Z
u2

u1

ky
t

� z
t

k1 dg(t)

whenever t0  u1  u2  t0 + � and y, z 2 O.

Proof. Consider an arbitrary y 2 O. If the integral
R

t0+�

t0
f(y

t

, t)�t exists, then, using
Theorems 4.19 and 4.12, we have

Z
t0+�

t0

f(y
t

, t)�t =

Z
t0+�

t0

f(y
t

⇤ , t⇤) dg(t) =

Z
t0+�

t0

f(y
t

, t⇤) dg(t) =

Z
t0+�

t0

f ⇤
(y

t

, t) dg(t),

that is, the last integral exists as well. This proves the first part of the theorem.

The remaining two statements follow from Theorem 4.12, Lemma 4.21 and Theorem
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4.19. For the second statement, we have

����
Z

u2

u1

f ⇤
(y

t

, t) dg(t)

���� =
����
Z

u2

u1

f(y
t

⇤ , t⇤) dg(t)

���� =

�����

Z
u

⇤
2

u

⇤
1

f(y
t

⇤ , t⇤) dg(t)

����� =

�����

Z
u

⇤
2

u

⇤
1

f(y
t

, t)�t

�����

 M(u⇤
2 � u⇤

1) = M [g(u2)� g(u1)].

For the third statement, we obtain
����
Z

u2

u1

(f ⇤
(y

t

, t)� f ⇤
(z

t

, t)) dg(t)

���� =
����
Z

u2

u1

(f(y
t

⇤ , t⇤)� f(z
t

⇤ , t⇤)) dg(t)

����

=

�����

Z
u

⇤
2

u

⇤
1

(f(y
t

⇤ , t⇤)� f(z
t

⇤ , t⇤)) dg(t)

����� =

�����

Z
u

⇤
2

u

⇤
1

(f(y
t

, t)� f(z
t

, t))�t

�����

 L

Z
u

⇤
2

u

⇤
1

ky
t

� z
t

k1�t = L

Z
u

⇤
2

u

⇤
1

ky
t

� z
t

k1 dg(t) = L

Z
u2

u1

ky
t

� z
t

k1 dg(t).





Chapter

5
Existence and uniqueness

In this chapter, we present results concerning local existence and uniqueness of solu-
tions of generalized ODEs, measure FDEs, functional dynamic equations on time scales,
impulsive measure FDEs and impulsive functional dynamic equations on time scales.

It worth mentioning that all the results presented in Sections 5.2 and 5.3 of this
chapter are new and they follow by using some correspondence between the solutions of
the mentioned equations (see Chapter 4) and a known result of existence and uniqueness
of solutions of generalized ODEs presented in Section 5.1. These results are contained in
[36] and [37].

5.1 Existence and uniqueness theorem for generalized
ODEs

We start this subsection by presenting an inequality for generalized ODEs. This
inequality will be essential to prove the result following it which concerns existence and
uniqueness for generalized ODEs. It will also be essential to prove a periodic averaging
principle for generalized ODEs presented in Chapter 7. Our result is new and it can be
found in [84].

Let X be a Banach space with norm k · k.

Lemma 5.1. Let O ⇢ X be open and ⌦ = O⇥ [a, b]. Assume that F : ⌦ ! X belongs to
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the class F(⌦, h). If x, y : [a, b] ! O are regulated functions, then

����
Z

b

a

D[F (x(⌧), t)� F (y(⌧), t)]

���� 
Z

b

a

kx(t)� y(t)k dh(t). (5.1.1)

Proof. For an arbitrary tagged partition (⌧
i

, [s
i�1, si])m

i=1 of [a, b], we have
�����

mX

i=1

[F (x(⌧
i

), s
i

)� F (x(⌧
i

), s
i�1)� F (y(⌧

i

), s
i

) + F (y(⌧
i

), s
i�1)]

����� 

mX

i=1

kF (x(⌧
i

), s
i

)� F (x(⌧
i

), s
i�1)� F (y(⌧

i

), s
i

) + F (y(⌧
i

), s
i�1)k 

mX

i=1

kx(⌧
i

)� y(⌧
i

)k [h(s
i

)� h(s
i�1)],

since F 2 F(⌦, h).

The Kurzweil-Henstock-Stieltjes integral on the right-hand side of inequality (5.1.1)
exists, because h is nondecreasing and the function t 7! kx(t) � y(t)k is regulated. By
Lemma 2.14, the integral

R
b

a

D[F (x(⌧), t)�F (y(⌧), t)] also exists. Then given " > 0 there
is a gauge � of [a, b] such that for every �-fine tagged partition (⌧

i

, [s
i�1, si])m

i=1, we have

���
Z

b

a

D[F (x(⌧), t)� F (y(⌧), t)]�

mX

i=1

[F (x(⌧
i

), s
i

)� F (x(⌧
i

), s
i�1)� F (y(⌧

i

), s
i

) + F (y(⌧
i

), s
i�1)]

��� < "

and �����

Z
b

a

kx(t)� y(t)k dh(t)�
mX

i=1

kx(⌧
i

)� y(⌧
i

)k [h(s
i

)� h(s
i�1)]

����� < ".

It follows that ����
Z

b

a

D[F (x(⌧), t)� F (y(⌧), t)]

���� 



�����

mX

i=1

[F (x(⌧
i

), s
i

)� F (x(⌧
i

), s
i�1)� F (y(⌧

i

), s
i

) + F (y(⌧
i

), s
i�1)]

�����

+

���
Z

b

a

D[F (x(⌧), t)� F (y(⌧), t)]�

mX

i=1

[F (x(⌧
i

), s
i

)� F (x(⌧
i

), s
i�1)� F (y(⌧

i

), s
i

) + F (y(⌧
i

), s
i�1)]

���
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<
mX

i=1

kx(⌧
i

)� y(⌧
i

)k [h(s
i

)� h(s
i�1)] + "



�����

mX

i=1

kx(⌧
i

)� y(⌧
i

)k [h(s
i

)� h(s
i�1)]�

Z
b

a

kx(t)� y(t)k dh(t)

�����+

+

Z
b

a

kx(t)� y(t)k dh(t) + " < 2"+

Z
b

a

kx(t)� y(t)k dh(t).

This proves the statement, since " can be arbitrarily small.

The next result concerns local existence and uniqueness of a solution for generalized
ODEs. Here, we change slightly the proof of this theorem which can be found in [40],
Theorem 2.15.

Theorem 5.2. Let ⌦ = O ⇥ [a, b] and F : ⌦ ! X belong to the class F(⌦, h), where the
function h : [a, b] ! R is continuous from the left. Then for every (ex, t0) 2 ⌦ such that
for ex+ = ex+F (ex, t0+)�F (ex, t0) we have (ex+, t0) 2 ⌦ and there exists a � > 0 such that
on the interval [t0, t0 + �] ⇢ [a, b] there exists a unique solution x : [t0, t0 + �] ! X of
the generalized ordinary differential equation

dx

d⌧
= DF (x(⌧), t), (5.1.2)

for which x(t0) = ex.

Proof. At first, let t0 be a point of continuity of the function h, that is, h(t0+) = h(t0).
Assume that � > 0 is such that [t0, t0 + �] ⇢ (a, b), h(t0 + �) � h(t0) < 1

2 and the
inequality kx� exk  h(t0 +�)� h(t0) implies x 2 O.

Let Q be the set of functions z : [t0, t0 +�] ! X such that z 2 G([t0, t0 +�], X) and
kz(t)� exk  h(t)� h(t0) for t 2 [t0, t0 +�].

It is not difficult to prove that Q ⇢ G([t0, t0 +�], X) is closed.

For s 2 [t0, t0 +�] and z 2 Q, define

Tz(s) = ex+

Z
s

t0

DF (z(⌧), t).

The integral on the right-hand side exists and for s 2 [t0, t0 + �], we have, by Lemma
2.14,

kTz(s)� exk =

����
Z

s

t0

DF (z(⌧), t)

����  h(s)� h(t0),
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since F belongs to the class F(⌦, h). Thus T maps Q into itself.

Take t0  s1 < s2  t0 +� and z1, z2 2 Q. Then, by Lemma 5.1, we obtain

kTz2(s2)� Tz1(s2)� [Tz2(s1)� Tz1(s1)]k =

=

����
Z

s2

s1

D[F (z2(⌧), t)� F (z1(⌧), t)]

���� 


Z

s2

s1

kz2(⌧)� z1(⌧)kdh(t)  sup

⌧2[s1,s2]
kz2(⌧)� z1(⌧)k[h(s2)� h(s1)] 

 sup

⌧2[t0,t0+�]
kz2(⌧)� z1(⌧)k[h(s2)� h(s1)]  kz2 � z1k1[h(s2)� h(s1)].

Hence,
kTz2 � Tz1k1  kz2 � z1k1[h(t0 +�)� h(t0)] <

1

2

kz2 � z1k1

and T is a contraction. Thus, by the Banach fixed point theorem, the result follows.

Now, we consider that t0 is not a point of continuity of h. Define a function eh :

[t0, t0 +�] ! R as follows

eh(t) =
(

h(t), for t = t0

h(t)� h(t+0 ), for t > t0.
(5.1.3)

Then the function eh is continuous at t0, continuous from the left on (t0, t0 + �] and
nondecreasing. Defining eF (x, t) = F (x, t) for t = t0 and eF (x, t) = F (x, t)� [F (ex, t0+)�
F (ex, t0)] for t > t0, it is easy to check that eF 2 F(⌦,eh) and, as above, a solution z of
dz

d⌧
= D eF (z, t) with z(t0) = ex+ exists. Defining x(t0) = ex and x(t) = z(t) for t > t0, we

have a solution of (5.1.2) for which x(t0) = ex.

Remark 5.3. An estimate for the value � which corresponds to the length of the interval
where the solution exists can be obtained by inspection of the proof of this theorem. Let
the closed ball {x 2 X, kx � x0k  r} be denoted by B(x0, r). Then, � 2 (0, �] can be
any number such that B(x0, h(t0 + �) � h(t0+)) ⇢ O and h(t0 + �) � h(t+0 ) < 1. Note
that in the proof of the theorem, we assume that h(t0 +�)� h(t+0 ) < 1/2, but a careful
examination reveals that h(t0 +�)� h(t+0 ) < 1 is sufficient. ⇤
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5.2 Measure FDEs and functional dynamic equations on
time scales

In this section, we prove local existence and uniqueness theorems for measure FDEs
and for functional dynamic equations on time scales. These results are new and they can
be found in [36].

Before we present the first result, we describe some conditions which the function
f : P ⇥ [t0, t0 + �] ! Rn must fulfill. Such conditions will be referred to throughout this
chapter.

(A) The integral
R

t0+�

t0
f(y

s

, s) dg(s) exists for every y 2 O.

(B) There exists a constant M > 0 such that
����
Z

u2

u1

f(y
s

, s)dg(s)

����  M [g(u2)� g(u1)]

for every y 2 O and every u1, u2 2 [t0, t0 + �].

(C) There exists a constant L > 0 such that
����
Z

u2

u1

[f(y
s

, s)� f(z
s

, s)]dg(s)

����  L

Z
u2

u1

ky
s

� z
s

k1dg(s)

for every y, z 2 O and every u1, u2 2 [t0, t0 + �].

Also, we consider a function F : O ⇥ [t0, t0 + �] ! G([t0 � r, t0 + �],Rn

) given by

F (x, t)(#) =

8
>>>>>><

>>>>>>:

0, t0 � r  #  t0,Z
#

t0

f(x
s

, s) dg(s), t0  #  t  t0 + �,

Z
t

t0

f(x
s

, s) dg(s), t  #  t0 + �

(5.2.1)

where O is a subset of G([t0 � r, t0 + �],Rn

) which has the prolongation property, that is,
for every y 2 O and every ¯t 2 [t0 � r, t0 + �], the function ȳ given by

ȳ(t) =

8
<

:
y(t), t0 � r  t  ¯t,

y(¯t), ¯t < t  t0 + �



96 Existence and uniqueness

is also an element of O.

Theorem 5.4. Assume that X is a closed subspace of G([t0 � r, t0 + �],Rn

), O is an
open subset of X with the prolongation property, P = {x

t

; x 2 O, t 2 [t0, t0 + �]},
g : [t0, t0+�] ! R is a left-continuous nondecreasing function and f : P⇥ [t0, t0+�] ! Rn

satisfies conditions (A), (B) and (C). Let F : O ⇥ [t0, t0 + �] ! G([t0 � r, t0 + �],Rn

)

be given by (5.2.1) and assume that F (x, t) 2 X for every x 2 O and t 2 [t0, t0 + �]. If
� 2 P is such that the function

z(t) =

8
<

:
�(t� t0), t 2 [t0 � r, t0],

�(0) + f(�, t0)�+g(t0), t 2 (t0, t0 + �]

belongs to O, then there exists � > 0 and a function y : [t0 � r, t0 + �] ! Rn which is a
unique solution of the problem

8
><

>:

y(t) = y(t0) +

Z
t

t0

f(y
s

, s) dg(s),

y
t0 = �.

(5.2.2)

Proof. According to Lemma 4.2, the function F belongs to the class F(O⇥ [t0, t0+�], h),
where

h(t) = (M + L)[g(t)� g(t0)], t 2 [t0, t0 + �].

Let

x0(#) =

8
<

:
�(#� t0), # 2 [t0 � r, t0],

�(0), # 2 [t0, t0 + �].

It is clear that x0 2 O. We also claim that x0 + F (x0, t
+
0 ) � F (x0, t0) 2 O. At first,

note that F (x0, t0) = 0. The limit F (x0, t
+
0 ) is taken with respect to the supremum norm

and we know it must exist since F is regulated with respect to the second variable (this
follows from the fact that F 2 F(O⇥ [t0, t0 + �], h)). Thus, it is sufficient to evaluate the
pointwise limit F (x0, t

+
0 )(#) for every # 2 [t0 � r, t0 + �]. Using Corollary 2.7, we obtain

F (x0, t
+
0 )(#) =

8
<

:
0, # 2 [t0 � r, t0],

f(�, t0)�+g(t0), # 2 (t0, t0 + �].

Hence x0 + F (x0, t
+
0 )� F (x0, t0) = z 2 O.

Since all the assumptions of Theorem 5.2 are satisfied, there exists � > 0 and a unique
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solution x : [t0, t0 + �] ! X of the generalized ordinary differential equation

dx

d⌧
= DF (x, t), x(t0) = x0. (5.2.3)

According to Theorem 4.6, the function y : [t0 � r, t0 + �] ! O given by

y(#) =

8
<

:
x(t0)(#), t0 � r  #  t0,

x(#)(#), t0  #  t0 + �

is a solution of the problem
8
><

>:

y(t) = y(t0) +

Z
t

t0

f(y
s

, s) dg(s),

y
t0 = �.

(5.2.4)

This solution must be unique. Otherwise, Theorem 4.5 would imply that x is not the only
solution of the generalized ordinary differential equation (5.2.3).

Remark 5.5. Since the assumptions of Theorem 5.4 might look complicated, it worths
mentioning two typical choices for the sets X, O and P :

• g(t) = t for every t 2 [t0, t0 + �], X = C([t0 � r, t0 + �],Rn

), B ⇢ Rn is an open
set, O = C([t0 � r, t0 + �], B), P = C([�r, 0], B). Both conditions F (x, t) 2 X

and z 2 O from Theorem 5.4 are always satisfied (by Corollary 2.7, F (x, t) is a
continuous function and therefore F (x, t) 2 X).

• X = G([t0 � r, t0 + �],Rn

), B ⇢ Rn is an open set, O = G([t0 � r, t0 + �], B),
P = G([�r, 0], B). The condition F (x, t) 2 X from Theorem 5.4 is always satisfied
(by Corollary 2.7, F (x, t) is a regulated function and therefore F (x, t) 2 X). The
condition z 2 O reduces to �(0) + f(�, t0)�+g(t0) 2 B. Note that if

y(t) = y(t0) +

Z
t

t0

f(y
s

, s) dg(s),

then y(t0+) = �(0) + f(�, t0)�+g(t0). In other words, the solution does not leave
the set B immediately after time t0.

In both cases, we can use Remark 5.3 to obtain an estimate for the value � which
corresponds to the length of interval where the solution exists. Assume there exists
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⇢ > 0 such that |y � �(t)| < ⇢ implies y 2 B for every t 2 [�r, 0] (in other words, a
⇢-neighborhood of � is contained in B). Since we have

h(t) = (M + L)[g(t)� g(t0)], t 2 [t0, t0 + �],

then � 2 (0, �] can be any number such that

g(t0 + �)� g(t0+) <
min(1, ⇢)

M + L
,

obtaining an estimate for the value of �. ⇤

In what follows, we prove a local existence and uniqueness theorem for functional
dynamic equations on time scales. This is also an original result.

Theorem 5.6. Let [t0 � r, t0 + �]T be a time scale interval, t0 2 T, B ⇢ Rn be open,
C = C([t0 � r, t0 + �]T, B), P = {y⇤

t

; y 2 C, t 2 [t0, t0 + �]}, f : P ⇥ [t0, t0 + �]T ! Rn

satisfy the following conditions:

(A

⇤
) For every y 2 C, the function t 7! f(y

t

⇤, t) is rd-continuous on [t0, t0 + �]T.

(B

⇤
) There exists a constant M > 0 such that

����
Z

u2

u1

f(y
s

, s)�s

����  M(u2 � u1)

for every y 2 O and every u1, u2 2 [t0, t0 + �]T.

(C

⇤
) There exists a constant L > 0 such that

����
Z

u2

u1

[f(y
s

, s)� f(z
s

, s)]�s

����  L

Z
u2

u1

ky
s

� z
s

k1�s

for every y, z 2 O and every u1, u2 2 [t0, t0 + �]T.

If � : [t0 � r, t0]T ! B is a continuous function such that �(t0) + f(�⇤
t0
, t0)µ(t0) 2 B, then

there exist � > 0 such that � � µ(t0) and t0+� 2 T, and a function y : [t0�r, t0+�]T ! B

which is the unique solution of the functional dynamic equation

(
y�(t) = f(y⇤

t

, t), t 2 [t0, t0 + �],

y(t) = �(t), t 2 [t0 � r, t0]T.
(5.2.5)
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Proof. Let X = {y⇤; y 2 C([t0 � r, t0 + �]T,Rn

)}, O = {y⇤; y 2 C}, and g(t) = t⇤ for
every t 2 [t0, t0 + �]. Note that C([t0 � r, t0 + �]T,Rn

) is a closed (Banach) space and the
operator T : C([t0� r, t0+�]T,Rn

) ! X given by T (y) = y⇤ is an isometric isomorphism.
It follows that X is a closed subspace of G([t0 � r, t0 + �],Rn

).

The function F : O ⇥ [t0, t0 + �] ! G([t0 � r, t0 + �],Rn

) given by (5.2.1) satisfies
F (x, t) 2 X for every x 2 O, t 2 [t0, t0 + �]. Indeed, by (5.2.1), it follows that F (x, t)

is constant in [t0 � r, t0] and in every interval (↵, �) ⇢ [t0, t0 + r] which contains no time
scale points (because g is constant in such intervals).

The function g is left-continuous, and it follows from Corollary 2.7 that F (x, t) is
left-continuous on [t0, t0 + �] and right-continuous at all points of [t0, t0 + �] where g is
right-continuous, that is, at all right-dense points of [t0, t0 + r]T. Thus F (x, t) must have
the form y⇤ for some rd-continuous function y : [t0 � r, t0 + �]T ! Rn and F (x, t) 2 X.

It is also clear that O is an open subset of X and has the prolongation property.

Let f ⇤
(y, t) = f(y, t⇤) for every y 2 P and t 2 [t0, t0 + �]. Consider an arbitrary

y 2 O. Since t 7! f(y
t

, t) is rd-continuous on [t0, t0 + �]T, the integral
R

t0+�

t0
f(y

t

, t)�t

exists. Using Theorem 4.11 and Theorem 4.12, we have

Z
t0+�

t0

f(y
t

, t)�t =

Z
t0+�

t0

f(y
t

⇤ , t⇤) dg(t) =

Z
t0+�

t0

f(y
t

, t⇤) dg(t) =

Z
t0+�

t0

f ⇤
(y

t

, t) dg(t),

that is, the last integral exists.

Since �

+g(t0) = µ(t0) and �(t0) + f(�⇤
t0
, t0)µ(t0) 2 B, it follows that the function

z(t) =

8
<

:
�⇤
t0
(t� t0), t 2 [t0 � r, t0],

�⇤
t0
(0) + f(�⇤

t0
, t0)�+g(t0), t 2 (t0, t0 + �]

belongs to O. Therefore the functions f ⇤, g(s) = s⇤ and �⇤
t0

satisfy all assumptions of
Theorem 5.4, and there exist � > 0 and a function u : [t0 � r, t0 + �] ! B which is the
unique solution of

8
><

>:

u(t) = u(t0) +

Z
t

t0

f ⇤
(u

s

, s) dg(s), t 2 [t0, t0 + �]

u
t0 = �⇤

t0
.

(5.2.6)
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By Theorem 4.13, u = y⇤, where y : [t0 � r, t0 + �]T ! B is a solution of

(
y�(t) = f(y⇤

t

, t), t 2 [t0, t0 + �]

y(t) = �(t), t 2 [t0 � r, t0]T.
(5.2.7)

Without loss of generality, we can assume that � � µ(t0). Otherwise, let y(�(t0)) =

�(t0) + f(�⇤
t0
, t0)µ(t0) to obtain a solution defined on [t0 � r, t0 + µ(t0)]T. Again by

Theorem 4.13, it follows that the solution y is unique.

Remark 5.7. Similarly to the previous existence-uniqueness results, we can estimate the
value of � which corresponds to length of the interval where the solution exists. Assume
that there exists ⇢ > 0 such that |y � �(t)| < ⇢ implies y 2 B for every t 2 [t0 � r, t0]T

(in other words, a ⇢-neighborhood of � is contained in B). By Remark 5.5, we know that
� 2 (0, �] can be any number satisfying

g(t0 + �)� g(t0+) <
min(1, ⇢)

M + L
,

In our particular case, we have g(t) = t⇤ for every t 2 [t0, t0 + �]. Since g(t0 + �) = t0 + �

and g(t0+) = �(t0), we obtain

� < µ(t0) +
min(1, ⇢)

M + L
,

which is the estimative for �. ⇤

5.3 Existence and uniqueness for impulsive equations

In this section, we present results concerning local existence and uniqueness of a so-
lution for impulsive measure functional differential equation and for functional dynamic
equation on time scales involving impulses. They are new results and they can be found
in [36].

Theorem 5.8. Assume that X = G([t0 � r, t0 + �],Rn

), B ⇢ Rn is an open set, O =

G([t0 � r, t0 + �], B), P = G([�r, 0], B), m 2 N, t0  t1 < t2 < . . . < t
m

< t0 + �,
g : [t0, t0 + �] ! R is a left-continuous nondecreasing function which is continuous at
t1, . . . , tm. Also, suppose I1, . . . , Im : B ! Rn and f : P ⇥ [t0, t0 + �] ! Rn satisfy the
following conditions:

1. The integral
R

t0+�

t0
f(y

t

, t) dg(t) exists for every y 2 O.
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2. There exists a constant M1 > 0 such that
����
Z

u2

u1

f(y
t

, t) dg(t)

����  M1[g(u2)� g(u1)]

whenever t0  u1  u2  t0 + � and y 2 O.

3. There exists a constant L1 > 0 such that
����
Z

u2

u1

[f(y
t

, t)� f(z
t

, t)] dg(t)

����  L1

Z
u2

u1

ky
t

� z
t

k1 dg(t)

whenever t0  u1  u2  t0 + � and y, z 2 O.

4. There exists a constant M2 > 0 such that

|I
k

(x)|  M2,

for every k 2 {1, . . . ,m} and x 2 B.

5. There exists a constant L2 > 0 such that

|I
k

(x)� I
k

(y)|  L2|x� y|,

for every k 2 {1, . . . ,m} and x, y 2 B.

Let � 2 P and assume that either t0 < t1 and �(0) + f(�, t0)�+g(t0) 2 B, or t0 = t1 and
�(0) + I1(�(0)) 2 B. Then there exist � > 0 and a function y : [t0 � r, t0 + �] ! Rn which
is the unique solution of the impulsive measure functional differential equation

8
>>><

>>>:

y(t) = y(t0) +

Z
t

t0

f(y
s

, s) dg(s) +
X

k2{1,...,m},
tk<t

I
k

(y(t
k

)), t 2 [t0, t0 + �],

y
t0 = �.

(5.3.1)

Proof. For every y 2 P , define

˜f(y, t) =

8
<

:
f(y, t), t 2 [t0, t0 + �]\{t1, . . . , tm},

I
k

(y(0)), t = t
k

for some k 2 {1, . . . ,m}.

Moreover, let c1, . . . , cm 2 R be constants such that the function g̃ : [t0, t0 + �] ! R given
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by

g̃(t) =

8
>>><

>>>:

g(t), t 2 [t0, t1],

g(t) + c
k

, t 2 (t
k

, t
k+1] for some k 2 {1, . . . ,m� 1},

g(t) + c
m

, t 2 (t
m

, t0 + �]

satisfies �

+g̃(t
k

) = 1 for every k 2 {1, . . . ,m}.

Since g is a nondecreasing and left-continuous function, g̃ must have the same prop-
erties. Then either t0 < t1 and �(0) + ˜f(�, t0)�+g̃(t0) = �(0) + f(�, t0)�+g(t0) 2 B, or
t0 = t1 and �(0) + ˜f(�, t0)�+g̃(t0) = �(0) + I1(�(0)) 2 B.

Using these facts and Lemma 4.18, we see that the functions ˜f , g̃, and � satisfy
all hypotheses of Theorem 5.4. Consequently, there exist � > 0 and a function y :

[t0 � r, t0 + �] ! Rn which is the unique solution of the problem
8
><

>:

y(t) = y(t0) +

Z
t

t0

˜f(y
s

, s) dg̃(s),

y
t0 = �.

(5.3.2)

Finally, by Theorem 4.16, the function y is also the unique solution of (5.3.1) on [t0 �
r, t0 + �].

In the sequel, we prove a result on local existence and uniqueness of solutions of
impulsive functional dynamic equations on time scales. It is a new result.

Theorem 5.9. Assume that [t0 � r, t0 + �]T is a time scale interval, t0 2 T, B ⇢ Rn is
an open set, O = G([t0� r, t0+�], B), P = G([�r, 0], B), m 2 N, t1, . . . , tm 2 [t0, t0+�]T

are right-dense points such that t0  t1 < · · · < t
m

< t0+�. Let f : P ⇥ [t0, t0+�]T ! Rn

and I1, . . . , Im : B ! Rn be functions which satisfy the following conditions:

1. The integral
R

t0+�

t0
f(y

t

, t)�t exists for every y 2 O.

2. There exists a constant M1 > 0 such that
����
Z

u2

u1

f(y
t

, t)�t

����  M1(u2 � u1)

for every y 2 O and u1, u2 2 [t0, t0 + �]T, u1  u2.

3. There exists a constant L1 > 0 such that
����
Z

u2

u1

[f(y
t

, t)� f(z
t

, t)]�t

����  L1

Z
u2

u1

ky
t

� z
t

k1�t
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for every y, z 2 O and u1, u2 2 [t0, t0 + �]T, u1  u2.

4. There exists a constant M2 > 0 such that

|I
k

(y)|  M2,

for every k 2 {1, . . . ,m} and y 2 B.

5. There exists a constant L2 > 0 such that

|I
k

(x)� I
k

(y)|  L2|x� y|,

for every k 2 {1, . . . ,m} and x, y 2 B.

Let � : [t0 � r, t0]T ! B be a regulated function such that either t0 < t1 and �(t0) +

f(�⇤
t0
, t0)µ(t) 2 B, or t0 = t1 and �(t0) + I1(�(t0)) 2 B. Then there exist � > 0 such that

� � µ(t0) and t0 + � 2 T, and a function y : [t0 � r, t0 + �]T ! B which is the unique
solution of the impulsive functional dynamic equation

8
>>><

>>>:

y(t) = y(t0) +

Z
t

t0

f(y⇤
s

, s)�s+
X

k2{1,...,m},
tk<t

I
k

(y(t
k

)), t 2 [t0, t0 + �]T,

y(t) = �(t), t 2 [t0 � r, t0]T.

Proof. Let g(t) = t⇤ and f ⇤
(y, t) = f(y, t⇤) for every t 2 [t0, t0 + �] and y 2 P . Note that

�

+g(t0) = µ(t0). Using the hypotheses and Lemma 4.24, we see that the functions f ⇤,
g and �⇤

t0
satisfy all assumptions of Theorem 5.8. Consequently, there exist � > 0 and a

function u : [t0 � r, t0 + �] ! B which is the unique solution of
8
>>><

>>>:

u(t) = u(t0) +

Z
t

t0

f ⇤
(u

s

, s) dg(s) +
X

k2{1,...,m},
tk<t

I
k

(u(t
k

)), t 2 [t0, t0 + �],

u
t0 = �⇤

t0
.

(5.3.3)

Then, by Theorem 4.23, u = y⇤, where y : [t0 � r, t0 + �]T ! B is a solution of
8
>>><

>>>:

y(t) = y(t0) +

Z
t

t0

f(y⇤
s

, s)�s+
X

k2{1,...,m},
tk<t

I
k

(y(t
k

)), t 2 [t0, t0 + �]T,

y(t) = �(t), t 2 [t0 � r, t0]T.

(5.3.4)
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Without loss of generality, we can assume that � � µ(t0). Otherwise, t0 is right-
scattered, t0 < t1, and we can let

y(�(t0)) = �(t0) + f(�⇤
t0
, t0)µ(t0)

to obtain a solution defined on [t0 � r, t0 + µ(t0)]T. Again, by Theorem 4.23, the solution
y is unique.



Chapter

6
Continuous dependence of solutions on

parameters

This chapter is divided in two sections. The first one concerns results on continuous
dependence of solution on parameters for generalized ODEs in Banach space, measure
functional differential equations, functional dynamic equations on time scales, impulsive
measure functional differential equations and impulsive functional dynamic equations on
time scales.

In the second section, we investigate whether the solutions of impulsive functional
dynamic equations on time scales depend continuously on time scales.

Almost all of results presented in this chapter are new. They are contained in the
papers [16], [32], [36], [37] and [45].

6.1 Continuous dependence on parameters

Our goal in this section is to prove results on continuous dependence of solutions
on parameters for generalized ODEs in Banach spaces, measure functional differential
equations, functional dynamic equations on time scales, impulsive measure functional
differential equations and also, impulsive functional dynamic equations on time scales.

Let X be a Banach space with norm k · k. Consider ⌦ = O ⇥ [a, b], where O ⇢ X

open.
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Recall that

lim

s!t

+
F (x, s) = F (x, t+) and lim

s!t

�
F (x, s) = F (x, t�).

In the sequel, we present a result which is a slightly modified version of Lemma 8.1,
from [4].

Lemma 6.1. Consider a sequence of functions F
k

: ⌦ ! X such that F
k

2 F(⌦, h
k

) for
every k = 0, 1, 2, . . . which satisfy

lim

k!1
F
k

(x, t) = F0(x, t) and lim

k!1
F
k

(x, t+) = F0(x, t
+
).

Moreover, assume that h
k

: [a, b] ! R is nondecreasing and left-continuous, for each
k = 1, 2, . . .. Let  

k

2 G([a, b], X), k = 1, 2, . . ., be such that

k 
k

�  0k1 = sup

atb

| 
k

(t)�  0(t)|
k!1! 0.

Then, we have ����
Z

b

a

DF
k

( 
k

(⌧), s)�
Z

d

c

DF0( 0(⌧), s)

����
k!1! 0.

Proof. Note that  0 2 G([a, b], X), since  0 is, by assumption, the uniform limit of regu-
lated functions on [a, b]. Then, all the integrals

R
b

a

DF
k

( 
k

(⌧), s) exist, for k = 0, 1, 2, . . .,
exist. See Lemma 2.14.

Assume that " > 0 is given. Since any regulated function can be uniformly approxi-
mated by a step function, there is a step function y : [a, b] ! X such that

ky �  0k1 = sup

atb

ky(t)�  0(t)k < ".

Since k 
k

�  0k1 ! 0 as k ! 1, there exists a positive integer N0 such that

k 
k

�  0k1 < ",

for all k > N0.

Assume that k > N0. Then,
����
Z

b

a

DF
k

( 
k

(⌧), s)�
Z

b

a

DF0( 0(⌧), s)

���� 
����
Z

b

a

D[F
k

( 
k

(⌧), s)� F
k

( 0(⌧), s)]

����+
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+

����
Z

b

a

D[F
k

( 0(⌧), s)� F
k

(y(⌧), s)]

����+
����
Z

b

a

D[F
k

(y(⌧), s)� F0(y(⌧), s)]

����+

+

����
Z

b

a

D[F0(y(⌧), s)� F0( 0(⌧), s)]

���� . (6.1.1)

Consider the first summand on the right-hand side of the inequality in (6.1.1). Let
� be a gauge defined in [a, b] corresponding to " > 0 in the definition of the integral
R

b

a

D[F
k

( 
k

(⌧), s)� F
k

( 0(⌧), s)] and let (⌧
i

, [s
i�1, si])1ip

be a �-fine tagged partition of
[a, b]. Then,

����
Z

b

a

D[F
k

( 
k

(⌧), s)� F
k

( 0(⌧), s)]

����  k
Z

b

a

D[F
k

( 
k

(⌧), s)� F
k

( 0(⌧), s)]�

�
pX

i=1

[(F
k

( 
k

(⌧
i

), s
i

)� F
k

( 
k

(⌧
i

), s
i�1))� (F

k

( 0(⌧i), si)� F
k

( 0(⌧i), si�1))]k+

�����

pX

i=1

[(F
k

( (⌧
i

), s
i

)� F
k

( 
k

(⌧
i

), s
i�1))� (F

k

( 0(⌧i), si)� F
k

( 0(⌧i), si�1))]

����� 

< "+
pX

i=1

kF
k

( 
k

(⌧
i

), s
i

)� F
k

( 
k

(⌧
i

), s
i�1)� F

k

( 0(⌧i), si) + F
k

( 0(⌧i), si�1)k 

 "+
pX

i=1

| 
k

(⌧
i

)�  0(⌧i)|[h(si)� h(s
i�1)] 

 "+ k 
k

�  0k1
pX

i=1

[h(s
i

)� h(s
i�1)] 

 "+ "[h(b)� h(a)] = "(1 + [h(b)� h(a)]).

For the second and fourth summands on the right-hand side of (6.1.1), we can show
analogously that

����
Z

b

a

D[F
k

( 0(⌧), s)� F
k

(y(⌧), s)]

���� < "(1 + [h(b)� h(a)])

and ����
Z

b

a

D[F0(y(⌧), s)� F0( 0(⌧), s)]

���� < "(1 + [h(b)� h(a)]).

Thus, ����
Z

b

a

DF
k

( 
k

(⌧), s)�
Z

b

a

DF0( 0(⌧), s)

���� <
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< 3"(1 + [h(b)� h(a)]) +

����
Z

b

a

D[F
k

(y(⌧), s)� F0(y(⌧), s)]

���� . (6.1.2)

Now, consider the integral
R

b

a

D[F
k

(y(⌧), s)�F0(y(⌧), s)]. Since y : [a, b] ! X is a step
function, there is a finite numbers p 2 N of points a = r0 < r1 < r2 < . . . < r

p�1 < r
p

= b

such that for ⌧ 2 (r
j�1, rj), j = 1, 2, . . . , p, we have y(⌧) = c

j

2 X (y assumes a constant
value c

j

in each open interval (r
j�1, rj), j = 1, 2, . . .). In this case, an explicit formula for

the integral
R

b

a

DF
k

(y(⌧), s), for every k = 0, 1, 2, . . ., can be given, namely,

Z
b

a

DF
k

(y(⌧), s) =
pX

j=1

Z
rj

rj�1

DF
k

(y(⌧), s)

and using the Hake-type theorem and a properly chosen partition of [r
j�1, rj]), we obtain

Z
rj

rj�1

DF
k

(y(⌧), t) = F
k

(c
j

, r�
j

)� F
k

(c
j

, r+
j�1) + F

k

(y(r
j�1), r

+
j�1)�

F
k

(y(r
j�1), rj�1)� F

k

(y(r
j

), r�
j

) + F
k

(y(r
j

), r
j

).

Looking at the difference for the sums on the right-hand side for F
k

and F0 in the last
equality, we get

lim

k!1

Z
rj

rj�1

D[F
k

(y(⌧), t)� F0(y(⌧), t)] = 0,

by the hypotheses.

Since " > 0 can be taken arbitrarily small in (6.1.2), we obtain the desired result.

In what follows, we prove a result on continuous dependence of solution on parameters
for generalized ODEs. It is a generalization of Theorem 2.4 found in [45]. Though we
follow the same ideas presented in [45], we give a different proof here. Instead of the
auxiliary results from [45], we employ Lemma 6.1.

Theorem 6.2. Let X be a Banach space, O ⇢ X an open set, and h
k

: [a, b] ! R, k =

1, 2, . . ., a sequence of nondecreasing left-continuous functions such that h
k

(b)�h
k

(a)  c

for some c > 0 and every k 2 N0. Assume that for every k = 1, 2, . . ., F
k

: O⇥ [a, b] ! X

belongs to the class F(O ⇥ [a, b], h
k

), and that

lim

k!1
F
k

(x, t) = F0(x, t), x 2 O, t 2 [a, b], (6.1.3)

lim

k!1
F
k

(x, t+) = F0(x, t
+
) x 2 O, t 2 [a, b). (6.1.4)
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For every k = 1, 2, . . ., let x
k

: [a, b] ! O be a solution of the generalized ordinary
differential equation

dx

d⌧
= DF

k

(x, t). (6.1.5)

If there exists a function x0 : [a, b] ! O such that

lim

k!1
x
k

(t) = x0(t) uniformly for t 2 [a, b],

then x0 is a solution of
dx

d⌧
= DF0(x, t), t 2 [a, b]. (6.1.6)

Proof. Since the functions x
k

: [a, b] ! O are regulated and x
k

tends uniformly to x0 on
[a, b] when k ! 1 which implies that x0 is a regulated function on [a, b]. Hence, the
integral

R
t2

t1
DF0(x0(⌧), t) exists for every t1, t2 2 [a, b]. See Lemma 2.14.

By the definition of solution of (6.1.5), we have

x
k

(t2)� x
k

(t1) =

Z
t2

t1

DF
k

(x
k

(⌧), t),

for every k = 1, 2, . . .. Using (6.1.3) and (6.1.4), we obtain, by Lemma 6.1,

lim

k!1

Z
t2

t1

DF
k

(x
k

(⌧), t) =

Z
t2

t1

DF0(x0(⌧), t),

which implies the equality

x0(t2)� x0(t1) =

Z
t2

t1

DF0(x0(⌧), t)

for every t1, t2 2 [a, b] and, hence, x0 is a solution of (6.1.6) on [a, b].

The next result concerns continuous dependence of solution on parameters for gener-
alized ODEs in Banach spaces. Such result generalizes Theorems 8.6 and 8.8 from [94],
Theorem 8.1 from [4] and Theorem 2.5 from [46]. In order to prove it, we inspired our-
selves in some ideas from these last two theorems. This is a new result and is contained
in [32].

Theorem 6.3. Consider a sequence of functions F
k

: ⌦ ! X such that F
k

2 F(⌦, h
k

),
k = 0, 1, 2, . . .. Assume that

(1) The sequence of functions {h
k

}1
k=0, hk

: [a, b] ! R, is equiregulated;
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(2) For every k = 1, 2, . . ., the function h
k

is nondecreasing;

(3) For every (x, t) 2 ⌦, suppose that

lim

k!1
F
k

(x, t) = F0(x, t)

and for each k = 1, 2, . . ., x
k

is a solution of the generalized ordinary differential equation

dx

d⌧
= DF

k

(x(⌧), t) (6.1.7)

on the interval [a, b] and
lim

k!1
x
k

(t) = x0(t), (6.1.8)

for every t 2 [a, b]. Then

(i) kx0(s2)� x0(s1)k  |h0(s2)� h0(s1)| for every s1, s2 2 [a, b];

(ii) lim

k!1
x
k

(t) = x0(t) uniformly on [a, b];

(iii) x0 is a solution on [a, b] of the generalized ordinary differential equation

dx

d⌧
= DF0(x(⌧), t). (6.1.9)

Proof. Since for every k = 1, 2, . . ., h
k

is a nondecreasing function, the set {h
k

(t); t 2 [a, b]}
is bounded. From the fact that the sequence {h

k

}1
k=1 is equiregulated and by Theorem

1.11, there exists a function h0 : [a, b] ! R such that h
k

converges uniformly to h0. Also,
since {h

k

}1
k=1 is a sequence of nondecreasing functions, it follows that h0 is a nondecreasing

function.

Assume that a < s1 < s2 < b. For every k = 1, 2, . . ., we have, by Lemma 2.15, the
following inequality

kx
k

(s2)� x
k

(s1)k  |h
k

(s2)� h
k

(s2)|. (6.1.10)

Applying the limit when k ! 1 in (6.1.10), we obtain, by equation (6.1.8),

kx0(s2)� x0(s1)k  |h0(s2)� h0(s1)|,

and (i) follows immediately.

Now, let us prove item (ii). At first, we claim that x
k

converges uniformly to x0.
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Indeed, by Lemma 2.15, we have

kx
k

(s2)� x
k

(s1)k  |h
k

(s2)� h
k

(s1)|, s1, s2 2 [a, b]. (6.1.11)

Moreover, since the sequence of functions {h
k

}1
k=1 is equiregulated, it follows from

(6.1.11) and by Corollary 1.17, that x
k

converges uniformly to x0 on [↵, �].

Now, let us prove item (iii). By the definition of solution of the generalized ODE
(6.1.7), we have, for each k = 1, 2, . . .,

x
k

(s2)� x
k

(s1) =

Z
s2

s1

DF
k

(x
k

(⌧), s), (6.1.12)

for every s1, s2 2 [a, b].

Note that, for every k = 0, 1, 2, . . ., F
k

2 F(⌦, h
k

). Also, {h
k

}1
k=1 is an equiregulated

sequence of functions and F
k

converges pointwisely to F0, it follows from Corollary 1.17
that the sequence of functions {F

k

}1
k=1 converges uniformly to F0. Then, by Lemma 1.15,

we have
F
k

(x, t+)
k!1! F0(x, t

�
).

Thus, all hypotheses from Lemma 6.1 are satisfied. Hence,
����
Z

s2

s1

DF
k

(x
k

(⌧), s)�
Z

s2

s1

DF0(x0(⌧), s)

����
k!1! 0,

for every s1, s2 2 [a, b].

Using (6.1.12), we have
����x0(s2)� x0(s1)�

Z
s2

s1

DF0(x0(⌧), s)

���� 

 kx
k

(s2)� x0(s2)k+ kx
k

(s1)� x0(s1)k+
����
Z

s2

s1

DF
k

(x
k

(⌧), s)�
Z

s2

s1

DF0(x0(⌧), s)

���� .

Then, as k ! 1, we obtain

x0(s2)� x0(s1) =

Z
s2

s1

DF0(x0(⌧), s),

for every s1, s2 2 [a, b], and the desired result follows.

In the sequel, we prove a continuous dependence on parameters for measure functional
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differential equations. Such result is original and it can be found in [36].

Theorem 6.4. Assume that X is a closed subspace of G([t0 � r, t0 + �],Rn

), O is an
open subset of X with the prolongation property, P = {y

t

; y 2 O, t 2 [t0, t0 + �]}, g :

[t0, t0+�] ! R is a nondecreasing left-continuous function, and f
k

: P ⇥ [t0, t0+�] ! Rn,
k = 1, 2, . . ., is a sequence of functions which satisfy the following conditions:

1. The integral
R

t0+�

t0
f
k

(y
s

, s) dg(s) exists for every k = 1, 2, . . . and every y 2 O.

2. There exists a constant M > 0 such that
����
Z

u2

u1

f
k

(y
s

, s)dg(s)

����  M [g(u1)� g(u2)]

for every k = 1, 2, . . ., y 2 O and u1, u2 2 [t0, t0 + �].

3. There exists a constant L > 0 such that
����
Z

u2

u1

[f
k

(y
s

, s)� f
k

(z
s

, s)]dg(s)

����  L

Z
u2

u1

ky � zkdg(s)

for every k = 1, 2, . . ., y, z 2 O and u1, u2 2 [t0, t0 + �].

4. For every y 2 O,

lim

k!1

Z
t

t0

f
k

(y
s

, s) dg(s) =

Z
t

t0

f0(ys, s) dg(s)

uniformly with respect to t 2 [t0, t0 + �].

5. For every k = 0, 1, 2, . . ., x 2 O and t 2 [t0, t0 + �], the function F
k

(x, t) : [t0 �
r, t0 + �] ! Rn given by

F
k

(x, t)(#) =

8
>>>>>><

>>>>>>:

0, t0 � r  #  t0,Z
#

t0

f
k

(x
s

, s) dg(s), t0  #  t  t0 + �,

Z
t

t0

f
k

(x
s

, s) dg(s), t  #  t0 + �.

is an element of X.

Consider a sequence of functions �
k

2 P , k = 1, 2, . . ., such that lim

k!1 �
k

= �0 uni-
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formly on [�r, 0]. For every k = 1, 2, . . ., let y
k

2 O be the solution of the problem

y
k

(t) = y
k

(t0) +

Z
t

t0

f
k

((y
k

)

s

, s) dg(s), t 2 [t0, t0 + �],

(y
k

)

t0 = �
k

.

If there exists a function y0 2 O such that lim

k!1 y
k

= y0 on [t0, t0 + �], then y0 is a
solution of the problem

y0(t) = y0(t0) +

Z
t

t0

f0((y0)s, s) dg(s), t 2 [t0, t0 + �],

(y0)t0 = �0.

Proof. The assumptions imply that for every x 2 O, lim
k!1 F

k

(x, t) = F0(x, t) uniformly
with respect to t 2 [t0, t0+�]. By the Moore-Osgood theorem, we have lim

k!1 F
k

(x, t+) =

F0(x, t+) for every x 2 O and t 2 [t0, t0 + �). Also, since X is a closed subspace, we have
F0(x, t) 2 X.

It follows from Lemma 4.2 that F
k

2 F(O ⇥ [t0, t0 + �], h) for every k 2 N, where

h(t) = (L+M)(g(t)� g(t0)), t 2 [t0, t0 + �].

Since lim

k!1 F
k

(x, t) = F0(x, t), we have F0 2 F(O ⇥ [t0, t0 + �], h).

For every k 2 N0, t 2 [t0, t0 + �], let

x
k

(t)(#) =

(
y
k

(#), # 2 [t0 � r, t],

y
k

(t), # 2 [t, t0 + �].

According to Theorem 4.5, x
k

is a solution of the generalized ordinary differential equation

dx

d⌧
= DF

k

(x, t).

For k = 1, 2, . . . and t0  t1  t2  t0 + �, we have

|y
k

(t2)� y
k

(t1)| =
����
Z

t2

t1

f
k

((y
k

)

s

, s) dg(s)

����  M(g(t2)� g(t1)),

where ⌘(t) = Mt for every t 2 [0,1). Moreover, the sequence {y
k

(t0)}1
k=1 is bounded.

Thus, the condition 2 from Corollary 1.11 is satisfied and it follows that {y
k

}1
k=1 contains

a subsequence which is uniformly convergent in [t0, t0 + �]. Without loss of generality, we
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can denote this subsequence again by {y
k

}1
k=1. Since (y

k

)

t0 = �
k

, we see that {y
k

}1
k=1 is

in fact uniformly convergent in [t0 � r, t0 + �].

By the definition of x
k

, we have

lim

k!1
x
k

(t) = x0(t)

uniformly with respect to t 2 [t0, t0+�]. It follows from Theorem 6.2 that x0 is a solution
of

dx

d⌧
= DF0(x, t)

on [t0, t0 + �]. The proof is finished by applying Theorem 4.6, which guarantees that y0

satisfies

y0(t) = y0(t0) +

Z
t

t0

f0((y0)s, s) dg(s), t 2 [t0, t0 + �],

(y0)t0 = �0

and we have the desired result.

Remark 6.5. We remind the reader that although assumption 5 in the previous theorem
looks complicated, it is automatically satisfied if either g(t) = t, for every t 2 [t0, t0 + �]

and X = C([t0 � r, t0 + �],Rn

), or if X = G([t0 � r, t0 + �],Rn

). See Remark 5.5. ⇤

Using the Theorem 6.4, we prove a result on continuous dependence of solution on
parameters for functional dynamic equations on time scales. Such result is original and
can be found in [36].

Theorem 6.6. Let [t0 � r, t0 + �]T be a time scale interval, t0 2 T, B ⇢ Rn be open,
C = C([t0 � r, t0 + �]T, B), P = {y⇤

t

; y 2 C, t 2 [t0, t0 + �]}. Consider a sequence of
functions f

k

: P ⇥ [t0, t0 + �]T ! Rn, k = 1, 2, . . ., such that the following conditions are
satisfied:

1. For every y 2 C and k = 1, 2, . . ., the function t 7! f
k

(y⇤
t

, t) is rd-continuous on
[t0, t0 + �]T.

2. There exists a constant M > 0 such that
����
Z

u2

u1

f
k

(y, s)�s

����  M(u1 � u2)

for every k = 1, 2, . . ., y 2 P and u1, u2 2 [t0 � r, t0 + �]T.
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3. There exists a constant L > 0 such that
����
Z

u2

u1

[f
k

(y, s)� f
k

(z, s)]�s

����  L

Z
u2

u1

ky � zk�s

for every k = 1, 2, . . ., y, z 2 P and u1, u2 2 [t0 � r, t0 + �]T.

4. For every y 2 C,

lim

k!1

Z
t

t0

f
k

(y⇤
s

, s)�s =

Z
t

t0

f0(y
⇤
s

, s)�s

uniformly with respect to t 2 [t0, t0 + �]T.

Assume that �
k

2 C([t0 � r, t0]T, B), k = 1, 2, . . ., is a sequence of functions such that

lim

k!1
�
k

= �0 uniformly on [t0 � r, t0]T.

For every k = 1, 2, . . ., let y
k

2 C be solution of functional dynamic equation on time
scales

y�
k

(t) = f
k

((y⇤
k

)

t

, t), t 2 [t0, t0 + �]T,

y
k

(t) = �
k

(t), t 2 [t0 � r, t0]T.

If there exists a function y0 2 C such that lim

k!1 y
k

= y0 on [t0, t0 + �]T, then y0 is a
solution of functional dynamic equation on time scales

y�0 (t) = f0((y
⇤
0)s, s), t 2 [t0, t0 + �]T,

y0(t) = �0(t), t 2 [t0 � r, t0]T.

Proof. Let X = {y⇤; y 2 C([t0�r, t0+�]T,Rn

)}, O = {y⇤; y 2 C}, and g(t) = t⇤ for every
t 2 [t0, t0 + �]. Note that O is an open subset of X and has the prolongation property.
Further, let f ⇤

k

(y, t) = f
k

(y, t⇤) for every k = 1, 2, . . ., y 2 P and t 2 [t0, t0 + �]. Consider
an arbitrary y 2 O and k = 1, 2, . . .. Since t 7! f

k

(y⇤
t

, t) is rd-continuous on [t0, t0 + �]T,
the integral

R
t0+�

t0
f
k

(y
t

, t)�t exists. Using Theorem 4.11 and Theorem 4.12, we have

Z
t0+�

t0

f
k

(y
t

, t)�t =

Z
t0+�

t0

f
k

(y
t

⇤ , t⇤) dg(t) =

Z
t0+�

t0

f
k

(y
t

, t⇤) dg(t) =

Z
t0+�

t0

f ⇤
k

(y
t

, t) dg(t),

that is, the last integral exists. Using Theorem 4.11 again, we obtain

lim

k!1

Z
t

t0

f ⇤
k

(y
s

, s) dg(s) = lim

k!1

Z
t

⇤

t0

f
k

(y
s

, s)�s =

Z
t

⇤

t0

f0(ys, s)�s =

Z
t

t0

f ⇤
0 (ys, s) dg(s)
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uniformly with respect to t 2 [t0, t0 + �]. Further, it is clear that lim

k!1 y⇤
k

= y⇤0 on
[t0, t0 + �], and lim

k!1(�⇤
k

)

t0 = (�⇤
0)t0 uniformly on [�r, 0]. By Theorem 4.13, we have

y⇤
k

(t) = y⇤
k

(t0) +

Z
t

t0

f
k

((y⇤
k

)

s

, s⇤) dg(s), t 2 [t0, t0 + �],

(y⇤
k

)

t0
= (�⇤

k

)

t0 ,

for every k = 1, 2, . . .. The functions f ⇤
k

, y⇤
k

and (�⇤
k

)

t0 , k = 1, 2, . . ., satisfy the assumptions
of Theorem 6.4, and we conclude that

y⇤0(t) = y⇤0(t0) +

Z
t

t0

f0((y
⇤
0)

s

, s⇤) dg(s), t 2 [t0, t0 + �],

(y⇤0)
t0

= (�⇤
0)t0 .

By Theorem 4.13, it follows that y0 : [t0 � r, t0 + �]T ! Rn satisfies

y�0 (t) = f0((y
⇤
0)s, s), t 2 [t0, t0 + �]T,

y0(t) = �0(t), t 2 [t0 � r, t0]T,

and we obtain the desired result.

In the sequel, we prove a result on continuous dependence of solutions on parameters
for impulsive measure functional differential equations. This is a new result and can be
found in [37].

Theorem 6.7. Assume that X = G([t0 � r, t0 + �],Rn

), B ⇢ Rn is an open set, O =

G([t0 � r, t0 + �], B), P = G([�r, 0], B), m 2 N, t1, t2, . . . , tm are moments of impulses
such that t0  t1 < t2 < . . . < t

m

< t0 + �, g : [t0, t0 + �] ! R is a nondecreasing
left-continuous function which is continuous at t1, . . . , tm. Finally, for every k = 1, 2, . . .,
let f

k

: P ⇥ [t0, t0 + �] ! Rn and Ik1 , . . . , I
k

m

: B ! Rn be functions which satisfy the
following conditions:

1. The integral
R

t0+�

t0
f
k

(y
s

, s) dg(s) exists for every k = 1, 2, . . ., y 2 O.

2. There exists a constant M1 > 0 such that
����
Z

u2

u1

f
k

(y
s

, s) dg(s)

����  M1[g(u2)� g(u1)],

whenever k = 1, 2, . . ., t0  u1  u2  t0 + � and y 2 O.
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3. There exists a constant L1 > 0 such that
����
Z

u2

u1

(f
k

(y
s

, s)� f
k

(z
s

, s)) dg(s)

����  L1

Z
u2

u1

ky
s

� z
s

k1dg(s),

whenever k = 1, 2, . . ., t0  u1  u2  t0 + � and y, z 2 O.

4. For every y 2 O,

lim

k!1

Z
t

t0

f
k

(y
s

, s) dg(s) =

Z
t

t0

f0(ys, s) dg(s)

uniformly with respect to t 2 [t0, t0 + �].

5. There exists a constant M2 > 0 such that

|Ik
j

(x)|  M2,

for every j = 1, . . . ,m, k = 1, 2, . . . and x 2 B.

6. There exists a constant L2 > 0 such that

|Ik
j

(x)� Ik
j

(y)|  L2|x� y|,

for every j = 1, . . . ,m, k = 1, 2, . . . and x, y 2 B.

7. For every y 2 B and j = 1, . . . ,m, lim
k!1 Ik

j

(y) = I0
j

(y).

Consider functions �
k

2 P , k = 1, 2, . . ., such that lim
k!1 �

k

= �0 uniformly on [�r, 0].
For every k = 1, 2, . . ., let y

k

2 O be solutions of the problem

y
k

(t) = y
k

(t0) +

Z
t

t0

f
k

((y
k

)

s

, s) dg(s) +
X

j2{1,...,m},
tk<t

Ik
j

(y
k

(t
j

)), (6.1.13)

(y
k

)

t0 = �
k

, (6.1.14)

such that lim
k!1 y

k

= y0 2 O. Then y0 satisfies the following impulsive equation:

y0(t) = y0(t0) +

Z
t

t0

f0((y0)s, s) dg(s) +
X

j2{1,...,m},
tj<t

I0
k

(y0(tj)), (6.1.15)

(y0)t0 = �0. (6.1.16)
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Proof. We already know that (6.1.13) and (6.1.14) imply

y
k

(t) = y
k

(t0) +

Z
t

t0

˜f
k

((y
k

)

s

, s) dg̃(s), t 2 [t0, t0 + �],

(y
k

)

t0 = �
k

,

where the construction of ˜f
k

and g̃ is described in Theorem 4.16. Since g is nondecreasing
and left-continuous, g̃ must have the same properties. For every t 2 [t0, t0 + �], we have

lim

k!1

Z
t

t0

˜f
k

(y
s

, s) dg̃(s) = lim

k!1

Z
t

t0

f
k

(y
s

, s) dg(s) + lim

k!1

X

j2{1,...,m},
tj<t

Ik
j

(y(t
j

)) =

=

Z
t

t0

f0(ys, s) dg(s) +
X

j2{1,...,m},
tj<t

I0
j

(y(t
j

)) =

Z
t

t0

˜f0(ys, s) dg̃(s),

where the convergence is uniform with respect to t 2 [t0, t0 + �].

Using these facts and Lemma 4.18, we see that the functions ˜f
k

, g̃, and �
k

satisfy all
hypotheses of Theorem 6.4. Consequently,

y0(t) = y0(t0) +

Z
t

t0

˜f0((y0)s, s) dg̃(s), t 2 [t0, t0 + �],

(y0)t0 = �0.

The proof is finished by applying Theorem 4.16, which implies that y0 satisfies (6.1.15)
and (6.1.16).

The last result in this section is a result on continuous dependence of solution on
parameters for impulsive functional dynamic equations on time scales. This is also an
original result and can be found in [37].

Theorem 6.8. Assume that [t0 � r, t0 + �]T is a time scale interval, t0 2 T, B ⇢ Rn is
an open set, O = G([t0� r, t0+�], B), P = G([�r, 0], B), m 2 N, t1, . . . , tm 2 [t0, t0+�]T

are right-dense points such that t0  t1 < · · · < t
m

< t0 + �. For every k = 1, 2, . . .,
let f

k

: P ⇥ [t0, t0 + �]T ! Rn and Ik1 , . . . , I
k

m

: B ! Rn be functions which satisfy the
following conditions:

1. The integral
R

t0+�

t0
f
k

(y
s

, s)�s exists for every y 2 O and k = 1, 2, . . ..
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2. There exists a constant M1 > 0 such that
����
Z

u2

u1

f
k

(y
s

, s)�s

����  M1(u2 � u1)

for every k = 1, 2, . . ., y 2 O and u1, u2 2 [t0, t0 + �]T, u1  u2.

3. There exists a constant L1 > 0 such that
����
Z

u2

u1

[f
k

(y
s

, s)� f
k

(z
s

, s)]�s

����  L1

Z
u2

u1

ky
s

� z
s

k1�s

for every k = 1, 2, . . ., y, z 2 O and u1, u2 2 [t0, t0 + �]T, u1  u2.

4. For every y 2 O,

lim

k!1

Z
t

t0

f
k

(y
s

, s)�s =

Z
t

t0

f0(ys, s)�s

uniformly with respect to t 2 [t0, t0 + �]T.

5. There exists a constant M2 > 0 such that

|Ik
j

(x)|  M2,

for every j = 1, . . . ,m, k = 1, 2, . . . and x 2 B.

6. There exists a constant L2 > 0 such that

|Ik
j

(x)� Ik
j

(y)|  L2|x� y|,

for every j = 1, . . . ,m, k = 1, 2, . . . and x, y 2 B.

7. For every x 2 B and j = 1, 2, . . . ,m, lim
k!1 Ik

j

(x) = I0
j

(x).

Assume that �
k

2 G([t0 � r, t0]T, B), k = 1, 2, . . ., is a sequence of functions such that

lim

k!1
�
k

= �0 uniformly on [t0 � r, t0]T.

For every k = 1, 2, . . ., let y
k

: [t0 � r, t0 + �]T ! B be solution of impulsive functional
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dynamic equation on time scales

y
k

(t) = y
k

(t0) +

Z
t

t0

f
k

((y⇤
k

)

s

, s)�s+
X

j2{1,...,m},
tj<t

Ik
j

(y
k

(t
j

)), t 2 [t0, t0 + �]T,

y
k

(t) = �
k

(t), t 2 [t0 � r, t0]T.

If there exists a function y0 : [t0 � r, t0 + �]T ! B such that lim

k!1 y
k

= y0, then y0

satisfies the impulsive functional dynamic equation on time scales given by
8
>>><

>>>:

y0(t) = y0(t0) +

Z
t

t0

f0((y
⇤
0)s, s)�s+

X

j2{1,...,m},
tj<t

I0
j

(y0(tj)), t 2 [t0, t0 + �]T,

y0(t) = �0(t), t 2 [t0 � r, t0]T.

(6.1.17)

Proof. Let g(t) = t⇤ for every t 2 [t0, t0 + �]. Then g is a left-continuous nondecreasing
function which is continuous at t1, . . . , tm. Further, let f ⇤

k

(y, t) = f
k

(y, t⇤) for every
k = 1, 2, . . ., y 2 P and t 2 [t0, t0 + �]. By Lemma 4.24, the integral

R
t0+�

t0
f ⇤
k

(y
t

, t) dg(t)

exists for every y 2 O and k = 1, 2, . . .. By Theorems 4.11 and 4.12, we obtain

lim

k!1

Z
t

t0

f ⇤
k

(y
s

, s) dg(s) = lim

k!1

Z
t

⇤

t0

f
k

(y
s

, s)�s =

Z
t

⇤

t0

f0(ys, s)�s =

=

Z
t

t0

f0(ys⇤ , s
⇤
) dg(s) =

Z
t

t0

f ⇤
0 (ys, s) dg(s),

where the convergence is uniform with respect to t 2 [t0, t0 + �].

Further, it is clear that lim

k!1 y⇤
k

= y⇤0 on [t0, t0 + �], and lim

k!1 �⇤
k

= �⇤
0 uniformly

on [t0 � r, t0]. By Theorem 4.23, we have

y⇤
k

(t) = y⇤
k

(t0) +

Z
t

t0

f ⇤
k

((y⇤
k

)

s

, s) dg(s) +
X

j2{1,...,m},
tj<t

Ik
j

(y⇤
k

(t
j

)), t 2 [t0, t0 + �],

(y⇤
k

)

t0
= (�⇤

k

)

t0 ,

for every k = 1, 2, . . .. Using Lemma 4.24, we see that all hypotheses of Theorem 6.7 are
satisfied. Consequently,

y⇤0(t) = y⇤0(t0) +

Z
t

t0

f ⇤
0 ((y

⇤
0)

s

, s) dg(s) +
X

j2{1,...,m},
tj<t

I0
j

(y⇤0(tj)), t 2 [t0, t0 + �],

(y⇤0)
t0

= (�⇤
0)t0 .
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By Theorem 4.23, it follows that y0 satisfies (6.1.17).

Remark 6.9. According to Remark 6.6 in [36], the assumptions of Theorem 6.4 might
be modified in the following way: instead of requiring the existence of a function y0 2 O

such that lim

k!1 y
k

= y0, it is enough to assume the existence of a closed set B0 ⇢ B

such that the functions y
k

, k = 1, 2, . . ., take values in B0. Under this hypothesis, the
conclusion is that {y

k

}1
k=1 has a subsequence which is uniformly convergent to a function

y0 2 O such that

y0(t) = y0(t0) +

Z
t

t0

f0((y0)s, s) dg(s), t 2 [t0, t0 + �],

(y0)t0 = �0.

Theorems 6.7 and 6.8 can be modified in a similar way. ⇤

6.2 Continuous dependence of solutions involving vari-
able time scales

The fact that solutions of dynamic equations on time scales depend continuously on
the time scales is a problem that has been investigated by several researchers. See [1],[31]
and [76], for instance. In such papers, the authors prove that the sequence of solutions of
the problem (

x�
(t) = f(x, t), t 2 T

n

,

x(t0) = x0, t0 2 T
n

(6.2.1)

converges uniformly to the solution of the problem

(
x�

(t) = f(x, t), t 2 T,
x(t0) = x0, t0 2 T,

(6.2.2)

whenever d(T
n

,T) ! 0 as n ! 1, where d(T
n

,T) denotes the Hausdorff metric or the
induced metric from the Fell topology.

Our goal is to investigate the behavior of solutions of the same initial value problems
over different time scales for impulsive functional dynamic equations, that is, we prove
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that the sequence of solutions of the system

8
>><

>>:

x(t) = x(t0) +

Z
t

t0

f(x
s

, s)�s+
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)), t 2 [t0, t0 + ⌘]Tn ,

x(t) = �(t), t 2 [t0 � r, t0]Tn

(6.2.3)

converges uniformly to the solution of the problem

8
>><

>>:

x(t) = x(t0) +

Z
t

t0

f(x
s

, s)�s+
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)), t 2 [t0, t0 + ⌘]T,

x(t) = �(t), t 2 [t0 � r, t0]T

(6.2.4)

whenever d(T
n

,T) ! 0 as n ! 1. Here, d(T
n

,T) denotes the Hausdorff metric. Our
results apply to the Fell topology as well.

It worth mentioning that all the results presented in this section are new and they can
be found in [16].

In order to obtain the continuous dependence result for impulsive functional dynamic
equations on time scales involving variable time scales with these conditions, we use the
correspondences between various types of equations which were presented in Chapter 4.

Here, we introduce a different notation as the one used in the previous chapters.
Instead of using the notation t⇤ to denote the set inf{s 2 T; s � t}, we use the notation
�̃(t) to represent it, in order to avoid any mistakes arising to the notation, since we are
leading with variable time scales.

Also, we denote �̃
n

(t) = inf{s 2 T
n

; s � t}. We are using the same notation as found
in [86].

Further, in order to guarantee the convergence of solutions, we suppose some con-
vergence over the operator sequence {�̃

n

}1
n=1. This hypothesis cannot be suppressed as

shown by Examples 6.11 and 6.12 later.

In this section, we present a continuous dependence result involving variable time
scales for impulsive functional dynamic equations on time scales.

Our idea to prove a continuous dependence result for impulsive functional dynamic
equations on time scales is to use the correspondence between the solutions of these equa-
tions and the solutions of impulsive measure functional differential equations (see Theo-
rem 4.13) and the correspondence between the solutions of impulsive measure functional
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differential equations and the solutions of measure functional differential equations.

Let T
n

be time scales for each n 2 N with corresponding forward jumps �
n

and �̃
n

.
Assume that the distance d(T

n

,T) ! 0 as n ! 1. Here, we are considering the Hausdorff
topology and Hausdorff metric in which the distance between two sets is defined by

d(A,B) = max{sup{inf{|a� b| : b 2 B} : a 2 A}, sup{inf{|a� b| : a 2 A} : b 2 B}}.

Now, our goal is to prove a result which guarantees that the sequence of solutions of the
problem 8

><

>:

x�̃n
n

(t) = x�̃n
n

(t0) +

Z
t

t0

f((x�̃n
n

)

s

, s) d�̃
n

(s), t 2 T⇤
n

,

(x�̃n
n

)

t0 = ��̃n ,

(6.2.5)

converges uniformly to the solution of the problem
8
><

>:

x�̃

(t) = x�̃

(t0) +

Z
t

t0

f(x�̃

s

, s) d�̃(s), t 2 T⇤,

x�̃

t0
= ��̃.

(6.2.6)

Thus, after proving this result, using the correspondence between impulsive measure
functional differential equations and measure functional differential equations, we ob-
tain an analogous result for measure functional differential equations with impulses and,
therefore, using the other correspondence (Theorem 4.13), our main theorem concerning
continuous dependence for impulsive functional dynamic equations on time scales follows
as well.

Now, assume O ⇢ G([t0 � r, t0 + ⌘],Rn

) is open, P = {y
t

; y 2 O, t 2 [t0, t0 + ⌘]},
f : P ⇥ [t0, t0 + ⌘] ! Rn, and g : [t0, t0 + ⌘] ! R is nondecreasing and left-continuous
function.

We assume the following three conditions on the function f : P ⇥ [t0, t0 + ⌘] ! Rn:

(A) The Kurzweil-Henstock-Stieltjes integral
R

t0+⌘

t0
f(y

t

, t) dg(t) exists for every y 2 O.

(B) There exists a constant M > 0 such that

|f(y
t

, t)|  M

whenever t0  t  t0 + ⌘ and y 2 O.
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(C) There exists a constant L > 0 such that
����
Z

u2

u1

(f(y
t

, t)� f(z
t

, t)) dg(t)

����  L

Z
u2

u1

ky
t

� z
t

k1 dg(t)

whenever t0  u1  u2  t0 + ⌘ and y, z 2 O.

Now, we are able to present our first result in this section. It is an original result and
it is contained in [16].

Theorem 6.10. Suppose f satisfies conditions (A), (B) and (C), and x�̃n
n

is a solution
of the system

8
><

>:

x�̃n
n

(t) = x�̃n
n

(t0) +

Z
t

t0

f((x�̃n
n

)

s

, s) d�̃
n

(s), t 2 T⇤
n

,

(x�̃n
n

)

t0 = ��̃n ,

(6.2.7)

and x�̃ is a solution of the measure functional differential equation given by
8
><

>:

x�̃

(t) = x�̃

(t0) +

Z
t

t0

f(x�̃

s

, s) d�̃(s), t 2 T⇤,

x�̃

t0
= ��̃.

(6.2.8)

Moreover, the sequence of functions {�̃
n

}1
n=1 converges uniformly to �̃ as n ! 1. Also,

suppose the sequence of initial conditions {��̃n}1
n=1 converges uniformly to ��̃ as n ! 1.

Then, for every " > 0, there exists N > 0 sufficiently large such that, for n > N , we have

|x�̃n
n

(t)� x�̃

(t)| < " for t 2 T⇤
n

\ T⇤. (6.2.9)

Proof. Given " > 0 and since the sequence of functions {�̃
n

} converges uniformly to �̃,
there exists N1 > 0 sufficiently large such that for every n > N1, we obtain

|�̃
n

(t)� �̃(t)| < " for every t 2 T⇤
n

\ T⇤. (6.2.10)

Moreover, since the sequence of functions ��̃n converges uniformly to ��̃, there exists
N2 > 0 sufficiently large such that for every n > N2, we have

k��̃n � ��̃k1 < " for every t 2 T⇤
n

\ T⇤. (6.2.11)
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Also, for t 2 T⇤
n

\ T⇤ and n > max{N1, N2}, we have

��x�̃n
n

(t)� x�̃

(t)
��
=

����x
�̃n
n

(t0)� x�̃

(t0) +

Z
t

t0

f((x�̃n
n

)

s

, s)d�̃
n

(s)�
Z

t

t0

f((x�̃

)

s

, s)d�̃(s)

����

 |x�̃n
n

(t0)� x�̃

(t0)|+
����
Z

t

t0

f((x�̃n
n

)

s

, s)d�̃
n

(s)�
Z

t

t0

f((x�̃

)

s

, s)d�̃(s)

����

 k��̃n � ��̃k1 +

����
Z

t

t0

f((x�̃n
n

)

s

, s)d�̃
n

(s)�
Z

t

t0

f((x�̃

)

s

, s)d�̃(s)

����

 k��̃n � ��̃k1 +

����
Z

t

t0

f((x�̃n
n

)

s

, s)d�̃
n

(s)�
Z

t

t0

f((x�̃n
n

)

s

, s)d�̃(s)

����

+

����
Z

t

t0

f((x�̃n
n

)

s

, s)d�̃(s)�
Z

t

t0

f((x�̃

)

s

, s)d�̃(s)

����

 "+

Z
t

t0

Md[�̃
n

(s)� �̃(s)] + L

Z
t

t0

k(x�̃n
n

)

s

� (x�̃

)

s

k1d�̃(s),

where we used (B) and (C) to obtain the last inequality. Thus, by Theorem 1.2.1, we get

|x�̃n
n

(t)� x�̃

(t)|  "+ 2"M + L

Z
t

t0

k(x�̃n
n

)

s

� (x�̃

)

s

k1d�̃(s).

Using (x�̃n
n

)

t0 = ��̃n and (x�̃

)

t0 = ��̃ and the uniform convergence ��̃n ! ��̃, we have,
for n > N2,

k(x�̃n
n

)

s

� x�̃

s

k1 = sup

✓2[�r,0]
|x�̃n

n

(s+ ✓)� x�̃

(s+ ✓)|  "+ sup

⌘2[0,s]
|x�̃n

n

(�)� x�̃

(�)|

and, therefore,

|x�̃n
n

(t)� x�̃

(t)|  "+ 2"M + L

Z
t

t0

 
"+ sup

⌘2[0,s]
|x�̃n

n

(⌘)� x�̃

(⌘)|
!
d�̃(s).

Then,

|x�̃n
n

(t)� x�̃

(t)|  "+ 2"M + L"(�̃(t)� �̃(t0)) +

Z
t

t0

L sup

⌘2[0,s]
|x�̃n

n

(⌘)� x�̃

(⌘)|d�̃(s).

Finally, by the Gronwall inequality (Theorem 2.10), we get

|x�̃n
n

(t)� x�̃

(t)|  "(1 + 2M + (�̃(t)� �̃(t0)))e
L(g(t)�g(t0))

and, since " > 0 is arbitrary, we have the desired result.
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Note that the hypothesis in Theorem 6.10 which guarantees that the sequence of
functions {�̃

n

}1
n=1 converges uniformly to �̃ as n ! 1 is necessary, since one cannot

expect this to happen only using the fact that d(T
n

,T) ! 0 as n ! 1. Below, we
present an example that illustrates this fact.

Example 6.11. Let T = [0, a] [ [a + 1, b] and T
n

= [0, a + 1/n] [ [a + 1, b], for every
n 2 N. Then d(T,T

n

) = 1/n ! 0 as n ! 1. However �̃
n

(a + 1/n) = a + 1/n, for every
n 2 N, while �̃(a+1/n) = a+1. In other words, for every n � 2, there exists t such that
�̃(t)� �̃

n

(t) � 1/2, which means that the sequence {�̃
n

}1
n=1 does not converge uniformly

to �̃.

Even if we consider the Fell topology instead of the Hausdorff topology, the hypoth-
esis of Theorem 6.10 guaranteeing the uniform convergence of the sequence of functions
{�̃

n

}1
n=1 is necessary. The next example illustrates this fact. Here, the notation CL(M)

represents the set of all closed, nonempty subsets of M .

Example 6.12. Assume R with the usual metric and CL(R) is endowed with the Fell
topology. Then, by [31, Lemma 4], we have

T
n

= {z + 1/n : z 2 Z} ! Z.

Also,
�̃
n

(z + 1/n) = z + 1/n,

whereas �̃ (z + 1/n) = z + 1, which implies that �̃
n

does not converge uniformly to �̃.

Notice that if we suppose that {�̃
n

}1
n=1 converges uniformly to �̃ as n ! 1, we can

suppress the hypothesis d(T
n

,T) ! 0 as n ! 1 to obtain our main result. We point out
that the uniform convergence of {�̃

n

}1
n=1 is enough to ensure the convergence of solutions

of impulsive functional dynamic equations on time scales for variable time scales as we
will prove later.

The next theorem shows that, under certain conditions, it is possible to obtain a cor-
respondence between the solutions of impulsive measure functional differential equations,
depending on the conditions about the functions �̃

n

and �̃ and the corresponding time
scales, that is, T

n

and T. This is result is new and it can be found in [16].

Theorem 6.13. Suppose f : P ⇥ [t0, t0 + ⌘] ! R satisfies the conditions (A), (B) and
(C), and for each k = 1, 2, . . . ,m, the impulse operators I

k

: Rn ! Rn satisfy conditions
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(A⇤) There exists a constant K1 > 0 such that

|I
k

(x)|  K1,

for every k = 1, . . . ,m and x 2 B.

(B⇤) There exists a constant K2 > 0 such that

|I
k

(x)� I
k

(y)|  K2|x� y|,

for every k = 1, . . . ,m and x, y 2 B.

Moreover, suppose x�̃n
n

is a solution of the system
8
>>><

>>>:

x�̃n
n

(t) = x�̃n
n

(t0) +

Z
t

t0

f((x�̃n
n

)

s

, s) d�̃
n

(s) +
X

k2{1,...,m},
tk<t

I
k

(x�̃n
n

(t
k

)), t 2 T⇤
n

,

(x�̃n
n

)

t0 = ��̃n ,

(6.2.12)

and x�̃ is a solution of the measure functional differential equation given by
8
>>><

>>>:

x�̃

(t) = x�̃

(t0) +

Z
t

t0

f(x�̃

s

, s) d�̃(s) +
X

k2{1,...,m},
tk<t

I
k

(x�̃

(t
k

)), t 2 T⇤,

x�̃

t0
= ��̃.

(6.2.13)

Moreover, the sequence of functions {�̃
n

}1
n=1 converges uniformly to �̃ as n ! 1. Also,

suppose the sequence of initial conditions {��̃n}1
n=1 converges uniformly to ��̃ as n ! 1.

Then, for every " > 0, there exists N > 0 sufficiently large such that, for n > N , we have

|x�̃n
n

(t)� x�̃

(t)| < " for t 2 T⇤
n

\ T⇤.

Proof. Define the following function

˜f(y, t) =

8
<

:
f(y, t), t 2 [t0, t0 + �]\{t1, . . . , tm},

I
k

(y(0)), t = t
k

for some k 2 {1, . . . ,m}.

Moreover, let c1, . . . , cm 2 R be constants such that the function ¯�̃ : [t0, t0+�] ! R given
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by

¯�̃(t) =

8
>>><

>>>:

�(t), t 2 [t0, t1],

�̃(t) + c
k

, t 2 (t
k

, t
k+1] for some k 2 {1, . . . ,m� 1},

�̃(t) + c
m

, t 2 (t
m

, t0 + �]

And also, define the following function ¯�̃
n

: [t0, t0 + �] ! R given by

¯�̃
n

(t) =

8
>>><

>>>:

�̃
n

(t), t 2 [t0, t1],

�̃
n

(t) + c
k

, t 2 (t
k

, t
k+1] for some k 2 {1, . . . ,m� 1},

�̃
n

(t) + c
m

, t 2 (t
m

, t0 + �]

Since the sequence of functions {�̃
n

}1
n=1 converges uniformly to �̃, it follows immediately

from the definition that the sequence of functions {¯�̃
n

}1
n=1 converges uniformly to ¯�̃. Also,

by Lemma 4.18, we obtain that all hypotheses of Theorem 6.10 are satisfied and then,
using the correspondence (Theorem 4.23), the desired result follows.

Now, consider the following conditions concerning the function f : G([�r, 0], B) ⇥
[t0, t0 + ⌘]Tn ! Rn:

(A1) The integral
Z

t0+⌘

t0

f(y
t

, t)�t exists for every y 2 O.

(B1) There exists a constant M > 0 such that
����
Z

u2

u1

f(y
t

, t)�t

����  M(u2 � u1)

for every y 2 O and u1, u2 2 [t0, t0 + ⌘]T, u1  u2.

(C1) There exists a constant L > 0 such that
����
Z

u2

u1

[f(y
t

, t)� f(z
t

, t)]�t

����  L

Z
u2

u1

ky
t

� z
t

k1�t

for every y, z 2 O and u1, u2 2 [t0, t0 + ⌘]T, u1  u2.

The next theorem is the main result of this section. It concerns continuous dependence
of solutions on parameters for impulsive functional dynamic equations on time scales
involving variable time scales. It is also a new result which can be found in [16].
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Theorem 6.14. Suppose x
n

: [t0 � r, t0 + ⌘]Tn ! Rn is a solution of the impulsive
functional dynamic equation on time scales

8
>><

>>:

x
n

(t) = x
n

(t0) +

Z
t

t0

f
n

((x�̃n
n

)

s

, s)�s+
X

k2{1,...,m},
tk<t

I
k

(x
n

(t
k

)), t 2 [t0, t0 + ⌘]Tn ,

x
n

(t) = �(t), t 2 [t0 � r, t0]Tn ,
(6.2.14)

where the functions f
n

: G([�r, 0], B) ⇥ [t0, t0 + ⌘]Tn ! Rn satisfy the conditions (A1),
(B1) and (C1). Also, suppose x : [t0 � r, t0 + ⌘]T ! Rn is a solution of the impulsive
functional dynamic equation on time scales

8
>><

>>:

x(t) = x(t0) +

Z
t

t0

f(x�̃

s

, s)�s+
X

k2{1,...,m},
tk<t

I
k

(x(t
k

)), t 2 [t0, t0 + ⌘]T,

x(t) = �(t), t 2 [t0 � r, t0]T,

(6.2.15)

where f : G([�r, 0], B) ⇥ [t0, t0 + ⌘]T ! Rn satisfies conditions (A1), (B1) and (C1) and
for each k = 1, 2, . . . ,m, the impulse operators I

k

: Rn ! Rn satisfy conditions (A⇤)
and (B⇤). Suppose that the sequence of functions {�̃

n

}1
n=1 converges uniformly to �̃ as

n ! 1. Also, suppose the sequence {��̃n}1
n=1 converges uniformly to ��̃ as n ! 1.

Then, for every " > 0, there exists N > 0 sufficiently large such that, for n > N , we have

|x
n

(t)� x(t)| < " for t 2 T
n

\ T.

Proof. Since the function f
n

: G([�r, 0], B) ⇥ [t0, t0 + ⌘]T ! Rn satisfies the conditions
(A1), (B1) and (C1), it follows from Lemma 4.24 that the corresponding conditions (A),
(B) and (C) are satisfied for the extension of f

n

and, therefore, all hypotheses from
Theorem 6.13 are satisfied, and the desired result follows immediately applying the cor-
respondence between impulsive measure functional differential equations and impulsive
functional dynamic equations on time scales.





Chapter

7
Averaging principles

The right-hand side of the equations which model problems in celestial mechanic have
terms which oscillate quickly and terms which oscillate slowly. The terms which oscillate
slowly indicate the slow evolution of the system of parameters. On the other hand, the
terms which oscillate quickly almost do not affect the motion and, thus, they can be
omitted. The process of omitting the terms which oscillate quickly on the right-hand side
of the equation is called an averaging.

The purpose of an averaging method or principle is to give conditions under which the
solutions of a time varying system can be approximated by solutions of an autonomous
differential system. The averaging method is, therefore, a powerful tool in studying the
perturbation theory of differential equations, since it allows one to replace a time-varying
small perturbation, acting on a long time interval, by a time-invariant perturbation and,
in this process, only a small error is introduced.

This chapter is devoted to presenting averaging principles for various types of equa-
tions. In he first section, we investigate non-periodic averaging methods. In the second
section, we investigate periodic averaging methods for various types of equations and
finally, in the last section, we present some examples to illustrate the applications of
averaging principles.

We emphasize that almost all the results presented here are new and they are contained
in the papers [34] and [84].
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7.1 Non-periodic averaging principles

Consider the ordinary differential equation

(
ẋ = "f(x(t), t) + "2g(x(t), t, "),

x(t0) = x0,
(7.1.1)

where " > 0 is a small parameter, t0 > 0, f : Rn⇥R ! Rn and g : Rn⇥Rn⇥(0, "0) ! Rn.
Consider, also, the autonomous averaged differential equation

(
ẏ = "f0(y(t)),

y(t0) = x0,
(7.1.2)

where
f0(y) = lim

T!1

1

T

Z
t0+T

t0

f(y, t)dt.

A non-periodic averaging principle for (7.1.1) establishes conditions under which one
can obtain an approximation between the solutions of problem (7.1.1) and the solutions
of the averaged problem (7.1.2). Therefore, averaging principles are powerful tools in the
study of perturbations of differential equations.

Coming back to historical details, we can say that the first justifications of non-periodic
averaging principles for nonlinear system were presented by N. N. Bogolyubov and A.
Mitropolskii [15] and by N. N. Krylov and N. N. Bogolyubov [14]. Their results are know
as KBM averaging method.

Throughout the years, several authors published papers on averaging methods for
different types of differential systems. In the 60’s, authors as, for instance, V. I. Fodčuk
[44], A. Halanay [53], J. K. Hale [54], G. N. Medvedev [82] and V. M. Volosov [83]
developed methods of averaging for certain functional differential equations (we write
FDEs for short), with a small parameter, approximating them by autonomous ordinary
differential equations (ODEs).

It was only in the 70’s that the investigations on averaging for FDEs indicated that
the classic approximation of solutions by solutions of an autonomous ODE could be re-
placed by an approximation by solutions of an autonomous FDE. In this direction, we
can mention the papers by V. Strygin [101] and by B. Lehman and S. P. Weibel [80]. See
also [77], [78] and [79].
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In the late 80’s, D. D. Bainov and S. D. Milusheva [8] considered a FDE of neutral
type with impulses, approximating it by autonomous ODEs.

Recently, in [74] and [75], the authors stated averaging results for FDEs employing the
tools of non-standard analysis. Also, based in such papers, the authors of [35] improved
the results from [74] and [75] using standard analysis though.

While the theory of averaging for functional differential equations is well developed,
the literature involving averaging principles for measure functional differential equations
is scarce. As a matter of fact, we do not know any result in this direction. Also, because
the theory of functional dynamic equations on time scales is very recent (see [36]), the
literature concerning averaging principles for these equations is scarce as well.

We divide this first section into two subsections. In the first subsection, we prove a
non-periodic averaging principle for measure functional differential equations and, using
the correspondence presented in Chapter 4, we prove a non-periodic averaging principle
for functional dynamic equations on time scales. The second subsection brings non-
periodic averaging principles for impulsive measure functional differential equations and
for impulsive functional dynamic equations on time scales.

7.1.1 Measure FDEs and functional dynamic equations on time

scales

In this section, we focus our attention on an initial value problem for a measure
functional differential equation of the form

(
Dx = "f (x

t

, t)Dh1 (t) + "2g (x
t

, t, ")Dh2 (t) ,

x0 = �,
(7.1.3)

where " > 0 is a small parameter, Dx, Dh1 and Dh2 denote, respectively, the distribu-
tional derivatives of the functions x, h1 and h2 in the sense of distributions of L. Schwartz.
The integral form equivalent to (7.1.3) is given by

8
><

>:

x(t) = x0 + "

Z
t

0

f (x
s

, s) dh1 (s) + "2
Z

t

0

g (x
s

, s, ") dh2 (s) ,

x0 = �,

(7.1.4)

where we consider that the initial function, �, is an element of G�
([�r, 0],Rn

) and we
consider the Kurzweil-Henstock-Stieljtes integral in (7.1.4) are taken with respect to non-
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decreasing functions h1 and h2, where h1, h2 : [0,1) ! R.

In order to obtain an averaging principle for (7.1.3), we consider the auxiliary initial
value problem

8
><

>:

Dx = "f

✓
x
t

,
t

"

◆
Dh1

✓
t

"

◆
+ "2g

✓
x
t

,
t

"
, "

◆
Dh2

✓
t

"

◆
, t 2 [0, L]

x0 = �,

(7.1.5)

where � 2 G�
([�r, 0],Rn

), L > 0 and there exists a small parameter "0 such that " 2
(0, "0]. We assume that f maps any pair ( , t) 2 G�

([�r, 0],Rn

)⇥ [0,1) into Rn and that
the mapping t 7! f(y

t

, t) is Kurzweil-Henstock integrable with respect to h1, for all t 2
[0,1). Furthermore, we consider that g maps ( , t, ") 2 G�

([�r, 0],Rn

)⇥ [0,1)⇥ (0, "0]

into Rn and that the mapping t 7! g(y
t

, t, ") is Kurzweil-Henstock integrable with respect
to h2, for all t 2 [0,1).

Note that, by a change of variables, we can transform system (7.1.5) into system
(7.1.3). Indeed, if x is a solution of (7.1.5) on [0, L], then

x(t) = x(0) + "

Z
t

0

f
⇣
x
s

,
s

"

⌘
dh1

⇣s
"

⌘
+ "2

Z
t

0

g
⇣
x
s

,
s

"
, "
⌘
dh2

⇣s
"

⌘
.

Thus, using the change of variables s 7! s/", we obtain

x(t) = x(0) + "

Z
t/"

0

f (x
"⌧,"

, ⌧) dh1 (⌧) + "2
Z

t/"

0

g (x
"⌧,"

⌧, ") dh2 (⌧) ,

where x
t,"

(✓) = x(t + "✓), ✓ 2 [�r, 0]. Then, if we put y(t/") = x(t), we obtain, for
t 2 [0, L/"],

y (t)� y(0) = x("t)� x(0) =

= "

Z
"t/"

0

f (x
"s,"

, s) dh1 (s) + "2
Z

"t/"

0

g (x
"s,"

, s, ") dh2 (s) =

= "

Z
t

0

f (y
s

, s) dh1 (s) + "2
Z

t

0

g (y
s

, s, ") dh2 (s) ,

which means that y is a solution of (7.1.3) on [0, L
"

]. Thus, if we have a solution of the
measure functional differential equation (7.1.5) on [0, L], then, by a change of variables,
we can obtain a solution of (7.1.3) on [0, L

"

] and vice-versa. We are then interested in
establishing an averaging result for (7.1.5). Then, an averaging principle for (7.1.3) will
follow naturally.
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Let r, � 2 R, with r, � > 0, and let O be a subset of G�
([�r, �],Rn

) with prolongation
property, that is, for every y 2 O and every ¯t 2 [�r, �], the function ȳ given by

ȳ(t) =

8
<

:
y(t), �r  t  ¯t,

y(¯t), ¯t < t  �

is also an element of O.

We assume that f : G�
([�r, 0],Rn

)⇥ [0,1) ! Rn satisfies the following conditions:

(H1) For every x 2 O and every t 2 [0,1), the integral
R

t

0 f(xs

, s)dh1(s) exists;

(H2) There exists a constant M > 0 such that, for every y, z 2 O and every u1, u2 2
[0,1), ����

Z
u2

u1

[f(y
s

, s)� f(z
s

, s)]dh1(s)

����  M

Z
u2

u1

ky
s

� z
s

kdh1(s).

Consider the following assumptions on g : G�
([�r, 0],Rn

)⇥ [0,1)⇥ (0, "0] ! Rn

(H3) For every x 2 O, t 2 [0,1) and " 2 (0, "0], the integral
R

t

0 g(xs

, s, ")dh2(s) exists.

(H4) There is a constant C > 0 such that, for all y 2 O, " 2 (0, "0] and u1, u2 2 [0,1),
����
Z

u2

u1

g(y
s

, s, ")dh2(s)

����  C

Z
u2

u1

dh2(s).

Consider h1 : [0,1) ! R being a nondecreasing function which satisfies:

(H5) There exists a constant K > 0 such that, for every � � 0,

lim sup

T!1

h1(T + �)� h1(�)

T
 K.

Moreover, assume that h2 : [0,1) ! R is a nondecreasing function such that:

(H6) There exists a constant N > 0 such that, for every � � 0,

lim sup

T!1

h2(T + �)� h2(�)

T
 N.
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Suppose, for each  2 G�
([�r, 0],Rn

), the limit

f0( ) = lim

T!1

1

T

Z
T

0

f ( , s) dh1(s) (7.1.6)

exists, where the integral has to be understood in the sense of Kurzweil-Henstock-Stieltjes,
and consider the averaged functional differential equation

(
ẏ = f0 (yt) , t 2 [0, L/"]

y0 = �,
(7.1.7)

where f0 is given by (7.1.6). If conditions (H2) and (H5) are satisfied, then

|f0(�)� f0( )| =

���� lim
T!1

1

T

Z
T

0

f(�, s)dh1(s)� lim

T!1

1

T

Z
T

0

f( , s)dh1(s)

���� 

 lim

T!1

1

T

Z
T

0

Mk��  k1dh1(s) 

 Mk��  k1 lim sup

T!1

h1(T )� h1(0)

T
 MKk��  k1.

In particular, for every y 2 O and every t, s 2 [0,1), we have

|f0(ys)� f0(yt)|  MKky
s

� y
t

k1 (7.1.8)

which implies that, if y 2 O is a solution of (7.1.7) and s, t 2 [0,1), with t  s, then, for
✓ 2 [�r, 0], we have

|y(s+ ✓)� y(t+ ✓)| =

����
Z

s+✓

t+✓

f0(y�)d�

���� 


Z

s+✓

t+✓

|f0(y�)� f0(0)|d� +

Z
s+✓

t+✓

|f0(0)|d� 

 MK

Z
s+✓

t+✓

sup

�2[t�r,s]
ky

�

k1d� + (s� t)|f0(0)|

and, hence,

ky
s

� y
t

k1 = sup

✓2[�r,0]
|y(s+ ✓)� y(t+ ✓)| 

 MK(s� t) sup

�2[t�r,s]
ky

�

k1 + (s� t)|f0(0)|.
(7.1.9)

Thus, as s � t ! 0

+, ky
s

� y
t

k1 ! 0, that is, y
t

as a function of t, with t 2 [0,1), is a
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continuous function.

Now, we present an original auxiliary lemma which will be essential to our purposes.
Its proof is inspired in the proof of [35], Lemma 3.1.

Lemma 7.1. For every t > 0 and every ↵ > 0, we have

lim

"!0+

1

↵/"

Z
t/"+↵/"

t/"

f( , s)dh1(s) = f0( ),  2 G�
([�r, 0],Rn

),

where f0 is given by (7.1.6).

Proof. By definition,

lim

T!1

1

T

Z
T

0

f( , s)dh1(s) = f0( ),  2 G�
([�r, 0],Rn

). (7.1.10)

Thus, clearly, for t > 0 and ↵ > 0, we also have

lim

"!0+

1

t/"+ ↵/"

Z
t/"+↵/"

0

f( , s)dh1(s) = f0( )

and

lim

"!0+

1

t/"

Z
t/"

0

f( , s)dh1(s) = f0( ).

Then,

lim

"!0+

"
1

t/"+ ↵/"

Z
t/"+↵/"

0

f( , s)dh1(s)�
1

t/"

Z
t/"

0

f( , s)dh1(s)

#
=

= lim

"!0+

"
1

t/"+ ↵/"

Z
t/"+↵/"

0

f( , s)dh1(s)� f0( )

#
+

+ lim

"!0+

"
f0( )�

1

t/"

Z
t/"

0

f( , s)dh1(s)

#
= 0.

On the other hand,

"

↵

Z
t/"+↵/"

t/"

f( , s)dh1(s) =
1

↵/"

Z
t/"+↵/"

0

f( , s)dh1(s)�
1

↵/"

Z
t/"

0

f( , s)dh1(s) =

=

✓
t/"+ ↵/"

t/"+ ↵/"

◆
1

↵/"

Z
t/"+↵/"

0

f( , s)dh1(s)�
✓
t/"

t/"

◆
1

↵/"

Z
t/"

0

f( , s)dh1(s) =



138 Averaging principles

=

1

t/"+ ↵/"

✓
t

↵
+ 1

◆Z
t/"+↵/"

0

f( , s)dh1(s)�
t

↵
· 1

t/"

Z
t/"

0

f( , s)dh1(s) =

=

1

t/"+ ↵/"

Z
t/"+↵/"

0

f( , s)dh1(s)+

+

t

↵

"
1

t/"+ ↵/"

Z
t/"+↵/"

0

f( , s)dh1(s)�
1

t/"

Z
t/"

0

f( , s)dh1(s)

#
.

Therefore,

lim

"!0+

"
"

↵

Z
t/"+↵/"

t/"

f( , s)dh1(s)� f0( )

#
=

= lim

"!0+

"
1

t/"+ ↵/"

Z
t/"+↵/"

0

f( , s)dh1(s)� f0( )

#
+

+ lim

"!0+

t

↵

"
1

t/"+ ↵/"

Z
t/"+↵/"

0

f( , s)dh1(s)�
1

t/"

Z
t/"

0

f( , s)dh1(s)

#
= 0.

Hence

lim

"!0+

"

↵

Z
t/"+↵/"

t/"

f( , s)dh1(s) = f0( )

and the result follows.

The next corollary follows easily from Lemma 7.1.

Corollary 7.2. Let t > 0 and ↵ > 0. Then, for every y 2 O, we have

lim

"!0+

"

↵

Z
t/"+↵/"

t/"

f(y
t

, s)dh1(s) = f0(yt).

The proof of the next lemma is inspired in [35], Lemma 3.2. Such result is new and it
can be found in [34].

Lemma 7.3. Suppose [0, b) is the maximal interval of existence of (7.1.7), where b is
finite, and y is a maximal solution of (7.1.7). Moreover, suppose f satisfies conditions
(H1) and (H2) and h1 satisfies condition (H5). Then, given " > 0, there exists µ > 0 such
that ����"

Z
t

0

f
⇣
y
s

,
s

"

⌘
dh1

⇣s
"

⌘
�
Z

t

0

f0 (ys) ds

���� < µ, t 2 [0, b),

and µ tends to zero when "! 0

+.
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Proof. For " > 0 and  2 G�
([�r,1),Rn

), define

Z
t

0

f1
⇣
 ,

s

"

⌘
dh1

⇣s
"

⌘
= "

Z
t

0

f
⇣
 ,

s

"

⌘
dh1

⇣s
"

⌘
�
Z

t

0

f0( )ds, t � 0.

Let � be a gauge corresponding to " > 0 in the definition of the Kurzweil-Henstock-
Stieltjes integral Z

t

0

f
⇣
y
�

,
�

"

⌘
dh1

⇣�
"

⌘
=

Z
t/"

0

f (y
s","

, s) dh1 (s)

and consider a �-fine tagged partition {(⌧
i

, [s
i

, s
i+1]), i = 0, 1, 2, . . . ,m� 1} of [0, t]. Then,

����"
Z

t

0

f
⇣
y
s

,
s

"

⌘
dh1

⇣s
"

⌘
�
Z

t

0

f0 (ys) ds

���� =
����
Z

t

0

f1
⇣
y
s

,
s

"

⌘
dh1

⇣s
"

⌘���� 


m�1X

i=0

����
Z

si+1

si

h
f1
⇣
y
s

,
s

"

⌘
� f1

⇣
y
si ,

s

"

⌘i
dh1

⇣s
"

⌘����+
m�1X

i=0

����
Z

si+1

si

f1
⇣
y
si ,

s

"

⌘
dh1

⇣s
"

⌘����


m�1X

i=0

����"
Z

si+1

si

h
f
⇣
y
s

,
s

"

⌘
� f

⇣
y
si ,

s

"

⌘i
dh1

⇣s
"

⌘����+
m�1X

i=0

����
Z

si+1

si

[f0 (ys)� f0 (ysi)] ds

����+

+

m�1X

i=0

����
Z

si+1

si

f1
⇣
y
si ,

s

"

⌘
dh1

⇣s
"

⌘���� . (7.1.11)

We can suppose, without loss of generality, that the gauge � is such that �(⇠) < "

2 , for
every ⇠ 2 [0, t]. Then, by (7.1.9), for each i = 0, 1, 2, . . . ,m� 1 and each s 2 [s

i

, s
i+1], we

have
ky

s

� y
sik1 < MK(s� s

i

) sup

�2[si�r,s]
ky

�

k1 + (s� s
i

)|f0(0)| <

< MK2�(⌧
i

) sup

�2[si�r,si+1]
ky

�

k1 + 2�(⌧
i

)|f0(0)| <

< MK" sup

�2[si�r,si+1]
ky

�

k1 + "|f0(0)|.

Therefore, for each i = 0, 1, 2, . . . ,m� 1,

sup

s2[si,si+1]
ky

s

� y
sik1  "

 
MK sup

�2[�r,b)
ky

�

k1 + |f0(0)|
!
.

Then, taking
D = MK sup

�2[�r,b)
ky

�

k1 + |f0(0)|,
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we obtain
sup

s2[si,si+1]
ky

s

� y
sik1  "D, i = 0, 1, 2, . . . ,m� 1. (7.1.12)

Now, (7.1.12) and conditions (H2) and (H5) imply

m�1X

i=0

����
Z

si+1

si

"
h
f
⇣
y
s

,
s

"

⌘
� f

⇣
y
si ,

s

"

⌘i
dh1

⇣s
"

⌘���� 

 "M
m�1X

i=0

sup

�2[si,si+1]
ky

�

� y
sik1

Z
si+1

si

dh1

⇣s
"

⌘
 "2DM

m�1X

i=0

h
h1

⇣s
i+1

"

⌘
� h1

⇣s
i

"

⌘i
=

= "DM
m�1X

i=0

"

s
i+1 � s

i

(s
i+1 � s

i

)


h1

✓
s
i+1 � s

i

"
+

s
i

"

◆
� h1

⇣s
i

"

⌘�


 "DM
mX

i=0

K(s
i+1 � s

i

) = "DMKt < "DMKb.

Then, using (7.1.8) and (7.1.12), for each i = 0, 1, 2, . . . ,m� 1 and each s 2 [s
i

, s
i+1], we

have

m�1X

i=0

����
Z

si+1

si

[f0 (ys)� f0 (ysi)] ds

����  MK
m�1X

i=0

sup

�2[si,si+1]
ky

�

� y
sik1(s

i+1 � s
i

) 

 "DMK
m�1X

i=0

(s
i+1 � s

i

) = "DMKt < "DMKb.

Finally, we assert that the sum

m�1X

i=0

����
Z

si+1

si

f1
⇣
y
si ,

s

"

⌘
dh1

⇣s
"

⌘����

can be made arbitrarily small by Corollary 7.2. Indeed, for each ↵
i

= s
i+1 � s

i

, i =

0, 1, 2, . . . ,m� 1, we have

m�1X

i=0

����
Z

si+1

si

f1
⇣
y
si ,

s

"

⌘
dh1

⇣s
"

⌘���� =
m�1X

i=0

����"
Z

si+1

si

f
⇣
y
si ,

s

"

⌘
dh1

⇣s
"

⌘
�
Z

si+1

si

f0(ysi)ds

���� =

=

m�1X

i=0

����"
Z

si+↵i

si

f
⇣
y
si ,

s

"

⌘
dh1

⇣s
"

⌘
�
Z

si+↵i

si

f0(ysi)ds

���� =
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=

m�1X

i=0

↵
i

�����
"

↵
i

Z
si/"+↵i/"

si/"

f (y
si , s) dh1(s)� f0(ysi)

����� .

For each i = 0, 1, 2, . . . ,m� 1, define

�
i

=

"

↵
i

Z
si/"+↵i/"

si/"

f (y
si , s) dh1(s)� f0(ysi)

and let � = max{ |�
i

|; i = 0, 1, 2, . . . ,m� 1}. Then

m�1X

i=0

↵
i

|�
i

|  �
m�1X

i=0

↵
i

= �
m�1X

i=0

(s
i+1 � s

i

) = �t < �b,

and, hence,
����"
Z

t

0

f
⇣
y
s

,
s

"

⌘
dh1

⇣s
"

⌘
�
Z

t

0

f0 (ys) ds

���� < 2"DLKb+ �b.

By Corollary 7.2, � tends to zero as " tends to zero. Also, � depends on ". Thus,
taking µ = 2"DMKb+ �b, then µ tends to zero as "! 0

+ and we obtain the inequality
����"
Z

t

0

f
⇣
y
s

,
s

"

⌘
dh1

⇣s
"

⌘
�
Z

t

0

f0 (ys) ds

���� < µ,

which completes the proof.

The next result is our non-periodic averaging method for measure functional differen-
tial equations. This is an original result which can be found in [34].

Theorem 7.4. Consider the measure functional differential equation (7.1.5), where � 2
G�

([�r, 0],Rn

) and f satisfies conditions (H1) and (H2). Moreover, assume that the
function h1 satisfies condition (H5), h2 satisfies condition (H6) and g satisfies conditions
(H3) and (H4). Consider the averaged functional differential equation (7.1.7), where f0

is given by (7.1.6). Suppose [0, b) is the maximal interval of existence of (7.1.5) and [0, b)

is the maximal interval of existence of (7.1.7). Assume that x" is a maximal solution of
(7.1.5) and y is a maximal solution of (7.1.7). Let L > 0 be such that L < min(b, b).
Then, for every ⌘ > 0, there exists "0 > 0 such that for " 2 (0, "0], the inequality

|x"

(t)� y(t)| < ⌘

holds for every t 2 [0, L].
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Proof. We follow the ideas of [35], Theorem 3.1. By hypothesis, for each t 2 [0, L], the
equalities

x"

(t) = �(0) + "

Z
t

0

f
⇣
(x"

)

s

,
s

"

⌘
dh1

⇣s
"

⌘
+ "2

Z
t

0

g
⇣
(x"

)

s

,
s

"
, "
⌘
dh2

⇣s
"

⌘

and
y(t) = �(0) +

Z
t

0

f0 (ys) ds

hold. Then, using conditions (H2), (H4) and (H5) and by the Lemma 7.3, we obtain

|x"

(t)� y(t)| =

=

����"
Z

t

0

f
⇣
(x"

)

s

,
s

"

⌘
dh1

⇣s
"

⌘
+ "2

Z
t

0

g
⇣
(x"

)

s

,
s

"
, "
⌘
dh2

⇣s
"

⌘
�
Z

t

0

f0 (ys) ds

���� 

 "

Z
t

0

���f
⇣
(x"

)

s

,
s

"

⌘
� f

⇣
y
s

,
s

"

⌘��� dh1

⇣s
"

⌘
+

����"
Z

t

0

f
⇣
y
s

,
s

"

⌘
dh1

⇣s
"

⌘
�
Z

t

0

f0 (ys) ds

����+

+"2
Z

t

0

���g
⇣
(x"

)

s

,
s

"
, "
⌘��� dh2

⇣s
"

⌘


 M

Z
t

0

k(x"

)

s

� y
s

k1dh1

⇣s
"

⌘
+

����"
Z

t

0

f
⇣
y
s

,
s

"

⌘
dh1

⇣s
"

⌘
�
Z

t

0

f0 (ys) ds

����+

+"2C


h2

✓
t

"

◆
� h2(0)

�
< M

Z
t

0

k(x"

)

s

� y
s

k1dh1

⇣s
"

⌘
+ µ+ "CtN 

 M

Z
t

0

k(x"

)

s

� y
s

k1dh1

⇣s
"

⌘
+ µ+ "CLN,

where we used the fact that condition (H6) implies

"2C


h2

✓
t

"

◆
� h2(0)

�
= "tC

"

t


h2

✓
t

"

◆
� h2(0)

�
 "tCN.

Since (x"

)0 = � = y0, we have

k(x"

)

s

�y
s

k1 = sup

✓2[�r,0]
|x"

(s+ ✓)�y(s+ ✓)| = sup

�2[�r,s]
|x"

(�)�y(�)|  sup

�2[0,s]
|x"

(�)�y(�)|,

since
sup

�2[�r,0]
|x"

(�)� y(�)| = 0,
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by the definition of initial condition. Therefore, we obtain

|x"

(t)� y(t)|  M

Z
t

0

sup

�2[0,s]
|x"

(�)� y(�)|dh1

⇣s
"

⌘
+ µ+ "CLN. (7.1.13)

Also, since the right-hand side of (7.1.13) is increasing, we have

sup

⌧2[0,t]
|x"

(⌧)� y(⌧)|  M

Z
t

0

sup

�2[0,s]
"|x"

(�)� y(�)|dh1

⇣s
"

⌘
+ µ+ "CLN.

Then, by the Gronwall’s inequality for the Kurzweil-Henstock-Stieltjes integral (Theorem
2.10), we obtain

sup

⌧2[0,t]
|x"

(⌧)� y(⌧)|  e"M(h1(t/")�h1(0))
(µ+ "CLN) .

Finally,
sup

⌧2[0,t]
|x"

(⌧)� y(⌧)|  eKLM

(µ+ "CLN) ,

since, by hypothesis (H5), we have

"M (h1(t/")� h1(0)) = tM
(h1(t/")� h1(0))

t

"

 tMK  LMK.

Let ⌘ = eKLM

(µ+ "CLK). Then,

sup

⌧2[0,t]
|x"

(⌧)� y(⌧)|  ⌘,

where ⌘ can be taken sufficiently small by the arbitrariness of " and the theorem is
proved.

A non-periodic averaging result for system

(
Dy = "f(y

t

, t)Dh1(t) + "2g(y
t

, t, ")Dh2(t),

y0 = �,
(7.1.14)

follows next as a consequence of Theorem 7.4.

Corollary 7.5. Consider the measure functional differential equation (7.1.14) where � 2
G�

([�r, 0],Rn

) and f satisfies conditions (H1) and (H2). Moreover, assume that the
function h1 satisfies condition (H5), h2 satisfies condition (H6) and g satisfies conditions
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(H3) and (H4). Consider the averaged functional differential equation

(
ẋ = f0(xt

),

x0 = �,
(7.1.15)

where f0 is given by

f0( ) = lim

T!1

1

T

Z
T

0

f( , s)dh1(s).

Let x" and y be solutions of (7.1.14) and (7.1.15) on [0, L/"], respectively. Then, for
every ⌘, there exists a "0 > 0 such that

|x"

(t)� y(t)| < ⌘

holds for every t 2 [0, L/"] and " 2 (0, "0].

Now, we present a lemma which will be essential to prove the result following it. Such
lemma can be found in [99], Lemma 5.5.

Lemma 7.6. Consider a time scale T such that supT = 1 and lim

t!1 µ(t)/t = 0, a
number t0 2 T and a function H : [t0,1)T ! Rn such that

lim

t!1, t2T

H(t)

t
= A.

Then,

lim

t!1

H⇤
(t)

t
= A.

Proof. Given an arbitrary " > 0, we can find T > max(t0, 0) such that for every t � T ,
we obtain ����

H(t)

t
� A

���� < " and
µ(t)

t
< ".

Then ����
H⇤

(t)

t⇤
� A

���� < " and |H⇤
(t)� At⇤| < "t⇤.

Also, we get

|H⇤
(t)�At| = |H(t⇤)�At⇤ +At⇤ �At|  |H(t⇤)�At⇤|+ |A|(t⇤ � t) < "t⇤ + |A|µ(⇢(t⇤)).
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Now, suppose t is such that ⇢(t⇤) � T . Then
����
H⇤

(t)

t
� A

���� <
"t⇤

t
+

|A|µ(⇢(t⇤))
t

 "t⇤

⇢(t⇤)
+

|A|µ(⇢(t⇤))
⇢(t⇤)

 "⇢(t⇤) + µ(⇢(t⇤))

⇢(t⇤)
+

|A|µ(⇢(t⇤))
⇢(t⇤)

< "+ "+ |A|" = "(2 + |A|)

and the conclusion follows.

The following result will also be useful to prove our results. It can be found in [99],
Corollary 5.6.

Lemma 7.7. If supT = 1, lim
t!1 µ(t)/t = 0 and h : [t0,1)T ! Rn is �-integrable on

every compact subinterval of [t0,1)T, then

lim

T!1

1

T

Z
t0+T

t0

h⇤
(s)d⌘(s) = lim

T!1 t0+T2T

1

T

Z
t0+T

t0

h(s)d⌘(s)

where ⌘(t) = t⇤, provided the limit on the right-hand side exists.

Proof. Let H(u) =
R

u

t0
h(s)�s, u 2 [t0,1)T. Then,

lim

T!1

1

T

Z
t0+T

t0

h⇤
(s)dg(s) = lim

T!1

H⇤
(t0 + T )

T
= lim

T!1

H⇤
(t0 + T )

t0 + T

t0 + T

T
=

= lim

T!1

H⇤
(t0 + T )

t0 + T
= lim

u!1

H⇤
(u)

u
= lim

u!1, u2T

H(u)

u
=

= lim

T!1, t0+T2T

H(t0 + T )

t0 + T
= lim

T!1, t0+T2T

H(t0 + T )

T

T

t0 + T
=

= lim

T!1, t0+T2T

H(t0 + T )

T
= lim

T!1, t0+T2T

1

T

Z
t0+T

t0

h(s)�s.

The next result is a non-periodic averaging principle for functional dynamic equations
on time scales. Such result is new and is contained in [35].

Theorem 7.8. Let T be a time scale with supT = 1, [t0 � r,1)T a time scale interval,
t0 2 T, "0 > 0, L > 0, B ⇢ Rn and lim

t!1 µ(t)/t = 0. Consider a function f :

G�
([�r, 0], B) ⇥ [t0,1)T ! Rn and a bounded function g : G�

([�r, 0], B) ⇥ [t0,1)T ⇥
(0, "0] ! Rn such that the following conditions are satisfied:
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(i) For every b > t0 and y 2 G([t0�r, b], B), the functions t 7! f(y
t

, t) and t 7! g(y
t

, t, ")

are regulated on [t0, b]T.

(ii) For every b > t0 and y 2 C([t0 � r, b]T, B), the functions t 7! f(y⇤
t

, t) and t 7!
g(y⇤

t

, t, ") are rd-continuous on [t0, b]T.

(iii) There is a constant M > 0 such that for x, y 2 G�
([�r, 0], B) and u1, u2 2 [t0,1)T,

����
Z

u2

u1

[f(x, s)� f(y, s)]�s

����  M

Z
u2

u1

kx� yk�s.

(iv) If y : [�r, 0] ! B is a regulated function, then the integral

f0(y) = lim

T!1 t0+T2T

1

T

Z
t0+T

t0

f(y, s)�s

exists.

Let � 2 G�
([t0 � r, t0]T, B). Suppose for every " 2 (0, "0], the �-integral equation

8
><

>:

x(t) = x(t0) + "

Z
t

t0

f(x⇤
s

, s)�s+ "2
Z

t

t0

g(x⇤
s

, s, ")�s,

x(t) = �(t), t 2 [t0 � r, t0]T

(7.1.16)

has a solution x
"

: [t0�r, t0+L/"]T ! Rn, and the averaged functional differential equation

(
ẏ = f0(y⇤

t

),

y
t0 = �⇤

t0
,

(7.1.17)

has a solution y : [t0 � r, t0 + L/"] ! Rn. Then, for every ⌘ > 0, there exists "0 > 0 such
that for " 2 (0, "0],

|x
"

(t)� y(t)| < ⌘,

for every t 2 [t0, t0 +
L

"

]T.

Proof. This proof is inspired in the proof of Theorem 5.3 from [99].

Without loss of generality, we assume that t0 = 0. Otherwise, consider the shifted
problem with time scale eT = {t � t0; t 2 T} and ef(x, t) = f(x, t + t0) and eg(x, t, ") =

g(x, t+ t0, ").
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For t 2 [0,1), y 2 G�
([�r, 0], B) and " 2 (0, "0], define

f ⇤
(y, t) = f(y, t⇤) and g⇤(y, t, ") = g(y, t⇤, ").

Since lim

t!1 µ(t)/t = 0, there are numbers D > 0 and ⌧ 2 T such that µ(t)/t  D

for every t 2 [⌧,1)T. Note that

µ(⇢(t⇤)) = �(⇢(t⇤))� ⇢(t⇤) = t⇤ � ⇢(t⇤),

which implies
t⇤ � µ(⇢(t⇤)) = ⇢(t⇤)  ⇢(t)  t.

Then, if t 2 R is such that ⇢(t⇤) � ⌧ , we have

t⇤  t+ µ(⇢(t⇤))  t+D⇢(t⇤)  t+Dt = t(D + 1).

For every t 2 [0,1), let h(t) = t⇤. Then, for sufficiently large T and for every a � 0,
we have

h(a+ T )� h(a)

T
=

(a+ T )⇤ � a⇤

T
 (a+ T )(D + 1)� a⇤

T
,

and, consequently,

lim sup

T!1

h(a+ T )� h(a)

T
 lim sup

T!1

(a+ T )(D + 1)� a⇤

T
= D + 1.

Therefore condition (H5) is satisfied for the function h.

By Theorems 4.11, 4.12 and 7.7, we have

f0(y) = lim

T!1

1

T

Z
T

0

f(y, s)�s = lim

T!1

1

T

Z
T

0

f(y, s⇤)dh(s) (7.1.18)

= lim

T!1

1

T

Z
T

0

f(y, s⇤)dh(s) = lim

T!1

1

T

Z
T

0

f ⇤
(y, s)dh(s) (7.1.19)

for every y 2 G�
([�r, 0], B). Since x

"

is a solution of (7.1.16), Theorem 4.13 implies x⇤
"

is a solution of the system

(
Dx⇤

= "f ⇤
(x⇤

t

, t)Dh(t) + "2g⇤(x⇤
t

, t, ")Dh(t),

x⇤
0 = �⇤

0,
(7.1.20)
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By Lemma 4.24, f fulfills conditions (H1) and (H2) and g fulfills the conditions (H3)

and (H4). Thus, all hypotheses of Corollary 7.5 are satisfied. Then, for every ⌘ > 0, there
exists "0 > 0 such that, for every " 2 (0, "0] and every t 2 [0, L/"], the inequality

|x⇤
"

(t)� y(t)|  ⌘

holds, where y is a solution of (7.1.17). The proof is complete after observing that
x⇤
"

(t) = x
"

(t) for t 2 [0, L/"]T.

7.1.2 Impulsive measure FDEs and impulsive functional dynamic

equations on time scales

In this section, we present original non-periodic averaging theorems for impulsive
measure FDEs and for impulsive functional dynamic equations on time scales.

We start by presenting a non-periodic averaging method for impulsive measure FDEs.

Theorem 7.9. Consider the impulsive measure functional differential equation
8
>>><

>>>:

y(t) = y(t0) + "

Z
t

t0

f(y
s

, s)dh(s) + "2
Z

t

t0

g(y
s

, s, ")dh(s) + "
X

k2N,
tk<t

I
k

(y(t
k

)),

y0 = �,

(7.1.21)

where � 2 G�
([�r, 0],Rn

) and the function f : G�
([�r, 0],Rn

) ⇥ [0,1) ! Rn satisfies
conditions (H1) and (H2). Moreover, assume that the function h : [0,1) ! R satisfies
condition (H5) and the function g : G�

([�r, 0],Rn

) ⇥ [0,1) ⇥ (0, "0] ! Rn satisfies
condition (H3) and is bounded. Also, suppose the impulse operators I

k

: Rn ! Rn satisfy
conditions (A⇤

) and (B⇤
), with the same Lipschitzian and boundedness constant for all

k 2 N. Further, suppose the integral

f0( ) = lim

T!1

1

T

Z
T

0

f( , s)dh(s)

exists, for every  2 G�
([�r, 0],Rn

) and denote

I0(y) = lim

T!1

1

T

X

0tk<T

I
k

(y), y 2 B.
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Consider the averaged functional differential equation

(
ẋ = f0(x⇤

t

) + I0(y),

x0 = �.
(7.1.22)

Let x" and y be solutions of (7.1.21) and (7.1.22) on [0, L/"] respectively. Then, for every
⌘, there exists "0 > 0 such that the inequality

|x"

(t)� y(t)| < ⌘

holds for every t 2 [0, L/"] and every " 2 (0, "0].

Proof. Define the function ˜h : [0,1) ! R by

˜h(t) =

8
<

:
h(t), t 2 [0, t1],

h(t) + c
k

, t 2 (t
k

, t
k+1] for some k 2 N,

where the sequence {c
k

}1
k=1 is chosen in such a way that �+

˜h(t
k

) = 1, for every k 2 N.

Note that the functions ˜h and ˜h are nondecreasing and left-continuous. Also, by
condition (H5) and by the definition of ˜h, there exists a constant K1 > 0 such that, for
every � � 0, the following inequality

lim sup

T!1

˜h(T + �)� ˜h(�)

T
 K1

holds.

According to the assumptions, we have

x"

(t) = x"

(0) +

Z
t

0

⇥
"f(x"

s

, s) + "2g(x"

s

, s, ")
⇤
dh(s) +

X

0tk<t

"I
k

(x"

(t
k

)),

for every " 2 (0, "0] and every t 2 [0, L/"].

Let

F "

(y, t) =

8
<

:
"f(y, t) + "2g(y, t, "), t /2 {t1, t2, . . .},

"I
k

(y(0)), t = t
k

for some k 2 N
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for every y 2 G�
([�r, 0],Rn

) and every t � 0. By Theorem 4.16,

x"

(t) = x"

(0) +

Z
t

0

F "

(x"

s

, s) d˜h(s), (7.1.23)

for every " 2 (0, "0] and every t 2 [0, L/"]. For y 2 G�
([�r, 0],Rn

) and t � 0, we can
write

F "

(y, t) = " ˜f(y, t) + "2g̃(y, t, "), (7.1.24)

where

˜f(y, t) =

8
<

:
f(y, t), t /2 {t1, t2, . . .},

I
k

(y(0)), t = t
k

for some k 2 N

and

g̃(y, t, ") =

8
<

:
g(y, t, "), t /2 {t1, t2, . . .},

0, t = t
k

for some k 2 N.

It follows from (7.1.23) and (7.1.24) that, for every " 2 (0, "0], the function x"

:

[�r, L/"] ! B is a solution of the initial value problem
8
><

>:

x(t) = x(0) + "

Z
t

0

˜f(x
s

, s) d˜h(s) + "2
Z

t

0

g̃(x
s

, s, ") d˜h(s),

x0 = �.

(7.1.25)

By the definition of the function ˜f and by the hypotheses, it follows from Lemma 4.18
that the function ˜f satisfies condition (H2).

Using Lemma 4.15, we have

Z
T

0

˜f(x, s) d˜h(s) =

Z
T

0

f(x, s) dh(s) +
X

k; 0tk<T

˜f(x, t
k

)�

+
˜h(t

k

)

=

Z
T

0

f(x, s) dh(s) +
X

k; 0tk<T

I
k

(x(0)),

(7.1.26)

for every x 2 G�
([�r, 0],Rn

). Consequently, the function ˜f0 : G�
([�r, 0],Rn

) ! Rn

defined by
˜f0(x) = lim

T!1

1

T

Z
T

0

˜f(x, s) d˜h(s), x 2 G�
([�r, 0],Rn

),
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satisfies

˜f0(x) = lim

T!1

1

T

Z
T

0

f(x, s) dh(s) + lim

T!1

1

T

X

k; 0tk<T

I
k

(x(0)) = f0(x) + I0(x(0)),

for x 2 G�
([�r, 0],Rn

).

Finally, by Corollary 7.5, for every ⌘ > 0, there exists "0 > 0 such that

|x"

(t)� y"(t)|  ⌘

holds, for every " 2 (0, "0] and every t 2 [0, L/"] and the proof is finished.

The following original result is our non-periodic averaging theorem for impulsive func-
tional dynamic equations on time scales. Its proof is similar to the proof of Theorem 7.8
from the previous section. We include it here though.

Theorem 7.10. Let T be a time scale with supT = 1, [t0� r,1)T a time scale interval,
t0 2 T, "0 > 0, L > 0, B ⇢ Rn and lim

t!1 µ(t)/t = 0. Let {t
k

}
k2N 2 T be a sequence

of moments of impulses which are right-dense and satisfy t0  t1 < t2 < . . . < t
m

< . . ..
Also, consider the impulse operators I

k

: B ! Rn, k 2 N, which satisfy conditions (A⇤
)

and (B⇤
). Suppose the function f : G�

([�r, 0], B) ⇥ [t0,1)T ! Rn satisfies conditions
(H1) and (H2) and the function g : G�

([�r, 0], B) ⇥ [t0,1)T ⇥ (0, "0] ! Rn is bounded.
Moreover, suppose the following conditions are satisfied:

(i) For b > t0 and y 2 G�
([t0� r, b], B), the integrals

R
b

t0
f(y

s

, s)�s and
R

b

t0
g(y

s

, s, ")�s

exist.

(ii) If y : [�r, 0] ! B is a regulated function, then the integral

f0(y) = lim

T!1 t0+T2T

1

T

Z
t0+T

t0

f(y, s)�s

exists.

(iii) Denote

I0(y) = lim

T!1

1

T

X

k;0tk<T

I
k

(y), y 2 B.
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Let � 2 G�
([t0 � r, t0]T, B). Suppose for every " 2 (0, "0], the �-integral equation

8
>>><

>>>:

x(t) = x(t0) + "

Z
t

t0

f(x⇤
s

, s)�s+ "2
Z

t

t0

g(x⇤
s

, s, ")�s+ "
X

k2N
t0tk<t

I
k

(x(t
k

)),

x(t) = �(t), t 2 [t0 � r, t0]T

(7.1.27)

has a solution x
"

: [t0 � r, t0 +
L

"

]T ! Rn and the averaged functional differential equation

(
ẏ = f0(y⇤

t

) + I0(y),

y
t0 = �

t0

(7.1.28)

has a solution y : [t0 � r, t0 +
L

"

] ! Rn. Then, for every ⌘ > 0, there exists "0 > 0 such
that for every " 2 (0, "0],

|x
"

(t)� y(t)| < ⌘,

for t 2 [t0, t0 +
M

"

]T.

Proof. Using the same argument as in the proof of Theorem 7.8, we assume, without loss
of generality, that t0 = 0.

Given t 2 [0,1), y 2 G�
([t0�r, t0]T, B) and " 2 (0, "0], define the following functions:

f ⇤
(y, t) = f(y, t⇤) and g⇤(y, t, ") = g(y, t⇤, ").

Since lim

t!1 µ(t)/t = 0, there are numbers D > 0 and ⌧ 2 T such that µ(t)/t  D

for every t 2 [⌧,1)T. Moreover,

µ(⇢(t⇤)) = �(⇢(t⇤))� ⇢(t⇤) = t⇤ � ⇢(t⇤),

which implies
t⇤ � µ(⇢(t⇤)) = ⇢(t⇤)  ⇢(t)  t.

Then, if t 2 R is such that ⇢(t⇤) � ⌧ , we have

t⇤  t+ µ(⇢(t⇤))  t+D⇢(t⇤)  t+Dt = t(D + 1).

For every t 2 [0,1), let h(t) = t⇤. Then, for sufficiently large T and for every a � 0,
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we have
h(a+ T )� h(a)

T
=

(a+ T )⇤ � a⇤

T
 (a+ T )(D + 1)� a⇤

T
, (7.1.29)

and, therefore, applying the lim sup as T ! 1 in both sides of equation (7.1.29), it follows
immediately that condition (H5) is satisfied for the function h.

By Theorems 4.11, 4.12 and 7.7, we obtain

f0(y) = lim

T!1

1

T

Z
T

0

f(y, s)�s = lim

T!1

1

T

Z
T

0

f(y, s⇤)dh(s) =

= lim

T!1

1

T

Z
T

0

f(y, s⇤)dh(s) = lim

T!1

1

T

Z
T

0

f ⇤
(y, s)dh(s),

for every y 2 G�
([�r, 0], B). Then, since x

"

is a solution of (7.1.27), it follows from
Theorem 4.23 that x⇤

"

is a solution of

8
>><

>>:

x⇤
"

(t) = x⇤
"

(0) + "

Z
t

0

f ⇤
((x⇤

"

)

s

, s)dh(s) + "2
Z

t

0

g⇤((x⇤
"

)

s

, s, ")dh(s) + "
X

k2N
tk<t

I
k

(x⇤
"

(t
k

)),

x⇤
0 = �0.

By Lemma 4.24, it follows that the function f ⇤ satisfies conditions (H1) and (H2) and
the function g⇤ satisfies the boundedness condition. Thus, all hypotheses of Theorem 7.9
are satisfied and, hence, for every ⌘ > 0, there exists "0 > 0 such that, for every " 2 (0, "0]

and t 2 [0, L/"], the inequality
|x⇤

"

(t)� y
"

(t)|  ⌘

holds, where y
"

is a solution of (7.1.28). Since x⇤
"

(t) = x
"

(t) for t 2 [0, L/"]T, the result
follows.

7.2 Periodic averaging principles

In this section, we focus our attention on periodic averaging principles for various
types of differential equations.

Classical periodic averaging theorems for ordinary differential equations are concerned
with the initial value problem

(
ẋ = "f(x(t), t) + "2g(x(t), t, "),

x(t0) = x0

(7.2.1)
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where " > 0 is a small parameter, t0 > 0, f : Rn ⇥ R ! Rn, g : Rn ⇥ R ⇥ [0, "0) ! Rn.
Assume that f is T -periodic in the second argument. Then, according to the periodic
averaging theorem, we can obtain a good approximation of this initial value problem by
neglecting the "2-term and taking the average of f with respect to t. In other words, it is
commonly considered the autonomous differential equation

ẏ = "f0(y(t)), y(t0) = x0,

where
f0(y) =

1

T

Z
t0+T

t0

f(y, t) dt.

Historically, periodic averaging theorems were really important for the development
and progress of the study of celestial mechanic problems. In such problems, usually
one deals with periodic functions which allow periodic averaging systems to obtain good
approximations between the solutions of nonlinear systems and the solutions of an au-
tonomous averaged system.

Different proofs of periodic averaging theorems can be found in [92], [93], or [102], for
instance. These monographs also include many applications and examples.

This section is divided in three subsections. The first one is devoted to the presen-
tation of a periodic averaging theorem for generalized ordinary differential equations. In
the second one, we prove periodic averaging theorems for measure functional differential
equations and for functional dynamic equations on time scales. Finally, in the last one, we
prove periodic averaging theorems for impulsive measure functional differential equations
and for impulsive functional dynamic equations on time scales.

We emphasize that almost all results presented in these subsections are new and they
can be found in [84].

7.2.1 Generalized ODEs

In this subsection, we prove a periodic averaging theorem for generalized ordinary
differential equations. The proof is inspired by a proof of the classical averaging theorem
for ordinary differential equations given in [93] (see Theorem 2.8.1 and Lemma 2.8.2
there). Our result is new and can be found in [84].

Theorem 7.11. Let B ⇢ Rn, ⌦ = B ⇥ [0,1), "0 > 0, L > 0. Consider functions
F : ⌦ ! Rn and G : ⌦⇥ (0, "0] ! Rn which satisfy the following conditions:
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1. There exist nondecreasing left-continuous functions h1, h2 : [0,1) ! [0,1) such
that F belongs to the class F(⌦, h1), and for every fixed " 2 (0, "0], the function
(x, t) 7! G(x, t, ") belongs to the class F(⌦, h2).

2. F (x, 0) = 0 and G(x, 0, ") = 0, for every x 2 B, " 2 (0, "0].

3. There exists a number T > 0 and a bounded Lipschitz continuous function M : B !
Rn such that F (x, t+ T )� F (x, t) = M(x), for every x 2 B and t 2 [0,1).

4. There exists a constant ↵ > 0 such that h1(iT )� h1((i� 1)T )  ↵, for every i 2 N.

5. There exists a constant � > 0 such that |h2(t)/t|  �, for every t � L/"0.

Let
F0(x) =

F (x, T )

T
, x 2 B.

Suppose for every " 2 (0, "0], the initial value problems

(
dx
d⌧ = D ["F (x, t) + "2G(x, t, ")] ,

x(0) = x0(")
(7.2.2)

and (
ẏ = "F0(y(t)),

y(0) = y0(")
(7.2.3)

have solutions x
"

, y
"

:

⇥
0, L

"

⇤
! B, respectively. If there is a constant J > 0 such that

|x0(")� y0(")|  J" for every " 2 (0, "0], then there exists a constant K > 0 such that

|x
"

(t)� y
"

(t)|  K",

for every " 2 (0, "0] and t 2
⇥
0, L

"

⇤
.

Proof. If x 2 B, then

|F0(x)| =
����
F (x, T )

T

���� =
����
F (x, T )� F (x, 0)

T

���� =
|M(x)|

T
 m

T
,

where m is a bound for M . Let l be a Lipschitz constant for M . The function H :

B ⇥ [0,1) ! Rn given by

H(x, t) = F0(x)t =
F (x, T )

T
t
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satisfies

|H(x, s2)�H(x, s1)| =

1

T
|F (x, T )s2 � F (x, T )s1|

=

1

T
|F (x, T )|(s2 � s1) 

m

T
(s2 � s1)

and
|H(x, s2)�H(x, s1)�H(y, s2) +H(y, s1)| =

=

1

T
|F (x, T )s2 � F (x, T )s1 � F (y, T )s2 + F (y, T )s1|

=

1

T
|F (x, T )� F (y, T )|(s2 � s1) =

1

T
|M(x)�M(y)|(s2 � s1) 

 l

T
|x� y|(s2 � s1),

for every x, y 2 B and every s1, s2 2 [0,1), s1  s2. It follows that H belongs to the
class F(⌦, h3), where h3(t) =

m+l

T

t.

For every t 2 [0, L/"], we have

x
"

(t) = x0(") + "

Z
t

0

DF (x
"

(⌧), s) + "2
Z

t

0

DG(x
"

(⌧), s, "),

y
"

(t) = y0(") + "

Z
t

0

F0(y"(⌧)) d⌧ = y
"

(0) + "

Z
t

0

D[F0(y"(⌧))s].

Consequently,
|x

"

(t)� y
"

(t)| =

=

����x0(")� y0(") + "

Z
t

0

DF (x
"

(⌧), s) + "2
Z

t

0

DG(x
"

(⌧), s, ")� "

Z
t

0

D[F0(y"(⌧))s]

���� 

 J"+ "

����
Z

t

0

D[F (x
"

(⌧), s)� F (y
"

(⌧), s)]

����+ "

����
Z

t

0

D[F (y
"

(⌧), s)� F0(y"(⌧))s]

����+

+"2
����
Z

t

0

DG(x
"

(⌧), s, ")

���� .

According to Lemma 2.14, we have the estimate

"2
����
Z

t

0

DG(x
"

(⌧), s, ")

����  "2(h2(t)� h2(0))  "2h2(L/") = "L
h2(L/")

L/"
 "L�.
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Also, it follows from Lemma 5.1 that
����
Z

t

0

D[F (x
"

(⌧), s)� F (y
"

(⌧), s)]

���� 
Z

t

0

|x
"

(s)� y
"

(s)| dh1(s).

Let p be the largest integer such that pT  t. Then

Z
t

0

D[F (y
"

(⌧), s)� F0(y"(⌧))s] =
pX

i=1

Z
iT

(i�1)T

D[F (y
"

(⌧), s)� F0(y"(⌧))s]+

+

Z
t

pT

D[F (y
"

(⌧), s)� F0(y"(⌧))s].

For every i 2 {1, . . . , p}, we obtain

Z
iT

(i�1)T

D[F (y
"

(⌧), s)� F0(y"(⌧))s] =

Z
iT

(i�1)T

D[F (y
"

(⌧), s)� F (y
"

(iT ), s)]

�
Z

iT

(i�1)T

D[F0(y"(⌧))s� F0(y"(iT ))s] +

Z
iT

(i�1)T

D[F (y
"

(iT ), s)� F0(y"(iT ))s]. (7.2.4)

We estimate the first integral on the right-hand side of (7.2.4) as follows:

����
Z

iT

(i�1)T

D[F (y
"

(⌧), s)� F (y
"

(iT ), s)]

���� 
Z

iT

(i�1)T

|y
"

(s)� y
"

(iT )| dh1(s).

Since y
"

satisfies ẏ
"

= "F0(y"(t)), the mean value theorem gives

|y
"

(s)� y
"

(iT )|  "
m

T
(iT � s)  "m, s 2 [(i� 1)T, iT ],

and, consequently,

Z
iT

(i�1)T

|y
"

(s)� y
"

(iT )| dh1(s)  "m[h1(iT )� h1((i� 1)T )]  "m↵.

The same procedure applied to the second integral on the right-hand side of (7.2.4)
gives

����
Z

iT

(i�1)T

D[F0(y"(⌧))s� F0(y"(iT ))s]

����  "m[h3(iT )� h3((i� 1)T )]  "m(m+ l).
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The third integral on the right-hand side of (7.2.4) is zero, because for an arbitrary
y 2 B, we have

Z
iT

(i�1)T

D[F (y, s)� F0(y)s] = F (y, iT )� F (y, (i� 1)T )� F0(y)T

= M(y)� F (y, T ) = 0.

Since pT  L/", we obtain
�����

pX

i=1

Z
iT

(i�1)T

D[F (y
"

(⌧), s)� F0(y"(⌧))s]

�����  p"m↵ + p"m(m+ l)  Lm↵

T
+

m(m+ l)L

T
.

Finally, the following estimate is a consequence of Lemma 2.14:
����
Z

t

pT

D[F (y
"

(⌧), s)� F0(y"(⌧))s]

���� 
����
Z

t

pT

DF (y
"

(⌧), s)

����+
����
Z

t

pT

D[F0(y"(⌧))s]

����

 h1(t)� h1(pT ) + h3(t)� h3(pT ) 

 h1(pT + T )� h1(pT ) + h3(pT + T )� h3(pT )  ↵ +m+ l.

By combining the previous inequalities, we obtain
����
Z

t

0

D[F (y
"

(⌧), s)� F0(y"(⌧))s]

����  K,

where K is a certain constant. It follows that

|x
"

(t)� y
"

(t)|  "

Z
t

0

|x
"

(s)� y
"

(s)| dh1(s) + "(J +K + L�).

Then, since x
"

is a regulated function (we have used Lemma 2.16) and y
"

is a continu-
ous functions, both functions must be bounded in a compact interval and we can apply
Gronwall’s inequality from Theorem 2.10 to obtain

|x
"

(t)� y
"

(t)|  e"(h1(t)�h1(0))"(J +K + L�).

The proof is concluded after observing that

"(h1(t)� h1(0))  "(h1(L/")� h1(0))  "(h1(dL/("T )eT )� h1(0))
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 "

⇠
L

"T

⇡
↵  "

✓
L

"T
+ 1

◆
↵ 

✓
L

T
+ "0

◆
↵.

7.2.2 Measure FDEs and functional dynamic equations on time

scales

In this section, we present periodic averaging principles for measure FDEs and for
functional dynamic equations on time scales.

We start by presenting a periodic averaging principle for measure FDEs. Its proof
follows the same basic ideas we used in the proof of Theorem 7.11. Certain details are
inspired by the paper [35] which is devoted to non-periodic averaging. Our result is
original and it is contained in [84].

Theorem 7.12. Let "0 > 0, L > 0, X ⇢ G([�r, 0],Rn

), ˜X = {x : [�r,1) ! Rn

; x
t

2
X for every t � 0}. Consider a pair of bounded functions f : X ⇥ [0,1) ! Rn, g :

X ⇥ [0,1) ⇥ (0, "0] ! Rn and a nondecreasing function h : [0,1) ! R such that the
following conditions are satisfied:

1. For every x 2 ˜X and " 2 (0, "0], the functions t 7! f(x
t

, t) and t 7! g(x
t

, t, ") are
regulated on [0,1).

2. f is T -periodic in the second variable.

3. There is a constant ↵ > 0 such that h(t+ T )� h(t) = ↵ for every t � 0.

4. There is a constant C > 0 such that for x, y 2 X and t 2 [0,1),

|f(x, t)� f(y, t)|  C kx� yk1 .

Define

f0(x) =
1

T

Z
T

0

f(x, s) dh(s), x 2 X.

Let � 2 X. Suppose for every " 2 (0, "0], the initial value problems
8
><

>:

x(t) = x(0) + "

Z
t

0

f(x
s

, s) dh(s) + "2
Z

t

0

g(x
s

, s, ") dh(s),

x0 = �,
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and 8
><

>:

y(t) = y(0) + "

Z
t

0

f0(ys) ds,

y0 = �

have solutions x", y" :
⇥
0, L

"

⇤
! Rn respectively. Then there exists a constant J > 0 such

that
|x"

(t)� y"(t)|  J",

for every " 2 (0, "0] and t 2 [0, L
"

].

Proof. There is a constant M > 0 such that |f(x, t)|  M and |g(x, t, ")|  M for every
x 2 X, t 2 [0,1) and " 2 (0, "0]. It follows that

|f0(x)| =
����
1

T

Z
T

0

f(x, s) dh(s)

���� 
M

T
[h(T )� h(0)] =

M↵

T
.

Thus if " 2 (0, "0], s, t 2 [0,1), s � t, the solution y" satisfies

|y"(s+ ✓)� y"(t+ ✓)| =
����"
Z

s+✓

t+✓

f0(y
"

�

) d�

���� 
"M(s� t)↵

T
, ✓ 2 [�r, 0],

ky"
s

� y"
t

k1 = sup

✓2[�r,0]
|y"(s+ ✓)� y"(t+ ✓)|  "M(s� t)↵

T
. (7.2.5)

For every t 2 [0, L/"], we have

|x"

(t)� y"(t)| =
����"
Z

t

0

f(x"

s

, s) dh(s) + "2
Z

t

0

g(x"

s

, s, ") dh(s)� "

Z
t

0

f0(y
"

s

) ds

���� 

 "

����
Z

t

0

(f(x"

s

, s)� f(y"
s

, s)) dh(s)

����+ "

����
Z

t

0

f(y"
s

, s) dh(s)�
Z

t

0

f0(y
"

s

) ds

����+

+"2
����
Z

t

0

g(x"

s

, s, ") dh(s)

���� 

 "

Z
t

0

Ckx"

s

� y"
s

k1 dh(s) + "

����
Z

t

0

f (y"
s

, s) dh(s)�
Z

t

0

f0 (y
"

s

) ds

����+ "2M [h(t)� h(0)].

(7.2.6)

At first, we estimate the second term of (7.2.6). Let p be the largest integer such that
pT  t. Then ����

Z
t

0

f (y"
s

, s) dh(s)�
Z

t

0

f0 (y
"

s

) ds

���� 
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
pX

i=1

����
Z

iT

(i�1)T

(f(y"
s

, s)� f(y"(i�1)T , s)) dh(s)

����+

+

pX

i=1

����
Z

iT

(i�1)T

f(y"(i�1)T , s) dh(s)�
Z

iT

(i�1)T

f0(y
"

(i�1)T ) ds

����

+

pX

i=1

����
Z

iT

(i�1)T

(f0(y
"

(i�1)T )� f0(y
"

s

)) ds

����+
����
Z

t

pT

f(y"
s

, s) dh(s)�
Z

t

pT

f0(y
"

s

) ds

���� .

For every i 2 {1, 2, . . . , p} and every s 2 [(i� 1)T, iT ], inequality (7.2.5) gives

ky"
s

� y"(i�1)Tk1  M"↵(s� (i� 1)T )

T
 M"↵.

Using this estimate together with the fact that pT  L

"

, we obtain

pX

i=1

����
Z

iT

(i�1)T

(f(y"
s

, s)� f(y"(i�1)T , s)) dh(s)

���� 
pX

i=1

CM"↵(h(iT )� h((i� 1)T ))

= CM"↵2p  CML↵2

T
.

For every y 2 ˜X, we have

|f0(ys)� f0(yt)| 
1

T

����
Z

T

0

(f(y
s

, �)� f(y
t

, �))dh(�)

���� 

 C

T
ky

s

� y
t

k1(h(T )� h(0)) =
C

T
ky

s

� y
t

k1↵.

Thus,

pX

i=1

����
Z

iT

(i�1)T

(f0(y
"

s

)� f0(y
"

(i�1)T )) ds

���� 
pX

i=1

Z
iT

(i�1)T

��f0(y"
s

)� f0(y
"

(i�1)T )
��
ds 

 C

T
↵

pX

i=1

Z
iT

(i�1)T

ky"
s

� y"(i�1)Tk1 ds  C

T
↵

pX

i=1

"M↵T = "MC↵2p  MCL↵2

T
.

The fact that f is T -periodic in the second variable and the definition of f 0 imply

pX

i=1

����
Z

iT

(i�1)T

f(y"(i�1)T , s) dh(s)�
Z

iT

(i�1)T

f0(y
"

(i�1)T ) ds

���� =
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=

pX

i=1

����
Z

T

0

f(y"(i�1)T , s) dh(s)� f0(y
"

(i�1)T )T

���� = 0.

Finally,
����
Z

t

pT

f(y"
s

, s) dh(s)�
Z

t

pT

f0(y
"

s

) ds

���� 
����
Z

t

pT

f(y"
s

, s) dh(s)

����+
Z

t

pT

|f0(y"
s

)| ds 

 M(h(t)� h(pT )) +
M↵

T
(t� pT ) 

 M(h((p+ 1)T )� h(pT )) +
M↵

T
T = M↵ +M↵ = 2M↵.

By combination of the previous results, we obtain
����
Z

t

0

f(y"
s

, s) dh(s)�
Z

t

0

f0(y
"

s

) ds

���� 
2MCL↵2

T
+ 2M↵. (7.2.7)

Denote the constant on the right-hand side of (7.2.7) by K. Returning back to inequality
(7.2.6), we see that

|x"

(t)� y"(t)|  "

Z
t

0

Ckx"

s

� y"
s

k1 dh(s) + "K + "2M(h(t)� h(0)).

Let  (s) = sup

⌧2[0,s] |x"

(⌧)� y"(⌧)|. Then, for every u 2 [0, t], we have

|x"

(u)� y"(u)|  "

Z
u

0

C (s) dh(s) + "K + "2M(h(u)� h(0)) 

 "

Z
t

0

C (s) dh(s) + "K + "2M(h(t)� h(0)).

Consequently,

 (t)  "

Z
t

0

C (s) dh(s) + "K + "2M(h(t)� h(0)).

Next, note that

"[h(t)� h(0)]  "[h(L/")� h(0)]  "[h(dL/("T )eT )� h(0)]

 "

⇠
L

"T

⇡
↵  "

✓
L

"T
+ 1

◆
↵ 

✓
L

T
+ "0

◆
↵.
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Thus,

 (t)  "

Z
t

0

C (s) dh(s) + "K + "M

✓
L

T
+ "0

◆
↵.

Then the Gronwall’s inequality from Theorem 2.10 gives

 (t)  e"C(h(t)�h(0))

✓
K +M

✓
L

T
+ "0

◆
↵

◆
"  eC(

L
T +"0)↵

✓
K +M

✓
L

T
+ "0

◆
↵

◆
".

Thus, if we take J = eC(
L
T +"0)↵

�
K +M

��
L

T

+ "0
�
↵
��

, we obtain

|x"

(t)� y"(t)|   (t)  J",

for every " 2 (0, "0] and t 2 [0, L
"

].

In order to be able to speak about periodic functions on time scales, we need the
following concept of a periodic time scale.

Definition 7.13. Let T > 0 be a real number. A time scale T is called T -periodic, if
t 2 T implies t+ T 2 T and µ(t) = µ(t+ T ).

We now proceed to the periodic averaging theorem for functional dynamic equations
on time scales. This is an original result and it is contained in [36].

Theorem 7.14. Assume that T > 0, T is a T -periodic time scale, t0 2 T, "0 > 0, L > 0,
B ⇢ Rn. Consider a pair of bounded functions f : G([�r, 0], B) ⇥ [t0,1)T ! Rn and
g : G([�r, 0], B)⇥ [t0,1)T ⇥ (0, "0] ! Rn such that the following conditions are satisfied:

1. For every b > t0 and y 2 G([t0 � r, b], B), the function t 7! f(y
t

, t) is regulated on
[t0, b]T.

2. For every b > t0 and y 2 C([t0�r, b]T, B), the function t 7! f(y⇤
t

, t) is rd-continuous
on [t0, b]T.

3. f is Lipschitz-continuous in the first variable.

4. f is T -periodic and rd-continuous in the second variable.

Denote
f0(y) =

1

T

Z
t0+T

t0

f(y, s)�s, y 2 G([�r, 0], B).
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Let � 2 C([t0 � r, t0]T, B). Suppose, for every " 2 (0, "0], the functional dynamic equation

x�
(t) = "f(x⇤

t

, t) + "2g(x⇤
t

, t, "),

x(t) = �(t), t 2 [t0 � r, t0]T

has a solution x
"

: [t0 � r, t0 + L/"]T ! Rn, and the functional differential equation

ẏ = f0(ys),

y
t0 = �⇤

t0

has a solution y
"

: [t0 � r, t0 + L/"] ! Rn. Then there exists a constant J > 0 such that

|x
"

(t)� y
"

(t)|  J",

for every " 2 (0, "0] and t 2 [t0, t0 + L/"]T.

Proof. Without loss of generality, we can assume that t0 = 0. Otherwise, consider a
shifted problem with the time scale eT = {t� t0; t 2 T} and the right-hand side ef(x, t) =
f(x, t+ t0).

For every t 2 [0,1), y 2 G([�r, 0], B) and " 2 (0, "0], let

f ⇤
(y, t) = f(y, t⇤) and g⇤(y, t, ") = g(y, t⇤, ").

Also, let h(t) = t⇤ for every t 2 [0,1). It follows directly from the definition of h and the
fact that T is T -periodic that

h(t+ T )� h(t) = T, t � 0.

By Theorem 4.13, x⇤
"

satisfies

x⇤
"

(t) = x⇤
"

(0) + "

Z
t

0

f ⇤
((x⇤

"

)

s

, s) dh(s) + "2
Z

t

0

g⇤((x⇤
"

)

s

, s, ") dh(s), t 2 [0, L/"]

(x⇤
"

)0 = �⇤
0.

for every " 2 (0, "0]. From Theorem 4.11, we have

f0(y) =
1

T

Z
T

0

f(y, s)�s =
1

T

Z
T

0

f ⇤
(y, s) dh(s), y 2 G([�r, 0], B).
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For every b 2 [0,1)T and y 2 G([�r, b], B), the function u(t) = f(y
t

, t) is regulated on
[0, b]T. Consequently, there is a sequence of continuous functions u

n

: [0, b]T ! Rn, n 2 N,
which is uniformly convergent to u. It follows that {u⇤

n

}1
n=1 is uniformly convergent to

u⇤ on [0, b]. Using Theorem 4.11 and uniform convergence theorems for the Kurzweil-
Henstock-Stieltjes and �-integrals, we obtain

Z
b

0

u(t)�t = lim

n!1

Z
b

0

u
n

(t)�t = lim

n!1

Z
b

0

u⇤
n

(t) dh(t) =

Z
b

0

u⇤
(t) dh(t) =

Z
b

0

f(y
t

⇤ , t⇤) dh(t).

Theorem 4.12 implies the existence of
R

b

0 f
⇤
(y

t

, t) dh(t).

Since f ⇤ and g⇤ satisfy all assumptions of Theorem 7.12, there exists a constant J > 0

such that
|x⇤

"

(t)� y
"

(t)|  J",

for every " 2 (0, "0] and t 2 [0, L/"]. The proof is finished after observing that x⇤
"

(t) =

x
"

(t) for t 2 [0, L/"]T.

7.2.3 Impulsive measure FDEs and impulsive functional dynamic

equations on time scales

In this section, we present periodic averaging principles for measure FDEs and for
functional dynamic equations involving impulses.

We start by proving a periodic averaging theorem for measure FDEs with impulses.
This is a new result which can be found in [37].

Theorem 7.15. Assume that "0 > 0, L > 0, B ⇢ Rn, X = G([�r, 0], B), m 2 N and
0  t1 < t2 < · · · < t

m

< T . Consider a pair of bounded functions f : X ⇥ [0,1) ! Rn,
g : X⇥ [0,1)⇥ (0, "0] ! Rn and a nondecreasing left continuous function h : [0,1) ! R
which is continuous at t1, . . . , tm. Let I

k

: B ! Rn, k 2 {1, 2, . . . ,m} be bounded and
Lipschitz continuous functions. For every integer k > m, define t

k

and I
k

by the recursive
formulas t

k

= t
k�m

+ T and I
k

= I
k�m

. Suppose the following conditions are satisfied:

1. The integral
R

b

0 f(yt, t) dh(t) exists, for every b > 0 and y 2 G([�r, b], B).

2. f is Lipschitz continuous with respect to the first variable.

3. f is T -periodic in the second variable.

4. There is a constant ↵ > 0 such that h(t+ T )� h(t) = ↵ for every t � 0.
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5. The integral

f0(x) =
1

T

Z
T

0

f(x, s) dh(s)

exists for every x 2 X.

Denote

I0(y) =
1

T

mX

k=1

I
k

(y), y 2 B.

Let � 2 X and suppose, for every " 2 (0, "0], the initial value problems
8
>>><

>>>:

x(t) = x(0) + "

Z
t

0

f(x
s

, s) dh(s) + "2
Z

t

0

g(x
s

, s, ") dh(s) + "
X

k2N,
tk<t

I
k

(x(t
k

)),

x0 = �

and 8
><

>:

y(t) = y(0) + "

Z
t

0

(f0(ys) + I0(y(s))) ds,

y0 = �

have solutions x", y" : [�r, L/"] ! B respectively. Then there exists a constant J > 0

such that
|x"

(t)� y"(t)|  J",

for every " 2 (0, "0] and t 2 [0, L/"].

Proof. Define a function ˜h(t) : [0,1) ! R by

˜h(t) =

8
<

:
h(t), t 2 [0, t1],

h(t) + c
k

, t 2 (t
k

, t
k+1] for some k 2 N,

where the sequence {c
k

}1
k=1 is chosen in such a way that �

+
˜h(t

k

) = 1 for every k 2 N.
Note that ˜h is nondecreasing, left continuous, and there exists a constant ↵̃ > 0 such that

˜h(t+ T )� ˜h(t) = ↵̃

for every t � 0.
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According to the assumptions, we have

x"

(t) = x"

(0) +

Z
t

0

�
"f(x"

s

, s) + "2g(x"

s

, s, ")
�
dh(s) +

X

k2N,
tk<t

"I
k

(x"

(t
k

)),

for every " 2 (0, "0] and t 2 [0, L/"]. Let

F "

(y, t) =

8
<

:
"f(y, t) + "2g(y, t, "), t /2 {t1, t2, . . .},

"I
k

(y(0)), t = t
k

for some k 2 N,

for every y 2 X and t � 0. By Theorem 4.16, we obtain

x"

(t) = x"

(0) +

Z
t

0

F "

(x"

s

, s) d˜h(s), (7.2.8)

for every " 2 (0, "0] and t 2 [0, L/"]. For every y 2 X and t � 0, we have

F "

(y, t) = " ˜f(y, t) + "2g̃(y, t, "), (7.2.9)

where

˜f(y, t) =

8
<

:
f(y, t), t /2 {t1, t2, . . .},

I
k

(y(0)), t = t
k

for some k 2 N

and

g̃(y, t, ") =

8
<

:
g(y, t, "), t /2 {t1, t2, . . .},

0, t = t
k

for some k 2 N.

It follows from (7.2.8) and (7.2.9) that for every " 2 (0, "0], the function x"

: [�r, L/"] ! B

is a solution of the initial value problem

x(t) = x(0) + "

Z
t

0

˜f(x
s

, s) d˜h(s) + "2
Z

t

0

g̃(x
s

, s, ") d˜h(s),

x0 = �.

The function ˜f is Lipschitz continuous with respect to the first variable and T -periodic
in the second variable. Using Lemma 4.15, we have

Z
T

0

˜f(x, s) d˜h(s) =

Z
T

0

f(x, s) dh(s) +
mX

k=1

˜f(x, t
k

)�

+
˜h(t

k

) =
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=

Z
T

0

f(x, s) dh(s) +
mX

k=1

I
k

(x(0))

for every x 2 X. Consequently, the function

˜f0(x) =
1

T

Z
T

0

˜f(x, s) d˜h(s), x 2 X,

satisfies

˜f0(x) =
1

T

Z
T

0

f(x, s) dh(s) +
1

T

mX

k=1

I
k

(x(0)) = f0(x) + I0(x(0)), x 2 X.

By Theorem 7.12, there exists a constant J > 0 such that

|x"

(t)� y"(t)|  J",

for every " 2 (0, "0] and t 2 [0, L/"] and the proof is complete.

Finally, we present a periodic averaging theorem for impulsive functional dynamic
equations on time scales. Such result is new and can be found in [36].

Theorem 7.16. Assume that T is a T -periodic time scale, [t0 � r, t0 + �]T a time scale
interval, t0 2 T, "0 > 0, L > 0, B ⇢ Rn, X = G([�r, 0], B), m 2 N, t1, . . . , tm 2 T
are right-dense points such that t0  t1 < t2 < · · · < t

m

< t0 + T . Let I
k

: B ! Rn,
k 2 {1, 2, . . . ,m} be bounded and Lipschitz continuous functions. For every integer k > m,
define t

k

and I
k

by the recursive formulas t
k

= t
k�m

+ T and I
k

= I
k�m

. Consider a pair
of bounded functions f : X ⇥ [t0,1)T ! Rn, g : X ⇥ [t0,1)T ⇥ (0, "0] ! Rn such that the
following conditions are satisfied:

1. The integral
R

b

0 f(yt, t)�t exists, for every b > 0 and y 2 G([�r, b], B).

2. f is Lipschitz continuous with respect to the first variable.

3. f is T -periodic in the second variable.

4. The integral

f0(x) =
1

T

Z
t0+T

t0

f(x, s)�s

exists for every x 2 X.
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Denote

I0(y) =
1

T

mX

k=1

I
k

(y), y 2 B.

Let � 2 G([t0 � r, t0]T, B) and suppose for every " 2 (0, "0], the initial value problems

x(t) = x(t0) + "

Z
t

t0

f(x⇤
s

, s)�s+ "2
Z

t

t0

g(x⇤
s

, s, ")�s+ "
X

k2N,
tk<t

I
k

(y(t
k

)), t 2 [t0, t0 + L/"]T,

x(t) = �(t), t 2 [t0 � r, t0]T,

and

y(t) = y(t0) + "

Z
t

t0

(f0(ys) + I0(y(s))) ds,

y
t0 = �⇤

t0

have solutions x"

: [t0 � r, t0 + L/"]T ! B and y" : [t0 � r, t0 + L/"] ! B respectively.
Then there exists a constant J > 0 such that

|x"

(t)� y"(t)|  J",

for every " 2 (0, "0] and t 2 [t0, t0 + L/"]T.

Proof. Without loss of generality, we can assume that t0 = 0. Otherwise, consider a
shifted problem with time scale eT = {t � t0; t 2 T} and functions ef(x, t) = f(x, t + t0)

and eg(x, t, ") = g(x, t+ t0, ").

For every t 2 [t0,1), x 2 X and " 2 (0, "0], let

f ⇤
(x, t) = f(x, t⇤) and g⇤(x, t, ") = g(x, t⇤, ").

Also, let h(t) = t⇤ for every t 2 [t0,1). Since T is T -periodic, it follows that

h(t+ T )� h(t) = T, t � 0.

From Theorem 4.11, we obtain

f0(x) =
1

T

Z
T

0

f(x, s)�s =
1

T

Z
T

0

f ⇤
(x, s) dh(s)

for every x 2 X.
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For every b > 0 and y 2 G([�r, b], B), the integral
R

b

0 f(yt, t)�t exists. Then, Theorems
4.11 and 4.12 imply

Z
b

0

f(y
t

, t)�t =

Z
b

0

f(y
t

⇤ , t⇤) dh(t) =

Z
b

0

f(y
t

, t⇤) dh(t) =

Z
b

0

f ⇤
(y

t

, t) dh(t),

that is, the last integral exists as well.

It follows from Theorem 4.23 that for every " 2 (0, "0] and t 2 [0, L/"], we have

(x"

)

⇤
(t) = (x"

)

⇤
(0) + "

Z
t

0

f ⇤
((x"

)

⇤
s

, s) dh(s) + "2
Z

t

0

g⇤((x"

)

⇤
s

, s, ") dh(s) + "
X

k2N,
tk<t

I
k

((x"

)

⇤
(t

k

)),

(x"

)

⇤
0 = �⇤

0.

Finally, by Theorem 7.15, there exists a constant J > 0 such that

|(x"

)

⇤
(t)� y"(t)|  J"

for every " 2 (0, "0] and t 2 [0, L/"]. We conclude the proof by observing that (x"

)

⇤
(t) =

x"

(t) for t 2 [0, L/"]T.

7.3 Examples

In this section, we present some examples to illustrate the application of averaging
principles.

Example 7.17. We consider the original equation given by

(
ẋ(t) = 4"(cos2 t)x(t),

x(0) = 1.

Then, using the definition of f0, we obtain the following averaged equation:

Averaged equation (
ẏ(t) = 2"y(t);

y(0) = 1
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In the graph above, the blue line represents the solution of original equation and the
red line represents the solution of averaged equation. We point out that the solution of
original equation and the solution of averaged equation are close to each other. Here, we
consider " = 0.1.

Example 7.18. We consider the original equation given by

(
ẋ(t) = " (e�t

) x(t);

x(0) = 1,

and the averaged equation is given by

(
ẏ(t) = 0;

y(0) = 1,

We consider " = 0.5 to plot the graphs below. The blue line represents the solution of
original equation and the red line represents the solution of averaged equation.
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Example 7.19. Consider the delay differential equation non-autonomous given by

ẋ(t) = "
�
�4cos

2
(t)x(t� r) + x(t)

�
,

where x(t) = 1 for t 2 [�r, 0].

Averaged equation
ż(t) = "(�2z(t� r) + z(t)),

where z(t) = 1 for t 2 [�r, 0].

In the graph below, we consider " = 0.1 and r = 5.



Chapter

8
Various types of stability concepts

In this chapter, we present new concepts of stability of the trivial solution of various
types of equations. This chapter is divided into 6 sections. In the first one, we present
new concepts of stability of the trivial solution of measure FDEs. In the second section,
we specialize the relation between measure FDEs and generalized ODEs to our purposes
in the sequel. The third section is devoted to new concepts of stability of the trivial
solution of generalized ODEs. We also present a result which follows from the definitions
presented in this section. In the fourth section, we present some relations between the
stability concepts for measure FDEs and the corresponding ones for generalized ODEs,
using the correspondence between these equations presented in Chapter 4. Section 5 is
devoted to new concepts of stability of the trivial solution of impulsive measure FDEs.
Also, we relate them with the corresponding ones for measure FDEs and, as a consequence,
for generalized ODEs. Finally, in the last section, we introduce new concepts of stability of
the trivial solution of impulsive functional dynamic equations on time scales and we relate
them to the corresponding ones for other types of equations, using the correspondence
between equations presented in our work.

All the results presented in this chapter are new and they are contained in [38].

8.1 Stability for measure FDEs

Consider O ⇢ G ([t0 � r,+1),Rn

) with the prolongation property and P = {y
t

; y 2
O, t 2 [t0,1)} ⇢ G([�r, 0],Rn

). Here, G ([t0 � r,+1),Rn

) denotes the set of all bounded
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regulated functions from [t0 � r,1) to Rn.

In this section, we start by introducing new concepts of stability for measure FDEs.
We consider the following equation

Dy = f(y
t

, t)Dg, (8.1.1)

where y
t

is given by the formula y
t

(✓) = y(t + ✓), ✓ 2 [�r, 0], r > 0, and Dy,Dg are the
distributional derivatives, in the sense of distributions of L. Schwartz, of y and g, and f

is a function from P ⇥ [t0,1) to Rn. The integral form of (8.1.1) is given by

y(t) = y(t0) +

Z
t

t0

f(y
s

, s) dg(s), t � t0 (8.1.2)

where we consider the integral on the right-hand side of (8.1.2) in the sense of Kurzweil-
Henstock-Stieltjes integral taken with respect to a nondecreasing function g : [t0,1) ! R.

We assume that the function f : P ⇥ [t0,+1) ! Rn satisfies the following conditions:

(H1) The integral
R

t

t0
f(y

s

, s)dg(s) exists for every y 2 O and every t 2 [t0,1).

(H2) There exists a constant M > 0 such that the inequality
����
Z

s2

s1

f(y
s

, s)dg(s)

����  M [g(s2)� g(s1)]

holds for every y 2 O and every s2, s1 2 [t0,1)

(H3) There exists a constant L > 0 such that the inequality
����
Z

s2

s1

[f(y
s

, s)� f(z
s

, s)]dg(s)

����  L

Z
s2

s1

ky
s

� z
s

k1dg(s)

holds for every y, z 2 O and every s1, s2 2 [t0,1).

We assume that f(0, t) = 0 for every t 2 [t0,1) so that y ⌘ 0 is a solution of (8.1.1).

We recall the classical definitions of Lyapunov stability, uniform (Lyapunov) stability
and uniform asymptotic stability of the trivial solution of (8.1.1). The reader may want
to consult [57], for instance.

Definition 8.1. The trivial solution of system (8.1.1) is called Lyapunov stable, if for
every " > 0 and � 2 R, there exists � = �(", �) > 0 such that if � 2 P and y : [�, v] ! Rn,
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with [�, v] ⇢ [t0,+1) and [�, v] 3 t0, is a solution of (8.1.1) such that y
�

= � and

k�k1 < �,

then
ky

t

(�, �)k1 < ", t 2 [�, v].

Definition 8.2. The trivial solution of system (8.1.1) is called uniformly stable, if the
number � in Definition 8.1 is independent of �.

Definition 8.3. The solution y ⌘ 0 of (8.1.1) is called uniformly asymptotically stable,
if it is uniformly stable and if there exists �0 > 0 such that for every " > 0, there exists
T = T (", �0) � 0 such that if � 2 P and y : [�, v] ! Rn, with [�, v] ⇢ [t0,+1), is a
solution of (8.1.1) such that y

�

= � and

k�k1 < �0,

then
ky

t

(�, �)k1 < ", t 2 [�, v] \ [� + T,+1).

Now, we consider the perturbed measure FDE given by

Dy = f (y
t

, t)Dg + p(t)Du, t � t0 (8.1.3)

whose integral form is given by

y (t) = y(t0) +

Z
t

t0

f (y
s

, s) dg(s) +

Z
t

t0

p(s)du(s), t � t0 (8.1.4)

where the integrals are in the sense of Kurzweil-Henstock-Stieltjes. We consider that the
functions g, u : [t0,+1) ! R are nondecreasing and the conditions (H1), (H2) and (H3)

are satisfied.

Now, we assume that the function p : [t0,1) ! Rn satisfies the following conditions:

(H4) The integral
R

t

t0
p(s)du(s) exists for every t 2 [t0,1);

(H5) There exists a constant K > 0 such that
����
Z

s2

s1

p(s)du(s)

����  K[u(s2)� u(s1)],
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for all s1, s2 2 [t0,1).

The following concepts of stability of the trivial solution of (8.1.1) generalizes the
concept by A. Halanay of integral stability. See [53].

Definition 8.4. The solution y ⌘ 0 of (8.1.1) is said to be integrally stable, if for every
" > 0, there is � = �(") > 0 such that if  2 P with k k1 < � and

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < �,

where t0  �  v < +1, then

|ȳ(t; �,  )| < ", for every t 2 [�, v],

where ȳ(t; �,  ) is a solution of the perturbed equation (8.1.3) with y
�

=  .

Definition 8.5. The solution y ⌘ 0 of (8.1.1) is called integrally attracting, if there is
e� > 0 and for every " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0 such that if

k k1 < e� and sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < ⇢,

where t0  �  v < +1, then

|ȳ(t; �,  )| < " for all t � � + T, t 2 [�, v]

where ȳ(t; �,  ) is a solution of equation (8.1.3) with y
�

=  .

Definition 8.6. The solution y ⌘ 0 of (8.1.1) is called integrally asymptotically stable, if
it is integrally stable and integrally attracting.

8.2 Measure FDEs regarded as generalized ODEs

In this section, we recall the correspondence between generalized ODEs and measure
FDEs presented in Chapter 6 and we specialize this correspondence for measure FDEs
with perturbations.

Suppose the function f : P ⇥ [t0,+1) ! Rn satisfies conditions (H1), (H2) and (H3)

and p : [t0,+1) ! Rn satisfies conditions (H4) and (H5). Moreover, assume that the
functions u : [t0,+1) ! R and g : [t0,+1) ! R are nondecreasing.
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For y 2 O and t 2 [t0,+1), define the following function

F (y, t)(#) =

8
>>>>>><

>>>>>>:

0, t0 � r  #  t0,
Z

#

t0

f(y
s

, s)dg(s), t0  #  t < +1,

Z
t

t0

f(y
s

, s)dg(s), t  # < +1

(8.2.1)

and for t 2 [t0,+1), define the following function

P (t) (#) =

8
>>>>>><

>>>>>>:

0, t0 � r  #  t0,
Z

#

t0

p(s)du(s), t0  #  t < +1,

Z
t

t0

p(s)du(s), t  # < +1.

(8.2.2)

Then,
G (y, t) = F (y, t) + P (t) (8.2.3)

defines an element G (y, t) of G ([t0 � r,+1),Rn

) and G (y, t) (#) 2 Rn is the value of
G (y, t) at a point # 2 [t0 � r,+1), that is,

G : O ⇥ [t0,+1) ! G([t0 � r,+1),Rn

).

Consider the following generalized ODE

dx

d⌧
= DG(x, t), (8.2.4)

where the function G is given by (8.2.3).

Let h1 : [t0,+1) ! R and h2 : [t0,+1) ! R be defined by

h1(t) = (M + L)[g(t)� g(t0)] and h2(t) = K[u(t)� u(t0)], t 2 [t0,+1). (8.2.5)

Then, let h : [t0,+1) ! R be defined by

h(t) = h1(t) + h2(t), t 2 [t0,+1). (8.2.6)

By the definition of h, it is clear that h is left continuous and nondecreasing.
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If the function f : P ⇥ [t0,1) ! Rn satisfies conditions (H1), (H2) and (H3) and
p : [t0,1) ! Rn satisfies conditions (H4) and (H5), it is not difficult to prove that the
function G given by (8.2.3) belongs to the class F(⌦, h), where ⌦ = O ⇥ [t0,+1). For
more details of this fact, see [38].

The next result gives a correspondence between generalized ODEs and measure FDEs
with perturbations. The proof follows analogously to the proofs of Theorems 4.5 and 4.6,
just observing that, here, we are dealing with intervals of the form [t0,1) and thus, we
have to prove it locally first, and then, to extend it to [t0,1).

Proposition 8.7. Let O ⇢ G([t0 � r,1),Rn

) with the prolongation property, P =

{x
t

; x 2 O, t 2 [t0,1)} and � 2 P .

(i) Assume that g : [t0,1) ! R and u : [t0,1) ! R are nondecreasing functions,
f : P ⇥ [t0,1) ! Rn satisfies conditions (H1), (H2), (H3) and p : [t0,1) ! Rn

satisfies conditions (H4) and (H5). Let y : [t0 � r,1) ! O be a solution of the
measure functional differential equation

(
Dy = f(y

t

, t)Dg + p(t)Du, t 2 [t0,1),

y
t0 = �.

(8.2.7)

For every t 2 [t0 � r,1), let

x(t)(#) =

8
<

:
y(#), # 2 [t0 � r, t],

y(t), # 2 [t,1).

Then, the function x : [t0,1) ! O is a solution of the generalized ordinary differ-
ential equation

dx

d⌧
= DG (x, t)

with G given by (8.2.3), satisfying the following initial condition

x(t0)(#) =

(
�(#� t0), for # 2 [t0 � r, t0],

x(t0)(t0), t0  # < +1.

(ii) Reciprocally, let G be given by (8.2.3). If x : [t0,+1) ! O is a solution of the
generalized ordinary differential equation

dx

d⌧
= DG (x, t) ,
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with the following initial condition

x(t0)(#) =

(
�(#� t0), t0 � r  #  t0,

x(t0)(t0), t0  # < +1.

Then, the function y : [t0 � r,1) ! O defined by

y (#) =

(
x (t0) (#) , t0 � r  #  t0

x (#) (#) , t0  # < +1

is a solution of the measure functional differential equation

(
Dy = f(y

t

, t)Dg + p(t)Du, t 2 [t0,+1),

y
t0 = �.

(8.2.8)

8.3 Stability for generalized ODEs

Let X be a Banach space and B
c

= {y 2 X; kyk < c} with c > 0. Define ⌦ =

B
c

⇥ [t0,1). Suppose F : ⌦ ! X belongs to F(⌦, h1), where h1 : [t0,1) ! R is a
nondecreasing function, and satisfies F (0, t) � F (0, s) = 0, for t, s 2 [t0,+1). Then, for
every [�, v] ⇢ [t0,+1), we have

Z
v

�

DF (0, t) = F (0, v)� F (0, �) = 0

which implies that x ⌘ 0 is a solution on [t0,1) of the generalized ODE

dx

d⌧
= DF (x, t). (8.3.1)

Recall that if x : [�, v] ! X is a solution of (8.3.1), then the following assertions hold:

(a) x is of bounded variation on [�, v];

(b) x(s) = x(�) +

Z
s

�

DF (x(⌧), t), for s 2 [�, v], by definition.

Now, we present some new concepts concerning stability of the trivial solution of
generalized ODEs.
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Definition 8.8. The trivial solution x ⌘ 0 of (8.3.1) is called regularly stable, if for every
" > 0, there exists � = �(") > 0 such that if x : [�, v] ! B

c

, with t0  � < v < +1, is a
regulated function which satisfies

kx(�)k < � and sup

s2[�,v]

����x(s)�
Z

s

�

DF (x(⌧), t)

���� < �,

then
kx(t)k < ", t 2 [�, v].

Definition 8.9. The trivial solution x ⌘ 0 of (8.3.1) is called regularly attracting if there
exists �0 > 0 and for every " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0 such that if
x : [�, v] ! B

c

, with t0  � < v < +1, is a regulated function satisfying

kx(�)k < �0 and sup

s2[�,v]

����x(s)�
Z

s

�

DF (x(⌧), t)

���� < ⇢,

then
kx(t)k < ", for t 2 [�, v] \ [� + T,+1) and � � t0.

Definition 8.10. The trivial solution x ⌘ 0 of (8.3.1) is called regularly asymptotically
stable, if it is regularly stable and regularly attracting.

Besides the generalized ODE (8.3.1), we consider the perturbed generalized ODE

dx

d⌧
= D[F (x, t) + P (t)], (8.3.2)

where F : O ⇥ [t0,1) ! G([t0 � r,1),Rn

) and P : [t0,1) ! G([t0 � r,1),Rn

) which
are given by (8.2.1) and (8.2.2).

Now, consider the following definitions involving the perturbed generalized ODEs.

Definition 8.11. The trivial solution x ⌘ 0 of (8.3.1) is called regularly stable with respect
to perturbations, if for every " > 0, there exists � = �(") > 0 such that, if kx0k < � and
P 2 G�

([�, v], X) with
sup

s2[�,v]
kP (s)� P (�)k < �,

then
kx̄(t; �, x0)k < ", for every t 2 [�, v]

where x̄(t; �, x0) is a solution of the perturbed generalized ODE (8.3.2), with x̄(�; �, x0) =

x0 and [�, v] ⇢ [t0,+1).



8.3 Stability for generalized ODEs 181

Definition 8.12. The trivial solution x ⌘ 0 of (8.3.1) is called regularly attracting with
respect to perturbations, if there exists e� > 0 and for every " > 0, there exist T = T (") � 0

and ⇢ = ⇢(") > 0 such that, if

kx0k < e� and sup

s2[�,v]
kP (s)� P (�)k < ⇢

with P 2 G�
([�, v], X), then

kx̄(t; �, x0)k < ", for all t � � + T, t 2 [�, v]

where x̄(t; �, x0) is a solution of the perturbed generalized ODE (8.3.2) with x̄(�; �, x0) =

x0 and [�, v] ⇢ [t0,+1).

Definition 8.13. The trivial solution x ⌘ 0 of (8.3.1) is called regularly asymptotically
stable with respect to perturbations, if it is both stable and attracting with respect to
perturbations.

The following result shows us how the previous concepts of stability can be related.
It is an original result which is contained in [38].

Proposition 8.14. The following statements hold.

(i) The trivial solution x ⌘ 0 of (8.3.1) is regularly stable, if and only if, it is regularly
stable with respect to perturbations.

(ii) The trivial solution x ⌘ 0 of (8.3.1) is regularly attracting, if and only if, it is
regularly attracting with respect to perturbations.

(iii) The trivial solution x ⌘ 0 of (8.3.1) is regularly asymptotically stable, if and only
if, it is regularly asymptotically stable with respect to perturbations.

Proof. Let us prove (i). Assume that the trivial solution x ⌘ 0 of (8.3.1) is regularly
stable. Let " > 0 and the quantity � = �(") > 0 be given according to Definition 8.11.
Also, let x(t) = x(t; �, x0) be a solution of the perturbed generalized ODE (8.3.2) on [�, v].
Then, by the definition, we obtain, for s 2 [�, v],

x(s)� x(�) =

Z
s

�

DF (x(⌧), t) + P (s)� P (�). (8.3.3)
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Also, suppose kx(�)k = kx(�; �, x0)k < � and sup

s2[�,v] kP (s)� P (�)k < �. It follows
from (8.3.3) that

sup

s2[�,v]

����x(s)�
Z

s

�

DF (x(⌧), t)

����  kx(�)k+ sup

s2[�,v]
kP (s)� P (�)k < 2�.

Then, the regularly stability implies

kx(t)k = kx(t, �, x0)k < ", for t 2 [�, v],

and the trivial solution of (8.3.1) is regularly stable with respect to perturbations.

Reciprocally, if the trivial solution x ⌘ 0 of (8.3.1) is regularly stable with respect to
perturbations, let x : [�, v] ! B

c

, t0  � < v < +1, be a regulated function on [�, v]

such that
kx(�)k < � and sup

s2[�,v]

����x(s)�
Z

s

�

DF (x(⌧), t)

���� < �,

where � > 0 corresponds to some " > 0 from Definition 8.11.

For s 2 [�, v], define P (s) = P (�) + x(s) � x(�) �
R

s

�

DF (x(⌧), t). Then, for all
s1, s2 2 [�, v], we have

x(s2)� x(s1) =

Z
s2

s1

DF (x(⌧), t) + P (s2)� P (s1),

which implies that x is a solution of (8.3.2) on [�, v]. Moreover,

sup

s2[�,v]
kP (s)� P (�)k  sup

s2[�,v]

����x(s)�
Z

s

�

DF (x(⌧), t)

����+ kx(�)k < 2�.

Thus, the regular stability with respect to perturbations implies kx(t)k = kx(t; �, x0)k <

", for all t 2 [�, v]. Then it follows that the trivial solution x ⌘ 0 of (8.3.1) is regularly
stable.

Now, assume that the trivial solution x ⌘ 0 of (8.3.1) is regularly attracting. Then
there exists e� > 0 and for every " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0 such
that if x : [�, v] ! B

c

, t0  � < v < +1, is a regulated function such that kx(�)k < e�
and

sup

s2[�,v]

����x(s)�
Z

s

�

DF (x(⌧), t)

���� < ⇢,
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then
kx(t)k < ", t 2 [�, v] \ [� + T,+1), � � t0.

Denote the solution of the perturbed generalized ODE (8.3.2) satisfying x(�; �, x0) =

x0 by x(t) = x(t; �, x0). Suppose there exists e� > 0 and for every " > 0, there exists
⇢ = ⇢(") > 0 such that kx0k < e� and

sup

s2[�,v]
kP (s)� P (�)k < ⇢.

Moreover, suppose P 2 G�
([�, v], X). Then kx0k = kx(�)k < e� and, by the definition of

a solution of equation (8.3.2), we obtain

sup

s2[�,v]

����x(s)� x(�)�
Z

s

�

DF (x(⌧), t)

���� = sup

s2[�,v]
kP (s)� P (�)k .

Therefore,

sup

s2[�,v]

����x(s)�
Z

s

�

DF (x(⌧), t)

����  sup

s2[�,v]
kP (s)� P (�)k+ kx(�)k < ⇢+ e�.

Hence, since x is regularly attracting, we have

kx(t, �, x0)k = kx(t)k < ", for all t � � + T, t 2 [�, v],

that is, the trivial solution x ⌘ 0 of (8.3.1) is regularly attracting with respect to pertur-
bations.

Reciprocally, we assume that the trivial solution x ⌘ 0 of (8.3.1) is regularly attracting
with respect to perturbations. Let x : [�, v] ! B

c

, t0  � < v < +1, be a regulated on
[�, v] satisfying

kx(�)k < e� and sup

s2[�,v]

����x(s)�
Z

s

�

DF (x(⌧), t)

���� < ⇢.

Again, for s 2 [�, v], define P (s) = P (�) + x(s) � x(�) �
R

s

�

DF (x(⌧), t). Then x(t) is a
solution of (8.3.2) on [�, v]. Thus,

sup

s2[�,v]
kP (s)� P (�)k < ⇢+ e�.
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Therefore, Definition 8.12 yields

kx(t)k < ", t 2 [�, v] \ [� + T,+1), � � t0.

which implies the regular attractivity of the trivial solution of (8.3.1).

Item (iii) follows from (i) and (ii) and the proof is complete.

8.4 Relations between stability concepts for measure FDEs
and generalized ODEs

In this section, we present some results which establish relations between stability con-
cepts for generalized ODEs and the corresponding stability concepts for measure FDEs. In
order to obtain these results, we use the correspondence between these types of equations
described by Proposition 8.7.

Let O ⇢ G([t0 � r,+1),Rn

) with the prolongation property and P = {y
t

, y 2 O, t 2
[t0,1)} ⇢ G([�r, 0],Rn

). Consider the measure FDE

Dx = f(x
t

, t)Dg, (8.4.1)

where f : P ⇥ [t0,+1) ! Rn satisfies conditions (H1), (H2) and (H3) and g : [t0,+1] !
R is a nondecreasing function. Also, assume that Dx and Dg are the distributional
derivatives with respect to x and g and f(0, t) = 0 for every t 2 [t0,+1), which implies
that y ⌘ 0 is a solution of (8.4.1).

Consider the function

F : O ⇥ [t0,+1) ! G([t0 � r,+1),Rn

)

defined by

F (y, t)(#) =

8
>>>>>><

>>>>>>:

0, t0 � r  #  t0,
Z

#

t0

f(y
s

, s)dg(s), t0  #  t < +1,

Z
t

t0

f(y
s

, s)dg(s), t  # < +1

(8.4.2)

Since f(0, t) = 0, for every t 2 [t0,1), F (0, t) = 0, for all t 2 [t0,+1), which implies
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that x ⌘ 0 is a solution of the generalized differential equation

dx

d⌧
= DF (x, t) (8.4.3)

on [t0,+1).

Further, we consider the perturbed measure FDE

Dy = f(y
t

, t)Dg + p(t)Du, (8.4.4)

where p : [t0,1) ! Rn satisfies conditions (H4) and (H5) and u : [t0,1) ! R is a
nondecreasing function. Moreover, Du is the distributional derivatives in the sense of
L. Schwartz with respect to u. By Proposition 8.7, it is possible to associate an initial
value problem for equation (8.4.4) with initial value problem for the following perturbed
generalized ODE

dx

d⌧
= DG(x, t) = D[F (x, t) + P (t)], (8.4.5)

where F : O ⇥ [t0,+1) ! G([t0 � r,+1),Rn

) and P : [t0,+1) ! G([t0 � r,+1),Rn

)

are given by (8.4.2) and

P (t) (#) =

8
>>>>>><

>>>>>>:

0, t0 � r  #  t0,
Z

#

t0

p(s)du(s), t0  #  t < +1,

Z
t

t0

p(s)du(s), t  # < +1.

(8.4.6)

We are now able to present a result which relates the concepts of regularly stability
and regularly attractivity of the trivial solution of measure FDEs and the corresponding
concepts for generalized ODEs. Such result is new. See [38].

Theorem 8.15. Suppose the function f : P ⇥ [t0,1) ! Rn satisfies conditions (H1),
(H2) and (H3). Assume that the functions g, u : [t0,1) ! R are nondecreasing and
p : [t0,1) ! Rn satisfies conditions (H4) and (H5). Then the following statements hold:

(i) The trivial solution y ⌘ 0 of (8.4.1) is integrally stable, if and only if, the trivial
solution x ⌘ 0 of (8.4.3) is regularly stable.

(ii) The trivial solution y ⌘ 0 of (8.4.1) is integrally attracting, if and only if, the trivial
solution x ⌘ 0 of (8.4.3) is regularly attracting.
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(iii) The trivial solution y ⌘ 0 of (8.4.1) is integrally asymptotically stable, if and only
if, the trivial solution x ⌘ 0 of (8.4.3) is regularly asymptotically stable.

Proof. We start by proving (i). Suppose the trivial solution of (8.4.1) is integrally stable.
Then, given " > 0, there exists � = �(") > 0 such that if � 2 P with k�k1 < � and

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < �,

then
|ȳ(t; �, �)| < "

2

, t 2 [�, v],

where ȳ(t; �, �) is a solution of (8.4.4) such that ȳ
�

= �.

We will prove that the trivial solution of generalized equation (8.4.3), with F given
by (8.2.1), is regularly stable with respect to perturbations, then the result will follow by
Proposition 8.14.

Let x(t; �, x0) be a solution of the perturbed generalized ODE (8.4.5) with the initial
condition x(�; �, x0) = x0, where F and P are given by (8.2.1) and (8.2.2), respectively.
Let " > 0 and suppose there exists � = �(") > 0 such that � < " and, moreover, assume
that

kx0k1 < � and sup

t2[�,v]
kP (t)� P (�)k < �,

where x0 2 G�
([t0 � r,1),Rn

) and P 2 G�
([�, v],Rn

).

We have kx(�)k = kx(�; �, x0)k = kx0k < � which means that sup
✓2[��r,+1) |x(�)(✓)| <

� and, therefore, sup
✓2[��r,�] |�(✓��)| < �/2, by the definition of initial condition of (8.4.5).

Thus,
k�k1 < �/2.

Since x is a solution of the perturbed generalized ODE on [�, v], we have

x(u2)� x(u1) =

Z
u2

u1

DF (x(⌧), s) + P (u2)� P (u1),

for every u1, u2 2 [�, v].

Therefore,

sup

t2[�,v]

����x(t)� x(�)�
Z

t

�

DF (x(⌧), s)

���� = sup

t2[�,v]
kP (t)� P (�)k < �/2.
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Then, it follows that

kP (t)� P (�)k = sup

#2[��r,t]
|P (t)(#)� P (�)(#)|

� sup

#2[�,t]
|P (t)(#)� P (�)(#)|

= sup

#2[�,t]

����
Z

#

�

p(s)du(s)

����

�
����
Z

t

�

p(s)du(s)

���� (8.4.7)

Then, we get

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� 
�

2

.

Thus, by the integral stability of the trivial solution of (8.4.1), |y(t)| < "/2, for all
t 2 [�, v].

Finally, for t 2 [�, v], we have

kx(t)k1 = sup

✓2[��r,+1)
|x(t)(✓)| = sup

✓2[��r,t]
|y(✓)|

 k�k1 + sup

✓2[�,t]
|y(✓)|  �

2

+

"

2

< ",

since � < " and we have the sufficiency of item (i).

Now, using (i) from Proposition 8.14, we assume that the trivial solution of (8.4.3) is
regularly stable with respect to perturbations. Thus, given " > 0, let � = �(") > 0 be the
quantity from Definition 8.11.

Let y(t; �, �) be a solution of the perturbed FDE (8.4.4). Suppose � 2 P with k�k1 <

� and sup

t2[�,v]

���
R

t

�

p(s)du(s)
��� < �/2. We want to prove that y ⌘ 0 is integrally stable,

that is, |y(t; �, �)| < ", t 2 [�, v].

Let x(t; �, x0) be the solution of the perturbed generalized ODE (8.4.5) with F given
by (8.4.2) and P given by (8.4.6), that is, x is the solution corresponding to y obtained
according to Proposition 8.7.

By the definition of the function P and from the fact that sup

t2[�,v]

���
R

t

�

p(s)du(s)
��� <

�/2, we obtain
sup

t2[�,v]
kP (t)� P (�)k < �/2.
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Thus, from the regular stability with respect to perturbations of the trivial solution of
(8.4.5), we obtain kx(t)k < ", which implies

sup

✓2[��r,v]
|x(t)(✓)| < ", t 2 [�, v].

Therefore, the relation in Proposition 8.7 implies

sup

✓2[��r,t]
|y(✓)| < ", t 2 [�, v].

In particular,
sup

✓2[�,v]
|y(✓)|  sup

✓2[��r,v]
|y(✓)| < ",

and the desired result follows.

Now, we will prove (ii). At first, suppose the trivial solution of the measure FDE
(8.4.1) is integrally attracting. Thus, there exists e� > 0 and for every " > 0, there exist
T = T (") � 0 and ⇢ = ⇢(") > 0 satisfying the conditions from Definition 8.5.

Let x(t; �, x0) be a solution of the perturbed generalized ODE (8.4.5) with F given by
(8.4.2) and P given by (8.4.6) and let y(t; �, �) be the solution of the perturbed measure
FDE (8.4.4) obtained from x according to Proposition 8.7.

Let e� > 0 be such that kx0k < e�/2 and suppose there exists ⇢ > 0 such that
sup

t2[�,v] kP (t)� P (�)k < ⇢/2. Then,

sup

t2[�,v]

����x(t)�
Z

t

�

DF (x(⌧), s)

����  e�/2 + sup

t2[�,v]
kP (t)� P (�)k < e�/2 + ⇢/2.

Using the same ideas as before, we obtain, by equation (8.4.7),

sup

t2[�,v]
kP (t)� P (�)k < ⇢/2 + e�/2

which implies that

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < ⇢/2 + e�/2 + e�/2.

Moreover, taking e� < min{⇢/2, "/2}, we have

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < ⇢.
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Then, the integral attractivity of the trivial solution of (8.4.1) implies

|y(t; �, �)| = |y(t)| < "/2, t � � + T, t 2 [�, v].

Using the relations between the solutions, we obtain

kx(t)k1 = sup

✓2[��r,+1)
|x(t)(✓)| = sup

✓2[��r,t]
|y(✓)|

 k�k+ sup

✓2[�,t]
|y(✓)| < kx0k1 +

"

2

< ",

for t � �+T , t 2 [�, v]. Note that the second equality above follows applying the relations
of Proposition 8.7 and from

kx0k1 = kx(�)k1 = sup

✓2[��r,+1)
|x(t)(✓)|

= sup

✓2[��r,�]
|�(✓ � �)| = k�k1.

Thus,
kx(t; �, x0)k1 = kx(t)k1 < ", t � � + T, t 2 [�, v],

and, hence, x is regularly attracting with respect to perturbations. The sufficiency of (ii)
follows by Proposition 8.14.

Now, we will prove the reciprocal of item (ii). Suppose the trivial solution of gen-
eralized ODE (8.4.3) is regularly attracting with respect to perturbations. Then, there
exists e� > 0 and given " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0 satisfying the
conditions from Definition 8.12.

Let y(t; �, �) be a solution of the perturbed measure FDE (8.4.4). Suppose k�k1 < e�
and sup

t2[�,v]

���
R

t

�

p(s)du(s)
��� < ⇢. Then, it follows that

sup

t2[�,v]
kP (t)� P (�)k < ⇢.

By Proposition 8.7, it follows that kx0k1 = k�k1 < e�. Therefore, the regularly
attractivity with respect to perturbations of the trivial solution of (8.4.3) implies

kx(t)k1 = kx(t; �, x0)k1 < ", t � � + T, t 2 [�, v].
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Therefore, for t � � + T , t 2 [�, v], we have by Proposition 8.7,

|y(t)| = |y(t; �, �)| = |x(t)(t)|  kx(t)k1 < ",

and we have the desired result.

Note that assertion (iii) follows directly from (i), (ii) and from Proposition 8.14.

8.5 Stability for impulsive measure FDEs

In this section, we introduce some new definitions concerning stability of the trivial
solution of impulsive measure functional differential equations and we present a result
which relates these concepts with the corresponding ones for measure FDEs, using the
correspondence between the equations presented in Chapter 4. Also, as a consequence,
we present a result which relates these stability concepts to the corresponding ones for
generalized ODEs.

Throughout this section, consider O ⇢ G([t0 � r,+1),Rn

) with the prolongation
property and P = {y

t

; y 2 O, t 2 [t0,1)} ⇢ G([�r, 0],Rn

). Consider that the function
g : [t0,+1] ! R is nondecreasing.

We assume the following conditions concerning the function f : P ⇥ [t0,+1) ! Rn:

(H1) The integral
R

t

t0
f(y

s

, s)dg(s) exists for every y 2 O and every t 2 [t0,1).

(H2) There exists a constant M > 0 such that the inequality
����
Z

v

u

f(y
s

, s)dg(s)

����  M [g(v)� g(u)]

holds for every y 2 O and every u, v 2 [t0,1).

(H3) There exists a constant L > 0 such that the inequality
����
Z

v

u

[f(y
s

, s)� f(z
s

, s)]dg(s)

����  L

Z
v

u

ky
s

� z
s

k1dg(s)

holds for every y, z 2 O and every u, v 2 [t0,1).

Let B ⇢ Rn be open. We consider the following conditions on the impulse operators
I
k

: Rn ! Rn, k 2 {1, 2, . . . ,m}:
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(H6) There exists a constant K1 > 0 such that

|I
k

(x)|  K1

for every k 2 {1, . . . ,m} and x 2 B.

(H7) There exists a constant K2 > 0 such that

|I
k

(x)� I
k

(y)|  K2|x� y|

for every k 2 {1, . . . ,m} and x, y 2 B.

In what follows, we introduce some new concepts of stability of the trivial solution for
impulsive measure FDEs with perturbations. Let us start by considering an impulsive
equation

x(t) = x(t0) +

Z
t

t0

f(x
s

, s) dg(s) +
X

t0tk<t

I
k

(x(t
k

)), t 2 [t0,1) (8.5.1)

and its perturbed impulsive equation

x(t) = x(t0) +

Z
t

t0

f(x
s

, s) dg(s) +

Z
t

t0

p(s) du(s) +
X

t0tk<t

I
k

(x(t
k

)), t 2 [t0,1). (8.5.2)

Definition 8.16. The trivial solution y ⌘ 0 of (8.5.1) is said to be integrally stable, if for
every " > 0 there is a � = �(") > 0 such that if � 2 P with k�k1 < � and

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < �,

then
|ȳ(t; �, �)| < " for every t 2 [�, v],

where ȳ(t; �, �) is a solution of the perturbed impulsive equation (8.5.2).

Definition 8.17. The trivial solution y ⌘ 0 of (8.5.1) is called integrally attracting, if
there is e� > 0 and for every " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0 such that if

k�k1 < e� and sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < ⇢

then
|ȳ(t; �, �)| < " for all t � � + T, t 2 [�, v]
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where ȳ(t; �, �) is a solution of the perturbed impulsive equation (8.5.2) satisfying y
�

= �.

Definition 8.18. The trivial solution y ⌘ 0 of (8.5.1) is called integrally asymptotically
stable, if it is integrally stable and integrally attracting.

The next result describes the relations between these new concepts of stability for
impulsive measure FDEs and the corresponding ones for measure FDEs. Such result is
new.

Theorem 8.19. Let f : P ⇥ [�,+1) ! Rn be a function satisfying (H1) and p :

[t0,+1) ! Rn be a function satisfying (H4). Also, consider that the functions u :

[t0,1) ! R and g : [t0,1) ! R are nondecreasing and left continuous at every point and
continuous at {t

k

}
k2N, where t

k

, k 2 N \ {0}, are the moments of impulses. Moreover, let
I
k

: Rn ! Rn, k 2 N, be the impulses operators. Then, the following statements hold.

(i) The trivial solution y ⌘ 0 of (8.4.1) is integrally stable if and only if the trivial
solution y ⌘ 0 of (8.5.1) is integrally stable.

(ii) The trivial solution y ⌘ 0 of (8.4.1) is integrally attracting if and only if the trivial
solution y ⌘ 0 of (8.5.1) is integrally attracting.

(iii) The trivial solution y ⌘ 0 of (8.4.1) is integrally asymptotically stable if and only if
the trivial solution y ⌘ 0 of (8.5.1) is integrally asymptotically stable.

Proof. At first, define the functions ũ : [t0,1) ! R and g̃ : [t0,1) ! R by

ũ(t) =

(
u(t), t 2 [t0, t1]

u(t) + c
k

, t 2 (t
k

, t
k+1] for some k 2 N

(8.5.3)

and

g̃(t) =

(
g(t), t 2 [t0, t1]

g(t) + d
k

, t 2 (t
k

, t
k+1] for some k 2 N

(8.5.4)

where the sequences {c
k

}1
k=1 and {d

k

}1
k=1 are chosen in such way that �

+ũ(t
k

) = 1 and
�

+g̃(t
k

) = 1 for every k 2 N.

It follows directly from the definitions (8.5.3) and (8.5.4) that the functions ũ and g̃

are nondecreasing and left continuous.
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Also, we define the following functions

˜f(y, t) =

(
f(y, t), t 62 {t1, t2, . . .}

I
k

(y(0)), t = t
k

for some k 2 N
(8.5.5)

and

p̃(t) =

(
p(t), t 62 {t1, t2, . . .}

0, t = t
k

for some k 2 N
(8.5.6)

By the equalities (8.5.3), (8.5.4), (8.5.5) and (8.5.6) and by the hypotheses, we obtain,
using Theorem 4.16, that ȳ is a solution of

ȳ(t) = ȳ(t0) +

Z
t

t0

f(ȳ
s

, s) dg(s) +

Z
t

t0

p(s) du(s) +
X

t0tk<t

I
k

(ȳ(t
k

)), t 2 [t0,1) (8.5.7)

if and only if, ȳ is also a solution of

ȳ(t) = ȳ(t0) +

Z
t

t0

˜f(ȳ
s

, s) dg̃(s) +

Z
t

t0

p̃(s) dũ(s), t 2 [t0,1). (8.5.8)

Moreover, by the equalities (8.5.4) and (8.5.5) and by hypotheses, we obtain, using
Theorem 4.16, that y is a solution of

y(t) = y(t0) +

Z
t

t0

f(y
s

, s) dg(s) +
X

t0tk<t

I
k

(y(t
k

)), t 2 [t0,1) (8.5.9)

if and only if, y is a solution of

y(t) = y(t0) +

Z
t

t0

˜f(y
s

, s) dg̃(s), t 2 [t0,1). (8.5.10)

Let us prove item (i). Suppose the solution of (8.4.1) is integrally stable and, moreover,
for every " > 0 there is � = �(") > 0 such that � 2 P ,

k�k1 < � and sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < �.

Then it is clear from the definitions of the functions p̃ and ũ that sup
t2[�,v]

���
R

t

�

p̃(s)dũ(s)
��� <
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�. Thus, since the solution of (8.4.1) is integrally stable, we obtain

|ȳ(t; �, �)| < ", for every t 2 [�, v], (8.5.11)

where ȳ(t; �, �) is a solution of impulsive equation with perturbation (8.5.8). By Theorem
4.16, ȳ(t; �, �) is also a solution of (8.5.7). Furthermore, since (8.5.11) is fulfilled, it follows
from the definition that the trivial solution y ⌘ 0 of (8.5.1) is integrally stable.

Reciprocally, suppose the trivial solution y ⌘ 0 of (8.5.1) is integrally stable and for
every " > 0, there is � = �(") > 0 such that � 2 P ,

k�k1 < � and sup

t2[�,v]

����
Z

t

�

p̃(s)dũ(s)

���� < �.

Again, by the definition of functions p̃ and ũ given by (8.5.6) and (8.5.3), respectively, it
is clear that

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < �.

Thus, it follows immediately from the definition that

|ȳ(t; �, �)| < ", for every t 2 [�, v], (8.5.12)

where ȳ(t; �, �) is a solution of the perturbed impulsive equation (8.5.7).

By the correspondence between the solutions of initial value problems for (8.5.7) and
(8.5.8) (see Theorem 4.16), ȳ(t; �, �) is also a solution of (8.5.8). Thus, by the definition,
the trivial solution of (8.4.1) is integrally stable and item (i) follows.

Now, consider the item (ii). Suppose the trivial solution y ⌘ 0 of (8.4.1) is integrally
attracting and assume that there is e� > 0 and for every " > 0, there exist T = T (") � 0

and ⇢ = ⇢(") > 0 such that

k�k1 < e� and sup

t2[�,v]

����
Z

t

�

p̃(s)dũ(s)

���� < ⇢.

Using the definition of the functions p̃ and ũ, we obtain

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < ⇢,
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which implies by hypothesis that

|ȳ(t; �, �)| < ", for all t � � + T, t 2 [�, v]

where ȳ(t; �, �) is a solution of the perturbed equation (8.5.8), satisfying y
t0 = �. Then,

using the correspondence between the solution of (8.5.8) and the solution of (8.5.7),
described in Theorem 4.16, ȳ(t; �, �) is a solution of (8.5.7) and therefore, by definition,
it follows that the solution y ⌘ 0 of (8.5.1) is integrally attracting.

Reciprocally, suppose the trivial solution y ⌘ 0 of (8.5.1) is integrally attracting and
assume that there is e� > 0 and for every " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0

such that
k�k1 < e� and sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < ⇢.

Then, by the definition of the functions p̃ and ũ, we have

sup

t2[�,v]

����
Z

t

�

p̃(s)dũ(s)

���� < ⇢,

which implies, by hypothesis,

|ȳ(t; �, �)| < ", for all t � � + T, t 2 [�, v], (8.5.13)

where ȳ(t; �, �) is a solution of the perturbed impulsive equation (8.5.7), satisfying y
t0 = �.

The result follows immediately using the correspondence between the solution of (8.5.8)
and the solution of (8.5.7) and by (8.5.13).

Item (iii) follows immediately by items (i) and (ii).

Combining the previous theorem, Theorems 4.16, 8.15 and Lemma 4.18, we obtain
immediately the next result which shows some relations between the stability concepts for
impulsive measure FDEs and the corresponding stability concepts for generalized ODEs.
Such result is original. See [38].

Corollary 8.20. Suppose the functions u : [t0,1) ! R and g : [t0,1) ! R are nonde-
creasing, left continuous at every point and continuous at {t

k

}
k2N, where t

k

, k 2 N, are
the moments of impulses. Also, suppose the function f : P ⇥ [�,1) ! Rn satisfies condi-
tions (H1), (H2) and (H3) and the function p : [t0,1) ! Rn satisfies conditions (H4) and
(H5). Moreover, suppose, for each k 2 N, the impulses operators I

k

: Rn ! Rn satisfy
conditions (H6) and (H7) with the same constants for every k 2 N. Then the following
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statements hold:

(i) The trivial solution z ⌘ 0 of (8.5.1) is integrally stable, if and only if, the trivial
solution x ⌘ 0 of (8.4.3) is regularly stable.

(ii) The trivial solution z ⌘ 0 of (8.5.1) is integrally attracting, if and only if, the trivial
solution x ⌘ 0 of (8.4.3) is regularly attracting.

(iii) The trivial solution z ⌘ 0 of (8.5.1) is integrally asymptotically stable, if and only
if, the trivial solution x ⌘ 0 of (8.4.3) is regularly asymptotically stable.

8.6 Stability for impulsive functional dynamic equations
on time scales

In this section, we introduce some new definitions concerning stability of the trivial
solution of impulsive functional dynamic equations on time scales. Also, we prove one
result that relates the new stability concepts for impulsive functional dynamic equations
on time scales and the corresponding concepts for impulsive measure FDEs. As an im-
mediate consequence, we can relate stability concepts for impulsive functional dynamic
equations on time scales and stability concepts for generalized ODEs.

Let T be a time scale and t0 2 T. Consider the impulsive functional dynamic system
on time scales

x(t) = x(t0) +

Z
t

t0

f(x
s

, s)�s+
X

t0tk<t

I
k

(x(t
k

)), t 2 [t0,1)T (8.6.1)

and the perturbed impulsive functional dynamic system on time scales:

x(t) = x(t0) +

Z
t

t0

f(x
s

, s)�s+

Z
t

t0

p(s)�s+
X

t0tk<t

I
k

(x(t
k

)), t 2 [t0,1)T, (8.6.2)

where the moments of impulses t
k

2 T are right-dense points.

In the sequel, we introduce new concepts concerning the stability of the trivial solution
of (8.6.1).

Definition 8.21. The trivial solution y ⌘ 0 of (8.6.1) is said to be integrally stable, if for
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every " > 0, there is � = �(") > 0 such that if � : [� � r, �]T ! Rn with k�k1 < � and

sup

t2[�,v]T

����
Z

t

�

p(s)�s

���� < �, t0  � < v < 1, �, v 2 T,

then
|ȳ(t; �, �)| < ", for every t 2 [�, v]T,

where ȳ(t; �, �) is a solution of the perturbed impulsive equation on time scales (8.6.2)
satisfying y(t) = �(t), for t 2 [� � r, �]T.

Definition 8.22. The trivial solution y ⌘ 0 of (8.6.1) is called integrally attracting, if
there is e� > 0 and for every " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0 such that if

k�k1 < e� and sup

t2[�,v]T

����
Z

t

�

p(s)�s

���� < ⇢,

where � 2 T, then

|ȳ(t; �, �)| < ", for all t � � + T, t 2 [�, v]T

where ȳ(t; �, �) is a solution of the perturbed impulsive equation on time scales (8.6.2)
satisfying y(t) = �(t), for t 2 [� � r, �]T.

Definition 8.23. The trivial solution y ⌘ 0 of (8.6.1) is called integrally asymptotically
stable, if it is integrally stable and integrally attracting.

Theorem 8.24. Let t
k

2 T, for each k = 0, 1, 2, . . . and also, let the moments of impulses
be right-dense points. Also, assume that for every y 2 G, the function t 7! f(y⇤

t

, t) is
Kurzweil-Henstock delta-integrable on [t0, t0+⌘]T. Moreover, suppose the function t 7! p(t)

is Kurzweil-Henstock delta-integrable on [t0, t0 + ⌘]T. Define the functions g(s) = s⇤ and
h(s) = s⇤ for every s 2 [t0, t0 + ⌘]. Then the following statements hold:

(i) The trivial solution y⇤ ⌘ 0 of (8.5.1) is integrally stable, if and only if, the trivial
solution y ⌘ 0 of (8.6.1) is integrally stable.

(ii) The trivial solution y⇤ ⌘ 0 of (8.5.1) is integrally attracting, if and only if, the
trivial solution y ⌘ 0 of (8.6.1) is integrally attracting.

(iii) The trivial solution y⇤ ⌘ 0 of (8.5.1) is integrally asymptotically stable, if and only
if, the trivial solution y ⌘ 0 of (8.6.1) is integrally asymptotically stable.
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Proof. At first, let us prove item (i). Suppose the trivial solution y⇤ ⌘ 0 of (8.5.1) is
integrally stable. Also, assume that for every " > 0, there is � = �(") > 0 such that
� : [� � r, �] ! Rn with k�k < � and

sup

t2[�,v]T

����
Z

t

�

p(s)�s

���� < �, (8.6.3)

where t0  � < v < 1, with �, v 2 T. By definition, we obtain

k�k1 = sup

t2[��r,�]T
|�(t)| < �.

Also, since � 2 T, then, by the definition, for every t 2 [� � r, �], we have t⇤ 2 [� � r, �]T.
Then, combining this fact and the definition of extension of �, we obtain

k�⇤
�

k < �.

By Theorem 4.12, we have

Z
t

�

p(s)du(s) =

Z
t

�

p⇤(s)du(s),

for every t 2 [�, v]. On the other hand, if we define

F (t) =

Z
t

�

p⇤(s)du(s), t 2 [�, v].

then, by Lemma 4.21, we have

F (t) =

Z
t

�

p⇤(s)du(s) =

Z
t

⇤

�

p⇤(s)du(s).

Also, since t⇤ 2 T, it follows from Corollary 4.11 that the last integral coincides with
R

t

�

p(s)�s, which means that sup

t2[�,v] kF (t)k must be the same as sup

t2[�,v]T

R
t

�

p(s)�s.
Thus, equation (8.6.3) implies that

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < �.

Now, since y⇤ ⌘ 0 is integrally stable, by definition and by the above equations, we
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obtain
|ȳ⇤(t; �, �⇤

�

)| < ", for every t 2 [�, v],

where ȳ⇤(t; �, �⇤
�

) is a solution of the perturbed equation

ȳ⇤(t) = ȳ⇤(�) +

Z
t

�

f (ȳ⇤
s

, s) dg(s) +

Z
t

�

p(s)du(s) +
X

k2{1,...,m},
tk<t

I
k

(ȳ⇤(t
k

)),

such that ȳ
t0 = �⇤. Then, by Theorem 4.23, we obtain

|ȳ(t; �, �)| < ", for every t 2 [�, v]T,

where ȳ(t; �, �) is a solution of the perturbed functional dynamic equation with impulses

ȳ(t) = ȳ(�) +

Z
t

�

f (ȳ
s

, s)�s+

Z
t

�

p(s)�s+
X

k2{1,...,m},
tk<t

I
k

(ȳ(t
k

)),

such that ȳ(t) = �(t), for t 2 [�� r, �]T and, by the definition, it follows that the solution
y ⌘ 0 of (8.6.1) is integrally stable.

Reciprocally, suppose the solution y ⌘ 0 of (8.6.1) is integrally stable. Also, assume
that for every " > 0, there is � = �(") > 0 such that �⇤ 2 P with k�⇤k < � and

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < �. (8.6.4)

Thus, it follows immediately that
k�k < �,

since � is a restriction of the function �⇤
�

. Again, by Theorem 4.12, we obtain

Z
t

�

p(s)du(s) =

Z
t

�

p⇤(s)du(s),

for every t 2 [�, v]. Moreover, by Lemma 4.21, we have

Z
t

�

p⇤(s)du(s) =

Z
t

⇤

�

p⇤(s)du(s)
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and using the fact that t⇤ 2 T, we obtain, by Corollary 4.11 and by equation (8.6.4),

sup

t2[�,v]T

����
Z

t

�

p(s)�s

���� < �.

Since y ⌘ 0 is integrally stable, by definition, we have

|ȳ(t; �, �)| < ", for every t 2 [�, v]T,

where ȳ(t; �, �) is a solution of the impulsive perturbed dynamic equation

ȳ(t) = ȳ(�) +

Z
t

�

f (ȳ
s

, s)�s+

Z
t

�

p(s)�s+
X

k2{1,...,m},
tk<t

I
k

(ȳ(t
k

)),

satisfying ȳ(t) = �(t), for t 2 [� � r, �]T Then, by Theorem 4.23 and by the definition of
y⇤, we obtain

|ȳ⇤(t; �, �)| < ", for every t 2 [�, v],

where ȳ⇤(t; �, �) is a solution of the perturbed equation

ȳ⇤(t) = ȳ⇤(�) +

Z
t

�

f(ȳ⇤
s

, s⇤)dg(s) +

Z
t

�

p(s)du(s) +
X

k2{1,...,m},
tk<t

I
k

(ȳ⇤(t
k

)),

such that ȳ⇤
t0
= �⇤

�

for t 2 [� � r, �]. Then, by the definition, it follows that the solution
y⇤ ⌘ 0 of (8.5.1) is integrally stable.

Suppose the solution y⇤ ⌘ 0 of (8.5.1) is integrally attracting and assume that there
is a e� > 0 and for every " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0 such that
k�k < e� and

sup

t2[�,t1]T

����
Z

t

�

p(s)�s

���� < ⇢. (8.6.5)

Then, using the same arguments as before, we obtain

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < ⇢ and k�⇤
�

k < e�.

Since y⇤ ⌘ 0 is regularly attracting, then

|ȳ⇤(t; �, �⇤
�

)| < ", for all t � � + T, t 2 [�, v],



8.6 Stability for impulsive functional dynamic equations on time scales 201

where ȳ⇤(t; �, �⇤
�

) is a solution of the impulsive measure perturbed differential equation

ȳ⇤(t) = ȳ⇤(�) +

Z
t

�

f (ȳ⇤
s

, s) dg(s) +

Z
t

�

p(s)dh(s) +
X

k2{1,...,m},
tk<t

I
k

(ȳ⇤(t
k

)),

satisfying ȳ⇤
�

= �⇤
�

for t 2 [� � r, �]. Then, by Theorem 4.23, we obtain

|ȳ(t; �, �)| < ", for all t � � + T, t 2 [�, v]T,

where ȳ(t; �, �) is a solution of the perturbed dynamic equation with impulses

ȳ(t) = ȳ(�) +

Z
t

�

f (ȳ
s

, s)�s+

Z
t

�

p(s)�s+
X

k2{1,...,m},
tk<t

I
k

(ȳ(t
k

)),

such that ȳ(t) = �(t), for t 2 [� � r, �]T and by the definition, it follows that y ⌘ 0 of
(8.6.1) is integrally attracting.

Reciprocally, suppose the solution y ⌘ 0 of (8.6.1) is integrally attracting and and
assume that there is e� > 0 and for every " > 0, there exist T = T (") � 0 and ⇢ = ⇢(") > 0

such that if k�⇤
�

k < e�, �⇤ 2 P and

sup

t2[�,v]

����
Z

t

�

p(s)du(s)

���� < ⇢, (8.6.6)

where t0  � < v < 1 with �, v 2 T. and also, by Theorem 4.12, we have

sup

t2[�,v]T

����
Z

t

�

p(s)�s

���� < ⇢. (8.6.7)

Moreover, since � is a restriction of �⇤
�

, we obtain, immediately, that

k�k < e�.

Since y ⌘ 0 is integrally attracting, then, by definition and equations above, we obtain

|ȳ(t; �, �)| < " for all t � � + T, t 2 [�, v]T,
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where ȳ(t; �, �) is a solution of the perturbed functional dynamic equation with impulses

ȳ(t) = ȳ(�) +

Z
t

�

f (ȳ
s

, s)�s+

Z
t

�

p(s)�s+
X

k2{1,...,m},
tk<t

I
k

(ȳ(t
k

)),

satisfying ȳ(t) = �(t), for t 2 [� � r, �]T. Then, by Theorem 4.23, we obtain

|ȳ⇤(t; �, �⇤
�

)| < " for all t � � + T, t 2 [�, v],

where ȳ⇤(t; �, �⇤
�

) is a solution of the impulsive measure perturbed functional differential
equation

ȳ⇤(t) = ȳ⇤(�) +

Z
t

�

f (ȳ⇤
s

, s) dg(s) +

Z
t

�

p(s)dh(s) +
X

k2{1,...,m},
tk<t

I
k

(ȳ⇤(t
k

)),

satisfying ȳ(t) = �(t), for t 2 [� � r, �]T and by the definition, follows that the solution
y⇤ ⌘ 0 of (8.5.1) is integrally attracting.

The item (iii) follows immediately combining items (i) and (ii).

Combining the previous theorem, Theorem 4.23, Corollary 8.20 and Lemma 4.24,
we obtain immediately the next result which shows some relations between the stability
concepts for impulsive functional dynamic equations on time scales and the corresponding
ones for generalized ODEs.

Corollary 8.25. Suppose the function f : P ⇥ [t0, t0 + �]T ! Rn satisfies the following
conditions:

1. The integral
R

t0+⌘

t0
f(y

t

, t)�t exists for every y 2 O.

2. There exists a constant M > 0 such that
����
Z

u2

u1

f(y
t

, t)�t

����  M(u2 � u1)

for every y 2 O and u1, u2 2 [t0, t0 + ⌘]T, u1  u2.

3. Assume there exists a constant L > 0 such that
����
Z

u2

u1

(f(y
t

, t)� f(z
t

, t))�t

����  L

Z
u2

u1

ky
t

� z
t

k1�t
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for every y, z 2 O and u1, u2 2 [t0, t0 + ⌘]T, u1  u2.

Also, suppose the function p : [t0, t0 + ⌘]T ! Rn satisfies the following conditions:

1. The integral
R

t0+⌘

t0
p(t)�t exists.

2. There exists a constant M1 > 0 such that
����
Z

u2

u1

p(t)�t

����  M1(u2 � u1)

for every u1, u2 2 [t0, t0 + ⌘]T, u1  u2.

Further, let t0 2 T and assume that for every y 2 G, the function t 7! f(y⇤
t

, t) is Kurzweil-
Henstock delta-integrable on [t0, t0 + ⌘]T. Moreover, suppose the function t 7! p(t) is
Kurzweil-Henstock delta-integrable on [t0, t0 + ⌘]T. Define the functions g(s) = s⇤ and
h(s) = s⇤ for every s 2 [t0, t0 + ⌘]. Let B ⇢ Rn be open and suppose, for each k, the
impulses operators I

k

: Rn ! Rn satisfy the conditions

(H6) There exists a constant K1 > 0 such that

|I
k

(x)|  K1,

for every k 2 {1, . . . ,m} and x 2 B.

(H7) There exists a constant K2 > 0 such that

|I
k

(x)� I
k

(y)|  K2|x� y|,

for every k 2 {1, . . . ,m} and x, y 2 B.

Then, the following statements hold:

(i) The trivial solution y ⌘ 0 of (8.6.1) is integrally stable, if and only if, the trivial
solution x ⌘ 0 of (8.4.3) is regularly stable.

(ii) The trivial solution y ⌘ 0 of (8.6.1) is integrally attracting, if and only, if the trivial
solution x ⌘ 0 of (8.4.3) is regularly attracting.

(iii) The trivial solution y ⌘ 0 of (8.6.1) is integrally asymptotically stable, if and only
if, the trivial solution x ⌘ 0 of (8.4.3) is regularly asymptotically stable.





Chapter

9
Open and developing problems

As it was explained before, our goal in the present work was to develop the theory of
impulsive functional dynamic equations on time scales. In order to do it, we started by
establishing a correspondence between the solutions of an impulsive functional dynamic
equation on time scales and the solutions of an impulsive measure functional differential
equation and, also, a correspondence between those and the solutions of a generalized
ordinary differential equation.

These correspondences allowed us to obtain a lot of interesting and new results for
all these equations just using results for generalized ordinary differential equations. In
this way, these correspondences facilitate the obtainment of good results for impulsive
functional dynamic equations on time scales and impulsive measure functional differential
equations, since the framework of abstract generalized ordinary differential equations is
much simpler to deal with than any of the above specific setting of differential equations.

Thus, in this direction, we were able to prove several results for impulsive functional
dynamic equations on time scales and impulsive measure functional differential equations,
such as local existence and uniqueness, continuous dependence of solutions on the initial
data, periodic and non-periodic averaging principles and, also, stability results. These
results improve the literature concerning these equations, since they have been studied
recently and the literature concerning them is still scarce. See, for instance, [19] and [37].

Although we have obtained a lot of new results for impulsive functional dynamic
equations on time scales and impulsive measure functional differential equations, the
research in this direction is far beyond being finished and complete. For instance, we
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mention Converse Lyapunov theorems for these equations. One idea to obtain these
results is to improve the known results concerning Lyapunov theorems for generalized
ordinary differential equations (see [2], for instance), using the stability concepts for these
equations introduced in Chapter 8, and then, to translate them to impulsive functional
dynamic equations on time scales and to measure functional differential equations with
impulses, using the correspondences, obtaining good results for them. This work is being
developed by M. Federson, J. G. Mesquita and E. Toon in [39].

Another open problem is to prove results concerning periodic and almost periodic
solutions of impulsive measure functional differential equations and impulsive functional
dynamic equations on time scales. The idea, in this case, would be to prove results on
periodic and almost periodic solutions for generalized differential equations, and then, to
translate them to impulsive functional dynamic equations on time scales and to measure
functional differential equations with impulses, using the correspondences.

We can mention, also, one more developing problem whose goal is to establish a
correspondence between generalized ordinary differential equations and neutral measure
functional differential equations in order to obtain interesting and new results for these
last ones. This is motivated because while the theory concerning neutral functional differ-
ential equations is extensive (see [11],[22], [55], [57], [58], [59], for instance), the literature
concerning neutral measure functional differential equations is really scarce. As a matter
of fact, we do not know any result in this direction yet. We point out that these last
equations generalize neutral functional differential equations. See [57], for instance. In
this direction, M. Federson, M. Frasson, J. G. Mesquita and P. Tacuri are developing
some results. See [33].

Furthermore, we can continue the development of the previous work, by obtaining a
correspondence between neutral functional dynamic equations on time scales and neutral
measure functional differential equations. Using such correspondence, it will be possible
to establish an indirect correspondence between neutral functional dynamic equations on
time scales and generalized differential equations, using [33], and in this way, it will be
possible to develop a lot of new results for these equations, just by translating known
results from generalized ordinary differential equations. This is an interesting area to
explore and there are a lot of results to be developed, since neutral functional dynamic
equations on time scales are really new in the literature. See [23], [47] and [91], for
instance.

In conclusion, the theory of generalized ordinary differential equations is a powerful
tool to develop results for several types of equations, since generalized ordinary differential
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equations encompass most of them. See [3], [36], [40], [100], for instance. Also, it turns
out that the framework of abstract generalized ordinary differential equations is simpler
to deal with than any of the above specific setting of differential equations.

On the other hand, there are other types of equations which are not related to gener-
alized ordinary differential equations yet. We can mention as examples partial differential
equations, stochastic equations and, also, fractional differential equations. The figure
below illustrates some inclusions.

These questions certainly offer several opportunities to develop future and interesting
projects, since by using the relations between generalized ordinary differential equations
and other types of equations, one is able to reduce a given problem by establishing it in
the setting of a result for generalized ordinary differential equations and then to translate
the results to other types of equations.
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