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Abstract Using the integral equation method we study solutions of boundary value
problems for the Stokes system in Sobolev space H1(G) in a bounded Lipschitz
domain G with connected boundary. A solution of the second problem with the
boundary condition ∂u/∂n − pn = g is studied both by the indirect and the direct
boundary integral equation method. It is shown that we can obtain a solution of the
corresponding integral equation using the successive approximation method. Never-
theless, the integral equation is not uniquely solvable. To overcome this problem we
modify this integral equation. We obtain a uniquely solvable integral equation on the
boundary of the domain. If the second problem for the Stokes system is solvable then
the solution of the modified integral equation is a solution of the original integral
equation. Moreover, the modified integral equation has a form f + Sf = g, where S
is a contractive operator. So, the modified integral equation can be solved by the
successive approximation. Then we study the first problem for the Stokes system
by the direct integral equation method. We obtain an integral equation with an
unknown g = ∂u/∂n − pn. But this integral equation is not uniquely solvable. We
construct another uniquely solvable integral equation such that the solution of the
new eqution is a solution of the original integral equation provided the first problem
has a solution. Moreover, the new integral equation has a form g + S̃g = f, where S̃
is a contractive operator, and we can solve it by the successive approximation.
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1 Introduction

The most important problems for the Stokes system are the first problem

�u = ∇ p in G, ∇ · u = 0 in G, (1)

u = g on ∂G (2)

and the second boundary value problems. There are two relevant second boundary
value problems for the Stokes system (1): One with the boundary condition

∂u
∂n

− pn = g on ∂G (3)

and the second one with the boundary condition

T(u, p)nG = g on ∂G. (4)

Here n = nG is the outward unit normal vector of G, u = (u1, . . . , um) is a velocity
field, p is a pressure and

T(u, p) = 2∇̂u − pI (5)

is the corresponding stress tensor. Here I denotes the identity matrix and

∇̂u = 1

2

[∇u + (∇u)T] (6)

is the strain tensor, with (∇u)T as the matrix transposed to ∇u = (∂ juk), (k, j =
1, . . . , m). Remark that ∇ · u = ∂1u1 + · · · + ∂mum is the divergence of u.

We shall suppose that G is a bounded domain with connected Lipschitz boundary
in Rm. Many authors have studied the second problem with the boundary condition
(4) by the integral equation method [14]. It is a starting point for the boundary
element method [7, 9, 18]. Kohr studied classical solutions of this problem on
domains with smooth boundary (see [8]). Dahlberg, Kenig and Verchota studied
this problem with a boundary condition g ∈ L2(∂G) on domains with Lipschitz
boundary [2]. Medková studied in [13] a weak solution in H1(G). A solution was
looked for in the form of a hydrodynamical potential with an unknown density from
H−1/2(∂G). It was proved that a solution of the corresponding integral equation can
be approximated using the successive approximation method. Then the similar result
was proved also for the direct integral equation method.

In this paper we shall prove the same results for the second problem with the
boundary condition (3). Then the first problem for the Stokes system (so called
Stokes problem) is studied by the direct integral equation method, i.e. a solution
of the Stokes problem with the boundary condition f is expressed in the form

u(x) = EGg(x) + WGf(x), p(x) = QGg(x) + RGf(x) x ∈ G,

where g = ∂u/∂nG − pnG, EGg is the hydrodynamical single layer potential with
the density g, QGg is the corresponding pressure, WGf is the hydrodynamical
double layer potential corresponding to the boundary condition (3) and RGf is
the corresponding pressure. It is shown that g = ∂u/∂nG − pnG is a solution of a
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uniquely solvable integral equation and this equation can be solved by the successive
approximation method.

2 Weak Solution of the Second Problem

If A, B ∈ Rm×m are matrices with A = (Aij), B = (Bij) denote

A : B =
3∑

i, j=1

AijBij.

If X(M) is a vector space of real functions (or distributions) on a set M
denote by X(M, C) its complexification, i.e. X(M, C) = {v1 + iv2; v1 ∈ X(M, R) =
X(M), v2 ∈ X(M)}. If K = R or K = C and k ∈ N, we denote X(M, Kk) = {u =
(u1, . . . , uk); u j ∈ X(M, K) for j = 1, . . . , k}.

In the entire article suppose that G is a bounded domain with connected Lip-
schitz boundary in Rm. We shall study the second boundary value problem in the
Sobolev space H1(G; Rm). We denote by Hs(G) the Sobolev–Slobodetski space of
order s. Remark that H0(G) = L2(G) and H1(G) = { f ∈ L2(G); ∇ f ∈ L2(G; Rm)}
is equipped with the norm

‖ f‖H1(G) =
⎧
⎨

⎩

∫

G

[
f 2 + |∇ f |2] dx

⎫
⎬

⎭

1/2

.

If ϕ is a Lipschitz function on Rm−1 and S = {[x, ϕ(x)]; x ∈ Rm−1} we say that f ∈
Hs(S) if f (x, ϕ(x)) ∈ Hs(Rm−1). Since G has Lipschitz boundary there are bounded
open sets U1, . . . , Uk and Lipschitz functions ϕ1, . . . , ϕk such that ∂G ⊂ U1 ∪ · · · ∪ Uk

and for each j ∈ {1, . . . , k} there is a coordinate system such that U j ∩ ∂G = U j ∩ S j

with S j = {[x, ϕ j(x)]; x ∈ Rm−1}. Choose ω j ∈ C∞(Rm) supported in U j with 0 ≤ ω j ≤
1 for j = 1, . . . , k such that ω1 + ω2 + . . . ωk = 1 on a neighborhood of ∂G. We say
that f ∈ Hs(∂G) if ω j f ∈ Hs(S j) for j = 1, . . . , k.

Recall that H1/2(∂G) is the space of traces of H1(G) endowed with the norm

‖v‖H1/2(∂G) = inf
{‖u‖H1(G); u ∈ H1(G), v = u|∂G

}
(7)

and H−1/2(∂G) is the dual space of H1/2(∂G).
If (u, p) is a classical solution of the second problem for the Stokes system (1) and

(3) and v ∈ C2(Rm, Rm), then the Green formula yields
∫

∂G

g · v dy =
∫

∂G

[
∂u
∂n

− pn
]

· v dy

=
∫

G

[∇u : ∇v + v · �u − v · ∇ p − p(∇ · v)
]

dy

=
∫

G

[∇u : ∇v − p(∇ · v)
]

dy.

We formulate a weak solution of the problem (1) and (3) as follows:
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Let g ∈ H−1/2(∂G, Rm). We say that u ∈ H1(G, Rm), p ∈ L2(G, R1) is a weak
solution of the problem (1) and (3) if ∇u = 0 in G and

∫

G

∇u : ∇v dy −
∫

G

p(∇ · v) dy = 〈g, v〉 (8)

for each v ∈ H1(G, Rm).
It is well known that if u ∈ H1(G, Rm), p ∈ L2(G, R1), ∇u = 0 in G and

∫

G

∇u : ∇v dy −
∫

G

p(∇ · v) dy = 0

for each v ∈ C∞(G; Rm) with compact support in G, then u ∈ C∞(G; Rm), p ∈
C∞(G; R1) satisfy Stokes system (1).

Remark that if g ∈ H−1/2(∂G, Rm) and u ∈ H1(G, Rm), p ∈ L2(G, R1) is a weak
solution of the problem (1) and (3) then

∫

G

∇u : ∇w dy = 〈g, w〉 ∀w ∈ H1(G, Rm),∇ · w = 0. (9)

First we study the problem of uniqueness of a solution.

Lemma 2.1 If g ∈ H−1/2(∂G, Rm) and u ∈ H1(G, Rm), p ∈ L2(G, R1) is a weak so-
lution of the second boundary value problem (1) and (3), then 〈g, c〉 = 0 for each
constant vector function c (i.e.

∫
g = 0). If v, q is another weak solution of the problem

(1) and (3), then p = q and u − v is constant.

Proof If c is a constant function then (9) gives that 〈g, c〉 = 0.
u − v, p − q is a weak solution of the second boundary value problem for the

Stokes system with zero boundary condition. Putting w = u − v we get from Eq. 9
∫

G

|∇(u − v)|2 dy = 0.

Thus u − v is constant. Since u − v, p − q is a solution of the Stokes system then
∇(p − q) = �(u − v) = 0. Thus there exists a constant b such that p − q = 0. From
the boundary condition 0 = ∂(u − v)/∂n − pn = −bn. Hence b = 0. 
�

3 Hydrodynamical Single Layer Potential

We shall look for a solution of the second boundary value problem for the Stokes
system in the form of a hydrodynamical single layer potential. The aim of this section
is to assemble some basic facts on this potential.

Let � ⊂ Rm be an open set with compact Lipschitz boundary ∂�. Denote �e :=
Rm \ cl � its complement with ∂�e = ∂�. Here cl � denotes the closure of � and ∂�

the boundary of �.
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Denote by ωm the surface of the unit sphere in Rm. For x ∈ Rm and j, k = 1, . . . , m
define

E jk(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2ωm

[
δ jk

|x|2−m

m − 2
+ x jxk

|x|m
]

, m > 2,

1

4π

[
δ jk ln

1

|x| + x jxk

|x|2
]

, m = 2,

(10)

Qk(x) = xk

ωm|x|m . (11)

For � = [	1, . . . , 	m] ∈ H−1/2(∂�, Rm) define the hydrodynamical single layer
potential with density � by

(E��)(x) =
∫

∂�

E(x − y)�(y) dy (12)

whenever it makes sense and the corresponding pressure

(Q��)(x) =
∫

∂�

Q(x − y)�(y) dy, x ∈ Rm \ ∂�. (13)

Then E�� ∈ C∞(Rm \ ∂�, Rm), Q�� ∈ C∞(Rm \ ∂�, R1), ∇Q�� − �E�� = 0,
∇ · E�� = 0 in Rm \ ∂�. We have the following decay behavior as |x| → ∞:

E��(x) = O(|x|2−m), m > 2,

E��(x) = O(ln |x|), m = 2,

Q��(x), |(∇E��)(x)| = O(|x|1−m).

If m = 2 and 〈�, 1〉 = 0 then

E��(x) = O
(|x|−1

)
, |∇E��(x)| = O

(|x|−2
)
.

If � is bounded then E� : � �→ E�� represents a bounded linear operator from
H−1/2(∂�, Rm) to H1(�, Rm) and QG : � �→ QQ� is a continuous linear operator
from H−1/2(∂�, Rm) to L2(�, R1) (see [10], Theorem 4.4). If � ∈ H−1/2(∂�, Rm)

then E�� is the trace of E�� on ∂�. Moreover, E� : � �→ E�� is a bounded linear
operator from H−1/2(∂�; Rm) to H1/2(∂�; Rm) (see [10], Proposition 4.5).

Fix y ∈ ∂� such that there is the unit outward normal n�(y) of � at y. For x ∈
Rm \ {y}, j, k ∈ {1, . . . , m} set

K̃�
jk(x, y) = 1

2Hm−1(∂ B(0; 1))

×
[

δ jk
(y − x) · n�(y)

|y − x|m + m
(y j − x j)(yk − xk)(y − x) · n�(y)

|y − x|m+2

− (yk − xk)n�
j (y)

|y − x|m + (y j − x j)n�
k (y)

|y − x|m
]

.



394 D. Medková

Then K̃�
jk(x, y) = −n�(y) · ∇y E jk(y − x) + Q j(y − x)n�

k (y). For � ∈ L2(∂�, Rm), x ∈
∂� define

K̃′
��(x) = lim

δ↘0

∫

∂�\B(x;δ)
K̃�(y, x)�(y) dy

whenever this integral exists. The operator K̃′
� is a bounded linear operator on

L2(∂�, Rm) (see [2, 4, 10]; compare also [1]).
If x ∈ ∂�, a > 0 denote the non-tangential approach regions of opening a at the

point x by


a(x) := {y ∈ �; |x − y| < (1 + a) dist(y, ∂�)}.
Denote


e
a(x) := {y ∈ �e; |x − y| < (1 + a) dist(y, ∂�e)}

the non-tangential approach regions of opening a at the point x corresponding to
�e = Rm \ cl �. We fix a > 0 large enough such that x ∈ cl 
a(x) ∩ cl 
e

a for every x ∈
∂�. We shall write 
(x) = 
a(x), 
e(x) = 
e

a(x). If now v is a vector function defined
in � and x ∈ ∂� then the non-tangential maximal function of v is defined by

v∗(x) = sup
y∈
(x)

|v(y)|

and

v+(x) = lim
y → x

y ∈ 
(x)

v(y)

is the non-tangential limit of v at x with respect to �. Similarly, if v is a vector function
defined in �e and x ∈ ∂� then

v−(x) = lim
y → x

y ∈ 
e(x)

v(y)

If � is bounded and � ∈ L2(∂�, Rm) then (∇E��)∗, (Q��)∗ ∈ L2(∂�) and

[
∂ E��/∂n − (Q��)n�

]
+ = 1

2
� − K̃′

��, (14)

[
∂ E��/∂n − (Q��)n�

]
− = −1

2
� − K̃′

�� (15)

(see [2, 4, 10]; compare also [1]).

Lemma 3.1 If � ⊂ Rm is a bounded open set with Lipschitz boundary then there is a
sequence of C∞ domains � j with following properties:

– cl � j ⊂ �.
– There are a > 0 and homeomorphisms � j : ∂� → ∂� j, such that � j(y) ∈ 
a(y)

for each j and each y ∈ ∂� and sup{|y − � j(y)|; y ∈ ∂�} → 0 as j → ∞.
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– There are positive functions ω j on ∂� bounded away from zero and inf inity
uniformly in j such that for any measurable set E ⊂ ∂�,

∫

E

ω j dy =
∫

� j(E)

1 dy,

and so that ω j → 1 pointwise a.e. and in L2(∂�, R1).
– The normal vectors to � j, n(� j(y)), converge pointwise a.e. and in L2(∂�, Rm) to

n(y).

(For the proof see [19], Theorem 1.12.)

Proposition 3.2 Let � ⊂ Rm be a bounded open set with Lipschitz boundary.
Then K̃′

� can be extended as a bounded linear operator on H−1/2(∂�, Rm). If
� ∈ H−1/2(∂�, Rm) then [∂ E��/∂n − (Q��)n�]+ = 1

2� − K̃′
��, i.e. u = E��, p =

Q�� is a weak solution of the problem (1) and (3) if and only if 1
2� − K̃′

�� = g.

Proof Since E� is a bounded linear operator from H−1/2(∂�, Rm) into H1(�, Rm)

and Q� is a bounded linear operator from H−1/2(∂�, Rm) into L2(�), we infer
that � �→ ∂ E��/∂n − Q��n is a bounded linear operator on H−1/2(∂�, Rm). If
� ∈ L2(∂�, Rm) and v ∈ C∞(Rm, Rm) then Lemma 3.1 and Green’s formula yield
〈[

∂ E��/∂n − (Q��)n�
]
+ , v

〉
=
〈

1

2
� − K̃′

��, v
〉

=
∫

�

[∇E�� : ∇v − Q��(∇ · v)
]
.

Since C∞(Rm, Rm) is a dense subset of H1(�, Rm), this relation holds for arbi-
trary v ∈ H1(�, Rm). The continuity argument gives this relation for arbitrary � ∈
H−1/2(∂�, Rm). 
�

Lemma 3.3 If � ⊂ Rm is a bounded domain with Lipschitz boundary and n� is the
unit outward normal of � then E�nG = 0, QGnG = −1 in G.

(See [13].)

Lemma 3.4 Let G ⊂ Rm be a bounded domain with connected compact Lipschitz
boundary, m ≥ 2. Let � ∈ H−1/2(∂G, Cm). If m = 2 suppose moreover that

∫
� = 0.

If 〈�, EG�〉 = 0 then EG� = 0 in Rm and there is a constant c such that � = cnG.
(Here � denotes the complex conjugate of �).

(See [13], Corollary 4.4.)

4 Spectral Properties of the Operator K̃′
�

We shall look for a solution of the problem (1) and (3) in the form of a hydrody-
namical single layer potential u = EG�, p = QG� with a density � ∈ H−1/2(∂G).
For this reason we shall study the spectrum of the operator 1

2 I − K̃′
G. We show that

σ( 1
2 I − K̃′

G) ⊂ 〈0, 1〉 and 1
2 I − K̃′

G is a Fredholm operator of index 0. Our approach is
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a modification of the method used in [13] for the integral operator K′
G corresponding

to the boundary value problem (1) and (4).

Proposition 4.1 Let � ⊂ Rm be an open set with compact Lipschitz boundary, m ≥ 2.
Let �1, �2 ∈ H−1/2(∂�, Rm). If m = 2 and � is unbounded suppose moreover that∫

�1 = ∫
�2 = 0. Then

〈
1

2
�1 − K̃′

��1, E��2

〉
=
∫

�

(∇EG�1) : (∇E��2) dy. (16)

Put � = �1 + i�2 where i is the imaginary unit. Denote � = �1 − i�2 the conjugate
of �. Then

〈
1

2
� − K̃′

��, E��

〉
=
∫

�

(|∇E��1|2 + |∇E��2|2
)

dy ≥ 0. (17)

Proof We show Eq. 16. Suppose first that � is bounded. Proposition 2.2 gives that
u = E��1, p = Q��1 is a weak solution of the problem (1) and (3) with g = 1

2�1 −
K̃′

��1. Since v = E��2 ∈ H1(�; Rm) and ∇ · E��2 = 0 in �, we obtain Eq. 16 from
Eq. 8.

Let now � be unbounded. Fix R > 0 such that ∂� ⊂ B(0; R) and denote �(R) =
� ∩ B(0; R). Put �1 = 0 = �2 on ∂ B(0; R). Then

∫

�(R)

(∇E��1) : (∇E��2) dy =
〈

1

2
�1 − K̃′

�(R)�1, E��2

〉

=
〈

1

2
�1 − K̃′

�	1, E��2

〉

+
∫

∂ B(0;R)

[
∂ E��1

∂n
+ (Q��1)n

]
· E��2 dy.

If R → ∞ then the decay properties of hydrodynamical potentials give Eq. 16.
Using Eq. 16 we get
〈

1

2
� − K̃′

��, E��

〉
=
〈

1

2
�1 − K̃′

��1, E��1

〉
+
〈

1

2
�2 − K̃′

��2, E��2

〉

− i
〈

1

2
�1 − K̃′

��1, E��2

〉
+ i

〈
1

2
�2 − K̃′

��2, E��1

〉

=
∫

�

|∇E��1|2 dy +
∫

�

|∇E��2|2 dy

− i
∫

�

(∇E��1) : (∇E��2) dy

+ i
∫

�

(∇E��1) : (∇E��2) dy

=
∫

�

[|∇E��1|2 + |∇E��2|2] dy ≥ 0. 
�



First and Second Problems of the Stokes System 397

Corollary 4.2 Let � ⊂ Rm be an open set with compact Lipschitz boundary, m ≥ 2.
Let � ∈ H−1/2(∂�, Cm). If m = 2 suppose moreover that

∫
� = 0. Then

〈
�, E��

〉 =
∫

Rm\∂�

|∇E��|2 dy ≥ 0. (18)

Proof Put C = Rm \ cl �. Since K̃′
� = −K̃′

C we get using Proposition 4.1

〈�, E��〉 =
〈

1

2
� − K̃′

��, E��

〉
+
〈

1

2
� − K′

C�, E��

〉
=

∫

Rm\∂�

|∇E��|2.


�

Definition 4.3 Lex X, Y be Banach spaces. Denote by I the identity operator on X.
If M is a subspace of X denote by dim M the dimension of M. If Z is a subspace
of X such that X = M

⊕
Z , i.e. X is the direct sum of M and Z , denote by

codim Z = dim M the codimension of Z . If T is a bounded linear operator from X
to Y, denote by Ker T = {x ∈ X; Tx = 0} the kernel of T, α(T) = dim Ker T, β(T) =
codim T(X). We say that T is upper semi-Fredholm if T(X) is a closed subset of Y
and α(T) < ∞. For an upper semi-Fredholm operator T denote i(T) = α(T) − β(T)

the index of T. We say that T is Fredholm if T is upper semi-Fredholm and β(T) <

∞. If X is a complex Banach space and T is a bounded linear operator on X, denote
by σ(T) the spectrum of T and by r(T) = sup{|λ|; λ ∈ σ(T)} the spectral radius of T.

Lemma 4.4 Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary,
m ≥ 2. Then ( 1

2 I − K̃′
G)nG = nG. Denote H−1/2(∂G; Cm) ∩ E−1(Cm) the set of all � ∈

H−1/2(∂G; Cm) such that EG� is constant in G. Then H−1/2(∂G; Cm) ∩ E−1(Cm) =
Ker( 1

2 I − K̃′
G)
⊕{cnG; c ∈ C} and dim Ker( 1

2 I − K̃′
G) ≤ m.

Proof ( 1
2 I − K̃′

G)nG = nG by Lemma 3.3 and Proposition 3.2.
If � ∈ Ker( 1

2 I − K̃′
G) then u = EG�, p = QG� is a weak solution of the Neu-

mann problem for the Stokes system (1) and (3) with the boundary condition g = 0
(see Proposition 3.2). Lemma 2.1 gives that u = EG� is constant. Let now � ∈
H−1/2(∂G; Cm) ∩ E−1(Cm). Then ∇QG� = �EG� = 0 in G. So, there is a constant
c such that QG� = c in G. Put � = � + cnG. Lemma 3.3 gives that EG� = EG�

is constant and QG� = 0 in G. Thus � ∈ Ker( 1
2 I − K̃′

G) by Proposition 3.2. Since
nG �∈ Ker( 1

2 I − K̃′
G), we infer that Ker( 1

2 I − K̃′
G)
⊕{cnG; c ∈ C} = H−1/2(∂G; Cm) ∩

E−1(Cm).
Suppose that � ∈ Ker( 1

2 I − K̃′
G), 〈�, c〉 = 0 for each c ∈ Rm. Then there exists

b ∈ Cm such that EG� = b on the closure of G. Thus 0 = 〈�, b〉 = 〈�, EG�〉 and
Lemma 3.4 gives that � = dnG for some d ∈ C. Since nG �∈ Ker( 1

2 I − K̃′
G), we infer

that � = 0. This gives dim Ker( 1
2 I − K̃′

G) ≤ m. 
�

Proposition 4.5 Let G ⊂ Rm be a bounded domain with connected Lipschitz bound-
ary. If λ ∈ C is an eigenvalue of 1

2 I − K̃′
G in H−1/2(∂G, Cm) then 0 ≤ λ ≤ 1.
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Proof Let � be an eigenfunction corresponding to an eigenvalue λ. We can suppose
that λ �= 0. Then � = ( 1

2 I − K̃′
G) 1

λ
�. Proposition 3.2 and Lemma 2.1 give that

∫
� =

0. If � = bnG, b ∈ C, then λ = 1 by Lemma 4.4. Suppose now that � �= bnG. Then

〈�, EG�〉 =
∫

Rm\∂G

|∇EG�|2 dx > 0

by Lemma 3.4 and Corollary 4.2. According to Proposition 4.1 and Corollary 4.2
∫

G

|∇EG�(x)|2 =
〈

1

2
� − K̃′

G�, EG�

〉
= 〈λ�, EG�〉 = λ

∫

Rm\∂G

|∇EG�|2.

Therefore

0 ≤ λ =
∫

G
|∇̂EG�|2 dx

∫

Rm\∂G
|∇̂EG�|2 dx

≤ 1.


�

Proposition 4.6 Let � ⊂ Rm be a bounded domain with Lipschitz boundary, m ≥ 2.
Then there is a closed subspace Y of H−1/2(∂�, Rm) with f inite codimension such that√〈�, E��〉, ‖E��‖H1/2(∂�),

√
〈[(1/2)I − K̃′

�]�, E��〉 are three norms on Y which
are equivalent to the original norm.

Proof First we show that there exist a closed subspace X of H−1/2(∂�, Rm) with
finite codimension and a constant C1 such that

‖�‖H−1/2(∂�) ≤ C1‖E��‖H1/2(∂�) ∀� ∈ X. (19)

For ∂� connected see [13], Proposition 4.11. Denote S1, . . . , Sk all components of ∂�.
Then E� is an upper semi-Fredholm operator from H−1/2(S j, Rm) to H1/2(S j, Rm))

for each j (see [15], Section 16, Theorem 8). If j �= l then E� is a compact linear
operator from H−1/2(S j, Rm) to H1/2(Sl, Rm)). Thus E� is an upper semi-Fredholm
operator from H−1/2(∂�, Rm) to H1/2(∂�, Rm)) (see [15], Section 16, Theorem 16).
According to [17], Lemma 5.1 there exists a closed subspace X of H−1/2(∂�, Rm)

such that H−1/2(∂�, Rm) = X
⊕

Ker E�. The relation (19) is a consequence of [15],
Section 16, Theorem 10 and [3], Theorem 1.42.

Denote

r(v) = ‖∇v‖L2(�) +
∣∣∣
∣

∫

�

v dHm

∣∣∣
∣.

Then r(v) is an equivalent norm on H1(�; Rm) (see [11], Chapter 1, Section 1.5.4).
Set

V =
{

v ∈ H1(�, Rm);
∫

∂�

v dy = 0

}
.

Then there is a positive constant C2 such that ‖v‖H1(�) ≤ C2‖∇v‖L2(�) for all v ∈
V. Denote Y = {	 ∈ X; E�� ∈ V,

∫
� = 0}. Since E� is a continuously invertible
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operator X onto E�(X) ⊂ H1(�, Rm) and V is a closed subspace of H1(�, Rm) with
finite codimension, Y is a closed subspace of H−1,2(�, Rm) with finite codimension.
Fix 	 ∈ Y. Since E�� is the trace of E�� on ∂� we obtain using Eqs. 19 and 7,
Proposition 4.1 and Corollary 4.2

‖�‖2
H−1/2(∂�,Rm) ≤ C1‖E��‖2

H1/2(∂�,Rm) ≤ C1‖E��‖2
H1(�,Rm)

≤ C1C2

∫

�

|∇E�	|2 dy

= C1C2〈[(1/2)I − K̃′
�]�, E��〉

≤ C1C2

∫

Rm\∂�

|∇E�	|2 dy = C1C2〈�, E��〉.


�

Theorem 4.7 Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary,
m ≥ 2. Then σ( 1

2 I − K̃′
G) ⊂ 〈0, 1〉 in H−1/2(∂G, Cm) and 1

2 I − K̃′
G is a Fredholm

operator with index 0.

Proof Proposition 4.6 yields that there is a closed subspace Y of finite codimension
and a positive constant L such that ‖�‖2

H−1/2(∂G)
≤ L〈(�, EG�〉, ‖�‖2

H−1/2(∂G)
≤

L〈( 1
2 I − K̃′

G)�, EG�〉 for each � ∈ Y. Put Z = {� = �1 + i�2; �1,�2 ∈ Y and∫
� = 0}. Then Z is a closed subspace of H−1/2(∂G, Cm) with finite codimension.

Proposition 4.1 and Corollary 4.2 give

‖�‖2
H−1/2 ≤ L〈�, EG�〉, ‖�‖2

H−1/2 ≤ L〈[(1/2)I − K̃′
G]�, EG�〉 (20)

for each � ∈ Z .
If λ ∈ R then Eq. 20 gives

〈[(1/2 − λ)I − K̃′
G]�, EG�〉 = 〈[(1/2)I − K̃′

G]�, EG�〉 − λ〈(�, EG�〉 ∈ R. (21)

If λ < 0 then Eqs. 20 and 21 give

L〈[(1/2 − λ)I − K̃′
G]�, EG�〉 ≥ L〈[(1/2)I − K̃′

G]�, EG�〉 ≥ ‖�‖2
H−1/2(∂G)

.

If λ > 1 then Corollary 4.2, Proposition 4.1 and Eq. 20 give

L|〈[(1/2 − λ)I − K̃′
G]�, EG�〉| ≥ L{λ〈�, EG�〉 − 〈[(1/2)I − K̃′

G]�, EG�〉}

= Lλ

∫

Rm\∂G

|∇EG�|2 dy − L
∫

G

|∇EG�|2 dy

≥ L(λ − 1)

∫

Rm\∂G

|∇EG�|2 dy

= L(λ − 1)〈�, EG�〉 ≥ (λ − 1)‖�‖2
H−1/2(∂G)

.
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If λ = λ1 + iλ2 ∈ C, λ2 �= 0 and � ∈ Z then Eqs. 20 and 21 give

|〈[(1/2 − λ)I − K̃′
G]�, EG�〉| = |〈[(1/2 − λ1)I − K̃′

G]�, EG�〉 − iλ2〈�, EG�〉|
≥ |λ2|〈�, EG�〉| ≥ |λ2|L−1‖�‖2

H−1/2(∂G).

Fix λ ∈ C \ (0, 1〉. We have proved that there is a positive constant M such that

‖�‖2
H−1/2(∂G) ≤ M〈[(1/2 − λ)I − K̃′

G]�, EG�〉.
for each � ∈ Z . If � ∈ Z \ {0} then

‖�‖H−1/2(∂G) ≤ M〈[(1/2 − λ)I − K̃′
G]�, EG�〉/‖�‖H−1/2(∂G)

≤ M‖EG‖H−1/2(∂G)→H−1/2(∂G)‖[(1/2 − λ)I − K̃′
G]�‖H−1/2(∂G).

So, the operator 1
2 I − K̃′

G − λI is upper semi-Fredholm by [15], Section 16, Theo-
rem 8. Since the index i( 1

2 I − K̃′
G − μI) is constant on C \ (0, 1〉 (see [15], Section

18, Corollary 3) and 1
2 I − K̃′

G − μI is invertible for |μ| > ‖ 1
2 I − K̃′

G‖ (see [17],
Lemma 6.5), we infer that i( 1

2 I − K̃′
G − λI) = 0. Thus 1

2 I − K̃′
G − λI is a Fredholm

operator with index 0. If λ �= 0 then α( 1
2 I − K̃′

G − λI) = 0 by Proposition 4.5 and
i( 1

2 I − K̃′
G − λI) = 0 forces that the operator 1

2 I − K̃′
G − λI is onto. Therefore 1

2 I −
K̃′

G − λI is a continuously invertible operator (see [3], Theorem 1.42). 
�

5 Indirect BEM

In this section we shall study the problem (1) and (3) for a bounded domain G with
connected Lipschitz boundary using the indirect boundary integral equation method.
We shall look for a solution in the form of a hydrodynamical single layer potential
u = EG�, p = QG� with a density � ∈ H−1/2(∂G). We have proved that u = EG�,
p = QG� is a solution of the problem if and only if 1

2� − K̃′
G� = g (see Proposi-

tion 3.2). We determine the necessary and sufficient condition for the solvability of
the problem. Moreover, we prove that the integral equation 1

2� − K̃′
G� = g can be

solved by the successive approximation.
In the numerical practice we approximate g, so we solve the equation 1

2 �̃ −
K̃′

G�̃ = g̃ where g̃ is close to g. Since the operator 1
2 I − K̃′

G is not invertible this
equation might not be solvable. To overcome this difficulty we define a modified
operator

M′� = K̃′
Gψ − 1

c

∫

∂G

� dy, c =
∫

∂G

1 dy. (22)

We show that the integral equation 1
2� − M′� = g is uniquely solvable and if the

problem (1) and (3) is solvable and � is a solution of the equation 1
2� − M′� = g

then 1
2� − K̃′

G� = g. We show that the modified equation 1
2� − M′� = g can be

solved by the successive approximation.

Proposition 5.1 Let G ⊂ Rm be a bounded domain with connected Lipschitz
boundary. Then H−1/2(∂G, Cm) is the direct sum of Ker( 1

2 I − K̃′
G) and ( 1

2 I −
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K̃′
G)(H−1/2(∂G, Cm)) = {� ∈ H−1/2(∂G, Cm); ∫ � = 0}. If we denote by L′

G the re-
striction of K̃′

G onto ( 1
2 I − K̃′

G)(H−1/2(∂G, Cm)), then σ( 1
2 I − L′

G) ⊂ (0, 1〉.

Proof If � ∈ H−1/2(∂G, Cm), then u = EG�, p = QG� is a solution of the
problem (1) and (3) with the boundary condition g = ( 1

2 I − K̃′
G)� by Proposi-

tion 3.2. Lemma 2.1 gives that
∫

� = 0. Thus ( 1
2 I − K̃′

G)(H−1/2(∂G, Cm)) ⊂ {� ∈
H−1/2(∂G, Cm); ∫ � = 0} and codim( 1

2 I − K̃′
G)(H−1/2(∂G, Cm)) ≥ m. Lemma 4.4

gives dim Ker( 1
2 I − K̃′

G) ≤ m. So codim( 1
2 I − K̃′

G)(H−1/2(∂G, Cm)) = dim Ker( 1
2 I−

K̃′
G) = m by Theorem 4.7. Hence ( 1

2 I − K̃′
G)(H−1/2(∂G, Cm)) = {� ∈ H−1/2(∂G,

Cm); ∫ � = 0}.
Let now � ∈ Ker( 1

2 I − K̃′
G) ∩ ( 1

2 I − K̃′
G)(H−1/2(∂G, Cm)). Then

∫
� = 0. Since

EG� is constant on G by Lemma 4.4, we obtain 〈�, EG�〉 = 0. Since
∫

� =
0, Lemma 3.4 gives that � = bnG for some b ∈ C. Since nG �∈ Ker( 1

2 I−
K̃′

G) by Lemma 4.4, we infer that b = 0. Since Ker( 1
2 I − K̃′

G) ∩ ( 1
2 I − K̃′

G)

(H−1/2(∂G, Cm)) = {0} and codim( 1
2 I − K̃′

G)(H−1/2(∂G, Cm)) = dim Ker( 1
2 I − K̃′

G),
we deduce that H−1/2(∂G, Cm) = Ker( 1

2 I − K̃′
G)
⊕

( 1
2 I − K̃′

G)(H−1/2(∂G, Cm)).
Since H−1/2(∂G, Cm) = Ker( 1

2 I − K̃′
G)
⊕

( 1
2 I − K̃′

G)(H−1/2(∂G, Cm)), we have
σ( 1

2 I − L′
G) ⊂ σ( 1

2 I − K̃′
G) ⊂ 〈0, 1〉. Moreover, the operator ( 1

2 I − L′
G) is one-to-

one and onto. Thus 0 �∈ σ( 1
2 I − L′

G) (see [3], Theorem 1.42.) 
�

Proposition 5.2 Let X be a Banach space, T be a bounded linear operator on X.
Suppose that X is the direct sum of Ker(I − T) and (I − T)(X). Denote by T̃ the
restriction of T onto (I − T)(X). Suppose that

lim
j→∞

‖T̃ j‖1/j < 1. (23)

Fix now y ∈ (I − T)(X), x0 ∈ X. Put

x j+1 = Tx j + y (24)

for a nonnegative integer j. Then there exists

x = lim
j→∞

x j

and

‖x − x j‖ ≤ Cq j(‖y‖ + ‖x0‖) (25)

for arbitrary j, where C > 0, 0 < q < 1 are constants depending only on T.

(For the proof see [12], Proposition 3.)

Theorem 5.3 Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary,
m ≥ 2. Fix g ∈ H−1/2(∂G, Rm). Then there is a weak solution of the problem (1) and
(3) if and only if

∫
g = 0. Suppose now that

∫
g = 0 and �0 ∈ H−1/2(∂G, Rm). For a

nonnegative integer k put

�k+1 = [(1/2)I + K̃′
G]�k + g. (26)
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Then there is � ∈ H−1/2(∂G, Rm) such that �k → � in H−1/2(∂G, Rm) as k → ∞.
Moreover, there are constants 0 < q < 1, C > 0 depending only on G such that

‖�k − �‖H−1/2(∂G,Rm) ≤ Cqk
(

‖g‖H−1/2(∂G,Rm) + ‖�0‖H−1/2(∂G,Rm)

)
. (27)

If we put u = EG�, p = QG� then u, p is a weak solution of the problem (1) and (3).

Proof Suppose first that there is a weak solution of the problem (1) and (3).
Lemma 2.1 gives that

∫
g = 0.

Suppose now that
∫

g = 0. Set T = (1/2)I + K̃′
G, T̃ the restriction of T onto

[(1/2)I − K̃′
G](H−1/2(∂G, Cm)). Proposition 5.1 gives that H−1/2(∂G, Rm) = Ker(I −

T)
⊕

(I − T)(H−1/2(∂G, Rm)) and σ(I − T̃) ⊂ (−1, 1). Since r(T̃) < 1, [20], Chap-
ter VIII, Section 2 gives Eq. 23. According to Proposition 5.2 there exists � ∈
H−1/2(∂G, Rm) such that �k → � as k → ∞ in H−1/2(∂G, Rm) and Eq. 27 holds
with constants 0 < q < 1, C > 0 depending only on G.

Put u = EG�, p = QG�. Letting k → ∞ in Eq. 26 we get � = [(1/2)I + K̃′
G]� +

g. Proposition 3.2 forces that u, p is a weak solution of the problem (1) and (3). 
�

Proposition 5.4 Let G ⊂ Rm be a bounded domain with connected Lipschitz bound-
ary, m ≥ 2. Then the operator 1

2 I − M′ is continuously invertible in the space
H−1/2(∂G, Rm). If � ∈ H−1/2(∂G, Rm), 1

2� − M′� = g and
∫

g = 0, then
∫

� = 0

and 1
2� − K̃′

G� = g.

Proof Suppose first that 1
2� − M′� = g and

∫
g = 0. By virtue of Proposition 5.1

0 =
∫

∂G

g dy =
∫

∂G

(
1

2
I − K̃′

G

)
� dy + 1

c

∫

∂G

� dy = 1

c

∫

∂G

� dy.

Therefore 1
2� − K′

G� = 1
2� − M′� = g.

Now we prove that 1
2 I − M′ is one-to-one. Suppose ( 1

2 I − M′)� = 0. Then
∫

� = 0 and 1
2� − K̃′

G� = 1
2� − M′� = 0. Since 1

2 I − K̃′
G is injective on {f ∈

H−1/2(∂G, Rm); ∫ f = 0} by Proposition 5.1, we infer that � = 0.
The operator M′ − K̃′

G is a finite rank operator and therefore compact (see [17], p.
88). Since 1

2 I − K̃′
G is a Fredholm operator with index 0 by Theorem 4.7, the operator

1
2 I − M′ is a Fredholm operator with index 0, too (see [15], Section 16, Theorem 16).
Since 1

2 I − M′ is one-to-one, it is also onto and therefore continuously invertible (see
[3], Theorem 1.42). 
�

Proposition 5.5 Let G ⊂ Rm be a bounded domain with connected Lipschitz bound-
ary, m ≥ 2. Then there is an equivalent norm on H−1/2(∂G, Cm) such that ‖ 1

2 I +
M′‖ ≤ q < 1. Let now g ∈ H−1/2(∂G, Cm),

∫
g = 0. Fix �0 ∈ H−1/2(∂G, Cm). For a

nonnegative integer k put

�k+1 =
(

1

2
I + M′

)
�k + g.

Then �k → � in H−1/2(∂G, Cm), 1
2� − M′� = g and ‖� − � j‖ ≤ q j[‖g‖ + ‖�0‖]

for arbitrary j.
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Proof Let λ be an eigenvalue of 1
2 I − M′ and 	 be a corresponding eigenvector.

Then � = f + g, where g is constant and
∫

f = 0. We have

λf + λg =
(

1

2
I − M′

)
� =

(
1

2
I − K′

G

)
� + g.

By virtue of Proposition 5.1

λ

∫
g =

∫
λf +

∫
λg =

∫ (
1

2
I − K′

G

)
� +

∫
g =

∫
g.

If g �= 0 then λ = 1. If g = 0 then � = f ∈ [(1/2)I − K̃′
G](H−1/2(∂G, Cm)) by Propo-

sition 5.1. Since λ is an eigenvalue of [(1/2)I − L′
G], Proposition 5.1 gives that

0 < λ ≤ 1.
Fix λ ∈ C \ (0, 1〉. The operator 1

2 I − K̃′
G − λI is a Fredholm operator with index

0 by Theorem 4.7. Since M′ − K̃′
G is a finite rank operator and so compact (see [17],

p. 88), the operator 1
2 I − M′ − λI is a Fredholm operator with index 0 (see [15],

Section 16, Theorem 16). If λ ∈ σ( 1
2 I − M′) then λ is an eigenvalue of 1

2 I − M′. We
have proved that λ is not an eigenvalue of 1

2 I − M′. Thus σ( 1
2 I − M′) ⊂ (0, 1〉. Since

σ( 1
2 I + M′) ⊂ 〈0, 1) we have r( 1

2 I + M′) < 1. If we fix r( 1
2 I + M′) < q < 1 then there

exists an equivalent norm ‖ · ‖ on H−1/2(∂G, Cm) such that ‖ 1
2 I + M′‖ ≤ q (see [6]).

The rest is a consequence of Proposition 5.2. 
�

6 Double Layer Potentials

Now we define a hydrodynamical double layer potential corresponding to the bound-
ary condition (3). Let � ⊂ Rm be an open set with compact Lipschitz boundary. Fix
y ∈ ∂� such that there is the unit outward normal n�(y) of � at y. For x ∈ Rm \ {y},
j, k ∈ {1, . . . , m} set

R�
k (x, y) = 1

Hm−1(∂ B(0; 1))

[
n�

k (y)

|x − y|m − m(yk − xk)(y − x) · n�(y)

|x − y|m+2

]
.

Then R�
k (x, y) = n�(y) · ∇y Qk(y − x).

For � = [	1, . . . , 	m] ∈ L2(∂�, Rm) define the corresponding hydrodynamical
double layer potential with density � by

(W��)(x) =
∫

∂�

K̃�(x, y)�(y) dHm−1(y) (28)

and the corresponding pressure

(R��)(x) =
∫

∂�

R�(x, y)�(y) dHm−1(y)

in Rm \ ∂�. Then (W��, R��) ∈ C∞(Rm \ ∂�, Rm+1) solve the Stokes system

∇ R�� − �W�� = 0, ∇ · W�� = 0 in Rm \ ∂�.
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We have the following decay behavior as |x| → ∞:

(W��)(x) = O(|x|1−m),

|(∇W��)(x)|, R��(x) = O(|x|−m).

Since K̃�
jk(x, y) = −n�(y) · ∇y E jk(y − x) + Q j(y − x)n�

k (y), we have (W� f )∗ ≤
(|∇E� f |)∗ + (Q� f )∗ ∈ L2(∂�).

If x ∈ ∂� define

K̃��(x) = lim
ε↘0

∫

∂�\B(x;ε)
K̃�(x, y)�(y) dy.

whenever this limit exists. Clearly, K̃� is the adjoint operator of K̃′
�. Thus K̃� is a

bounded linear operator on L2(∂�, Rm) and on H1/2(∂�, Rm). Moreover,

[W��]+(x) = 1

2
�(z) + K̃��(z), [W��]−(x) = −1

2
�(z) + K̃��(z) (29)

for almost all x ∈ ∂� (see [10], Proposition 3.2). If � ∈ H1/2(∂�) then W�� ∈
H1(�, Rm) (see [10], Theorem 4.4) and 1

2� + K̃�� is the trace of W��.

Proposition 6.1 Let G ⊂ Rm be a bounded open set with connected Lipschitz bound-
ary, m ≥ 2. Let u, p be a weak solution of the problem (1) and (3) with g ∈
H−1/2(∂G, Rm). Then

u(x) = EGg(x) + WGu(x), p(x) = QGg(x) + RGu(x) x ∈ G, (30)

EGg(x) + WGu(x) = 0, QGg(x) + RGu(x) = 0 x �∈ cl G. (31)

Proof If u ∈ C2(G, Rm), p ∈ C1(G) then this result is well-known (see [16], p. 29).
Suppose now that g ∈ L2(∂G, Rm). Then u∗ + p∗ ∈ L2(∂G) and g is the nontan-

gential limit ∂u/∂n − pn at almost all points of ∂G (see [4], Theorem 2.9). Let � j be
domains from Lemma 3.1. Then Eqs. 30 and 31 hold true for �n. Using Lebesgue
lemma we obtain these equalities for G.

Let now g be general. According to Theorem 5.3 and Lemma 2.1 there exists
� ∈ H−1/2(∂G, Rm) and c ∈ Rm such that u = EG� + c, p = QG�. Choose �k ∈
L2(∂G, Rm) such that �k → � in H−1/2(∂G, Rm). Put uk = EG�k + c, pk = QG�k,
gk = ∂uk/∂n − pkn. Then gk ∈ L2(∂G, Rm) by [4]. So, Eqs. 30 and 31 hold for uk, pk

and gk. If k → ∞ we get Eqs. 30 and 31. 
�

Corollary 6.2 Let G ⊂ Rm be a bounded open set with connected Lipschitz boundary,
m ≥ 2. Then EGnG ≡ 0, QGnG = 0 in Rm \ cl G.

Proof We use Proposition 6.1 for u ≡ 0, p = 1. 
�
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7 Direct BEM

Let now G ⊂ Rm be a bounded domain with connected Lipschitz boundary, m ≥ 2,
g ∈ H−1/2(∂G, Rm) be such that

∫
g = 0. According to Theorem 5.3 there is a weak

solution u, p of the problem (1) and (3). Denote by ũ the trace of u. Since

u(x) = EGg(x) + WGũ(x), (32)

p(x) = QGg(x) + RGũ(x) (33)

in G it is enough to determine ũ. Using boundary behavior of hydrodynamical
potentials we get

1

2
ũ − K̃Gũ = EGg on ∂G. (34)

Proposition 7.1 Let G ⊂ Rm be a bounded domain with connected Lipschitz bound-
ary, m ≥ 2. Then 1

2 I − K̃G is a Fredholm operator with index 0 in H1/2(∂G, Cm),
H1/2(∂G, Cm) = Ker( 1

2 I − K̃G)
⊕

( 1
2 I − K̃G)(H1/2(∂G, Cm)) and Ker( 1

2 I − K̃G) =
Cm. If we denote by LG the restriction of K̃G onto ( 1

2 I − K̃G)(H1/2(∂G, Cm)) then
σ( 1

2 I − LG) ⊂ (0, 1〉.

Proof Since 1
2 I − K̃G and 1

2 I − K̃′
G are adjoint operators, 1

2 I − K̃G is a Fredholm
operator with index 0 and σ( 1

2 I − K̃G) ⊂ 〈0, 1〉 by Theorem 4.7, [17], Theorem 5.15,
and [17], Theorem 6.24. According to Proposition 5.1 and [17], Chapter 3, Sec-
tion 3.3, we have ( 1

2 I − K̃G)(H1/2(∂G, Cm)) = {w ∈ H1/2(∂G, Cm); 〈�, w〉 = 0 ∀� ∈
Ker( 1

2 I − K̃′
G)} and Ker( 1

2 I − K̃G) = {w ∈ H1/2(∂G, Cm); 〈�, w〉 = 0 ∀� ∈ ( 1
2 I −

K̃′
G)(H−1/2(∂G, Cm))} = Cm. Since H−1/2(∂G, Cm) is the direct sum of Ker( 1

2 I − K̃′
G)

and ( 1
2 I − K̃′

G)(H−1/2(∂G, Cm)) we deduce H1/2(∂G, Cm) = Ker( 1
2 I − K̃G)

⊕
( 1

2 I −
K̃G)(H1/2(∂G, Cm)). This forces σ( 1

2 I − LG) ⊂ (0, 1〉. 
�

Theorem 7.2 Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary,
m ≥ 2, g ∈ H−1/2(∂G, Rm),

∫
g = 0. Fix ũ0 ∈ H1/2(∂G, Rm). For a nonnegative integer

k put

ũk+1 = [(1/2)I + K̃G]ũk + EGg. (35)

Then there is ũ ∈ H1/2(∂G, Rm) such that ũk → ũ in H1/2(∂G, Rm) as k → ∞. More-
over, there are constants 0 < q < 1, C > 0 depending only on G such that

‖ũk − ũ‖H1/2(∂G,Rm) ≤ Cqk
(

‖g‖H−1/2(∂G,Rm) + ‖ũ0‖H1/2(∂G,Rm)

)
. (36)

The function ũ is a solution of the Eq. 34. If u, p are given by Eqs. 32 and 33 in G, then
u, p is a weak solution of the problem (1) and (3) and ũ is the trace of u on ∂G.

Proof Put T = (1/2)I + K̃G and denote by T̃ the restriction of T onto [(1/2)I −
K̃G](H1/2(∂G, Cm)). Proposition 7.1 gives that H1/2(∂G, Rm) = Ker(I − T)

⊕
(I −

T)(H1/2(∂G, Rm)) and σ(I − T̃) ⊂ (−1, 1). Since r(T̃) < 1, [20], Chapter VIII, Sec-
tion 2 gives Eq. 23. According to Theorem 5.3 there is a weak solution v, q of
the problem (1) and (3). By virtue of Eqs. 32, 33 and 34 we receive that EGg ∈
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(I − T)(H1/2(∂G, Rm)). Proposition 5.2 gives that there is ũ ∈ H1/2(∂G, Rm) such
that ũk → ũ as k → ∞ in H1/2(∂G, Rm) and

‖ũk − ũ‖H1/2(∂G,Rm) ≤ C̃qk
(

‖EGg‖H1/2(∂G,Rm) + ‖ũ0‖H1/2(∂G,Rm)

)

holds with constants 0 < q < 1, C̃ > 0 depending only on G. So, Eq. 36 holds with
C = C̃(1 + ‖EG‖).

Letting k → ∞ we get that ũ is a solution of the Eq. 34. Since v is also a solution of
the equation (34), Proposition 2.1 forces that w = ũ − v ∈ Rm. Since v, q is a solution
of the problem (1) and (3), we have v = EGg + WGv, q = QGg + RGv in G. Since
v + w, q is a solution of the problem (1) and (3), we have also v + w = EGg + WG(v +
w) = u, q = QGg + RG(v + w) = p in G. Thus ũ = v + w is the trace of u = v + w on
∂G. 
�

Proposition 7.3 Let G ⊂ Rm be a bounded domain with connected Lipschitz bound-
ary, m ≥ 2. Put

M� = K̃Gψ − 1

c

∫

∂G

� dy, c =
∫

∂G

1 dy.

The operator 1
2 I − M is continuously invertible in H1/2(∂G, Cm). If f ∈ H1/2(∂G, Cm),

h ∈ ( 1
2 I − K̃G)(H1/2(∂G, Cm)) and 1

2 f − Mf = h, then 1
2 f − K̃Gf = h.

Proof Since 1
2 I − M′ is continuously invertible by Proposition 5.4, its adjoint op-

erator 1
2 I − M is also continuously invertible (see [17], Theorem 6.24). We have

H1/2(∂G, Cm) = Cm ⊕( 1
2 I − K̃G)(H1/2(∂G, Cm)) by Proposition 5.1. Since 1

2 f −
K̃Gf ∈ ( 1

2 I − K̃G)(H1/2(∂G, Cm)), (K̃G − M)f ∈ Cm and h = [ 1
2 f − K̃Gf] + (K̃G −

M)f ∈ ( 1
2 I − K̃G)(H1/2(∂G, Cm)), we infer that (K̃G − M)f = 0. 
�

Theorem 7.4 Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary,
m ≥ 2. Then there is an equivalent norm on H1/2(∂G, Rm) such that ‖ 1

2 I + M‖ ≤ q <

1. Let now h ∈ H1/2(∂G, Rm). Fix f0 ∈ H1/2(∂G, Rm). For a nonnegative integer k put

fk+1 =
(

1

2
I + M

)
fk + h.

Then fk → f in H1/2(∂G, Rm), 1
2 f − Mf = h and ‖f − f j‖ ≤ q j[‖h‖ + ‖f0‖] for arbi-

trary j.

Proof Since there is an equivalent norm on H−1/2(∂G, Cm) such that ‖ 1
2 I + M′‖ ≤

q < 1 (see Proposition 5.5), we have ‖ 1
2 I + M‖ = ‖ 1

2 I + M′‖ ≤ q < 1 (see [17],
Theorem 3.3). The rest is a consequence of Proposition 5.2. 
�

8 BEM for the Stokes Problem

Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary. We would
like to construct a solution of the Stokes problem, i.e. u ∈ H1(G, Rm), p ∈ L2(G)
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such that Eq. 1 holds and u = f on ∂G, where f ∈ H1/2(∂G, Rm) be given. It is well-
known that this problem is solvable if and only if

∫

∂G

f · nG dy = 0, (37)

a velocity u is unique and a pressure p is unique up to an additive constant (see [5]).
Denote

g = ∂u/∂nG − pnG. (38)

Then

u(x) = EGg(x) + WGf(x), p(x) = QGg(x) + RGf(x) x ∈ G (39)

by Proposition 6.1. In this section we calculate g by the successive approximation. Set

h = ∂(WGf)/∂nG − (RGf)nG. (40)

Eq. 39 and Proposition 3.2 give g = g/2 − K̃′
Gg + h, i.e

(
1

2
I + K′

G

)
g = h. (41)

Proposition 8.1 Let G ⊂ Rm be a bounded domain with connected Lipschitz bound-
ary. Then 1

2 I + K̃′
G is a Fredholm operator with index 0 in the space H−1/2(∂G, Cm).

Proof Fix R > 0 such that G ⊂ B(0; R) and put � = B(0; R) \ G. According to
Proposition 4.6 there exists a closed subspace Y of H−1/2(∂�, Cm) with finite
codimension such that 1

2 I − K̃′
� is a continuously invertible operator from Y onto a

Banach space ( 1
2 I − K̃′

�)(Y). Thus 1
2 I − K̃′

� is an upper semi-Fredholm operator on
H−1/2(∂�, Cm) by [15], Section 16, Theorem 8. Moreover, 1

2 I − K̃′
� is an upper semi-

Fredholm operator from H−1/2(∂G, Cm) to H−1/2(∂�, Cm) by [15], Section 16, The-
orem 10. If � ∈ H−1/2(∂G, Cm), then ( 1

2 I − K̃′
�)� − ( 1

2 I + K̃′
G)� = [∂(EG�)/∂n −

(RG�)n]|∂ B(0; R) and thus ( 1
2 I − K̃′

�) − ( 1
2 I + K̃′

G) is a compact linear operator
from H−1/2(∂G, Cm) to H−1/2(∂�, Cm). So, 1

2 I + K̃′
G is an upper semi-Fredholm

operator from H−1/2(∂G, Cm) to H−1/2(∂�, Cm) by [15], Section 16, Theorem 16.
Clearly, 1

2 I + K̃′
G is an upper semi-Fredholm operator on H−1/2(∂G, Cm). If λ > 1/2

then λI + K̃′
G is a Fredholm operator with index 0 on H−1/2(∂G, Cm) by Proposi-

tion 4.7. Since the index is constant on each component of semi-Fredholmness by
[15], Section 18, Corollary 3, we infer that 1

2 I + K̃′
G is a Fredholm operator with

index 0 on H−1/2(∂G, Cm). 
�

Proposition 8.2 Let G ⊂ Rm be a bounded domain with connected Lipschitz
boundary. Then Ker[(1/2)I + K̃′

G] = {cnG; c ∈ R} and H−1/2(∂G, Rm) = [(1/2)I +
K̃′

G](H−1/2(∂G, Rm))
⊕

Ker[(1/2)I + K̃′
G].

Proof nG ∈ Ker[(1/2)I + K̃′
G] by Lemma 4.4.
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Suppose that � ∈ H−1/2(∂G, Rm), [(1/2)I + K̃′
G]� = cnG, c ∈ R. Then

∫
� =∫ {cnG + [(1/2)I − K̃′

G]�} = 0 by Proposition 5.1. Put � = Rm \ cl G. According to
Eq. 37 and Proposition 4.1

0 =
∫

∂G

cnG · EG� dy =
∫

∂G

{[(1/2)I − K̃′
�]�} · EG� dy =

∫

�

|∇EG�|2 dy.

So, EG� is constant in �. Since EG�(x) → 0 as |x| → ∞, we infer that
EG� = 0 in �. Lemma 3.4 gives that there exists α ∈ R such that � =
αnG. Thus c = 0, Ker[(1/2)I + K̃′

G] = {βnG; β ∈ R} and {βnG; β ∈ R} ∩ [(1/2)I +
K̃′

G](H−1/2(∂G, Rm)) = {0}. Since dim Ker[(1/2)I + K̃′
G] = 1 and (1/2)I + K̃′

G is a
Fredholm operator with index 0 by Proposition 8.1, we deduce that H−1/2(∂G, Rm) =
[(1/2)I + K̃′

G](H−1/2(∂G, Rm))
⊕

Ker[(1/2)I + K̃′
G]. 
�

Proposition 8.3 Let G ⊂ Rm be a bounded domain with connected Lipschitz bound-
ary. Def ine

M̂� = 1

2
� + K̃′

G� + 1

c
nG

∫

∂G

nG · �, c =
∫

∂�

1 dy. (42)

Then M̂ is a continuously invertible operator in H−1/2(∂G, Rm).

Proof Let M̂� =0. Since H−1/2(∂G, Rm)=[(1/2)I + K̃′
G](H−1/2(∂G, Rm))

⊕{αnG;
α ∈ R} by Proposition 8.2, we have [(1/2)I + K̃′

G]� = 0. According Proposition 8.2
there exists α ∈ R such that � = αnG. Thus 0 = M̂� = αnG and α = 0. The operator
M̂ is one to one. M̂ is a finite dimensional perturbation of the Fredholm operator
with index 0 by Proposition 8.1. So, M̂ is a Fredholm operator with index 0 (see
[15], Section 16, Theorem 16). Since the operator M̂ is injective, it is continuously
invertible (see [3], Theorem 1.42). 
�

Theorem 8.4 Let G ⊂ Rm be a bounded domain with connected Lipschitz boundary,
m ≥ 2. Then there is an equivalent norm on H−1/2(∂G, Rm) such that ‖I − M̂‖ ≤
q < 1. Let f ∈ H1/2(∂G; Rm),

∫
f · nG dy = 0. Let h be given by Eq. 40. Fix g0 ∈

H−1/2(∂G, Rm). For a nonnegative integer k put

gk+1 = (I − M̂)gk + h.

Then gk → g in H−1/2(∂G, Rm), M̂g = [(1/2)I + K̃′
G]g = h and ‖g − g j‖ ≤ q j[‖h‖ +

‖g0‖] for arbitrary j. If u, p are given by Eq. 39 then u, p is a solution of the Stokes
problem with the boundary condition f and g = ∂u/∂nG − pnG.

Proof First we show that σ(I − M̂) ⊂ 〈0, 1). Let λ ∈ σ(I − M̂). If λ is not an
eigenvalue then λ ∈ (0, 1) by Theorems 4.7 and 8.1, and [15], Section 16, Theorem
16. Let now λ be an eigenvalue with an eigenfunction �. Since H−1/2(∂G, Cm) =
[(1/2)I + K̃′

G](H−1/2(∂G, Cm))
⊕{αnG; α ∈ R} by Proposition 8.2, there exist � ∈

[(1/2)I + K̃′
G](H−1/2(∂G, Cm)) and α ∈ C such that � = � + αnG. Proposition 8.2

gives [(1/2)I + K̃′
G]nG = 0 and thus 0 = λ� − (I − M̂)� = [(1/2)I + K̃′

G]� + (λ −
1)� + βnG with β ∈ C. Hence [(1/2)I + K̃′

G]� = (1 − λ)�. If � �= 0 then 0 ≤ λ ≤ 1
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by Proposition 4.5. If � = 0 then α �= 0 and 0 = λ� − (I − M̂)� = αλnG and λ = 0.
This and Proposition 8.3 gives that σ(I − M̂) ⊂ 〈0, 1). Thus r(I − M̂) < 1. If we fix
r(I − M̂) < q < 1 then there exists an equivalent norm ‖ · ‖ on H−1/2(∂G, Cm) such
that ‖I − M̂‖ ≤ q (see [6]).

Since
∫

f · nG dy = 0 there exist u ∈ H1(G, Rm), p̃ ∈ L2(G, Rm) solving the Stokes
system in G such that v = f on ∂G. Fix α ∈ R. Put p = p̃ + α. Then u, p is a solution
of the Stokes problem with the boundary condition f. Put g = ∂u/∂n − pnG. We can
choose α in a such way that

∫
g · nG = 0. Then M̂g = [(1/2)I + K′

G]g = h. The rest is
a consequence of Propositions 8.3 and 5.2. 
�
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