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Jǐŕı Plešek
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M. Okrouhĺık
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Preface

The Euromech Colloquium 540 – Advanced Modelling of Wave Propagation in Solids took place
at the Institute of Thermomechanics in Prague from 1rd to 3th October 2012. It aimed at bring-
ing together engineers and scientists interested in modelling of wave propagation in solids. Wave
phenomena play important role in various scientific fields such as continuum mechanics, ma-
terial science, and physics. The reliable modelling of wave propagation in solids is of utmost
importance in industry, material science, security and defence.

The Colloquium focused on topics related to effects in linear and non-linear wave propagation
in solids, such as solitary waves, strongly dispersive waves in inhomogeneous solids and waves
in materials with microstructure. Attention was also paid to up-to-date formulations of non-
linear constitutive equations in case of thermomechanical coupling, finite strains, strain rate
effects, viscoplasticity, damage and phase transformation.

Recent advances in numerical approaches and strategies were discussed. To guarantee the accu-
racy and stability of numerical approaches, proper understanding of methods and ways leading
to suppressing artefacts and parasitic effects are essential. Among these are size effects, disper-
sion, attenuation and appearance of spurious modes and evanescent waves. The main purpose
of the Colloquium was to discuss novel methods of wave propagation modelling and to assess
the credibility of results especially in cases when experiment validation had not been available.

The selected papers will appear in special issues of the journals of Wave Motion, Proceedings
of the Estonian Academy of Sciences, Engineering Mechanics and Applied and Computational
Mechanics.

The editors would like to thank all the contributors who made the Colloquium and this book
possible. Deep gratitude is also extended to all the members of the scientific committee, the
members of the local organizing committee and our colleagues, namely, Dušan Gabriel, Pavel
Formánek, Petr Pař́ık, Zbyněk Hrubý, Ján Kopačka, René Marek, Vı́tek Sháněl and Slavomı́r
Parma. A substantial help of Marcela Breǰsková and Věra Stibralová is greatly appreciated.

October 2012 R. Kolman, A. Berezovski,
Prague M. Okrouhĺık, J. Plešek
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SURFACE WAVES ON A HALF SPACE  

WITH DEPTH-DEPENDENT PROPERTIES 
 

Jan D. Achenbach, Oluwaseyi Balogun 

Department of Mechanical Engineering, McCormick School of Engineering and Applied Science,
  

Northwestern University, Evanston, IL 60208-3020 USA; e-mail: {achenbach;o-balogun}@northwestern.edu 

 

Keywords: surface waves, depth inhomogeneity, dispersion 

Surface waves have probably been studied more thoroughly than any other kind of wave motion in solid 

materials. In a two-dimensional configuration, surface waves on an elastic body can be distinguished into in-

plane and anti-plane surface waves. In this talk we consider in-plane surface waves, which are generally 

known as Rayleigh Waves. These waves have displacements in the plane spanned by the direction of 

propagation and the depth direction. They occur at the surface of the earth, induced by earthquakes, and they 

are frequently generated for applications in science and technology, such as for testing procedures in non-

destructive evaluation of materials and structures. It is well known that along the free surface of a 

homogeneous isotropic elastic body, a classical in-plane surface wave propagates with a velocity that is 

independent of the wavelength, while the amplitudes of the displacement components decay exponentially 

with depth. 

Many materials are, however, not homogenous. For an important class of materials the elastic moduli may 

vary with distance from a free surface. Rayleigh surface waves on such an elastic body with depth-dependent 

properties are of interest in seismology, but also for engineered functionally graded materials. In this 

presentation we consider in-plane surface waves, but in an axially symmetric configuration, on a half-space 

of an isotropic material whose elastic moduli λ and µ and mass density, ρ, depend on the depth coordinate z.  

For many practical applications the inhomogeneity with depth has been dealt with numerically by replacing 

the continuous inhomogeneity by a representative layering, see Thompson[1]. The layering may, however, 

produce effects of the interfaces. An alternative numerical approach is by a formulation amenable to the 

Runge-Kutta technique, see Aki and Richards[2]. One approximation which leads to analytical solutions is 

for the case that the elastic moduli and the density decay in the same exponential manner with depth, see Pal 

& Acharya[3], Destrade[4], and Kulkarni & Achenbach[5]. The present talk is concerned with an analytical 

technique to investigate surface waves for monotonic depth dependence of the elastic moduli and the mass 

density. An earlier, and more formal application of a high frequency approach was presented by 

Alenitsyn[6], see also Baron et. al.[7]. Other high-frequency approaches were presented by Shuvalov[8] and 

Shuvalov and Every[9]. 

We consider quite general monotonic dependencies on depth of the elastic moduli and the mass density. The 

analytical technique is based on a W.K.B. solution for high frequencies, which was worked out for anti-plane 

surface waves elsewhere (Achenbach & Balogun[10]). The approach by Achenbach & Balogun[10] is not 

directly applicable to in-plane surface waves. Some simplifications of the governing equations, valid for a 

gradual change of the properties, are required to obtain a set of equations that produce expressions for the 

displacements in a simple manner. 
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Next the expressions for the displacements are used to obtain the stresses. The tractions must vanish at the 

free surface, which yields an equation that provides a dispersion curve which relates the surface wave 

velocity to the wave number. For a number of cases of depth dependence of the elastic moduli, the 

analytically obtained dispersion curves are compared with numerically obtained curves. The numerical 

results were obtained for an equivalent layering of the half-space. For the cases considered excellent 

agreement was obtained over a large range of wave numbers.  

As an issue of particular interest, it is shown that a computation which yields a reasonable dispersion curve is 

not necessarily commensurate with displacements that decay exponentially with depth, as is the case for 

Rayleigh waves on a homogenous elastic solid. For certain classes of materials, whose elastic moduli either 

increase or decrease with depth, conditions for exponential decay of the displacement amplitudes have been 

derived. 

As a final comment it is noted that the expressions for axially symmetric propagation of in-plane surface 

waves, provide the basic information to obtain the surface-wave radiation from a time-harmonic normal 

point load on the surface of a body with z-dependent material properties. The radiating surface waves can be 

obtained by the use of the reciprocity theorem, as shown in Ref. [12, chapter 8] for a point load on a 

homogenous body. Since the reciprocity theorem is also valid for inhomogeneous linearly elastic solids the 

same procedure can be followed as presented in Ref.[12]. 
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WAVES IN COMPOSITE MATERIALS: AN INTERPLAY
BETWEEN NONLINEARITY AND DISPERSION

Igor Andrianov1, Vladyslav Danishevs’kyy2, Dieter Weichert1

1Institute of General Mechanics, RWTH Aachen University, Aachen, Germany;
e-mail: andrianov@iam.rwth-aachen.de; weichert@iam.rwth-aachen.de

2Department of Structural Mechanics and Strength of Materials,
Prydniprovs’ka State Academy of Civil Engineering and Architecture,

Dnipropetrovs’k, Ukraine; e-mail: vdanish@ukr.net

Keywords: composite material, nonlinear wave, homogenization, dispersion

We study influence of geometrical, physical and structural nonlinearity on propagation of elastic waves
in periodic composite materials. 1D dilational waves in a layered composite and 2D anti-plane shear
waves in a fibrous composite are considered. Geometrical nonlinearity is described by the Cauchy-
Green strain tensor. Physical nonlinearity is predicted representing the energy of deformation as a
series expansion in powers of the strains. Structural nonlinearity is introduced assuming imperfect
bonding conditions between the constitutive components of the composite. The presence of nonlin-
earity invokes generation of higher-order modes and localization of energy [6, 7].

Successive reflections and refractions of the travelling signal at the interfaces between the components
lead to the dispersion of the macroscopic wave field. Dispersion provides scattering of energy and
compensates the influence of nonlinearity. In order to predict the effect of dispersion, we use the
higher-order asymptotic homogenization method (AHM) [1, 2]. The basic idea of this approach is to
search solutions as series expansions in powers of the small parameter ε = l/L, where l is the typical
size of the microstructure and L is the wavelength. Application of the AHM reduce the original
dynamic problem formulated in multi-connected domain to a recurrent sequence of local problems.
Due to the spatial periodicity of the composite structure, local problems are considered within only
one distinguished unit cell.

Homogenization of nonlinear dynamical equations has some peculiarities. Since the magnitudes of
strains in solids are considerably small, it is sufficient to take into account nonlinear terms only
in the first approximation (of the order ε0). Asymptotic solutions of the nonlinear local problems
are developed using series expansions in powers of the gradients of displacements. The higher-order
approximations by ε (that describe the effect of dispersion) are evaluated in the framework of the linear
model. Eventually, we derive homogenized double dispersion equations and obtain explicit analytical
formulas for the effective elastic moduli [3, 4, 8].

The balance state between nonlinearity and dispersion results in formation of stationary nonlinear
modes that can be described explicitly in terms of elliptic functions. If the properties of the compo-
nents are variable, exact solutions are generally not possible. In this case, we develop approximate
asymptotic solutions using the Linstedt-Poincaré technique. Convergence of the asymptotic series is
improved by the application of Padé approximants. This enables us to construct asymptotic expan-
sions valid even for considerably large rates of nonlinearity.

Analysis of the solutions obtained for stationary waves reveals a number of specific nonlinear phe-
nomena that can be observed in composite solids within a practically admissible range of the strain
amplitudes (up to 10−4): (i) dependence of the main wave characteristics (such as shape, velocity,
attenuation) upon the amplitude and (ii) localization of energy. It should be noted that different types
of nonlinearity lead to different scenarios of localization. Thus, geometrical and physical nonlinearity
results in formation of solitary strain waves. The same effect is observed for structurally-nonlinear
composites with a hard interface between the components. Meanwhile, heterogeneous materials with
a soft nonlinear interface allow propagation of kink strain waves.
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Presented numerical results show that the effects of nonlinearity and dispersion in heterogeneous
solids can be explored separately. Nonlinear phenomena are detectable at low frequencies, when
dispersion is small and, consequently, long-wave methods of analysis (e.g., the AHM) can be applied.
In the high-frequency domain the influence of dispersion increase significantly, while nonlinearity is
depressed. Then the solution can be developed using linear approaches (e.g., Floquet-Bloch theory [5]).
This analysis provides an estimation of the areas of applicability of linear and nonlinear constitutive
models.

It should be emphasized that nonlinear properties of composite materials in many cases appear to
be more structural sensitive than linear ones [9]. Consequently, monitoring propagation of nonlinear
waves gives a possibility to predict very small variations of the microstructure, which are not visible
for the linear methods of analysis. This may help to develop new, more precise technologies of non-
destructive testing and acoustic diagnostic in engineering, geophysics, biomechanics and other areas
dealing with heterogeneous media and structures.

Open problems in the field concern extension of the developed approach to non-stationary dynamic
processes (e.g., study of evolution and interaction of nonlinear waves); examination of nonlinear vibra-
tions of heterogeneous structures of finite sizes (composite/reinforced beams, membranes and plates)
that can exhibit the effect of internal resonances; prediction of spatial localization of nonlinear waves
on local defects in composite solids; development of new dynamic criteria of local failure.
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HERMITE METHODS FOR ELASTIC WAVES

Daniel Appelö1, Thomas Hagstrom2, Chang Young Jang3
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In recent years there have been impressive developments of spectral element methods to simulate
elastic waves, e.g. [1, 2]. In comparison with finite difference methods such as those presented in [3],
spectral element methods on unstructured grids can directly provide guaranteed stability and high
resolution in complex domains. However, such methods are also expensive. For degree-m polynomials
on an unstructured grid in three space dimensions the cost to apply differentiation matrices scales like
m6 (or m3 per degree-of-freedom) and the time step stability constraint is of the form ∆t ≤ C∆x/m2.
Thus the total work to solve a problem scales with m8/∆x4 limiting the gains in efficiency arising
from increases in the method order.

Hermite methods are spectral element methods defined on staggered computational cells of cuboids.
The degrees-of-freedom are tensor-product Taylor polynomials of degree 3m (degree m in each coor-
dinate) defined at each vertex. They are evolved as follows:

• Approximate the solution on each cell by a degree 3 · (2m + 1) tensor product polynomial, the
Hermite interpolant of degree 3m tensor product polynomials defined at the vertices.

• Approximately solve an ordinary differential equation in time to advance the solution on the cell
center, providing the local, updated polynomial data on the vertices of the dual grid.

• Repeat the process on the dual grid.

A complete analysis of Hermite methods for linear hyperbolic systems, encompassing the elastic wave
equation, is presented in [4]. Using Runge-Kutta-Taylor methods of the same order of accuracy, 2m+1,
as the spatial approximations, it is proven that the time step is only limited by the necessary CFL
condition. For cell widths ∆x, the method is stable if a wave cannot travel from the cell boundary to
the cell center in a half time step, ∆t < ∆x/cmax independent of the method order. Moreover, the
time evolution within a cell requires no information from its neighbors once the Hermite interpolation
is completed. Lastly, for piecewise constant media (or media which can be locally described by
polynomials of degree significantly smaller than m), the cost per step scales like m4 on each cell.
This leads to total work scaling like m4/∆x4, a full factor of m4 better than standard discontinuous
Galerkin schemes. As a result, there is a much higher payoff to increasing the order.

In this talk we will present our first experiments with Hermite methods applied to elastic waves.
Precisely we will demonstrate their accuracy on benchmark problems in 2 + 1 dimensions involving a
variety of wave types. In addition we will study their efficiency as a function of propagation distance,
error tolerance, and method order.

We note that Hermite methods have a number of other desirable properties. As a large number
of degrees-of-freedom are updated independently in each cell over a relatively large time step, and
no stage storage is required, memory usage and data communication is minimized. Order-adaptive
implementations are relatively straightforward [5], and the method does an excellent job of advecting
nonsmooth solutions without oscillations or smearing [6]. However, like finite difference methods, they
cannot be applied on unstructured grids and they require additional numerical boundary conditions
which can be difficult to derive on complex boundaries. To circumvent these drawbacks we have
developed hybrid implementations which use more expensive but more flexible discontinuous Galerkin
discretizations on unstructured grids near cell boundaries (with local time-stepping), with the Hermite
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scheme applied on regular cells everywhere else. (See Figure 1 for an example of a hybrid grid used to
sole the TM Maxwell system in [7].) We will employ this technique to simulate elastic waves in more
complex media, coupling the Hermite discretizations with a DG method [2].
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Figure 1: Example of a hybrid grid: the system is solved using a DG method on the unstructured
cells near the boundaries and by a Hermite method on the structured cells in the interior.
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The need for artificial computational boundaries in the solution of exterior wave problems, called
“absorbing boundaries” among other names, arises quite often in various fields of application. In
solid-earth geophysics, and in particular earthquake engineering and oil exploration, they are needed
for practically every simulation. Since the mid 90’s two classes of methods have emerged as especially
powerful: the Perfectly Matched Layer (PML) method, devised by Bérenger in 1994 and since then
further developed, analyzed and used by many authors, and the method of using high-order Absorbing
Boundary Conditions (ABCs), which are local and involve no high derivatives, which was originally
devised by Collino [1] in 1993, followed by a few other formulations. Although usually derived by very
distinct analyses, recent work has shown that, on the discrete level, the two methods are in fact quite
closely related.

The use of ABCs has been very popular since the early 70’s, but the term “high-order ABCs” relates
to the ability to implement ABCs of an arbitrarily high order. In theory, some of the classical ABCs
can be defined up to any desired order; however, the appearance of increasingly high order derivatives
in these ABCs renders them impractical beyond a certain order, typically 2 or 3. For example, the
P -order Higdon ABC [2] involves P -order derivatives in space and time, and is thus very inconvenient
for implementation when P is large. In contrast, the high-order ABCs devised by Collino [1] and
others involve no high derivatives owing to the use of special auxiliary variables φj (j = 1, . . . , P )
on the artificial boundary. The schemes are implemented for any order P , which is simply an input
parameter provided by the user. Moreover, the computational cost increases only linearly with P . See
the review [3].

Most of the high-order ABCs proposed thus far are devised for the acoustic (scalar) wave equation. The
only exception that we are aware of is the ABC proposed by Tsogka and Joly for elastic waves [4, 5],
and the ABC proposed by Rabinovich et al. [6]. Both turned out to be unstable for long times.

In the present work, a new high-order local ABC is devised on an artificial boundary for time-dependent
elastic waves in unbounded domains, in two dimensions. The elastic medium in the exterior domain
is assumed to be homogeneous and isotropic. The order of the ABC determines its accuracy and can
be chosen to be arbitrarily high. The ABC involves a product of first-order differential operators, all
of them are of the Higdon type, except one which is of the Lysmer-Kuhlemeyer type. The stability
of this ABC is shown both theoretically and numerically, thus establishing the fact that this is the
first known local high-order ABC for elastodynamics which is long-time stable. The initial boundary
value problem including this ABC is written as a first-order system, using stresses and velocities as
variables. A finite difference scheme in space and time is employed to discretize this system. Numerical
experiments demonstrate the performance of the scheme.
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Theory

Heterogeneous materials can be characterized by their internal structure. The internal structure may be purely
stochastic or ”natural” like in rocks or alloys, purely regular or ”artificial”like in periodic laminates or meta-
materials, or a mixture between the former two like in functionally graded materials.It is clear that wave
propagation can be directly calculated (asymptotically or numerically) in the case of a regular internal structure
on the basis of classical wave equations with prescribed material parameters of heterogeneities. A more com-
plicated model is needed for wave propagation in the case of irregular internal structure. Even if the material
parameters for constituents are known, the simple averaging is not sufficient: it predicts unchanged wave profile
in the ”effective” medium without experimentally observed wave dispersion.

The dispersive wave equations are based on the material modeling, even ifthis is not supposed explicitly. The
two main approaches in the modeling of the wave dispersion may be called as ”discrete” and ”continuous”.
The oldest discrete model is the ”mass-spring” chain model by Born and von Karman [1]. Though it was
shown already by Schrödinger [2] (as it is reminded by Seeger [3]) that the Born-von Karman model is not
appropriate one due to the infinite speed of information spreading along the chain, this model still remains as a
source for the derivation of dispersive wave equations [4, 5]. Continuous models are based on the balance laws
of continuum mechanics. As in the case of discrete models, different dispersive wave equations are proposed
following this approach [6].

The natural question is raised: which model is the most appropriate for the description of the wave dispersion
in solids? The answer may depend on particular problem in question, but certain features should be taken
into account by any model. First, it is desired to have a model which is supported both from discrete and
continuous points of view. It appears, that this criterion is satisfied by micromorphic theories [7]. Secondly,
due to the presence of higher-order derivatives, the corresponding initial and boundary conditions should be
formulated consistently. The boundary conditions could be reformulated appropriately in the framework of the
dual internal variables approach developed recently [8]. Third, the additional material parameters should be
established. This problem means solving inverse problems [9] combined with both experimental investigations
and/or atomistic calculations.

Numerical simulation

In order to understand better the accuracy of models derived from discrete and continuous points of view, a
series of numerical simulations is carried on. The computations are performed by means of the finite-volume
numerical scheme, which belongs to the class of wave-propagation algorithms. We demonstrate the dispersion
effects of 1D waves in materials with different internal structures: microstructure described by micromorphic
theory, regular laminates, laminates with substructures, etc.

One of the important problems is to compare the results obtained by means of various models. As an example,
the comparison of a direct numerical simulation of a Gaussian stress pulse propagation along the elastic bar
containing an inhomogeneous part constructed by periodically alternating layers and a computation based on
the Mindlin-type microstructure model [6] is shown in Fig.1.

As one can see, the effect of microstructure in the model manifests itself onlylocally, whereas the dispersion in
the periodic laminate is non-local due to consecutive reflections. In principle, the localization of the microstruc-
ture influence is expected, since the presence of the microstructure is invisible in the absence of loading.
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Figure 1: Deformed shape of an initially Gaussian stress pulse in periodic and microstructured solids.

In order to get matching results, one should critically revise the free energy function in the micromorphic
theory for adequate modeling of interaction forces between macro– and microstructures. In the considered
case, the pulse length is 5 times longer than the inhomogeneity size. This particular case was chosen because it
clearly shows the synergy of the two microstructure models unified in [6]. The matching results are obtained by
modifying the coupling between macro- and microstructures including also the dependence on gradients of the
internal variables. The correlation between models is analyzed in detail fora large range of material parameters
and wavelengths.

To sum up, based on concise modeling, dispersion analysis, and numerical simulation, we are able to choose
adequate governing equations for wave motion in various microstructured solids. The concept of dual internal
variables permits to include thermodynamic considerations into modeling and the dispersion analysis allows
to predict the changes in group and phase velocities of waves. This is extremely important for cases when
wavelengths are comparable with internal scales.
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The imaging of the interior of the Earth using ground motion data, or seismic tomography, has been a
subject of great interest for over a century. However, the full elastic wave equations are not typically
used in standard tomography codes. Instead, the elastic waves are idealized as rays and only phase
velocity and travel times are considered as input data. This results in the inability to resolve features
which are on the order of one wavelength in scale. To overcome this problem, models which use the
full elastic wave equation and consider total seismograms as input data have recently been developed.
Unfortunately, those methods are much more computationally expensive and are only in their infancy.

While the finite element method is very popular in many applications in solid mechanics, it is still not
the method of choice in many seismic applications due to high pollution error. The pollution effect
creates an increasing ratio of discretization to best approximation error for problems with increasing
wave numbers. It has been shown that standard finite element methods cannot overcome this issue.
To compensate, the meshes for solving high wave number problems in seismology must be increasingly
refined, and are computationally infeasible due to the large scale requirements.

However, a new discontinuous Petrov-Galerkin method with optimal test functions was recently intro-
duced [2]. The main idea is to select test spaces such that the discrete problem inherits the stability of
the continuous problem. In this presentation, a discontinuous Petrov-Galerkin method with optimal
test functions for 2D time-harmonic model seismic tomography problems will be introduced. Both the
general DPG framework and the specific time-harmonic elasticity model will be discussed.

While it has been shown that standard test space norm provides hp-optimal convergence rates for
static linear elastic problems [1], numerical evidence indicates that a separate quasi-optimal norm
derived from the dual space norm must be used to achieve negligible pollution error for time-harmonic
problems [3]. This implies that the method is well-suited to resolve a large number of wavelengths,
which is often the case in computational seismology. Supporting evidence from various model elastic
wave propagation problems will be presented.

As the method produces hermitian and positive definite stiffness matrices, it is also a natural choice for
adjoint-based Lagrangian constrained optimization algorithms. Both Hessian and gradient based nu-
merical optimization schemes for solving the non-linear inverse tomography problem will be presented.
As this code is designed for large-scale seismic applications, the implementation will be run on parallel
machines where the scalability of the method will be evaluated. To conclude, results obtained from
both DPG and standard CG discretization schemes will be compared and the potential effectiveness
of DPG as a practical seismic inversion tool will be discussed.
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(a) Continuous Galerkin method ur error. (b) DPG method ur error.

Figure 1: Radiating cylinder problem, scale indicates ±5% relative error.
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We present, in this paper, a study of vibration modes localization in structures composed of several 

nominally identical lightly coupled modular substructures. In an ideal perfect model, the vibration modes 

are global in nature, spreading to the whole set of modular substructures. In real structures, in the other 

hand, there are no two completely identical segments. Constructive or loading imperfections generate slight 

variation of the dynamic characteristics of each module. As the level of disorder grows and coupling 

between modules becomes lighter, there is a possibility that the resulting vibration modes change 

considerably in relation to the ideal perfect model. Vibration energy may become confined to a few 

segments, even to only one of them, as opposed to the ordered case in which it is spread over the whole 

structure. This is the so-called Mode Localization Phenomenon.  

 

In this paper, we present mathematical models of long modular planar trussed structures. Light coupling is 

considered between the initially identical modules. We introduce a certain degree of imperfection in the 

system by adopting a slight variation in the nodal loading of the modules. This loading will generate a 

certain small variation in the global stiffness of the system as the axial loads in the bars affect their so-

called Geometric Stiffness Matrices or Initial Stress Matrices. Although the eigenvalue and eigenvector 

extraction process is a linear one, the consideration of the loading state of the structure on its stiffness is a 

result of a nonlinear effect, namely, that of the geometric stiffness. This is a new contribution to the state of 

art as compared to previous research by the author and collaborators [1,2,3,4]. 

 

Next, we present results for a long structure, displayed in Fig. 1, composed of 5 equal equilateral triangles 

conected by very slender members. Upper nodes masses and loads are inicially equal. 

  
Fig. 1: the 5-degree-of-freedom model 

 
In order to detect the influence of lightly disordered loading on the vibration modes, we initially present the  

first mode of the perfect model, in Fig. 2, normalized in such way as to make de horizontal displacement of 

the fist mass equal to one. Then, a very slight variation is introduced in the upper nodes loads so that they are 

no long exactly equal, keeping the masses identical. The effect in the geometric stiffness radically change the 

mode as displayed in Fig. 3. Vibraton energy is localized in a few of the substructures while the others 

experience small motions. This phenomenon suggests possible use as a vibration control device. 
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Fig. 2: First mode, perfect model 
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Fig. 3: First mode, imperfect model 
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Traditionally, there are two different high–frequency asymptotic ray theories: the isotropic ray theory
assuming equal velocities of both S waves, and the anisotropic ray theory assuming both S waves
strictly decoupled. In the isotropic ray theory, the S–wave polarization vectors do not rotate about
the ray, whereas in the anisotropic ray theory they may rotate rapidly about the ray.

In weakly anisotropic models, at moderate frequencies, the S–wave polarization vector tends to remain
unrotated about the ray, but is partly attracted by the rotation of the eigenvectors of the Christoffel
matrix. The intensity of the attraction increases with frequency. This behaviour of the S–wave
polarization vector is described by the coupling ray theory proposed by Coates & Chapman in [1]. The
coupling ray theory is applicable at all degrees of anisotropy, from isotropic models to considerably
anisotropic ones. The frequency–dependent coupling ray theory is the generalization of both the zero–
order isotropic and anisotropic ray theories and provides continuous transition between them. The
coupling ray theory is particularly important for calculating S waves at degrees of anisotropy and
frequencies typical in seismic exploration and structural seismology on all scales, because the isotropic
ray theory does not describe the two S waves from the principle, and the anisotropic ray theory often
fails to determine correct S–wave polarization.

Both S waves can be calculated along a single reference ray. The numerical algorithm for calculating
the frequency–dependent complex–valued S–wave polarization vectors of the coupling ray theory is
described in [2] and [3]. For a concise overview of the coupling ray theory refer to [4].

S–wave coupling decreases and S–wave splitting increases with increasing anisotropy and frequency.
This behaviour is illustrated in Figure 1 in similar elastic media QIH, QI, QI2 and QI4 of different de-
grees of anisotropy. The vertically heterogeneous 1–D anisotropic model QI (model WA rotated by 45◦)
was used by Pšenč́ık & Dellinger [5] for comparing the coupling–ray–theory synthetic seismograms with
the reflectivity method. For a description of models QI, QI2 and QI4 and measurement configuration,
refer to [6]. For weak anisotropy, the change of polarization with increasing anisotropy is indicated
by a clear increment of the transverse amplitudes in the two upper models. The clear development of
S–wave splitting, if anisotropy is increased further, can be observed in the two bottom models.
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[5] I. Pšenč́ık, J. Dellinger. Quasi–shear waves in inhomogeneous weakly anisotropic media by the
quasi–isotropic approach: A model study. Geophysics, 66, 308–319, 2001.
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Figure 1: Coupling–ray–theory seismograms in similar elastic media of different degrees of anisotropy.
Anisotropy increases from the top to the bottom in the ratio 1:2:4:8. Only the second (transverse)
component is shown. This component vanishes in the analogous isotropic medium. See the change of
polarization indicated by clear increment of transverse amplitudes in the two upper media, and the
clear development of S–wave splitting in the two bottom media.
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Introduction 

The paper is concerned with Rayleigh wave propagation along an edge of a thin composite structure. The 
first author of the paper has studied the considered problem by finite element and experimental approaches 
[1]. The aim of the paper is to study the above problem by analytic approach. The analytic solution is based 
on two approaches: the first, the classic one, very often used in isotropic media [2] and the second, based on 
the Stroh formalism [3]. 
 
Problem formulation 

We consider a thin semi-infinite composite structure. The kind of the composite material in mind is one in 
which a matrix material (e.g.epoxy resin) is reinforced by strong stiff fibres (e.g. carbon fibres) which are 
systematically arranged in the matrix. The fibres are considered to be long compared to their diameters and 
the fibre spacing, and to be densely distributed, so the fibres form a substantial proportion of the composite. 
Since the fibres are systematically orientated, a composite of this kind has strong directional properties, thus 
macroscopically for sufficiently long wavelength it can be regarded as a homogeneous orthotropic material. 
It is also assumed that composite thickness is small compared to the shortest wavelength taken into account. 
Under these conditions one can consider the composite structure as an orthotropic solid in the state of plane 
stress. The principal directions of orthotropy often do not coincide with coordinate directions that are 
geometrically natural to the solution of the problem. Therefore it is assumed that body axes x1, x2 form a 
nonzero angle ϑ with principal material axes X1, X2 as shown in Fig.1. Third axis x3 is identical with material 
axes X3 and constitutes axis of rotation of principal material axes X1 , X2 from body axes x1 , x2. 

 

 
Figure 1. A thin semi-infinite orthotropic medium  
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The propagation of a Rayleigh wave along the free edge of a semiinfinite 2D orthotropic medium is 
modeled. It is supposed that corresponding displacement field has the form 

( )1

1 2 2( , , ) ( ) , ( 1,2)i k x c t

j ju x x t U k x e j
⋅ − ⋅

= ⋅ ⋅ = ,                                           (1) 

where k is the wave number and c is the wave velocity. It means that the wave is propagated in the direction 
of x1 and its variation in the direction x2 is not stated explicitly. The boundary conditions of the problem are: 
the edge x2=0 is free of tractions, vanishing displacement (or stress) components at infinity, i.e. at x2→ ∞. 
 
Solution 

Classical method of the analytic solution leads to an implicit secular equation for Rayleigh wave velocity 
cR. For the solution of implicit equation F(c, pj(c, ϑ), ϑ) = 0 it is necessary for any ϑ to precompute some 
roots pj(c) of characteristic quartic equation. It is rather tedious work. The method based on the Stroh 
formalism leads to explicit quartic secular equation that depends on material constants only. 
 
Results 
 

 
Figure 2. Wave velocities cR (solid line) and cT (dashed) versus orientation ϑ of principal material axes 
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The boundary element method (BEM) is well suited to the computation of seismic wave propagation
in that only the domain boundaries (and possibly interfaces) are discretized, leading to a reduced
number of degrees of freedom (DOFs). In traditional BE implementation the dimensional advantage
with respect to domain discretization methods is offset by the fully-populated nature of the BEM
coefficient matrix, with set-up and solution times rapidly increasing with the problem size N . Consid-
erable speedup of solution time and decrease of memory requirements have been achieved through the
development of the Fast Multipole Method (FMM). The goal of the FMM is to speed up the matrix-
vector product computation at each GMRES iteration. This is achieved by (i) using a multipole
expansion of the relevant fundamental solution, which (unlike in the standard BEM) allows to re-use
element integrals for all collocation points, and (ii) defining a (recursive, multi-level) partition of the
region of space enclosing the domain boundary of interest into cubic cells, allowing to optimally cluster
influence computations according to the ratio between cluster size and distances between two such
clusters. The FMM-accelerated BEM achieves substantial savings in both CPU time and memory.

Methodology. This contribution is concerned with improving the efficiency of the frequency-domain
elastodynamic FM-BEM applied to semi-infinite media. The idea is to formulate the boundary inte-
gral equation with the elastic half-space fundamental solutions that satisfy a traction-free boundary
condition, instead of the usual elastic full-space fundamental solutions as in [2], thus avoiding any
BEM discretization on the free surface. The integral equation for x ∈ ∂Ω has the form

cik(x)ui(x) =

∫

Γ1

[
(UHS)ki (x,y)ti(y)− (THS)ki (x,y)ui(y)

]
dSy, (1)

where Γ1 is a surface embedded in the lower half-space y3 ≤ 0 (see Fig. 1), u and t denote the
displacement and traction vector on the boundary, UHS(x,y) and THS(x,y) denotes the half-space
elastodynamic fundamental solutions, which satisfies a traction-free condition on the free surface y3 = 0
and the free term cik(x) is equal to 0.5δik in the usual case where ∂Ω is smooth at x. However, unlike

y1, y2

y3

Γ(D)Γ

Γ1

Ω

x

Figure 1: Notations related to the considered elastic wave propagation problem

the full-space fundamental solution, the elastic half-space fundamental solution cannot be expressed
using derivatives of the Helmholtz fundamental solution or of 1/r. As a result, multipole expansions of
the elastic half-space fundamental solution cannot be obtained in a simple way, and are not currently
known. In this work, an expansion of the elastic half-space fundamental solution is formulated in a
form which achieves the separation of variables required by the FMM, thus enabling fast computations.
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Formulation and fast evaluation of the multipole expansions. The starting point is to decom-
pose UHS(x,y) (resp. THS(x,y)) as the sum of the elastic full-space fundamental solution U∞ (resp.
T∞), the image full-space fundamental solution Ū∞ (resp. T̄∞) corresponding to a point force located
at the mirror image x̄ of x, and a complementary term UC (resp. TC)(so that UHS = U∞+Ū∞+UC

and THS = T∞ + T̄∞ + TC). The contributions corresponding to U∞ and Ū∞ (resp. T∞ and T̄∞)
can be evaluated using the “standard” FMM associated with the diagonal form-based decomposition
of the full-space fundamental solution [2].

Attention is therefore directed towards the contribution involving the complementary fundamental
solution. A Fourier transform with respect to the two spatial coordinates parallel to the free-space
is performed (similarly to that used for defining low frequency FMMs [3, 4]). A key numerical issue
is concerned with the definition of an efficient numerical quadrature in Fourier space to perform the
integration. Because the integrand is both singular and oscillatory, classical Gaussian quadratures
would perform poorly, fail or require a large number of points. Bremer et al. [1] defined an algorithm
to compute Generalized Gaussian quadratures which are well suited to integrands with more than
one type of singular behavior. This procedure is used to define a new FMM for the elastic half-space
fundamental solutions. The main advantage is that this quadrature is pre-computed once for all the
FMM computations since the number of points depends only on the dimension of the cubic cells.

Fast Multipole Method. The product form achieved by the Fourier-space representation permits
a decomposition reminiscent of the “standard” FMM associated with the diagonal form (x0 and y0

denote local origins of x-clusters and y-clusters):

UC(x,y) =
1

µk2
S

∑

a,b=L,T

∫ +∞

0

∫ 2π

0
eik(cosα(y1−y01)+sinα(y2−y02))esa(y3−y03) Uab(k, α,x

0,y0)

eik(cosα(x01−x1)+sinα(x02−x2))esb(x3−x03) dαdk (2)

where the Uab(k, α,x
0,y0) are transfer (tensor) functions. Similar expressions are obtained for TC.

The evaluation of single-layer potentials involves three successive typical operations: (i) computation
of multipole moments, (ii) transfer and (iii) evaluation at observation points.

Results. The accuracy and numerical efficiency of the Generalized Gaussian quadratures to com-
pute (2) is shown. Then, the accuracy and numerical efficiency of the complete FMM based on the
elastic half-space fundamental solution (which does not require meshing the free surface) is compared
to the accuracy and efficiency of the FMM based on the elastic full-space fundamental (which requires
meshing the free surface) solutions on seismic-oriented canonical problems.
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Introduction
The present work presents an extension of the previously presented algorithm [1] for computations of discontin-
uous wave propagation in one-dimensional heterogeneous solids to two and three-dimensional heterogeneous
problems. In the present extension of the algorithm [1] for two and three-dimensional problems, two-level in-
tegration operations are carried out. An element level integration is first carried out for treating different wave
speeds within each element as two and three-dimensional elements solids admit shear waves, bending waves
and extension waves propagating with different speeds. Waves propagating across different heterogeneous
materials are then treated afterwards.

Specifically, we partition the total displacement into the longitudinal and shear wave components as

u = uL + uS, uL = DLu, uS = DSu (1)

where the subscripts (L,S) designate the longitudinal and shear components, respectively.

A key idea of the present extension of the method [1] to multidimensional wave propagation problems is that
the decomposition operators (DL,DS) are derived to satisfy the following properties for rectangular elements:

Partition of unity: DL + DS = I,
Projector property: DT

S DS = DS, DT
L DL = DL

Symmetry: DT
L = DL, DT

S = DS

Orthogonality: DL DS = DS DL = 000

Element mass commutability: DT
L M = MDL, DT

S M = MDS

Element mass orthogonality: DT
L MDS = MDLDS = 000

Element stiffness orthogonality: DT
L KDS = DT

S KDL = 000
Element stiffness decomposition: K = KL + KS,

KL = DT
L KDL, KS = DT

S KDS

(2)

where (M,K) are elemental mass and stiffness matrices, respectively.

The first example problem is a rectangular plane strain problem subjected to shear impulse as shown in Fig. 1.
Note the significantly improved performance with the decomposed stiffness matrices for which the spurious os-
cillations are almost gone, thus illustrating the importance of decomposing the longitudinal and shear waves..
The second example problem is a plane strain domain with a crack in the middle subjected to a uniform Heav-
iside initial velocity as shown on the left in Fig. 2.

When the initial P-wave reaches the symmetry line, the reflection gives rises to the reflected P-wave, the S-
wave, the von Schmidt wave and the R-wave as illustrated in Fig. 2. Also shown in Fig. 2 are the contour plots
of the principal shear stresses at a time when the principal shear stress at the crack tip is at its peak. The result
yielded by the central difference method (shown at the second to the far right) with the time step corresponding
to the half of the Courant stability limit is accompanied with ripples, a clear sign of spurious oscillations. On the
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other hand, with the same time step, the principal shear stress contour plot yielded by the present method (shown
on the far right) shows no detectable spurious oscillations as evidenced by smooth contour surface.

Figure 1: Performance of three algorithms for pure shear wave propagation. Left: Central difference method.
Center: New algorithm without decomposition. Right: New algorithm with decomposition stiffness matrices

!  
��	 (Heaviside’s Pulse Wave)� �� �� ��!!!!!!!!!!!!!!!!!!!!!!"
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Initial plane P-wave 

P-wave 
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R-wave 

Plastic Strain 

Crack 

*+!,-.!/01)!230"
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Figure 2: Plane strain rectangular model problem with initial crack tip subjected to a Heaviside initial velocity
input. Far right: the model problem. Second to the far right: Representative reflecting waves consisting of
P, S, R and von Schmidt wave components. Second to the the far right: Principal shear stress contour plot
obtained by the central difference method with ∆t = 0.5∆x/c where c is the longitudinal wave speed. Far right:
Principal shear stress contour plot obtained by the present method with ∆t = 0.5∆x/c.

Details of the new algorithm and its performance will be presented at the Colloquium.
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In general, piezoelectrics modeling needs the consideration of an additional state variable to the
strain, which usually is taken to be the electric field vector. Its energetically conjugate quantity
is the electric displacement. An other possibility is to choose the (diplole) polarization vector as
independent variable, in this case the conjugate variable is a local electric field. A standard extension
to the direction the weak nonlocality concists in the inclusion in the stored energy density of the first
gradient of electric field or polarization vector. In the first case, the conjugate to the electric field
gradient quantity is the electric quadrupole symmetric tensor [1, 2], a well-defined variable in solid
state physics.

According to lattice dynamics gradient theories are closer to lattice dynamics than classical continuum
approach. They are still applicable when the characteristic length of a problem is so small that classical
theories are not valid. In elastodynamics, different from classical theories, first gradient theories predict
that short bulk and surface waves are dispersive, which agrees with lattice dynamics. The resulting
theories are called dielectrics (or piezoelectrics) with spatial dispersion. Gradient theories also have
important consequences in elastostatics with singularities, eg., defects,

The motivation of this work is to explore the effects of the electric field gradient into the constitutive
laws for piezoelectric crystals by analyzing the shear horizontal waves propagating over a half-space
or at interface between two half-spaces. Specifically, the piezoelectric materials possess 2mm, 4mm or
6mm symmetry and the boundary (or interface) is orthogonal at basal plane. The secular equations
are obtained explicitly not only for metallized boundary conditions, but also for others types such as:
unelectroded surface and air gap boundary conditions.

The obtained frequency equations show clearly that the gradient effects makes the surface and inter-
face waves dispersive. In contrast to these, the well known Bleustein-Gulyaev [3] surface waves and
Maerfeld-Tournois [4] interface surface waves are non-dispersive according to the classical modeling of
linear piezoelectricity which neglects the gradient effects. The generalized slowness curves and disper-
sion curves for a set of ferroelectric crystals and piezoceramics as well as fields spatial distributions in
half spaces are obtained and discussed. In particular, the results show as for others gradient theories a
characteristics length exists which may have significant size effects for microacoustic-devices operating
at very high-frequency and short wavelength.
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Electromagnetoelasticity which studies the interaction of deformation and electromagnetic fields in 

materials and constructions is a positive example of the development of the theory of conjugate fields of 

various physical natures. The first researches were initiated by the problems of geophysics. There was the 

need to describe the wave dynamics of the deep layers of the Earth taking into account its conductivity and 

interaction with geomagnetic field. In the modern electromagnetoelasticity which has various physical, 

technical and technological applications the following branches can be underlined: magnetoelasticity and 

magnetothermoelasticity of conductive non-ferromagnetic body in a constant magnetic field; 

magnetoelasticity of magnetoactive medium and electroelasticity of piezoelectricand electrostrictive 

medium. The current research was carried out in frames of the first branch. The main attention was paid to 

the problem of nonlinear waves formation under influence of a constant magnetic field. 

 

The system of magnetoelasticity equations looks as follows [1]: 

 

( ),rot∆div grad
3

1
2

2
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u

×+++






 +=
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 ×
∂
∂

=
∂
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Where u  – displacements vector; GK ,  – compression and shear constants; ρ – density of a material; t  – 

time, H  – intensity of magnetic field, σ  – conductivity, eµ  – permeability, nonlinearF  – includes items 

resulted from considering of elastic non-linearity. 

 

In the research we studied the longitudinal wave formation in a rod (1 – dimensional media), the wave 

formation in a plate (2 – dimensional media) as well as magnetoelastic wave formation in 3 – dimensional 

media. For each particular case we obtained evolutionary equations by introducing small parameter into the 

magnetoelasticity system. In some cases the evolutionary equations represent well known model equations 

of nonlinear wave dynamics. Thus, in case of a rod the system reduces to one of the following equations: 

Korteweg-de Vries-Burgers equation for a rod with finite conductivity, Korteweg-de Vries equation for 

ideal conductive rod and Riemann equation for ideal conductive rod when we does not take into account the 

kinetic energy of transverse deformations. For the magnetoelastic Riemann wave we found that the external 

magnetic field stabilizes the wave, increasing the time of formation of a sharp front. 

 

If the object is considered a plane then evolutionary equation combines the 2-dimentional model equations 

of Khokhlov-Zabolotskaya-Kuznetsov and Kodomtsev-Petviashvili.  

 

For 3-dimentional media the evolutionary equation represents 3-dimentional Khokhlov-Zabolotskaya-

Kuznetsov equation.  
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As a result of the analytical studies and numerical simulations we demonstrated the possibility of the 

formation of intense space-localized magnetoelastic waves: strain solitary waves in a rod, quasiplanar two-

dimensional wave beams in a plate and quasiplanar three-dimensional wave beams in an elastic conductive 

medium.  

 

The dependences of wave parameters (amplitude, velocity, and width) on the magnitude and spatial 

orientation of the external magnetic field were identified. They show that the properties of localized waves 

can be controlled with the help of a magnetic field. 
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Many well accepted models in continuum mechanics arise as a result of scaling of more complicated
primitive systems, see Klein et al. [4], Sideris and Thomases [6], among others. A typical example is
the so-called incompressible limit, where, roughly speaking, the acoustic waves present in the original
primitive system are suppressed (filtered) in the course of the limit process. In many cases it is
customary to say that the acoustic effects ”disappear” because the speed of sound in the media
becomes very high, or, equivalently, the characteristic speed is very low, and dispersion prevails. In
rigorous analysis of this process, we are interested in the way how this phenomena really occur, and
what is the rate in which the acoustic wave are anihilated. This leads to the study of acoustic equations
in the general form

ε∂tr + ∇ · ~v = f1,

ε∂t~v + ∇r = ~f2,

where ε is a positive small parameter. Writing the Helmholtz decomposition of ~v = ~w + ∇Φ, where ~w
is a solenoidal field, we obtain a wave equation

ε∂tr + ∆Φ = g1, (1)

ε∂tΦ + Φ = g2 (2)

for the acoustic potential Φ. The problem is supplemented with the Neumann condition

∇Φ · ~n|∂Ω = 0

imposed on the boundary of the physical space Ω ⊂ R3.

A short inspection of Duhamel’s formula yielding solutions of system (1), (2) reveals that all informa-
tion is provided by the quantity

exp

(
i
t

ε

√
−∆N

)
,

where the symbol −∆N denotes the self-adjoint realization of the Neumann Laplacean in the Hilbert
space L2(Ω). In the incompressible limits, the property of interest is local decay of acoustic waves
provided by the so-called dispersive estimates. Here “local” means in both physical and frequency
space. This amounts to showing decay, for ε → 0, of

ϕG(−∆N ) exp

(
i
t

ε

√
−∆N

)
,

where the function ϕ has compact support in the physical domain Ω, while G is compactly supported in
the frequency space, meaning in the interval [0, ∞) that contains the spectrum of −∆N . As a necessary
condition for dispersion is the absence of point spectrum - true eigenvalue and eigenfunctions - we
focus on the analysis on unbounded domains.

In this contribution we discuss the spectral properties of the operator −∆N that influence the disper-
sive decay. Qualitatively, we may distinguish several level of decay, related to the properties of the
associated family of spectral measures (cf. [2], Last [5]):
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• Strichartz estimates provide a global information and local decay of optimal order
√

ε without
cutting the frequency domain. They require very restrictive conditions to be imposed on the
underlying spatial domain, if available, see Chemin et al. [1].

• Estimates based on Limiting Absorption Principle provide local decay of optimal order
√

ε based
on some information on the resolvent operator. They are local with respect to the spectrum of
−∆N .

• Estimates based on RAGE theorem are optimal from the point of view of necessary hypotheses,
however, provide only uniform decay without explicit knowledge of the rate in terms of ε.

We shall discuss the above phenomena from the point of view of the family of spectral measures
associated to the Neumann Laplacean ∆N . In particular, we are interested in the explicit dependence
of the decay rate on the geometrical properties of the underlying spatial domain. We discuss several
applications of the method to singular limits arising in fluid mechanics. We focus on problems, where
the geometry of the underlying physical space changes in the limit process, for instance, the domain
contains a number of small holes with radius tending to zero in the asymptotic limit. In such a way, we
derive a correct formulation of several well established models, like the so-called Oberbeck-Boussinesq
approximation, on unbounded domains, cf. [3].

Further applications of the results to problems arising in homogenization, optimal shape design, and
problems involving more complex systems will be addressed.
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The origin of diffraction limit in wave physics, and the way to overcome it, can be revisited using the time-

reversal mirror concept. According to time-reversal symmetry, a broadband wave can be focused both in 

time and space regardless of the complexity of a scattering medium. In a complex environment a time-

reversal mirror acts as an antenna that uses complex environments to appear wider than it is, resulting in a 

refocusing quality that does not depend on the time-reversal antenna aperture.  The broadband nature of 

time-reversed waves distinguishes them from continuous phase-conjugated waves and allows revisiting the 

origin of diffraction limits, suggesting new ways to obtained subwavelength focusing for broadband waves.  

 

Two approaches will be discussed. One is related to the concept of a perfect time-reversal experiment that 

needs, not only to time-reverse the wavefield but also to time-reverse the source. It is the concept of an 

acoustic or electromagnetic “sink” that is related to the perfect absorber theory. Different strategies to build 

a sink have been investigated. They show the fundamental differences between a monochromatic and a 

broadband sink. 

 

Another approach for broadband sub-wavelength focusing will be discussed. It consists in introducing the 

initial source inside a micro structured medium made of subwavelength resonators with a mean distance 

smaller than the used wavelengths. It will be shown that, for a broadband source located inside such 

metamaterials, a time-reversal mirror located in the far field radiated a time-reversed wave that interacts 

with the random medium to regenerate not only the propagating but also the evanescent waves required to 

refocus below the diffraction limit. This focusing process is very different from the one developed with 

superlenses made of negative index material only valid for narrowband signals.  We will emphasize the role 

of the frequency diversity in time-reversal focusing and a modal description of the spatiotemporal focusing 

will be presented. It shows the super-resolution properties obtained with acoustic, elastic and 

electromagnetic waves.   
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In the context of the finite element method, a frictionless three-dimensional contact-impact algorithm
using pre-discretization penalty formulation was proposed [1]. The method was shown to be consis-
tent with the variational formulation of a continuum problem, which enabled easy incorporation of
higher-order elements with mid-side nodes to the analysis. Local search and the penalty constraint
enforcement were performed on the Gauss point level of linear/quadratic serendipity elements rather
than the nodal level of a finite element mesh. Owing to a careful description of kinematics of contact-
ing bodies when the non-linearized definition of penetration has been introduced, the displacement
increments in the course of one load step were permitted to be large. Thus, the extension of the algo-
rithm to geometrically nonlinear problems was straightforward. The algorithm proved to be robust,
accurate and symmetry preserving—no master/slave surfaces had been introduced.

The indispensable part of the contact algorithm is the local search procedure which represents mea-
suring penetration of a Gauss point through the counterpart’s object surface. It is necessary first to
define the outward normal and then to compute its intersection with a curved surface, establishing
distance. Although appearing trivial at first glance the numerical solution process is far from being
easy, especially when dealing with severely distorted surfaces. In Ref. [2] several methods for the so-
lution of non-linear algebraic systems were thoroughly tested: the Newton-Raphson method, the least
square projection, the steepest descent method, Broyden’s method, BFGS method and the simplex
method. The effectiveness of these methods was performed by means of the benchmark configura-
tion of distorted contact segment from the static solution of bending of two rectangular plates over
a cylinder [1]. The most fitting method turned out the modification of the Nealder-Mead simplex
method [3], which belongs to very popular and simple direct search technique that had been widely
used in unconstrained optimization problems.

In this work, the attention was focused on the application of contact algorithm in wave propagation
problems. It is obvious that the local search technique strongly influences the robustness, accuracy
and computational cost of the transient dynamic analysis. Therefore, an emphasis was laid on the
performance of the Nealder-Mead simplex method implemented in local search procedure by means of a
contact-impact problem of two colliding thick plates, for which the analytical solution was available [4].
Apart from this, the influence of the numerical dispersion was taken into account.

The plates made contact with initial velocity v0 = 1 m/s prescribed at time t = 0 s. The dimensions
were: thickness 2d = 5 mm, length 2.5 mm. Young’s modulus, Poisson’s ratio and density, respectively,
were E = 2.1 × 105 MPa, ν = 0.3, ρ = 7800 kg/m3. In view of symmetry, only one half of the plates
was discretized using 100×100 eight-node linear brick elements per each plate. The contact algorithm
is fully compatible with the explicit time integration methods. Thus, for the integration of equilibrium
equations, the central difference with the lumped mass matrix was employed. The time step was chosen
very small corresponding to the dimensionless Courant number Co = 0.125.

The normalized longitudinal stress distribution σ∗
x along x-axis is drawn in Fig. 1 (left). The results

are plotted for normalized time t∗ = 0.56 and coordinate z/d = 0, for which no reflections from
boundaries occur. Except the contact analysis a symmetric reference calculation was performed,
where the longitudinal displacements of the front-end nodes of the plate were fixed. The contact
solution is plotted by red line while the solution based on the reference calculation is denoted by blue
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line. In addition, the theoretical solution corresponding to uniaxial strain condition is plotted by the
black line. Quite a good agreement between the contact and reference calculation was observed. It
should be emphasized that the symmetry of longitudinal stress distributions was perfectly preserved
in contact analysis. Thus, the capability of the Nealder-Mead simplex method implemented in local
search procedure was confirmed. It is clear that the numerical solution was influenced by dispersion
errors caused by both FE spatial and time discretization. In comparisons with the continuum solution
the speed of the longitudinal wave was slower. This fact follows from the theoretical dispersion
diagrams derived in Ref. [5].

The normalized transversal stress distribution σ∗
z along z-axis is drawn in Fig. 1 (right). In contrast

to previous figure these distributions are strongly influenced by the longitudinal and transversal waves
reflected from the boundary of plate. Before the arrival of these waves the solution is identical to the
constant values σ∗

z = −1 corresponding to a half-space impact problem. It should be pointed out that
the accuracy of analytical solution using the Laplace transform is strongly influenced by the number
of terms included in the series of improper integrals [4]. The analytical solution plotted in this figure
was derived from the summation of the first 300 terms of this series.
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Figure 1: Longitudinal and transversal stress distribution for normalized time t∗ = 0.56 and Courant’s
number Co = 0.125: σ∗

x for z/d = 0 (left); σ∗
z for x/d = 0.4 (right).
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Classical continuum theories possess no intrinsic length scale and thus fail to predict the scale effects 

observed experimentally in problems with geometrical lengths comparable to the lengths of material 

microstructure [1]. It is also well known that the classical theory of elasticity does not predict dispersion of 

Rayleigh-wave motions at any frequency. Of course, at high frequencies (small wavelengths), this is a result 

that contradicts experimental data and also does not agree with results of the discrete particle theory (atomic-

lattice approach). In these situations, dispersion phenomena at high frequencies can only be explained on the 

basis of generalized continuum theories (see e.g. [2,3]). In particular, gradient theories enrich the classical 

continuum with additional material lengths (characteristic lengths) in order to describe the scale effects 

resulting from microstructure. In this way, gradient theories extend the range of applicability of the 

‘continuum’ concept in an effort to bridge the gap between classical continuum theories and atomic-lattice 

theories. 

 

The present work studies the propagation and reflection of plane waves in a body having the form of a half-

space. It is assumed that the mechanical response of this body is governed by dipolar gradient elasticity. Our 

goal is to investigate the effect of boundaries on the elastic wave motion in a medium with microstructure 

and, thus, to determine possible deviations from the predictions of classical linear elastodynamics. By using 

gradient elasticity, size effects are taken into account in a manner that the classical theory cannot afford. 

Here, a simple but yet rigorous version of the generalized continuum theories of Toupin [4] and Mindlin [5] 

is employed that also includes micro-inertial effects. It is noted that previous experience with gradient 

analysis of torsional and Rayleigh type waves indicated that micro-inertial effects are important at high 

frequencies [2,3,6]. 

 

Our results show departure from the ones of the classical elastodynamic theory. Indeed, it is observed that an 

incident dilatational or distortional wave at the traction-free plane boundary gives rise to four reflected 

waves, instead of the usual two waves predicted by the conventional theory. Two of these reflected waves 

are surface waves with exponentially decaying amplitudes, while the other two propagate with dispersion 

into the medium. In addition, contrary to the classical elasticity case, the amplitudes of the reflected waves 

are complex quantities, thus indicating a phase shift between the incident and reflected waves. It is shown 

that this phase shift increases as the wavelength of the incident wave becomes comparable with the intrinsic 

material lengths. In view of the above, it appears that the material microstructure plays an important role in 

the propagation and reflection of plane waves in the presence of boundaries.  
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Operational Equations of  State (EoS) can be defined as the EoS which have the form of different 

operators. For the shock-wave community, the classical example of the operational EoS is the 

famous Mie-Gruneisen equation [1,2]: 

 

 

 

where ( ),MGP V E  is the dependence of pressure upon the „hydrocode“ thermodynamic variables: a 

specific volume V  and a specific internal energy density E ; ( )VΓ is the so-called Gruneisen 

parameter; ( )refP V  and ( )refE V  are the values of the pressure and the specific energy on the so-

called reference curve (see, Figure 1). Thus, the Mie-Gruneisen EoS is an ordinary function with 

respect to the hydrocode variables ( ),V E  and an operator with respect to the functional variables  

( ){ }( ),ref refP V E V . 

 

 
 

Figure 1: The reference curve in the “hydrocode” plan. 

 

 

 

The EoS is a mandatory element for analyzing wave motion and shock waves, in particular [3,4]. At 

the same time, measuring various physical characterics of wave fields we can try to solve the 

inverse problem, i.e., the problem of recovery of the EoS from experimental data.  When the 

reference curve coincides with the Hugoniot adiabat the Mie-Gruneisen equation appears to be 

E
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helpful for solving this inverse problem. Then, this EoS converts the experimentally determined 

Hugoniot adiabat data into the EoS for hydrocode. By definition, the recovered EoS is automatically 

fully compatible with those Hugoniot experimental data. After the conversion, the resulting EoS can 

be used also for modeling of a variety of high-rate problems (including those with and without 

shock waves).  

 

With all its valuable features, the Mie-Gruneisen EoS suffers serious weaknesses as well. In 

particular, it is thermodynamically inconsistent with various widespread models of the heat capacity 

functions unless the substance’s heat capacity depends solely on the specific entropy. In many 

applications the heat capacity is assumed constant. This assumption makes the Mie-Gruneisen EoS 

thermodynamically consistent but it does not always provide sufficient flexibility in modeling 

physical phenomena, for instance, when dealing with polymers.  

 

In the paper, we discuss the concept of operational EoS, distinguishing between the complete and 

incomplete EoS as well as distinguishing between thermodynamically consistent and inconsistent 

models. We also suggest some simple examples of the operational EoS which are 

thermodynamical complete and consistent and can be recommended for modeling shock and blast 

phenomena. Presented results develop further the earlier publications [5,6].  
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The efficient simulation of time-dependent wave phenomena is of fundamental importance in a wide
variety of applications from acoustics, electromagnetics and elasticity, for which the scalar damped
wave equation

utt + σut − ∇ · (c2∇u) = f in Ω × (0, T ) , (1)

often serves as a model problem. Here, Ω is a bounded domain, f(x, t) is a (known) source term,
whereas the damping coefficient σ(x) ≥ 0 and the speed of propagation c(x) > 0 are piecewise
smooth.

We discretize (1) in space by using either standard continuous (H1-conforming) finite elements with
mass lumping [1], a symmetric IP-DG discretization [5], or a nodal DG discretization [6]. All three
discretizations lead to a system of ordinary differential equations with an essentially diagonal mass
matrix. Thus, when combined with explicit time integration, the resulting time scheme for the solution
of (1) will be truly explicit.

Locally refined meshes impose severe stability constraints on explicit time-stepping methods for the
numerical solution of (1). Local time-stepping (LTS) methods overcome that bottleneck by using
smaller time-steps precisely where the smallest elements in the mesh are located. In [2, 3], explicit
second-order LTS integrators for transient wave motion were developed, which are based on the stan-
dard leap-frog scheme. In the absence of damping, i.e. σ = 0, these time-stepping schemes, when
combined with the modified equation approach, yield methods of arbitrarily high (even) order. By
blending the leap-frog and the Crank-Nicolson methods, a second-order LTS scheme was also derived
there for (damped) electromagnetic waves in conducting media, i.e. σ > 0, yet this approach cannot
be readily extended beyond order two. To achieve arbitrarily high accuracy in the presence of damp-
ing, while remaining fully explicit, explicit LTS methods for (1) based on Adams-Bashforth multi-step
schemes were derived in [4].

Here we propose explicit LTS methods based either on classical or low-storage Runge-Kutta schemes.
In contrast to Adams-Bashforth methods, Runge-Kutta methods are one-step methods; hence, they do
not require a starting procedure and easily accommodate adaptivity in time. Although Runge-Kutta
methods require more computational work per time-step, that additional work is compensated by a
less stringent CFL stability restriction.

To illustrate the versatility of our approach, we now consider a computational rectangular domain of
size [0, 2] × [0, 1] with two rectangular barriers inside forming a narrow gap. We use continuous P 2

elements on a triangular mesh, which is highly refined in the vicinity of the gap, as shown in Fig. 1.
For the time discretization, we choose an LTS method based on an explicit third-order low-storage
Runge-Kutta scheme. Thus, the numerical method is third-order accurate both in space and time
with respect to the L2-norm. Since the typical mesh size inside the refined region is about p = 7 times
smaller than that in the surrounding coarser region, we take p local time steps of size ∆τ = ∆t/p for
every time step ∆t. In Fig. 2, a Gaussian pulse initiates two plane waves which propagate horizontally
in opposite directions. As the right-moving wave impinges upon the obstacle, a small fraction of the
incoming wave penetrates the gap and generates multiple circular waves on both sides of the obstacle,
which further interact with the wave field.
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Figure 1: The initial triangular mesh (left); zoom on the “fine” mesh indicated by the darker (green)
triangles (right).

Figure 2: The solution at times t =0.55 and 0.7.
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General Considerations

Propelled by intense needs for the development of structural applications of high polymers, solid
propellants, elevated temperature metals, composites, etc., fundamental research efforts during the last
seventy plus years starting with [1] have moved linear viscoelasticity into the realm of mature sciences
[2]. However, there remain a number of problems areas that need further research refinements, such
as improved linear characterization, coupled dynamic problems, analysis and computational protocols
and practically the entire nonlinear viscoelasticity area. Analyses in the presence of temperature fields,
whether static T (x) or fully dynamic T (x, t) with x = {x1, x2, x3}, generate their own set of intrinsic
difficulties. Because of the extreme temperature sensitivities of viscoelastic material properties (Fig. 1),
the following phenomena arise:
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Figure 1: Material property temperature dependence

• for T (x) material properties become non-homogeneous resulting in governing integral partial
differential relations (IPDE) with preserved convolution properties and with spatially variable
coefficients
• for T (t) homogeneous material properties remain but constitutive relation time integrals are of

the non-convolution type destroying possibilities of formulating elastic-viscoelastic correspon-
dence principles (EVCP)
• for T (x, t) the worst case scenario ensues where viscoelastic materials become non-homogeneous

without convolution integral properties
• in all cases where material properties are considered temperature dependent, the analysis of

coupled temperature-displacement problems entails solutions of nonlinear governing relations
(see Table 1) and, consequently, the elastic-viscoelastic correspondence principle is inapplicable

Solution protocols are formulated and illustrative examples are presented.

Solution Protocols

1. If the density and material and thermodynamic properties are approximated as temperature
independent, then the resulting linear constant coefficient integro-differential equations are linear
and can be solved by standard procedures, such as for instance Laplace (LT) or Fourier (FT)
transforms or by series of separable terms

ρ(x1, t) = const. u1(x1, t) =
N∗∑

n=1

Fn(t)u∗n(x1) T (x1, t) =
N∗∑

n−1
Fn(t)T ∗n(x1) (1)
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Material Temperature Modulus Coupling Governing Convolution EVCP

relations in t space

elastic T (x) E0(x) weak linear no n/a

elastic T (x, t) E0(x) strong linear no n/a

viscoelastic T (x) E [x, t− t,′ T (x)] strong nonlinear yes no

viscoelastic T (x, t) E [x, t, t,′ T (x, t′)] strong nonlinear no no

Table 1: Elastic and viscoelastic thermal coupling

Type of Uncoupling of Conditions

Governing Relations If and Only If

totally uncoupled time independent temperature

spatially independent temperature

temperature independent material properties

time independent displacements

temperature uncoupled constant temperature and

temperature independent material properties

displacements uncoupled time independent displacements

Table 2: Temperature–displacement coupling

Such a formulation may be considered as a “poor” first approximation to the more realistic
development in 3. below.

2. Since for the identical thermo-elastic problem where the temperature influence on material prop-
erties is marginally weak compared to viscoelastic media, the same integral transform protocols
as above can be employed.

3. If material and/or thermodynamic properties are inclusively prescribed as temperature depen-
dent, then the governing relations are nonlinear and currently there is no hope for an analytical
solution. Numerical procedure involving finite element and finite difference approaches are then
useful.

4. If boundary conditions corresponding to say absorbing or reflecting boundaries at x1 = 0 and/or
x1 = L are introduced, then Galerkin’s method may be applied to spatial dependences and thus
resulting in ordinary, rather than partial, temporal integro-differential nonlinear equations.

5. For the nonlinear governing relations the Poincaré-Kuo method of successive approximations [3]
may be used to linearize the simultaneous PIDEs.

6. A Runge-Kutta approach may also be employed.
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The simulation of the head-on collision of two long rods along their common axis of symmetry reveals that 

the rod’s material loses its strength long before reaching the interface between the two rod’s materials. The 

process by which the strength is lost is the fast formation of shear bands as indicated by the analysis of the 

head of a recovered long rod that penetrated a finite thickness target. The pressure due to which this 

strength failure process occurs is the Bernoulli pressure that is created by the elastic wave reverberations 

between the interface and the location where the rod loses its strength. Also, the shear bands are formed 

because of the fast accumulation of elastic energy in the rods while they reach the place where the shear 

bands form. In this shear bands formation process the elastic energy is released in a process that reminds of 

how lasers perform or how an explosion can proceed supersonically in an explosive. 

 

The energy Ed that the rod material accumulates before it gets released is a major parameter in the 

penetration mechanics, because it determines by how much the rod diameter increases before the plastic 

penetration process actually starts. The comparison of measured long rods penetration data, with predictions 

made by a computer code written especially for the above described penetration mechanism model, shows 

that the accumulated energy Ed may reach values above 1 KJoul/cc. Such values are much larger than the 

value of 100 Joul/cc reached typically at low strain rates in experiments where plastic deformation is 

measured. 

 

The direct measurement of Ed has been suggested [1] but not yet performed, while its indirect measurement 

via penetration measurements demands that all the parameters involved in the experiments are measured 

with the utmost accuracy. This parameter tells up to which energy density values the material can be loaded 

temporarily. At low strain rates this load is released by plastic deformation rather than by shear banding. 

What are threshold conditions between the two channels? This is open for discussion. We postulate that in 

the case of long rod penetration the strain rate at the location where the material loses its strength times the 

rod diameter should be smaller than the velocity of the dislocations in order that the plastic deformation will 

dominate rather than the elastic energy accumulation that leads to the shear bands formation. (The attached 

pictures are not new but their interpretation took time to mature). 

 

Experiments where several layers of fragments were launched with high explosive confirmed that the 

elastic energy that is accumulated by steel fragments for a very short time can have a very strong effect on 

the velocity distribution of the fragments. This observation gives another support to the phenomenon of the 

short duration elastic energy accumulation in metals, a phenomenon that is responsible for the fast shear 

bands formation failure mode. This failure mode probably stands behind the metallic flow in shaped charge 

jet formation and long rods penetration. 
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We present results for molecular dynamic (MD) and finite element (FEM) simulations in 3D bcc
iron crystals, with embedded central through crack (001)[110] of Griffith type, loaded in mode I. The
sample geometry and border conditions in MD were chosen in such a way as to invoke a cleavage crack
extension. Acoustic emission (AE) sources caused by the crack were analysed on both the atomistic
and continuum level with FEM.

Crack (001)[110] (crack plane/crack front) can extend in a brittle manner, as atomistic simulations
under plane strain conditions (e.g.[1]), but also fracture experiments on iron crystals [2, 3] have shown.
However, behaviour at the crack front depends not only on the stress intensity KI , but also on the
so–called T -stress acting parallel to crack plane [4]. Change of the T -stress from negative to positive
values may recall the ductile–brittle transition, as indicated in atomistic simulations under bi–axial
loading, as well as continuum predictions [4]. The change of T -stress can also be recalled due to
the geometry of a cracked sample under uni–axial tension, as follows from [5]. It was utilized in 3D
atomistic MD simulations [6] together with special boundary conditions to invoke cleavage fracture.
As mentioned in [6], AE sources from MD are well visible in the planes perpendicular to the crack
front, but not in the crack plane due to a continuous bond breakage in the atomistic sample. It is
a reason why surface Rayleigh waves cannot be recognised in the crack plane from MD.

In this paper we repeat 3D atomistic simulations from [6] where cleavage crack extensions have been
invoked along the whole crack front. Acoustic emission sources in 3D, recalled by the brittle fracture,
are analysed on both the atomistic and FEM level utilizing information from MD on residual forces
in the crack plane during crack propagation.

At MD and FEM simulations we consider a pre–existing central crack of 2l0 = 2a length, embedded
in a rectangular sample. The crack surfaces lie on (001) planes, the crack front is oriented along
the z–direction [110] and the potential crack extension is in the x = [110] direction. The crack is
loaded uni–axially in mode I, i.e. the sample borders are loaded in y 〈001〉directions. Due to the
symmetry of the problem, we simulate only one half of the sample in the x–direction. To maintain
the symmetry, the atoms lying on the left border plane are fixed in the x–direction. The other atoms
are free to move in the x–, y– and z–directions, excepting surface atoms on {110} surfaces that are
fixed in the z–direction. This serves to decrease stress concentration and prevent the plastic process
at the corners, where the crack front penetrates the free surfaces. We utilize an N–body potential for
bcc iron of Finnis–Sinclair type [7]. Interatomic interactions across initial crack faces are prevented,
in order to simulate a pre–existing crack occurring in continuum models and in linear fracture elastic
mechanics.

The half crack length is l0 = 178d110, where d110 = a0

√
2/2 and a0 = 2.8665 Å is the lattice parameter

and the initial half crack opening is c0 = d001/2 = a0/4. The thickness of the crystal corresponds to
30 layers (110) in the z–direction parallel to the crack front. Crystal consists of 300 planes [110] in
the x–direction and 300 planes (001) in the y–direction.

Newtonian equations of motion for individual atoms are solved by a central difference method, using
time integration step h = 1×10−14 s. We use a ramp loading, i.e. the sample is loaded up to a level
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σA gradually (linearly) during 4000 time steps, as in [6]. When a prescribed stress level σA is reached,
the applied stress is held constant.

Prior to external loading, the atomistic samples are relaxed to avoid the influence of surface relaxation
on the microscopic processes at the crack front. At selected time steps, the local number of interactions,
the local kinetic energies and the coordinates of individual atoms are monitored for purposes of graphic
treatment of the MD results. When bond breakage occurs in the atomistic system, residual atomic
forces in the middle of the crack plane are monitored each time step for purposes of FEM.

The wave motion modelling in the sample was carried out by using the finite element (FE) code
COMSOL [8]. The FE sample of width 150a0

√
2, height 150a0 and thickness 15a0

√
2/2 (half of the

MD sample) was considered as a linear anisotropic elastic medium with cubic symmetry. Plane strain
conditions inside the sample together with zero displacements in the z–direction have been utilized in
the anisotropic FE model of the same orientation as in MD. The FE sample is supposed to be without
any initial stress/strain. For the time integration the full mass matrix and integration time step ∆t
was 1×10−13 s were used.

At higher applied loads, positive T–stress contributes to cleavage crack extension in MD. Under the
ramp loading during 4000 time steps, the crack was initiated at the critical Griffith stress intensity.

MD simulations show that cleavage crack initiation in the 3D bcc iron crystal forms an AE–source,
where qL–waves dominate. However, qT–waves are also generated during a continuous bond breakage
in the crystal, which is new knowledge from 3D modelling. The strongest pulse emission comes from
stress relaxation at the crack front, after the crack initiation.

Simplified modelling of the pulse emission by FEM shows that, besides the qL and qT–waves, Rayleigh
waves can also be generated at the (001) free crack faces, in agreement with expectations according
to continuum analysis.
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Composite materials have been extensively used for the purpose of impact-resistant design. As an important
ongoing research area, many works have been done to address various aspects of wave behavior in nonlinearly
elastic composite materials. One focus is on the influences of the cell structureon waves. For example, the
homogenization method was used to study the dynamical properties of layeredcomposite Murnaghan materials
([1]) and the effective incremental response in a pre-stressed nonlinearly elastic composite bar was considered
in [2]. Numerical computations by a finite volume method also revealed some interesting behavior (see [3]).
In this talk, we concentrate on a different aspect: How material nonlinearitycan be utilized to undermine the
strength of tensile waves. When a compressive impact is exerted on a composite bar, tensile waves can arise due
to multiple reflections at interfaces, which can, in turn, induce cracks. As aresult, the strength of the structure
can be significantly reduced. Thus, it is an important issue to reduce the magnitude of a tensile wave.

The object of our study is a two-layer composite bar, with the first layer composed of a linearly elastic material
of finite length h (called material 1) and the second layer composed of a nonlinearly elastic material of infinite
length (called material 2). We consider the problem that a compressive impact with stress amplitude A and
duration T is exerted on the left end of the first layer. The aim is to conductan analytical and numerical study
to show that under certain conditions a tensile wave will be transmitted into the second layer and it can catch
the first transmitted compressive wave (so the strength of the former can bereduced.)

The mathematical formulation (in a Lagrangian description) is given below:

ρvt = σx, γt = vx, (1)

whereγ, v, σ are smooth functions and denote the strain, particle velocity and nominal stress respectively. At a
moving strain discontinuityx = s(t), the jump conditions are

ṡ[γ] + [v] = 0, ṡρ[v] + [σ] = 0, (2)

where[f ] = f(t, s(t) + 0) − f(t, s(t) − 0). The constant densityρ and the stress-strain relation are defined as

ρ =

{
ρ1, 0 6 x < h
ρ2, h < x < ∞ σ =

{
E1γ, 0 6 x < h, γ > −1
E2f(γ), h < x < ∞, γ > −1.

(3)

The initial-boundary value conditions are given by

v(0, x) = 0, γ(0, x) = 0 for x > 0 and σ(t, 0) =

{
A, 0 < t 6 T,
0, t > T.

(4)

We show that, when material 2 is linear and the impedance ratio of two materials is less than 1, a tensile wave
will be transmitted into the second layer but it can never catch the first transmitted compressive wave. Then, we
consider the case that material 2 is nonlinearly elastic. By using the theory ofnonlinear hyperbolic equations,
we are able to show that if material 2 is convex there are two wave patterns (see Figure 1) for which the tensile
wave can catch the first transmitted compressive wave. Depending on whether the time intervalT of the impact
is larger or smaller than a critical valueT ∗, the tensile shock waveS1 catches first the compressive shock wave
S0 or S0 first penetrates the rarefaction wave and then is caught by the tensile shock waveS1.
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Figure 1: The catching-up phenomenon in the composite bar. Case I: T > T∗ (left); Case II: T < T∗
(right), where T∗

.
= 2t1s1(s0 − c(γ+

1 ))/[s0(s1 − c(γ+
1 ))], c(γ) = (σ′(γ)/ρ2)

1/2, t1 = h/c1, t2 = T + t1 =
(1 + θ)t1, t3 = 3t1.

We also manage to construct the explicit asymptotic solutions whenε = −2A/E2 > 0 is small. For example,
we have the following formulas for some quantities shown in Figure 1.

γ+
1 ≈ − 1

β + 1
ε, γ+

2 ≈ − β [f ′′(0)]2

96(1 + β)4
ε3, γ− ≈

1 − β

(1 + β)2
ε,

s0

c2
≈ 1 − f ′′(0)

4(1 + β)
ε,

s1

c2
≈ 1 +

(1 − β)f ′′(0)

4(1 + β)2
ε.

(5)
Here,ci = (Ei/ρi)

1/2(i = 1, 2) are the speeds of sound waves in materials 1 and 2,α
.
= c1/c2, β

.
= ρ1c1/ρ2c2.

One can see thatγ− is positive whenβ < 1, thus the shockS1 is tensile. Also, sincef ′′(0) > 0, the tensile
waveS1 is faster than the compressive shockS0 (s1 > s0). All the other quantities can then be determined.

For example, the time and location (point C in Figure 1) at which the tensile waveS1 catches the varying-speed
compressive shock (the curve BC) are given by

tC/t1 ≈ 1+X/ε, xC/h ≈ 1+X/(αε), X = 8(β+1)/[f ′′(0)(θ+(1−β)/(β+1)+
√

θ2 + 2θ(1 − β)/[(β + 1)])].
(6)

The roles played by the constitutive relation, the strength of the initial impact and the material and geometrical
parameters can be clearly observed from these expressions. We also conduct some numerical simulations,
which confirm that the analytical results are valid as long asε < 0.3 (so actually we do not needε to be very
small).

It is hoped that the analytical and numerical study presented here may provide a new way (by exploring material
nonlinearity) for designing certain structures for impact protection purpose.
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In percussive top hammer drilling of deep holes in rock, stress wave energy is transferred through joined drill 
rods to a drill bit, where a part of the energy is converted into work as the rock is crushed. Through the chain 
of drill rods there is a central hole for transport of flushing fluid to the bottom of the hole.  
 

In the common type of drill rod joint shown in Fig. 1, the threaded ends of two drill rods are screwed into a 
coupling sleeve with internal thread. When a stress wave arrives at the joint, one part of its energy is trans-
mitted, a second part is reflected and the remaining part is dissipated as heat due to slip and resulting fric-
tional work in the threads. It has been found experimentally [1] that the dissipated energy may constitute 
from a few percent to as much as 15 percent of the incident wave energy depending on the conditions. For a 
supplied power of 20 kW, this means heat losses in the threads up to 3 kW and corresponding temperature 
rises. 

 

 
 

Fig. 1: Drill rod joint with a sector of the coupling sleeve removed. 
  

A drill rod joint model comprising a rigid coupling sleeve, whose interaction with two elastic drill rods con-
sidered to be 1D is represented by two stiffness parameters and one friction parameter, has given results for 
wave energies and dissipated energy that agree well with experimental results [2]. However, it is a weakness 
of this model that its three thread parameters must normally be estimated from experimental tests, which 
means that it cannot be used without the existence of a prototype. Here, therefore, we have tested a 3D FE 
model for the drill rod joint used in [1]. 
 

The total length of the joined drill rods was 7 580 mm, and their external and internal diameters were 32.0 
and 12.5 mm, respectively. The length of the coupling sleeve was 150 mm, and its external diameter was 
44.0 mm. The material was steel with Young’s modulus 210 GPa, Poisson’s ratio 0.3 and density                  

7 800 kg/ 3m .  

EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

67



Simulations were carried out with LS-DYNA in two steps. First the drill rods were screwed into the coupling 

sleeve quasi-statically until axial surface prestrains of 20, 120 and 360 610−
×  were obtained at the mid-

section of the sleeve. Then, an incident wave was generated by a rectangular pressure pulse applied at the 
end of the first drill rod. This pulse had amplitude 200 MPa and duration corresponding to impact by a cylin-
drical steel hammer with the same cross-sectional area as the drill rods, impact velocity about 10 m/s and 
length 0.3, 0.6 or 0.9 m (two transit times). In the simulations 994 917 4-node tetrahedal elements were used, 
corresponding to 231 185 nodes. In the drill rods, the element size varied from 4 mm outside the threaded 
parts to 1 mm on the surface of the threads. In the sleeve, the element size varied from 4 mm on the external 
surface to 1 mm on the surface of the internal thread. Explicit time integration was used and the time step 
was  0.024 sµ . 
 

Dissipated and transmitted energy, normalized to the energy of the incident wave, are shown in Figs. 2 and 3 

for prestrain 120 610−
×  and coefficient of friction 0.3.  Corresponding experimental results [1] are shown for 

comparison. The dissipated energy decreases and the transmitted energy increases with increasing hammer 

length. Similar results for the prestrains 20 and 360 610−
×  show that these energies decrease and increase, 

respectively, with increasing prestrain. Generally, the results of simulation and experiment agree satisfacto-
rily. The slight difference between the dissipated energies based on the deficit of wave energy and the fric-
tional work in the contact area, respectively, is probably due to waves which are incomplete or slightly over-
lapping in the rod volumes outside the joint where the energies were computed. It is also found that dissipa-
tion mainly occurs just after the arrival at the joint of the front and the end of the incident wave. During these 
periods, the sleeve is accelerated and retarded, respectively, and therefore some slip occurs. Although the 
results are preliminary, it is concluded that 3D FE simulation should be an efficient tool in the design of drill 
rod joints and similar sub-structures or components used in percussive drills.    
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Fig. 2: Dissipated energy relative to the energy  
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There has been a lot of interest recently for three techniques of imaging in the context of heterogeneous
media: (i) time-reversal techniques have shown to be very efficient in the identification of sources and
scatterers in homogeneous and random media [2, 3]; (ii) noise cross-correlation has been widely used,
in particular in geophysics [6, 4], to image smoothly varying heterogeneous media; and (iii) full-field
measurement techniques have been developed to account for over-abundant data, in particular in the
context of static material mechanics problems [5]. The objective of this presentation is to propose
a new identification technique that incorporates some of the features of each of these three methods
to allow for the identification of very heterogeneous material property field from the knowledge of a
series of time signals at the surface of the medium.

More specifically, we consider the following two semi-discretized weak formulations:

1. true time-reversed solution: find ũ(x, t) (in an appropriate functional space) such that

∫

Ω
ρ¨̃u(x, t)v(x)dx +

∫

Ω
k̃(x)∇ũ(x, t)∇v(x)dx =

N∑

i=1

f̃(xi, T − t)v(xi), ∀t, ∀v(x) (1)

2. surrogate time-reversed solution: find u(x, t) (in an appropriate functional space) such that

∫

Ω
ρü(x, t)v(x)dx +

∫

Ω
k(x)∇u(t, x)∇v(x)dx =

N∑

i=1

f̃(xi, T − t)v(xi), ∀t, ∀v(x) (2)

In these formulations, the loading fields f̃(xi, t) are recordings at N stations at the boundary of the

medium. The true parameter field k̃(x) is unknown in the identification problem, so the solution
ũ(x, t) of the first weak formulations can therefore not be approximated. The second weak formula-
tion simulates a time-reversal experiment in which the model for the reversed experiment is different
from the model for the direct experiment. The identification problem then consists in choosing a field
k(x) which is compatible with the information on k̃(x) which is contained in the loading fields f̃(xi, t).
Several approaches are possible, which bear similarities with full-field measurement techniques. How-
ever, the latter usually concentrate on space data rather than time recordings. Note that, for any
chosen k(x), the solution u(x, t) can be computed, because f̃(xi, t) is given as data. Note also that
an identification process for both parameters fields k(x) and ρ(x) would be possible, although we
concentrate here on k(x).

For very heterogeneous media, the parameterization of the field k(x) becomes an issue, and the
identification problem may become ill-posed. In particular, the values of the parameter field far from
the sources may be little constrained by the data. For positions far-away from the recording locations,
we therefore turn to a random field model for k(x) and look for statistical information on it rather
than its exact value at all points. Cross-correlation information will then be considered primarily.

Identification results will be presented for both 2D acoustic and 3D elastic models. For the later, we
will use a spectral element code, originally based on RegSEM [1], for the resolution of equation (2) in
a randomly heterogeneous medium [7].
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We study how the perturbations of a generally heterogeneous isotropic or anisotropic structure mani-
fest themselves in the wave field, and which perturbations can be detected within a limited aperture
and a limited frequency band. We consider a smoothly varying heterogeneous generally anisotropic
elastic background medium, and its arbitrarily varying generally anisotropic perturbations. We de-
compose the perturbations of elastic moduli and density into Gabor functions. The wave field scattered
by the perturbations is then composed of waves scattered by the individual Gabor functions.

We assume a short–duration, broad–band, incident wave field with a smooth frequency spectrum.
We approximate each wave scattered by one Gabor function by the first–order Born approximation,
which describes the first–order sensitivity of the wave field to the infinitesimally small structural
perturbations exactly. We make use of the paraxial ray approximation of the incident wave in the
vicinity of the central point of the Gabor function, and of the two–point paraxial ray approximation
of the Green tensor. The above–mentioned approximations enable us to calculate the waves scattered
by the individual Gabor functions analytically [1].

The wave, scattered by one Gabor function, is composed of a few (i.e. 0 to 5 as a rule) Gaussian
packets. Each of these “sensitivity” Gaussian packets has a specific frequency and propagates from
the Gabor function in a specific direction, see Figures 1–3. Each sensitivity Gaussian packet is sensitive
to just a single linear combination of the perturbations of elastic moduli and density, corresponding
to the Gabor function. This information about the Gabor function is lost if the sensitivity Gaussian
packet does not fall into the aperture covered by the receivers and into the legible frequency band.
The situation improves with the increasing number of differently positioned sources. If we have many
sources, the sensitivity Gaussian packets, propagating from a Gabor function, may be lost during
the measurement corresponding to one source, but recorded during the measurement corresponding
to another, differently positioned source. However, the problem is not only to record the Gaussian
packets from a Gabor function, but to record them in as many different measurement configurations
as to resolve the perturbations of all elastic moduli and density.

Figure 1: A single Gabor func-
tion.

Figure 2: Broad–band wave inci-
dent at the Gabor function.

Figure 3: Gaussian packet scat-
tered by the Gabor function.

In a numerical example, we consider the distribution of the P–wave velocity in the Marmousi struc-
ture. The velocity difference between the Marmousi structure and the smooth background medium is
displayed in Figure 4. For the decomposition of the velocity difference, we generate the set of Gabor
functions with their shapes optimized according to [2], see Figure 5. We then decompose the velocity
difference from Figure 4 into the sum of Gabor functions. For each shot, we calculate the sensitivity
Gaussian packets scattered by the individual Gabor functions. If a sensitivity Gaussian packet arrives
at the receiver array within the registration time and frequency band, the recorded wave field contains
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Figure 4: Velocity difference between the Mar-
mousi structure and the velocity model.

Figure 5: Example showing 14 ones of 67014 op-
timized Gabor functions used to decompose the
velocity difference.

Figure 6: Sum of the Gabor functions influencing
the seismograms recorded for shot 70.

Figure 7: Sum of the Gabor functions influencing
the seismograms recorded for shot 220.

Figure 8: Sum of the Gabor functions influencing
the seismograms collected from all shots.

Figure 9: Part of the velocity difference from Fig-
ure 4 influencing no recorded seismogram.

information on the corresponding Gabor function. The sums of the Gabor functions influencing the
seismograms recorded for shots 70 and 220 are displayed in Figures 6 and 7. The velocity difference
from Figure 4 can be decomposed into the part to which the recorded seismograms are not sensitive
and into the part to which the recorded seismograms are sensitive. The sum of the Gabor functions
influencing the seismograms collected from all shots is displayed in Figure 8. This is the part of the
velocity difference to which the recorded seismograms are sensitive. The remaining part of the velocity
difference, influencing no recorded seismogram within the first–order Born approximation, is displayed
in Figure 9. This part of the velocity difference cannot be recovered from the Marmousi seismograms.

The sensitivity Gaussian packets can enable migrations to be replaced by true linearized inversions of
seismic reflection data. For the algorithm of the linearized inversion of the complete set of seismograms
recorded for all shots, refer to [3].
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[2] L. Klimeš. Optimization of the structural Gabor functions in a homogeneous velocity model for
a zero–offset surface seismic reflection survey. In: Seismic Waves in Complex 3–D Structures,
Report 18, pp. 115–127, Dep. Geophys., Charles Univ., Prague, 2008, online at “http://sw3d.cz”.
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Introduction

A modern approach in the finite element analysis is the isogeometric analysis (IGA) [1], where shape
functions are based on varied types of splines. For example, B-spline (basis spline), NURBS, T-spline
and others are used for spatial discretization. This approach has an advantage that the geometry
and approximation of the field of unknown quantities is prescribed by the same technique as in CAD
commercial software. Another benefit is that the approximation is smooth. For one-dimensional or
multi-dimension problems on the domains with straight boundaries, the B-spline basis functions could
be used for spatial discretization.

The spatial discretization of elastic continuum by finite element method (FEM) [2] introduces disper-
sion errors to numerical solutions of stress wave propagation. When these propagating phenomena
are modelled by FEM the speed of a single harmonic wave depends on its frequency and thus a wave
packet is distorted. Moreover, the oscillations near the sharp wavefront in FE solution (called Gibb’s
effect) appears [3]. For higher order Lagrangian finite elements, the optical modes with the amplitude
elongation in the spectrum exist. Furthermore, the high mode behaviour of classical finite elements is
divergent with order of approximation of a field of displacements.
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Figure 1: Example of cubic B-spline basis functions (on the left) for ten control points and the uniform
knot vector. An open cubic B-spline curve interpolating end points (on the right).

It was shown for unbounded domains in [4], that the optical modes for isogeometric approach did
not exist against higher order Lagrangian finite elements. This is an outcome of uniform continuous
piecewise higher order polynomial shape functions, (blue functions in Figure 1). Further, dispersion
and frequency errors for isogeometric analysis were reported to decrease with increasing order of spline
[4]. Isogeometric analysis, where continuous piecewise higher order polynomials are used as shape
functions, improves the dispersion errors and frequency spectrum. The spline based FEM with small
dispersion errors and the variation diminishing property [1] could eliminate spurious oscillations, which
are the outcome of the Gibb’s effect and the dispersion behaviour of FEM.
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Numerical tests

In this initial work, the B-spline FEM is tested in numerical modelling in elastic wave propagation
problems. The first crucial test is a problem of axial elastic waves propagation in a free-fixed ”thin”
bar under the shock loading [5], see Fig. 2(on the left). The second test is a symmetrical impact
of thick elastic plates [6], see Fig. 2(on the right), modelled as a three-dimensional problem with re-
spect to symmetrical conditions. Both tests serve for the determination of accuracy and stability
of IGA in wave propagation of sharp wave fronts. The special attention is devoted to the monitoring
of approximation of theoretical wave-fronts, numerical dispersion and the existence of spurious oscilla-
tions near wave-fronts. The continuous Galerkin’s approximation method is employed [1] and for the
time integration, the Newmark method, the central difference method and the generalized-α method,
respectively are compared [4].
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Figure 2: Dimensionless stress in an elastic free-fixed bar under the shock loading at time t = 0.5L/c0

computed by the Newmark method with the consistent mass matrix for cubic B-spline FEM
(on the left). Distribution of velocity amplitude for symmetrical impact problem of thick elastic
plates (on the right), the half of deformed configuration is depicted at time t = 0.56d/c1.

Details of the IGA in elastic wave propagation, its accuracy and performance will be presented at the
Colloquium.
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We introduce and analyze a new class of fully compliant dynamic structures with time-dependent inertia 

performing vibratory motion and characterized by non-zero averaged momentum. Note that while the tuning 

of structure’s stiffness can be achieved, for example, by application of an electrostatic force [1-3], the tuning 

of inertial properties is more challenging since controllable attachment and detachment of the mass is 

problematic. Instead, in this work we propose to change the moment of inertia of the structure rather than its 

mass. The moment of inertia of the structures performing tilting vibrations is controlled, by means of an 

external force, in such a way that the angular momentum averaged during the period is not zero.  It should be 

noted that in microstructures, an implementation of unidirectional, non-vibratory motion is difficult due to 

low reliability of parts performing relative motion accompanied by contact, friction and stiction. As a result, 

most of microdevices are realized as compliant structures performing vibratory motion with zero momentum 

averaged over period. For this reason, the operational principle of most of micromachined sensors and 

specifically of angular rate sensors differs from that governing the performance of their macro scale 

counterparts [4] and relies on the coupling between two vibratory modes arising due to Coriolis force [5].  

          

Figure 1. Geometry of the structure (a) and coordinate systems in the deformed configuration (b). 

The structure analyzed in the present work incorporates a sensing element (a gimbal) attached to the 

substrate (rotating with a prescribed angular velocity) by torsion axes and performing a tilting motion, Fig.1. 

A frame is attached to the gimbal and is forced to perform a rocking motion (drive mode) around the axis 

perpendicular to the gimbal; one or several proof masses are attached to the frame. By moving the masses in 

the radial (with respect to the frame’s rocking motion axis) direction, the moment of inertia of the frame can 

be changed. Note that the ability to provide a time-dependent inertial properties opens new possibilities for 

realization of a novel concept of dynamic materials (DM) [6] - the substances with material properties that 

may change in space and time - by using micromachined elements.  

Equations of motion of the device were developed by using a variational principle. The detailed feasibility 

studies were carried out for the configuration corresponding to an infinite number of proof masses - a 

(a) (b)
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massive expandable ring. We show that, similarly to the spinning disk gyro, the fully compliant device is 

distinguished by a non-zero average angular momentum and by an ability to extract the angular rate from the 

static tilting angle of the gimbal, Fig. 2.  Simple asymptotic expressions relating the angular rate and the 

averaged tilting angle of the sensing element are obtained and verified numerically, Fig. 2. Several 

operational scenarios, based on the open and close loop control of the masses’ motion, are investigated along 

with the influence of various parameters - the modulation depth of the moment of inertia, the ratio of the 

frequencies of the drive and sense modes and the phase of modulation. The operational principle can be 

efficiently implemented in angular rate sensors with increased sensitivity and lower structural coupling 

between the drive and sense modes as well as in the parametrically excited devices [7] and tunable inertial 

sensors [8,9]. 

 

                    

Figure 2. (a) Time history of the device with a ring-shaped proof mass and time-dependent moment of inertia: the sense 

mode -the gimbal tilting angle. (b) Averaged tilting angle (in mrad) of the gimbal (sense mode) as a function of an 

angular rate ΩY . The dashed lines correspond to the approximation of the static value.  
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The purpose of this presentation is to investigate the fundamental problem of the non-uniform motion
of a point force in an unbounded, homogeneous, isotropic medium in analogy to the electromagnetic
field theory [3]. The exact closed-form solutions of the displacement and elastic fields produced by
a non-uniformly moving point force are calculated. The displacement field can be identified with
the elastodynamic Liénard-Wiechert potential. We decompose the elastic fields into a radiation part
(acceleration field) and a non-radiation part (velocity-dependent field) for a non-uniformly moving
point force. We show that the solution of a non-uniformly moving point force is the generalization of
the Stokes solution to the non-uniform motion. Elastodynamic fields propagate with finite velocities.
There always is a time delay before a change in elastodynamic conditions initiated at a point of space
can produce an effect at any other point of space. This time delay is called elastodynamic retardation.

We discuss the analogy between the non-uniform motion in elastodynamics [1] and in electrody-
namics [2]. In electrodynamics, radiation is caused by the non-uniform motion of an electric point
charge. The electric and magnetic potentials of such a non-uniformly moving point charge are called
the Liénard-Wiechert potentials. The corresponding electric and magnetic field strengths consist of
velocity-depending fields and acceleration-depending fields. The last ones are the fields of radiation.
This is a standard topic in electromagnetic field theory and is covered in many books on electrody-
namics (e.g. [2]). Using the electrodynamical analogy, we investigate the elastodynamical radiation
caused by force distributions.
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Spatial structures are often subjected to impulse loads which induce high-frequency wave propagation. Despite
some recent researches, the characterization of the transient response to such loads remains an open problem.
These loads can damage the integrity of the structures or equipments attachedto them. For example, the
solar panels unfolding is set off by a pyrotechnic shock leading to high-frequency wave propagation in the
panels. Another example is the pyrotechnic cut for the space launcher/satellite separation. Thus it is necessary
to improve the prediction of the high-frequency structural responses withefficient theoretical and numerical
models.
In this research, we are interested in high-frequency wave propagation within three-dimensional beam trusses.
In the high-frequency range, classical global vibrational methods arenot applicable on account of the small
wavelength and the high modal density. Therefore two kinds of strategies have been developed by engineers:
either global approaches like the Statistical Energy Analysis (SEA) [1] orlocal approaches like the vibrational
conductivity analogy [2]. The main issue of the global approaches is the estimation of some core parameters
like the coupling loss factors or the injected powers, whereas the extensionof the existing local approaches to
built-up systems seems to be difficult. The method adopted here is local and based on the microlocal analysis
of classical wave systems. In this framework, it can be proved that the energy density associated with high-
frequency elastic waves in a Timoshenko beam satisfy a Liouville-type transport equation [3]:

∂twα + {λα, wα} = 0, (1)

wherewα(x, k, t) is the phase-space energy density of the energy modeα of which eigenfrequency isλα,
x ∈ S is the curvilinear abscissa in the neutral fiberS ⊂ R of the beam,k ∈ R is the wave number, and
{f, g} = ∂kf · ∂xg − ∂xf · ∂kg is the usual Poisson bracket. This equation highlights the conservation of
the vibrational energy in an undamped beam. It is shown in [4] that the energetic modes are separated into
two different families: the longitudinal modes that gather the compressional mode and bending modes, and the
transverse modes that gather the shear modes and the torsional mode. Thelongitudinal modes have an eigenfre-
quencyλP = |k|

√
E/ρ, whereE is the Young modulus andρ is the material density, and the transverse ones

have an eigenfrequencyλT = |k|
√

κµ/ρ, with κµ the reduced shear modulus. It is remarkable to notice that
there is no coupling between modes in the waveguide, an observation that could be somewhat counter-intuitive
with an expected diffusive state. In fact all the coupling will occur at the junction.
Indeed, the energy flow is partly reflected and partly transmitted at the interface between substructures. The
corresponding reflection/transmission coefficients are derived along the same lines as it is done in [5] for assem-
blies of two-dimensional beams or plates. The approach is to consider the boundary conditions of the classical
wave equation and to derive power flow transmission/reflection coefficients consistent with quadratic observ-
ables (wave fluxes). Our results show that the rotational modes (i.e. bending and torsion) are totally uncoupled
from the translational modes (i.e. compression and shear); a mode of one family impinging the junction can not
be converted into a mode of the other family. This fact is a remarkable property of the high-frequency dynamics
of slender structures.
The objective of this research is to extend the existing model to assemblies of three-dimensional curved beams
and develop a reliable model of the high-frequency energy evolution withinbeam trusses in order to predict,
for example, their steady-state behavior at late times or the energy paths. Atfirst, Timoshenko beam theory has
been used to describe wave propagation in the truss. The main issue of the proposed derivation is the choise of
these kinematics for the beam. Timoshenko hypotheses are indeed not relevant anymore in the high-frequency
limit, when the wavelength gets smaller than the cross-section dimensions. This model may be improved by
the consideration of Pochhammer-Chree modes in one-dimensional waveguides [7].
As for the numerical resolution of the transport equation (1), classical (continuous) finite element methods can
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not be used on account of the discontinuities of the energy density field atthe junctions. Thus a Discontin-
uous Galerkin (DG) finite element method [8] is implemented. The key issue of thismethod is to introduce
numerical fluxes depending on the traces of the physical fluxes at eachside of the junction. The spatial dis-
cretization is achieved by Legendre polynomials and the direct time integration isperformed with a Strong
Stability-Preserving Runge-Kutta method [9]. DG methods have the advantages to be weakly dissipative and
weakly dispersive depending on their order of interpolation. Thus they are well suited for long times simulation
in order to exhibit a potential steady-state behavior. Numerical simulations using the DG method are presented
for the example of a three-dimensional beam truss. The numerical implementation and the low-dissipation and
low-dispersion properties of our schemes are validated by reversed-timecomputations. The analysis of these
results shows that the steady-state behavior of the truss at late times corresponds to a diffusive behavior as
assumed by SEA, for example.
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Introduction

The analysis of elastic wave propagation is of crucial importance in several areas of engineering, e.g., design
of spacecraft and aeroplanes, exploration geophysics, design of civil structures. Since the middle of the last
century technical innovations in the latter mentioned areas have increased the importance of understanding of
dynamic phenomena. The first decades in studying dynamic aspects were marked by analytical methods [1, 4,
5, 6], e.g., integral transformation techniques like Laplace and Fourier transform or appropriate modifications
of them, the Green’s function method, etc. In the last decades of the 20th century digital computers became
available for most scientists and numerical solution techniques, e.g., finite difference, boundary element, finite
volume method [9], or finite element [2] method were used effectively, additionally nonlinear problems were
analysed by numerical methods [3].
This work deals with analytical and numerical solution methods for elastic wavepropagation phenomena in
different structural elements like strings, rods and beams. As numerical technique the finite element method will
be used and as analytical technique, to check numerical results, the Green’s function method. It is known that
the solution representing travelling or standing waves can be representedas a trigonometric series. Therefore
it is a natural consideration to use trigonometric functions as trial functions inthe Galerkin approximation or
as shape functions in the finite element technique. For the analysis of free vibrations this approach is used
in [7, 8]. Beside the discretization of structures in space via finite elements a timeintegration algorithm is
necessary to solve the governing equations of wave propagation. In classical finite element texts the central
difference approach is often used for this task [2] while in this work a Runge-Kutta method is presented. To
show the power of the demonstrated approach some benchmark calculationswith the finite element method
are performed and compared with results obtained by the Green’s functionmethod. Furthermore, parameter
studies are presented in which the thermophysical material properties as well as the discretization parameters,
e.g., element size, time step, are considered. Finally it is discussed how the presented method can be applied to
thermo-mechanically coupled wave propagation problems.
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Variational time integrators are time-discretization schemes for Hamiltonian systems that are obtained
from a discrete version of Hamilton’s principle. The basic idea is to construct a discrete action Sd

that to each discrete trajectory of the system assigns a scalar, and that approximates the exact action
of the system in a precise sense not specified here. The discrete trajectories are then obtained as the
stationary points of Sd among a class of admissible trajectories, akin to those in Hamilton’s principle.
As a byproduct, the resulting integrators: (a) are (multi-)symplectic, and hence have outstanding
long-term energy conservation properties, and (b) conserve momenta conjugate to symmetries of Sd,
as stated by a discrete version of Noether’s theorem. In this way, if the original system conserves
linear and angular momentum, for example, it is simple to construct time integrators that will do
so as well. Additionally, time-integration schemes of any order, implicit or explicit, with or without
constraints, can be constructed.

In this presentation we will first briefly summarize the main results and ideas of the last fifteen years on
variational time integrators, including the creation of multi-time-step integrators for nonlinear elastic
media termed asynchronous variational integrators [3, 4].

We will then introduce recent ideas on the creation of variational time integrators for nonlinear ther-
moelastic continua, with and without heat conduction. There are two key ideas here. The first one is
the realization that thermoelastic systems without heat conduction (adiabatic) are in fact Hamiltonian,
by regarding the temperature as a generalized velocity associated to “fictitious” thermal displacements
[5]. The action of the system is then invariant under rigid translations of the thermal displacements,
and the conjugate conserved quantity is the conservation of the entropy of the system. This is ex-
actly reflected by the resulting variational time integrators, which conserve the entropy of the system
exactly, in addition to conserving the energy and the pertinent mechanical momenta, see Fig. 1.
As concrete examples, we constructed a second-order explicit algorithm, which is a generalization of
central differences to adiabatic thermoelastic systems, as well as a fourth-order implicit one.

We extended essentially the same integrators to thermoelastic systems with Green-Naghdi type II heat
conduction, in which the heat flux is a linear function of the gradient of the thermal displacements
[2]. These systems are Hamiltonian, and once again the entropy is exactly conserved.
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Figure 1: Conserved quantities in the long-time simulation of adiabatic thermoelastic mechanical
systems, from [1].
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The inclusion of Fourier heat conduction, in which the heat flux is a linear function of the gradient
of the temperature is far less trivial. In this case, the system is no longer Hamiltonian, but for an
isolated mechanical system the energy and mechanical momenta are still conserved, and the entropy
does not decrease.

We will then describe recent progress in this direction, in which we first consider an integrable Hamil-
tonian mechanical system, and regard Fourier heat flow as non-Hamiltonian perturbation. Integrators
for this type of systems can be constructed by adding these perturbations to the original algorithms,
also regarded as a discrete version of Lagrange-d’Alembert variational principle. For small enough per-
turbations, we will show numerical evidence and some analytical results that suggest that the resulting
algorithms effectively conserve the energy of isolated system for very long times, while guaranteeing
that the entropy does not decrease, as the second-law requires. This is the second key idea.
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Gradient enrichment is a powerful tool to equip continuum mechanics theories with additional terms
that can be used to capture microstructural effects. Additional spatial derivatives, operating on
relevant state variables (such as total strain or plastic strain) and accompanied with constitutive
length scale parameters, can be used to set the width of shear bands, describe the size-dependent
response of geometrically proportional structures, simulate stress and strain fields around sharp crack
tips without singularities, and predict dispersive wave propagation — see [3] for a recent overview.

Of particular interest for the present study are continuum theories that are equipped with additional
spatial gradients of the accelerations, i.e. so-called micro-inertia modifications of the classical equa-
tions of elasticity. Such theories can be used to simulate the dispersion of waves that propagate
through heterogeneous media without the need to model the microstructure explicitly [9]— instead,
the additional length scale parameters that accompany the acceleration gradients can often be linked
straightforwardly to the microstructural geometry and/or material properties [11, 6, 12, 10, 7, 1, 8],
thus greatly facilitating parameter identification. Furthermore, the use of acceleration gradients has
an advantage over the use of strain gradients in that the need for additional boundary conditions is
avoided [3]. Finally, the use of micro-inertia can also lead to an increase of the critical time step in
conditionally stable time integration algorithms for time-domain computational dynamics [2, 4]. The
latter aspect shows great promise for practical applications as this can lead to significant reductions
in simulation times, however implementation of continuum theories with micro-inertia into finite ele-
ment codes for explicit dynamics is, unfortunately, not straightforward. The reason can be seen from
analysis of the semi-discretised equations of motion of an undamped elastic structure

[M + Mm] ü + Ku = f (1)

where M, K and f are the usual version of the mass matrix, stiffness matrix and external force vector,
respectively. The micro-inertia modifications of the mass matrix Mm cannot be lumped, so that
the system matrix is not diagonal and neither can it be made diagonal without losing the micro-
inertia properties of the material model (see also the discussion in [5]). The equations of motion are
coupled and consequently the explicit integration of the equations in the current form would require
a non-trivial matrix inversion.

Main motivation of this study is the need to simulate wave phenomena in contina with micro-inertia
by using numerical explicit integration scheme combined with finite element discretisation in space.

In this contribution, we suggest a solution algorithm based on formal modification of the equations of
motion (1) that can be used to enable explicit dynamics simulations with micro-inertia. The system
matrix is the usual lumped mass matrix and all the advantages of explicit integration are maintained.
Numerical stability issues are addressed and it is shown how the increasing of the critical time step
is preserved. The effects of the modification on the dispersive properties have been investigated and
numerical examples are used to illustrate the various aspects of the newly proposed algorithm.
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A typical optimization problem requires minimization of certain functional (cost) of a solution of a system of 

differential equation that include unknown functions or parameters termed controls. These functions belong to 

some admissible sets (available resources), and the goal is to determine controls minimizing the cost functional 

dependent on solutions. 

 

This formulation particularly applies to a material design, i.e., to problems with controls in the coefficients of 

the original equations (these coefficients may be assumed to take just two values, corresponding to two 

admissible materials). The key principle of material optimization comes from the idea of focusing the physical 

fields implemented and maintained by special material layouts. This principle universally works in both statics 

and dynamics. However, because of fundamental differences between these two concepts, the phenomenon of 

focusing manifests itself in them through different scenarios. 

 

In statics, the focusing is achieved by creation of material anisotropy aimed to control appropriate orientation of 

the physical fields at each point. This effect is produced through a build up of material composites assembled in 

space from the original constituents. This scenario is the only one applicable in statics, where the physical fields 

are commonly governed by the variational principle of minimal stored energy. Formally, the composites appear 

as the means aimed to compensate the lack of quasiconvexity in the original elliptic problem with controls in 

coefficients.  

 

Over the years, this approach developed through the study of Pontryagin’s maximum principle that received 

generalization to the coefficient control problems for PDEs. It also worked through the analysis of the s.c.        

G-closures – the sets of parameters of all mixtures assembled on a microscale from the original constituents. 

Eventually, it was implemented in the s.c. direct method capable of finding the layout specifically adjusted to a 

particular optimization problem.  

 

In dynamics, the situation is in many aspects different. Focusing of physical fields remains to be a leading and 

universal mechanism of optimization maintained by material layouts, but this principle now displays itself 

through various scenarios. To be able to timely respond to temporally changing environment, the material 

constituents should be distributed in space and time, i.e., they become dynamic materials (DM). DM are 

thermodynamically open systems; their existence is supported due to a non-stop exchange of mass, momentum, 

and energy with the environment. Only the union of a DM and the environment may be thermodynamically 

closed. DM appear to be very effective controllers of dynamic processes; however, the study of an optimal 

design and control via such materials requires understanding of the specifics of said exchange.  
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This specifics is formally due to the principle of stationary action that now replaces the principle of minimum 

stored energy.  DM are classified into activated (ADM) and kinetic (KDM), though a general DM need not be a 

pure case. ADM are maintained through the changes in material parameters produced by an external agent (e.g., 

by switching the inductances and capacitances along the transmission lines, or by attaching or release of masses 

along an elastic bar, or by operating the traffic lights on the road, etc.) KDM are produced due to a relative 

mechanical motion of material fragments that constitute a heterogeneous medium (c.f. Minkowski’s material 

relations in electrodynamics of moving media). In the presence of dynamic disturbances, activation and 

kinetization both maintain a mass-momentum-energy flow. Because of the work produced by the environment 

against the dynamic disturbances (waves), this flow may be accompanied by accumulation of said quantities in a 

travelling disturbance. Alternatively, these quantities are released if the waves work against the environment.  

In statics, materials are distributed in space, and practically every material geometry is consistent with standard 

compatibility conditions on material interfaces. Contrary to that, in dynamics, disturbances travelling through the 

DM structures may or may not comply with the compatibility conditions, depending on the material geometry. 

For example, a spatial-temporal laminate allows the incident wave to travel through it if the slope of the laminate 

is smaller (larger) than either of the phase velocities of the material constituents within layers. This case was 

termed regular; it introduces the regular optimization scenario similar to the one in statics. Otherwise, there will 

be a collision of characteristics, and unobscured transmission of disturbances across the material interfaces will 

no longer be possible. For this case, termed irregular, additional information is needed to specify the system’s 

performance after collision of characteristics; this performance may include singularities, e.g.,  the strong 

discontinuities in solutions. We arrive at the second (irregular) scenario of focusing; this scenario requires 

additional physics and for this reason has no analogue in statics. Particularly, a relatively arbitrary layout of DM 

is possible for a regular case, and generally impossible for irregular. We also introduce the third, intermediate 

scenario, in which the characteristics do not collide, but are asymptotically attracted to some selected wave 

routes that represent limit cycles. This performance is demonstrated by the wave motion through a rectangular 

checkerboard material structure in 1D space + time, within certain ranges of the structural parameters.  

 

In the absence of a general existence theorem, all three scenarios of optimization may participate in the optimal 

material assembly. 

 

Interestingly, they demonstrate substantial differences in the energy performance. In the regular case, the wave 

energy is preserved in average, with no energy exchange with environment. In irregular case, energy is 

irreversibly lost in a DM as result of dynamic collisions. An intermediate range allows for an intensive energy 

exchange with the environment, particularly, the energy accumulation in the travelling waves.   

 

All these scenarios of optimization will be illustrated by examples.  
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In recent years, inspired by the notions of phonons in solid-state science and solitons in mathematical 

physics, the authors have advocated a new approach to the formulation and interpretation of dynamical 

solutions of the surface acoustic wave type (so-called SAWs) of which Rayleigh waves are the most 

celebrated case. This approach can be schematically summarized thus. On one side we have the common 

wavelike view of the phenomenon: a guided propagation essentially parallel to the upper limiting plane, a 

polarization in the sagittal plane SΠ or orthogonally to it (so-called shear horizontal or SH waves), an 

exponential decrease of amplitude with depth in the substrate, and a typical wave length λ .  On the other 

side we have a quasi-particle moving essentially along the wave propagation direction and characterized  by 

a  “mass”, a velocity or linear momentum, and an energy , these three entities forming a “point mechanics”. 

Familiar systems of point mechanics are those of Newton and Lorentz-Poincaré-Einstein but other systems 

may be constructed that defy usual understanding (see Maugin and Christov, [1]). The main question is how 

these three entities are defined from the wavelike motion if we know the analytical wave solution? This 

contribution answers this question and provides a sufficient number of treated examples of SAW modes and 

application to the transmission-reflection problem with potential application to NDE techniques. In a few 

words:  both visions serve to describe a propagating information via their well founded duality. The wave 

modelling favours a description of the propagation of information in terms of wave number and frequency. 

As to the particle model, it pertains to a diffusion of information through certain interactions in terms of 

momentum and energy. 

 

The main idea supporting the present exploration in a rather unknown landscape is the due exploitation of so-

called conservation laws that are canonically associated with field equations by the mediation of the 

celebrated Noether’s theorem (1918) – probably the most powerful theorem of mathematical physics 

established in the 20
th
 century. It is salient to recall that in a well constructed field theory one distinguishes 

between “field equations” (in the present case, the propagation equation in physical space complemented by 

boundary conditions on the limiting surface and radiation conditions at infinity) and “conservation laws” that 

result from a group-theoretic argument, here invariance under time and material-space translations (time and 

space parametrizations) according to Noethers’s theorem ([2], Chapter 4). This symmetry argument here 

provides local statements of the conservation of energy and so-called canonical momentum. This strictly 

applies to a variational formulation of the theory. But we know how to obtain these laws in the presence of 

dissipation and/or material inhomogeneities by mimicking the so-called Noether’s identity, once we have at 

hand the local balance laws ([2], Chapter 5).  Field equations and conservation laws do not serve the same 

purpose. The former provides the looked for solution –  here SAWs –  analytically or numerically. The latter 

are currently used, just like in a post-processing strategy, to formulate a criterion of progress (e.g., in fracture 

or in the progress of phase transformation fronts [2]). Here they are exploited to formulate the relevant point-

mechanics of the associated quasi-particle. The procedure consists in substituting for the known SAW 

solution in the local conservation laws and integrating the latter over an element of volume that is most 
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representative of the studied wave motion – usually one wavelength in propagation space – and effecting the 

required identification. This procedure is more or less simple depending on the type of SAW considered. 

 

     More precisely, the general strategy first is presented in the framework of pure homogenous elasticity. 

Then the results of a series of worked out examples are given which concern surface waves both of the 

Rayleigh type (polarization in the sagittal plane) and SH type, the latter when the chosen configuration 

allows for its existence (case of Bleustein-Gulyaev surface waves in piezoelectrics or surface waves in the 

Murdoch-Gurtin theory of a substrate covered with a material surface endowed with both energy and inertia). 

This series of examples is sufficient to exhibit a large and rich variety of behaviours of associated quasi-

particles. For instance, in the standard Rayleigh case – which is a rather complicated one – the obtained 

quasi-particle motion is Newtonian and conservative but with a “mass” of which the definition involves all 

parameters of the analytical wave solution [3]. Perturbation by a surface energy causes  perturbation in both 

“mass” and velocity of the associated quasi-particle but its  motion remains well defined and Newtonian. In 

the case of so-called “leaky” Rayleigh waves (occurring when an inviscid fluid is superimposed on top of the 

substrate) a direct approach yields a pathological situation with a complex “mass” corresponding to the 

unphysical re-emission in the fluid.  For a piezoelectric coupling that guarantees the existence of SH 

Bleustein-Gulyaev waves the situation is much simpler with a strict Newtonian-Leibnizian behaviour of the 

quasi-particle [4]. Perturbation of the last case by a quartic nonlinear elasticity of the substrate – thus causing 

the appearance of the third harmonic in the wavelike solution –  yields a perturbed “mass” but still a strict 

Newtonian-Leibnizian mechanical behaviour of the quasi-particle [5]. But a perturbation by a weak viscosity 

granted to the elastic substrate yields a two-dimensional particle motion (with a small component in the 

depth direction) while the “mass” evolves in time due to the present dissipation [6]. The case of dispersive 

Murdoch surface waves – much simpler than the case of Love waves –  is particularly enlightening as it 

shows well the relative influence of substrate and material-surface properties.  In all studied cases the “mass” 

is always proportional to the square of the amplitude of the wavelike solution.  

 

     Finally, the presented formalism is exploited in the exemplary problem of transmission-reflection. This is 

examined for an interface (discontinuity) of vanishing thickness – including the possibility of delamination – 

, a sandwiched slab of a different elasticity, and a layered slab made of a series of piled up elastic layers of 

various properties.  The quasi-particle properties are related to the energy conservation of the wavelike 

picture expressed in terms of reflection and transmission coefficients. 
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Abstract: We analyze a Laplacian operator that is defined in an infinite spatially homogeneous
body with self-similar harmonic interparticle interactions. Self-similarity implies that the interparticle
interactions are scale invariant long-range non-local interactions. In this contribution we generalize
our model for the one dimensional case [1, 2] to n = 1, 2, 3, .. dimensions of the physical space. This
Laplacian takes in its continuous representation the form of a nonlocal convolution with a power law
kernel (fractional integral). In one dimension n = 1 the Laplacian takes the form of fractional integrals
[2].

The point of departure for the approach is our recent one-dimensional linear chain model which gives
rise to a fractal dispersion relation in the form of a Weierstrass-Mandelbrot function [1]. First of all
let us give a definition of the notion “self-similar”. We call a function Λ(h) self-similar with respect
to the variable h when the relation

Λ(Nh) = N δΛ(h) (1)

is fulfilled for a prescribed fixed scaling factor N > 1 and valid vor any h > 0. We assume real valued
scaling exponents δ ∈ R. Generally a self-similar function which fulfills (1) for a prescribed N can be
written in the form

Λ(h) =
∞∑

s=−∞
N−δsf(N sh) (2)

which converges for suffficiently good functions f [1]. We define a continuum limit by putting N = 1+ζ
(0 < ζ << 1). In the limiting case of infinitesimally small (positive) ζ, the quantity τ = hN s becomes
a continuous variable and we can write (2) assymptotically as an integral

Λ(h) =
∞∑

s=−∞
N−δsf(N sh) ≈ hδ

ζ

∫ ∞

0

f(τ)

τ δ+1
dτ (3)

taking the form of a continuous power function Λ(h) = const hδ in h. A self-similar Laplacian operator
can then be defined in the above sense by choosing as function f a second difference
f(h) = u(x + h) + u(x − h) − 2u(x) [1]

∆(N,δ,h)u(x) =
∞∑

s=−∞
N−δs {u(x + h) + u(x − h) − 2u(x)} (4)
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This series converges in the range 0 < δ < 2 for “good” fields u(x), (i.e. limx→±∞ u(x) → 0) [1] and
as a consequence of self-similarity (4) is necessarily a non-local and self-adjoint negative semi-definite
operator (i.e. its eigenvalues are all ≤ 0). As a further symmetry property we observe that operator
(4) is isotropic (i.e. in 1D an even function with respect to h). Performing the continuum limit defined
by (3) a continuous representation of the self-similar Laplacian operator is obtained as

∆(δ,h,ζ)u(x) =
hδ

ζ

∫ ∞

0

(u(x − τ) + u(x + τ) − 2u(x))

τ1+δ
dτ , 0 < δ < 2 (5)

and in the interval of convergence of this integral is 0 < δ < 2. To generalize (5) we define a Laplacian
of the n-dimensional-space acting on a scalar field variable u(x) as

∆n,δu(x) =
hδ

ζ

∫
(u(x + r) + u(x − r) − 2u(x))

rδ+1
dnr , n − 1 < δ < n + 1 (6)

where we integrate over the entire n = 1, 2, 3-dimensional infinite space. For n = 1 (6) coincides
with (5). Integral (6) exists for sufficiently smooth, at infinity vanishing fields u(x) in the interval
n − 1 < δ < 2 + n − 1 = n + 1 where n = 1, 2, 3, .. ∈ N.

In this presentation we determine the dispersion relation and n-dimensional infinite-space Green’s
function of the Laplacian (6), i.e. the inverse of the self-similar Laplacian operator in explicit form.
We further consider some examples of wave propagation in the linear elastic infinite n-dimensional
medium where the material functions are of self-similar (scaling invariant) and of isotropic symmetry.
This case is the simplest example for an elastic self-similar medium of n = 1, 2, 3 dimensions.

The present approach gives us the starting point to formulate any physical problem which is defined
in terms of field equations such as for instance by Maxwell equations in electro-dynamics or by Lamé
equations in elasticity for self-similar symmetry of the medium. When we say “self-similarity of the
medium” we mean the material functions are self-similar in the above defined sense. The notion of
the “self-similar medium” is here completely analogous as the notion of the “transversely isotropic
medium” in linear elasticity, i.e. characterizing the symmetry of the material functions. A conse-
quence of this notion of self-similarity is inevitably the non-locality of the constitutive relations in
such a medium where the material functions appear as self-similar power function kernels. In a mi-
croscopic picture the self-similar constitutive behavior as defined here, can be regarded as self-similar
interparticle interactions where the “particles” are the “material points” which build up the medium.
As the physical nature of the fields is not important for the approach introduced, the presented model
is completely general and has therefore the potential of general applicability to interdisciplinary “self-
similar” field problems.
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Risers used in the oil and gas industry, hydraulic hoses for power transmission, but also blood vessels
are all examples of flexible piping systems. Common for these examples is that they are all subjected
to time varying loading in their practical setting. Risers are suffering from self-induced vibrations
especially when gas is flowing through, while the hydraulic hoses can act as structural components
guiding waves between different parts of a hydraulic power transmission system [1]. In both cases
vibrations can lead to fatigue failure of the pipes themselves or of the equipment to which they are
attached. In the perhaps more controversial example of regarding blood vessels as flexible pipes
studies indicate a correlation between different cardiovascular diseases and the interaction between
the pulsating blood stream and blood vessels [2]. In all three examples a common factor is also that
fluid-structure interaction plays a significant role. A complete model must therefore incorporate a
model of the structure and the fluid and how they interact. Though, in what follows, the dynamical
behaviour of the structural part is studied.

Flexible pipes, like those mentioned above, typically consist of a sequence of somewhat straight and
curved sections. A straight section can be regarded as a cylinder while a section of relatively constant
curvature can be regarded as parts of a torus. An immediate modelling strategy could then be to
model each section as a beam by enforcing certain assumptions on the kinematic of the pipe cross
section. But consequently the cross section would then only be able to deform due to poisson coupling.
This might be too restrictive when modelling flexible pipes. In order to incorporate a higher order
of flexibility each section could instead be modelled as a shell, and thereby only enforce kinematic
assumptions to the pipe wall and not the whole cross section.

Each point in a cylindrical shell refers to an orthogonal coordinate system oriented in the principal
directions, i.e. in the circumferential directions and the axial direction. Free waves will consist of
standing waves in the circumference, having a period of 2π, while in the axial direction they can be
either travelling or trapped. Expressed in wave numbers the circumferential waves will have purely
imaginary integral wave numbers while the axial wave numbers can be either purely imaginary or
complex valued. In this situation the relation between the frequency and the axial wave number
can be studied independently for each individual circumferential wave number. This manifests itself
through the very fundamental modes of the cylinder where bending, longitudinal, and torsional modes
are completely uncoupled [3]. Now, if the cylinder shell is bend it turns into a section of a toroidal
shell. In the toroidal shell the axial waves related to each circumferential wave number will interact as
they propagate. This can be imagined by considering the fundamental vibrations modes of the torus
where in-plane bending couples with the longitudinal mode and out-off-plane bending couples with
torsion. Thus, the axial mode related to each circumferential mode cannot be studied independently
as in the cylinder.

In this project, the complications of coupling modes have been evaded through different approaches.
The wave propagation through the toroidal shell has been studied by means of, respectively, the
Galerkin method and by perturbation methods. The results of these analytical approaches have been
compared to classical curved beam theory. In both analytical methods the solution is found in the
frequency domain and is assumed to be separable in the two directions of the shell coordinates. In the
axial direction the solution is assumed to take the usual complex exponential form. By enforcing this
the governing equations of the toroidal shell reduce to three coupled ordinary differential equations
with periodic coefficients. In these differential equations the periodic coefficients appears as functions
of the circumferential coordinate.
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In the Galerkin method, a truncated Fourier series has been enforced as the circumferential mode and
the corresponding axial response as function of the frequency has been determined. At one hand a
Fourier series can simply be regarded as an arbitrary periodic function. On the other hand the Fourier
series can be seen as a sum of the individual circumferential modes known from the cylinder shell.
Now, in the toroidal shell where the individual modes from the cylinder are coupling, a natural ansatz
is therefore to study the response to such sum of circumferential modes. As the number of terms in
the truncated Fourier series is increased similarly the complexity and computation time also increases.
Therefore, the Fourier series only includes the first few low-order terms and thus the solution obtained
through this approach is only able to predict the very fundamental and low-frequency modes.

The governing equations of the toroidal shell have also been seized to an asymptotic analysis, but
only with partial success. Due to the complexity of the governing equations of the toroidal shell a full
asymptotic picture of the dispersion relations has still not been found. It has though been possible to
obtain asymptotic estimates of cut-on frequencies which is valuable in it self, but also in validation of
the Galerkin solution.

Future work includes validation of the analytic solutions by means of, respectively, wave finite element
analysis and classical curved beam theory. Besides the purpose of validating the analytical shell
models the validity range of the classical curved beam theory can then also be assessed. As long
as the analytical shell solutions agree with the wave finite element model and with the beam theory
within its range of certain validity it is expectable that the shell model will be valid even beyond the
beam theory, because shell theory is a higher order theory.
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New manufacturing techniques have enabled the mass production of engineered materials whereby the
microstructure consists of a sparse, periodic lattice. Such materials have an excellent mechanical per-
formance compared to their weight, but their engineered microstructure also lends itself to optimised
mechanical behaviour under dynamic loading conditions. For instance, the material’s microstructure
can be manipulated such that wave filters emerge, whereby certain frequencies can propagate through
the material and certain other frequencies cannot.

For the modelling of such materials with lattice microstructures, various techniques can be used.
For instance, detailed simulations can be carried out whereby every strut of the lattice structure
is modelled with a separate beam element, using for instance Euler-Bernoulli or Timoshenko beam
theory. However, a more efficient approach is to replace such a detailed microscopic material model
with an enriched continuum model. In particular, the effects of the microstructure can be captured
efficiently and effectively by equipping the continuum equations of elasticity with an appropriate set
of higher-order spatial derivatives, so that a gradient elasticity formulation is obtained.

In order to link the additional constitutive coefficients of the gradient elasticity model to the geometric
and mechanical properties of the lattice, in this paper we use continulatisation techniques whereby a
discrete model of beams is translated into a homogeneous (though not necessarily isotropic) continuum
formulation. With an appropriate mix of Taylor series expansions and Padé approximations, the
higher-order coefficients of the gradient elasticity macroscale model can be typically linked to the
length of the beams in the lattice.

We explore a range of modelling options. For the microscale modelling, we use Euler-Bernoulli beam
theory. For the discretisation of the inertia contribution, either lumped mass or consistent mass is used.
The use of Padé approximations is usually required to ensure stability of the gradient elasticity model.
Stability requirements are formulated to help perform these operations. The resulting continuum
formulation is equipped with a range of strain gradient and inertia gradient terms. The dispersive
properties of the model are then tested to check for the occurrence of wave filters and how these can
be controlled.
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Introduction. Mechanical modeling of experiments using the axial transmission technique deals
with considering a model describing vibro-acoustic interactions of a solid waveguide (which represents
the cortical bone) coupled with two fluid media (which represents soft tissues such as skin or marrow).
Bone is a strongly heterogeneous material with complex structures whose the architecture displays an
organization at different hierarchical levels: the macrostructure (bone), the microstructure (harvesian
system, osteon, interstitial tissues) and the other structures at lower scales. It has been shown that
the microstructure of the bone has strong influence on characteristics of ultrasonic wave propagation.
However, for modeling the guided ultrasonic waves propagating in cortical long bones, most of works
has considered cortical bone as an equivalent linear isotropic or anisotropic elastic medium.
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Figure 1: Poroelastic bone plate immersed in fluids

In this work, an anisotropic poroelastic model was employed to represent the cortical bone in order
to be able to describe the link between the bone microstructure (bone matrix properties as well
as porosity) and the time-domain response of ultrasonic wave propagation. For this purpose, we
have developed a semi-analytical finite element method for simulating the transient ultrasonic waves
propagating in cortical bones considered as an anisotropic poroelastic medium. The bone is assumed
to be homogeneous in its axial direction but may be heterogeneous in the radial direction (Fig. 1)

Time-domain analysis using semi-analytical/spectral finite element approach. The prob-
lem presented deals with solving a system of linear partial differential equations in which the co-
efficients are homogeneous in the longitudinal direction given by x1-axis. Here, a hybrid analyti-
cal/finite element has been developped as follows: (i) the system of equations is firstly transformed
into frequency-wavenumber domain by using a Fourier transform with respect to x1 combined with a
Laplace transform with respect to t; as a consequence, a one-dimensional system of PDEs with respect
to x1 can be established; (ii) in the frequency-wavenumber domain, the wave equations in two fluid

domains (Ω1
f and Ωf

2) are analytically solved providing impedance boundary conditions for the solid

domain; (iii) the weak and finite element formulations are then established in the domain (Ωb) only;
(iv) the space-time solution is finally obtained by performing the inverse Fourier transform (using
FFT technique) and the inverse Laplace transform (using the CQM technique) [1]. The formulation
has been validated by comparing with conventional FE method [2]
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Results and discussions. Using the proposed approach, a parametric study has been carried out in
order to consider the influence of the bone’s porosity on the behavior of guided ultrasonic wave in long
bones. We assume that the solid phase of the bone material is transversely isotropic elastic medium
which has cm

11 = 28.7 GPa, cm
12 = 9.1 GPa, cm

22 = 23.6 GPa, cm
66 = 7.25 GPa. The elastic stiffness

(C) and Biot’s coefficients (α, M) are then determined by using a homogenization procedure. The
fluid phase in bone and both fluid domains are assumed to be water with the mass density ρf = 1000
kg.m−3 and the bulk modulus Kf = 2.25 GPa. The thickness of the bone plate is h = 4 mm. An
impulse with a central frequency f0 = 1 MHz is emitted at (xs

1, x
s
2) = (0, 2) mm.

Figure 2: Snapshot of fluid pressures in the fluids and pore fluid pressure in the bone (φ = 5%)

The influence of the bone’s porosity on the FAS velocity (denoted by VF ) has been studied. For this
purpose, the material properties of bone matrix (ρm,Cm) were fixed. The poroelastic properties were
then determined by using the micromechanics analysis. In order to determine VF , the p1-signal is

captured at 14 sensors located in the upper fluid domain (Ωf
1) (Fig.1). Then VF is evaluated by the

slope of the linear regression of the first zero-crossing locations over 14 sensors (Fig. 3 (left)).
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Figure 3: Pressure signals captured at sensors (left) and variation of VF versus bone’s porosity

Figure 3 (right) shows the variation of the FAS velocity with respect to φ when considering a bone plate
with thickness h = 4 mm. One may observe that the VF versus φ relation is practically linear and VF

decreases when the porosity φ is higher. The VF versus φ relation obtained by using equivalent elastic
media is also presented. For a given porosity φ, an equivalent elastic model, which has a mass density
taken as the mixture density and an elasticity tensor taken as the undrained elasticity tensor, has
also been analyzed. For lower porosities, the VF obtained by using the poroelastic model are slightly
different from the ones obtained using the elastic model. The difference becomes more significant for
higher porosity because the fluid-solid movement is more important and would be not negligible.
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Rods and beams are used in numerous applications, where they act as structural members carrying
either static or dynamic loads. In cases of dynamic loads, the rod may act as a transmission path for
vibration, which typically is regarded as a negative effect. It is therefore reasonable to pursue a better
understanding of the dynamics of rods and to gain knowledge on how certain preferred properties can
be achieved.

An approach to predict and assess the impact of irregularity on the dynamics of elastic rods is pre-
sented. Irregularity of rods can, for instance, take the form of corrugated cross sectional area or spatial
curvature. In mathematical terms this, in general, results in sets of governing differential equations
having varying coefficients, contrary to rods with constant cross section and curvature that is gov-
erned by differential equations with constant coefficients. Furthermore, a nonzero curvature introduces
couplings between the governing equations which as well complicate matters. The challenges of cor-
rugated cross section and varying curvature of rods can be handled using the finite element method
to determine eigenfrequencies, eigenmodes and response to forced excitation. However, it does not
immediately facilitate the understanding of the role of the system parameters in the final results.
Meanwhile, the perturbation technique The WKB approximation is well known for providing simple
structured approximations to solutions of differential equations having slowly varying coefficients. In
essence, the WKB method typically results in a solution in the exponential form having a wave num-
ber and amplitude with a slow evolution. The WKB approximation has traditionally been developed
and applied to problems in celestial and, in particular, quantum mechanics [1, 2]. Also the WKB
approximation has been applied in fluid mechanics to problems of sound transmission through curved
ducts with flow, [3]. The present study demonstrates how the WKB methodology can be applied
to problems of wave propagation in rods. Furthermore, the competitiveness of the method is tested
against the finite element method.

The study treats two distinct problems, namely, straight beams having corrugated cross section and
curved beams. In the former case, the WKB approximation has been applied by [4] to determine the
wave number and amplitude modulation of Bernoulli-Euler and Timoshenko beams. For a corrugated
cantilever Bernoulli-Euler beam, formulae are derived for eigenfrequencies and eigenmodes in [4].
These results are subjected to a study of the robustness and accuracy of WKB solutions to beam
problems, with improvements being suggested.

The use of the WKB method is carried on to wave propagation in rods with spatial curvature. Dy-
namics of rods with spatial curvature are in the most general case governed by six coupled differential
equations with varying coefficients. Additionally, by looking into forcing problems the WKB method
can be used to build Green’s matrix for a spatial rod which constitute a fast and reliable way of
predicting both forced and free vibrations. This can potentially be an efficient tool in the design
phase of machines where curved rods provides structural functionality, but at the same time acts as a
waveguide when isolation would have been preferred instead. It is expected that the use of the WKB
approximation is beneficial in the sense that the role of system parameters will be better understood
as opposed to an analysis conducted with the use of purely numerical tools.
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email: norris@rutgers.edu, a.shuvalov@i2m.u-bordeaux1.fr, kucenkoa@rambler.ru

Keywords: homogenization, dynamic effective medium

While methods exist for computing effective moduli of periodic composites under quasistatic condi-
tions, the more challenging task is to define frequency-dependent dynamic effective constants capable
of describing finite frequency effects such as phononic band gaps. A general effective medium theory for
such systems has been developed by Willis [1, 2, 3], but the theory does not provide expressions for the
effective moduli at finite frequency, or a direct algorithm for their evaluation. This paper provides an
analytical resolution of this problem, illustrated for the particular case of a periodic acoustic medium.
We show that the homogenized equations are of Willis form with semi-explicit finite frequency effective
parameters expressed in terms of plane wave expansions (PWE) of the original acoustic parameters.

The equations governing waves in a fluid with density ρ(x) and bulk modulus K(x) (x ∈ Rd d =1, 2
or 3), are normally phrased in terms of acoustic pressure p(x, t) and particle displacement u(x, t) as

ρu,tt = −∇p, p = −K div u. (1)

It is more convenient to use different field variables: particle velocity v(x, t) = u,t, dilatation d(x, t) =
div u and a potential φ(x, t) defined such that p = −φ,t. Equations (1) are then replaced by the system

d,t = divv,

(
v
d

)
=

(
µ 0
0 B

)(
∇φ
φ,t

)
, (2)

the first of which can be considered as an equilibrium condition, and the second as constitutive relations
defined by the alternate acoustic parameters µ ≡ ρ−1, B ≡ K−1. Equations (2) are in a form suitable
for homogenization using the general procedure of [4]. Here we summarize the application of the
results derived for elasticity in [4] to the special but different case of acoustics.

We consider an acoustic medium with T-periodic parameters: h
(
x+

∑d
j=1 njaj

)
= h(x), nj ∈ Z,

for h = ρ, K, and vectors aj ∈ Rd define the unit cell T. Fourier coefficients ĥ(g) are defined by

h(x) =
∑

g∈Γ ĥ(g)eig·x where Γ = {g : g =
∑d

j=1 2πnjbj , nj ∈ Z}, is the set of reciprocal vectors and

aj · bk = δjk (hats indicate Fourier domain quantities). The governing equations, (1) or (2), admit

Bloch wave solutions of the form h(x, t) = h(x)ei(k·x−ωt) where h(x) is the unique periodic part of
h(x, t) = u,v, p, d, φ. We present equations for the effective field variables

heff(x, t) = 〈h〉 ei(k·x−ωt) for h = u,v, p, d, φ, (3)

where 〈h〉 (= ĥ(0)) denotes the average of h(x) over the single cell. Our results can be summarized as

follows. Introduce the infinite vectors µ̂µµ, B̂ and matrices D̂, Ĝ in the Fourier domain with components

µ̂[g] = µ̂(g), B̂[g] = B̂(g), D̂i[g,g′] = (gi + ki)δgg′ ,

Ĝ[g,g′] =
(
(k + g) · (k + g′) µ̂(g − g′) − ω2B̂(g − g′)

)−1
,

}
g, g′ ∈ Γ\0, (4)

and define the scalar Beff(ω,k), the vector Seff(ω,k) and the tensor µµµeff(ω,k),

Beff = 〈K−1〉 + ω2B̂+ĜB̂, Seff
i = −ωµ̂µµ+D̂iĜB̂, µeff

ij = 〈ρ−1〉δij − µ̂µµ+D̂iĜD̂jµ̂µµ. (5)
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The homogenized dynamic equations are then

qeff
,t = divveff,

(
veff

qeff

)
=

(
µµµeff Seff

−Seff+
Beff

)(
∇φeff

φeff
,t

)
. (6)

Several comments are in order: Equations (6) allow us to define effective constants for any frequency-
wavenumber combination, including, but not restricted to, values of {ω,k} on the Bloch wave branches.
For real-valued frequency ω and wave-vector k it can be shown that µµµeff and Beff are real. The effective
equations (6) and the dispersion relation for solutions of the assumed form (3),

k · µµµeffk − ωk · (Seff + Seff∗
) − ω2Beff = 0. (7)

are consistent with the Bloch wave dispersion relations, and yield the correct relations between the
spatially averaged field variables, suitable for solving boundary value problems [4].
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Figure 1: (a) Bloch wave dispersion branches and (b) effective parameters on the second branch, for a
1D layered acoustic medium with µ1 = B1 = 1, µ2 = B2 = 0.1, of volume fractions f1 = 1 − f2 = 0.3

Apart from the appearance of tensorial quantities that are normally scalar, the concept of dynamic
effective parameters is novel and requires a different frame of mind. General properties of the PWE
effective parameters, derived in [4], include the possibility of singular values. One important example is
the limiting case of a uniform medium. Consider, for instance the 1D case of ρ, K constant. Equation
(7) with constant values of µeff, Beff and Seff = 0 gives us ω2 = (K/ρ)k2, whereas the Floquet branches
are ω2

n = (K/ρ)(k + 2πn)2 for k ∈ [−π, π], n = 0, 1, ... The talk will elaborate on this aspect and on
the dynamic acoustic properties using a variety of examples, such as the 1D case in Figure 1.
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The essence of the present method consists of a combination of two wave capturing characteristics: a new
pushfoward-pullback integration formula that is designed to filter post-shock oscillations and the central differ-
ence method that is known to intrinsically filter out front-shock oscillations. A judicious combination of these
two wave capturing characteristics is shown to reduce substantially both spurious front-shock and post-shock
oscillations.

Suppose that the integration step size is ∆t whereas the critical step sizes for two heterogeneous domains are
∆tc1 and ∆tc2, respectively. In order to minimize spurious oscillations as ∆t < ∆tc1 and ∆t < ∆tc2, we advance
initially to ∆tc1 and ∆tc2 by a suitable pushforward explicit integrators. The states at time t = (n + 1)∆t is then
obtained by pullback interpolations.

It turns out that the preceding pushforward-pullback combination integrations mainly filter pre-shock front
oscillations. As it is well known that typical tracing of waves by an explicit integrators triggers post-wave front
oscillations, we construct an average filter by combining the pushforward-pullback combination integrator and
the conventional explicit integrator. Thus, the present algorithm employs three steps: a) explicit integration by a
suitable explicit integration; b) a pushforward-pullback integration; and, c) an averaging of the two integration
outcome.

An example of the performance of the present algorithm is illustrated in Figure 1 as compared with the central
difference method and the Runge-Kutta method. Observe that both the central difference method and the
Runge-Kutta method trigger unwanted spurious oscillations as shown in the center of Figure 1. It should be
mentioned that all existing explicit time integration method this deleterious spurious oscillations. In contrast
the the same problem is integrated with the same step size, as shown on the right in Figure 1, the present method
as shown on the right side eliminate all but small cusps on the corners of the discontinuities.
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Figure 1: One-dimensional multi-box wave wave propagation problem. Left figure: extrapolation of the dis-
placements (w1(x, t),w2(x, t)) at steps ((n + c1),(n + c2)) followed by interpolations at the next step (n+1)
for heterogeneous problems. Center figure: post-shock spurious oscillations by the Runge-Kutta fourth-order
method and the central difference method when integrated with ∆t = 0.5∆x/c; Right figure: Responses to
box waves by the new method with ∆t = 0.5∆x/c and θ = 0.5.
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Figure 2: Response to box wave for a bar consisting of three heterogeneous materials.

The second example is a consisting of three material properties as shown in Figure 2, for which a box wave
is applied at the left end with the right end fixed. A significantly better response by the new method is clearly
seen as compared with the central difference method.

For details of the present algorithm and its performance, the reader is referred to [1] and will be presented
at the Colloquium.

Acknowledgement
The present study has been partially supported by WCU (World Class University) Program through the Korea
Science and Engineering Foundation funded by the Ministry of Education, Science and Technology, Republic
of Korea (Grant Number R31-2008-000-10045-0). The third author has been partially supported by the Brain
Korea 21 Program (KAIST Valufacture Institute of Mechanical Engineering), Ministry of Education, Science
and Technology.

References

[1] K. C. Park, S. J. Lim, H. Huh. A method for computation of discontinuous wave propagation in hetero-
geneous solids: basic algorithm description and application to one-dimensional problems. International
Journal for Numerical Methods in Engineering, Published online: 8 FEB 2012. DOI: 10.1002/nme.4285

EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

104



HYPERELASTIC CLOAKING THEORY

William J. Parnell1, Andrew N. Norris2

1 School of Mathematics, Alan Turing Building, University of Manchester, Manchester, UK;
e-mail: William.Parnell@manchester.ac.uk

2 Mechanical and Aerospace Engineering, Rutgers University, Piscataway, NJ 08854-8058, USA;
e-mail: norris@rutgers.edu

Keywords: Hyperelastic, cloaking, pre-stress, elastodynamics

The principle underlying cloaking theory is the transformation method whereby the material properties
of the cloak are defined by a (singular) spatial transformation. For elastodynamics, Milton et al.
[1] concluded that the transformed materials are described by the Willis model, involving coupling
between stress and velocity, in addition to anisotropic inertia. For a restricted transformation, Brun
et al. [2] found transformed material properties with isotropic inertia and elastic behavior of Cosserat
type, i.e. with properties that are the same as those of “standard” linear elasticity except that the
moduli do not satisfy the minor symmetry, i.e. C∗

jikl 6= C∗
ijkl.

The transformed elastodynamic constitutive parameters may be characterized through their depen-
dence on (i) the transformation (mapping function) and (ii) on the relation between the displacement
fields in the two descriptions, represented by matrices: F, the deformation gradient matrix, and A,
respectively. It was shown [3] that requiring stress to be symmetric implies A = F and that the
material must be of Willis form, as in [1]. Setting A = I, on the other hand, results in Cosserat
materials with non-symmetric stress but isotropic density, as found by Brun et al. [2]. In this pa-
per we consider a class of materials displaying non-symmetric stress of the type necessary to achieve
elastodynamic cloaking by taking advantage of the similarities between transformation elasticity and
small-on-large motion in the presence of finite pre-strain [4]. Such an approach has already been
shown to be successful; by using an incompressible neo-Hookean material with a radially symmetric
cylindrical pre-strain, Parnell [5] showed that the resulting small-on-large equations are identically
those required for cloaking of the horizontally polarized shear (SH) wave motion. Here we consider
the more general elastic transformation problem, including but not limited to SH motion.

It is useful to define the Navier-Lamé operator for linear elasticity and time-harmonic waves of angular
frequency ω as

L(a,C, ρ, ω)v =
∂

∂ai

(
Cijkℓ

∂vℓ

∂ak

)
+ ρω2vj

where Cijkℓ and ρ refer to the elastic modulus tensor and density respectively. Thus transformation
elasticity takes the Navier-Lamé equations L(X,C0, ρ0, ω)u0 = 0 for some homogeneous material
properties C0

ijkℓ and ρ0 and applies the mapping x = χ0(X) so that the governing equations become

L(x,C∗, ρ∗, ω)u∗ = 0 where u∗(x) = u0(X(x)), ρ∗ = ρ0/J0, C
∗
ijkℓ = F 0

imF 0
knC0

mjnℓ/J0 and F0 =

Gradχ0, J0 = DetF0. Thus for cloaking, a singular mapping χ0 can be chosen such that the origin is
mapped to a finite radius say a whilst some radius further out, say B remains fixed. Thus the cloak
is the region a ≤ r ≤ B. However we see that in general C∗

ijkℓ 6= C∗
ijℓk. Thus the “cloak” is required

to be an inhomogeneous Cosserat material.

Whereas the above refers to an “imaginary” transformation that allows the determination of the cloak
properties, let us now consider an actual physical deformation (pre-stress) of a hyperelastic material
with initial density ρr and constitutive behaviour governed by strain energy function (SEF) W. As
in [5] this is taken to be a pre-stress such that an initially small cavity with radius A is inflated to
a cavity with radius a > A. The outer cloak radius is B. The deformation gradient is F = Gradχ
where x = χ(X) and the small-on-large equations governing wave propagation through this pre-stress
material are L(x,M, ρ, ω)u = 0, where ρ = ρr/J and Mijkℓ = (1/J)FimFkn∂2W/∂Fjm∂Fℓn with
J = DetF. Ensuring the transformed and small-on-large equations are equivalent requires u = u∗,
ρ = ρ∗ and Mijkℓ = C∗

ijkℓ. It transpires that this gives a restriction on the SEF which for isotropic
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materials is required to be the so-called semi-linear SEF: W = (λr/2)(tr(U−I))2 +µrtr(U−I)2 where
U2 = FTF and λr, µr are the isotropic elastic moduli of the hyperelastic material. The deformation
r = r(R) can be determined explicitly but the invariance places the restriction that r1/R1 < 2.

Defining the shear wavenumber via K2
s = ω2ρr/µr, in Figure 1 we illustrate reduction in SH wave

scattering from a cylindrical region by using a cloak generated by pre-stress, where a source is located at
KsR0 = 8π, Θ0 = 0. Top left image shows the scattered field from a cavity of (scaled) radius Ksa = 2π
whereas the top right is with the presence of the cloak. In particular note that the scattered field is far
more isotropic than without the cloak. The plots underneath show the scattering cross-section (SCS)
without (solid) and with (dashed) a cloak (left) and percentage reduction in SCS (right). Although
the effectiveness of the cloak is reduced by the restriction r1 < 2R1, we see a significant reduction in
scattering by employing the cloak. Similar effects are seen in the in-plane compressional-shear (P/SV)
elastodynamic problem.
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Figure 1: Top: Illustrating the scattered SH wave field of a cavity without (left) and with (right) a
cloak. Bottom: Scattering cross-section (left) without (solid) and with (dashed) a cloak and percentage
reduction in SCS (right) plotted against scaled cavity radius Ksa where Ks is the shear wavenumber.
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Recently [1] a one-dimensional model has been developed to account for structural re-arrangement in
bi-atomic lattices. Mathematically the model is described by the coupled nonlinear equations,

ρUtt − E Uxx = S(cos(u) − 1)x, (1)

µutt − κuxx = (SUx − p) sin(u). (2)

written for the macro-displacement U and relative micro-displacement u for the pair of atoms with
masses m1, m2,

U =
m1 U1 + m2U2

m1 + m2
, u =

U1 − U2

a

Nonlinearity is introduced via the trigonometric functions that ensures description of translational
symmetry in the crystalline lattice.

Further study of the solutions of Eq. (1), (2) revealed an important and decisive role of the phase
velocity V for the existence of one or another kind of moving localized defect accounted for the solution
for u [2]. Namely, either bell-shaped

u = ± arccos

(
(ρV 2 − E)Ux

S
+ 1

)
,

or kink-shaped wave u

u = ± 2π ∓ arccos

(
(ρV 2 − E)Ux

S
+ 1

)
, for θ ≤ 0,

u = ± arccos

(
(ρV 2 − E)Ux

S
+ 1

)
, for θ > 0,

may accompany the bell-shaped wave Ux,

Ux =
A

Q cosh(k θ) + 1
, or Ux = − A

Q cosh(k θ) − 1
.

where θ = x − V t − x11, x11 is a constant phase shift, other coefficients may be found in [2].
This is not typical for celebrated nonlinear wave equations whose shapes of solution are defined by
the structure of equation. In particular, presence of nonlinear and dispersion terms is needed for a
bell-shaped wave, however, these term do nor support a kink.

A natural question arises will we achieve suitable velocity in a more general solution than a single
traveling wave one? The control of the phase velocity may be studied numerically but using particular
exact solutions to confirm numerical results. An influence of the amplitude and velocity of the initial
conditions for Ux and u will be considered first. It will be found that those of the input for v are
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the most important when a bell-shaped wave u is generated, while the initial position and velocity
of u affects the waves evolution stronger when the kink evolution is studied. Simultaneous existence
of the bell-shaped and kink-shaped waves u will be found as a result of suitable choice of initial
conditions. Our results show that this bell-shaped wave may arise or decay in a crystalline lattice due
to propagation of a macro-strain bell-shaped wave Ux. Variations in the amplitude of Ux, in its initial
velocity or in its initial position relatively to the input of u provide appearance or absence of the
bell-shaped wave u before the kink wave u. One can note that resulting velocities of the bell-shaped
and kink-shaped waves in numerical solutions agree well with those of the exact single traveling wave
solutions.

A stability of these nonlinear wave solutions will be also studied.

Some preliminary results were obtained in Refs.[3, 4].
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We study efficiency and accuracy of the two-point paraxial travel time T (R′, S′), see formula [1]. The
formula was designed for the approximate determination of travel time between two points, S′ and R′,
arbitrarily chosen in a paraxial vicinity of two points, S and R, on a reference ray Ω, between which the
travel time T (R, S) is known. The reference ray can be traced in an arbitrary, laterally varying, layered
medium of arbitrary anisotropy. The formula offers an efficient, although approximate, replacement of
more time consuming procedures (like, e.g., two-point ray tracing) to determine travel time between
S′ and R′ from knowledge of quantities obtained by ray tracing and dynamic ray tracing between
points S and R on the reference ray Ω.

The interest in the two-point travel time computations has a long history. It has been studied already
by Hamilton in the early nineteenth century [2]. Hamilton derived equations for geodesics, which
correspond to ray equations. He then also studied the travel time between two points, and called
it the characteristic function. For more details see the contribution of Klimeš [3]. Klimeš extended
Hamilton’s treatment of the characteristic function by providing equations of geodesic deviations
(in seismic literature known as dynamic ray tracing equations). He derived relations between the
6 × 6 ray propagator matrix of dynamic ray tracing in Cartesian coordinates and the second-order
spatial derivatives of the Hamilton’s characteristic function. These derivatives play a basic role in the
computation of the two-point paraxial travel time T (R′, S′). In [1], instead of the 6×6 ray propagator
matrix of dynamic ray tracing in Cartesian coordinates, the 4×4 ray propagator matrix in ray-centered
coordinates was used for the evaluation of the two-point paraxial travel time T (R′, S′).

The two-point paraxial travel time formula, see [1], has the following form:

T (R′, S′) = T (R, S) + [xi(R
′) − xi(R)]pi(R) − [xi(S

′) − xi(S)]pi(S)

+ 1
2 [xi(R

′) − xi(R)][fR
Mi(P

(q)
2 Q

(q)−1
2 )MNfR

Nj + (piηj + pjηi − pipjUkηk)R][xj(R
′) − xj(R)]

+ 1
2 [xi(S

′) − xi(S)][fS
Mi(Q

(q)−1
2 Q

(q)
1 )MNfS

Nj − (piηj + pjηi − pipjUkηk)S ][xj(S
′) − xj(S)]

− [xi(S
′) − xi(S)]fS

Mi(Q
(q)−1
2 )MNfR

Nj [xj(R
′) − xj(R)] . (1)

The uppercase indices M, N take values 1 and 2, and the lowercase indices i, j take values 1,2 and 3.
The Einstein summation convention is used. In (1), xi(S) and xi(R) are Cartesian coordinates of two
points, S and R, on the reference ray Ω; xi(S

′) and xi(R
′) are Cartesian coordinates of points S′ and R′

situated in close vicinities of S and R, respectively. The symbols Q
(q)
1 = Q

(q)
1 (R, S), Q

(q)
2 = Q

(q)
2 (R, S),

and P
(q)
2 = P

(q)
2 (R, S) denote 2 × 2 submatrices of the 4 × 4 ray propagator matrix in ray-centred

coordinates calculated along Ω from S to R by dynamic ray tracing. The symbols fS
Mi and fR

Mi denote
Cartesian components of vectors perpendicular to Ω at S and R, respectively. For their determination,
a vectorial, ordinary differential equation must be solved along Ω. The symbols pi, Ui and ηi denote
Cartesian components of slowness vector, ray-velocity vector and the vector dp(τ)/dτ , respectively,
determined during tracing the reference ray Ω. The symbol τ denotes travel time along Ω. The indices
S and R indicate if the corresponding quantities are considered at point S or R. For more details
see [1].

Once the reference ray and the above-mentioned quantities calculated along it are available, two-point
paraxial traveltimes can be evaluated easily. Let us note that the formula cannot work properly if

EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

109



model parameters variation is too strong or if the matrix Q
(q)
2 is singular at point R. The latter

problem occurs when there is a caustic at the point R.

As an illustration of the accuracy of the two-point paraxial traveltime formula, we present the result of
a test performed in a 2D model of a vertically inhomogeneous isotropic medium, with P-wave velocity
of 2 km/s at z = 0 km and constant vertical gradient of 0.7 s−1. The model is covered by a rectangular
grid with 0.1 km spacing in both x and z directions. Point S′ coincides in this test with S, and both
have coordinates (0,0), see Figure 1. Point R on the reference ray Ω (white curve) has coordinate
(1,1). Points R′ are distributed at grid points covering the whole model. Figure 1 shows differences
of paraxial and exact travel times. We can see that highly accurate results are obtained around the
ray Ω between S and R and behind R, and around the wavefront passing through the point R.
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Figure 1: Differences of two-point P-wave paraxial and exact travel times computed from S (0,0) to
grid points of the grid covering an isotropic model with velocity 2 km/s at z = 0 km and linear vertical
gradient of 0.7 s−1. The two-point paraxial travel times are computed from T (R, S) and dynamic ray
tracing quantities obtained along the reference ray (white curve) between S and R (1,1).

More details about the two-point paraxial travel time formula and tests of its efficiency on more general
models will be given at the presentation.
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The propagation of waves in structures is of interest for many applications. Examples include the 

transmission of structure-borne sound, shock response, damage detection, statistical energy analysis, 

acoustic radiation and non-destructive testing. Understanding wave propagation also provides the 

background necessary for the utilisation and a better implementation of many techniques, e.g. knowledge of 

high frequency wave propagation is fundamental in ultrasonic and acoustic emission techniques. Wave 

approaches are particularly useful at higher frequencies, when the size and computational cost of finite 

element (FE) analysis of the structure as a whole becomes impractically large. In this paper, the WFE 

method [1] is used to examine the wave behaviour of a truss-cored structure. The method is based on post-

processing the conventional FE model of a small segment of the structure using periodic structure theory. 

This leads to an eigenproblem whose solution yields the full details of the wave characteristics of the whole 

structure. 

  

The method is applied to examine the wave behaviour of truss-cored panels, typically used in train 

constructions. An example of such a structure is shown in Figure 1. Kohrs and Petersson [2, 3] investigated 

free wave propagation in these structures, using a two dimensional discrete Fourier transform to extract the 

wavenumber characteristics of train floor panels. They also considered a train floor panel with finite width, 

and analysed the behaviour of the waveguide in the y-direction using the WFE method [3]. Below, the same 

structure is considered but using a two-dimensional formulation of the WFE method [4]. 

 

Figure 1: Schematic of a train floor panel with 45
o
 

core truss-elements. 

 

 

 

 

 

 

 

 

 
 

Figure 2: Cell of the train floor panel  

shown in Figure 1. 

 

A cell, Figure 2., can be meshed using any finite element package. Here, the cell is meshed using SHELL63 

elements of ANSYS. The dimensions and material properties of the structure are all given in [2]. The length 

of the cell in the y-direction is somewhat arbitrary, but must be neither too short to avoid numerical round-

off errors nor too large to avoid substantial FE discretisation errors [5]. The upper and lower panels are 

meshed using 10 elements each. The diagonal panels are meshed using 7 elements each. Hence, the cell has 

68 nodes with 408 DOFs. 
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Figure 3 and Figure 4 show the wavenumber in the x- and the y-directions as functions of frequency. Only 

real-valued solutions are shown. Propagation in the x-direction is clearly influenced by the geometric 

periodicity of the floor panels (Figure 3). At very low frequency there are 3 wavemodes, which correspond 

broadly to global bending, shear and axial waves in the panel, analogous to waves in an orthotropic plate. 

At higher frequencies the situation becomes much more complicated, other wavemodes cut-on and periodic 

structure effects are apparent, such as stop- and pass-bands for the various wave modes. 

 

 
Figure 3: Dispersion characteristics of train floor 

panels in the x-direction. 

 

 
Figure 4: Dispersion characteristics of train floor 

panels in the y-direction. 

 
On the other hand, wave propagation in the y-direction, Figure 4, shows no periodic structure effects. This 

is due to the homogeneity of the structure in the y-direction. At low frequencies, three types of wavemodes 

are distinct and these are global vibrations of the whole floor panel. The three waves correspond to axial, 

flexural and shear vibration of the whole floor panel. At higher frequencies, more complicated wavemodes 

cut-on and complicated dispersion phenomena are evident, especially veering. 
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Wave propagation in fluid-saturated porous media presents a classical but still extremely challenging
area of research due the complexity of the problem studied and its obvious applicability in geosciences
and material engineering. In the paper we apply the homogenization approach which is based on
asymptotic analysis of periodic structure w.r.t. the scale of heterogeneities. We consider the Biot
compressible model relevant to the mesoscale characterized by the periodic representative cell Y ∈ Rn,
n = 2, 3. The dynamic problem formulation involving displacements u , seepage velocity w and
pressure p is constituted by the momentum equation (1)1, by the Darcy law (1)2, relating the total
fluid pressure to the seepage velocity, and by the fluid volume conservation (1)3,

−∇ · (IDǫ(u)) + ∇(αp) + ρü + ρf ẇ = f ,

ρf ü + ρwẇ + K−1w + ∇p = 0

α : ǫ(u̇) + divw +
1

µ
ṗ = 0 .

(1)

where ǫ(u) is the strain, ρf , ρw, rho are densities, K is the permeability and coefficients ID ,α, µ
determine the poroelasticity properties. In [4] we developed the homogenized model and derived ana-
lytical formulae for dispersion curves for laminated structures. In the present work we study influence
of the microstructure geometry and material anisotropy on the dispersion properties (polarization,
attenuation). For this we use finite element method employed to compute characteristic responses of
the microstructure and to evaluate the homogenized coefficients listed in (2), right.

Polarizations (ū , p̄) of plane waves with a given frequency ω propagating in the direction n satisfy

(
T(γ2) γ

ωb
γωbT a(γ2)

)
·
(

ū
p̄

)
=

(
0
0

)
, where

T(γ2) := M(iω) + γ2ID : n ⊗ n ,
b := (A − ρf iωK(iω)) · n ,
a(γ2) := Q + γ2iωK(iω) : n ⊗ n ,

(2)

where 1/γ is the phase velocity, K(iω) is the dynamic permeability and M(iω) = ρ̄Y I − iω(ρf )2K(iω)
represents the homogenized mass tensor. For any ω > 0 there are just two pressure (dilatation) waves
and n − 1 shear waves with “b-orthogonal” (complex) polarizations in Cn, n = 2, 3.

Double porous medium. Many important materials like rocks, soils, bone tissue, etc. are char-
acterized by porosities at several scales, see [1, 2]. It is classical to treat them using homogenization
with the double porosity ansatz consisting in scaling the permeability, as explained below, cf. [5]. We

consider periodic microstructures generated by the unit representative cell Y = ]0, 1[3 which involves
two compartments, the matrix Ym and channels Yc, so that Ym ⊂ Y and Yc = Y \ Ym is such that
(Yc +e i)∪Yc is simply connected for any i = 1, . . . , n (e i is the directional unit vector aligned with the
i-th axis). All material parameters involved in (1) are defined piecewise in the dual porosity (matrix)
Ym and in the primary porosity Yc. There are strong fluctuations in permeability: K ε := K c(y) for
y ∈ Yc, however, K ε := ε2Km(y) for y ∈ Ym for a given scale parameter ε. Although the wave disper-
sion is studied using the homogenized model ultimately obtained by asymptotic analysis ε → 0 of (1),
i.e. the wave response is described by displacements and pressure like in (2), for the sake of simplicity
we can consider a rigid skeleton, reducing (1) to the 2nd and the 3rd equations: ρwẇ+K−1w+∇p = 0
and divw + 1

µ ṗ = 0. Recall that for a homogeneous isotropic medium (K = κI ), a harmonic plane
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wave p(x) = p̄ exp{ikn · x} satisfies −∇ · (iωκ−1 − ω2ρw)∇p + µ−1p = 0. For the double-porous
periodic structure, the pressure waves in the homogenized medium satisfy the macroscopic equation

−∇ · C(iω)∇p + [Q + ω2N (iω)]p = 0 , (3)

where Q =
∫
Y 1/µ and coefficients C and N are computed in terms of microstructural responses ψi, ψ̂

and π̂ given in (5), as follows

C = (Cij), Cij(iω) =

∫

Ym

[(iωK−1
c − ω2ρwI )ψi] ·ψj

N (iω) =

∫

Ym

[K−1
m ψ̂] · ψ̂ + iω

∫

Ym

µ−1|π̂|2 .

(4)

Two microscopic problems imposed in Yc and Ym must be solved; their solutions are defined in a weak
sense in Sobolev spaces of Y -periodic functions, as indicated by # (notation: H0#(div, Yc) = {v ∈
H#(div, Yc)|v · n = 0 on ∂Yc \ ∂Y }, H̃#(div, Ym) = {v ∈ H#(div, Ym)|

∫
Ym

divv = 0}, H1
0#(Ym) =

{v ∈ H1
#(Ym)|v = 0 on ∂Ym \ ∂Y }). The couples (ψi, πi) ∈ H0#(div, Yc) × H1

#(Yc) and (ψ̂, π̂) ∈
H̃#(div, Ym) × H1

0#(Ym) satisfy

∫

Yc

[
(K−1

c + iωρwI )ψj + ∇yπ
j
]
· v =

i

ω

∫

Yc

ej · v ,

∫

Yc

∇y ·ψjq = 0 , i = 1, . . . , n ,

∫

Ym

(
K−1

m ψ̂ + ∇yπ̂
)

· v̂ = 0 ,

∫

Ym

(
∇y · ψ̂ +

iω

µ
π̂

)
q̂ =

i

ω

∫

Ym

1

µ
q̂

(5)

for all (v , q) ∈ L2(Yc) × L2(Yc) and (v̂ , q̂) ∈ L2(Ym) × L2(Ym), respectively.

In the paper we present classification of the wave propagation modes for the model (3)-(5) extended
by deformation of the elastic skeleton, see [5] for the quasistatic case. Using a numerical model based
on the mixed finite elements, cf. [3], we explore sensitivity of the dispersion properties w.r.t. the
microstructure geometry and topology.

Acknowledgement

The research is supported by the European Regional Development Fund (ERDF), project “NTIS –
New Technologies for Information Society”, European Centre of Excellence, CZ.1.05/1.1.00/02.0090,
and in part by the Czech Scientific Foundation project GACR P101/12/2315.

References

[1] J. Berryman, H. Wang. Elastic wave propagation and attenuation in a double-porosity dual-
permeability medium. Rock Mechanics and Mining Sciences, 37: 63–78, 2000.

[2] M. Brajanovski, B. Gurevich, M. Schoenberg. A model of p-wave attenuation and dispersion in a
porous medium permeated by aligned fractures. Geophysics J. Int., 163: 372–384, 2005.

[3] F. Brezzi, M. Fortin. Mixed and hybrid finite element methods. Springer, 1991.

[4] A. Mielke, E. Rohan. Homogenization of elastic waves in fluid-saturated porous media using the
Biot model, Submitted (2012).

[5] E. Rohan, S. Naili, R. Cimrman, T. Lemaire. Multiscale modelling of a fluid saturated
medium with double porosity: relevance to the compact bone. Jour. Mech. Phys. Solids,
doi:10.1016/j.jmps.2012.01.013:In Press, 2012.

EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

114



 

NUMERICAL MODELLING OF DYNAMIC TESTING OF MATERIALS 

USING THE SPLIT HOPKINSON PRESSURE BAR DEVICE 
 

Timo Saksala 
 

 

Department of Mechanics and Design, Tampere University of Technology, Tampere, Finland;  

e-mail: timo.saksala@tut.fi 

 

Keywords: split Hopkinson pressure bar, FEM, material model, wave shaping 

 
This paper considers numerical modelling of dynamic materials testing using the Split Hopkinson Pressure 

Bar (SHPB) device. A simulation method with predictive modelling capabilities of the SHPB response can 

be a valuable tool in designing the particular material tests. Moreover, it can be used in calibration of a 

specific material model under dynamic loading. As an example of such, Saksala et al. [1] calibrated a 

viscoplastic-damage model for rock via simulation of the dynamic Brazilian disc test using the SHPB. This 

same test is chosen in this paper as an example of a particular test to be modelled.  

 

The method developed herein includes a two-phase simulation model for the SHPB device, as illustrated in 

Figure 1. In Phase 1, the generation of the incident wave, σi(t), due to the impact of the striker bar to the 

incident bar is simulated using explicit dynamics based FEM. Different wave shaping techniques, such as 

the external pulse shaper made of copper or rubber placed between the impacting bars or a striker with 

variable impedance, i.e. varying cross section [2], can be simulated. The main purpose of these techniques 

is to control the loading rate of the incident pulse in order to prevent the failure of the specimen until the 

stress equilibrium has been reached. In Phase 2, the incident stress pulse simulated in Phase 1 is applied on 

the incident node of the simplified model consisting only of two nodes representing the bars of the SHPB 

device and the FE mesh of the specimen (see Figure 1). Viscous dashpots are attached to the nodes so as to 

simulate long bars. The contact interaction between these nodes and the discretised disc is modelled by 

imposing impenetrability constraints between the incident and transmitted nodes and disc mesh nodes. The 

equations of motion of the nodes representing the SHPB device are added to the discretised equations of 

motion of the specimen mesh. The equations of motion for the whole system coupled with the contact 

constraints are solved by explicit time stepping.  

 
 

Figure 1: Two-phase numerical modelling of material testing with the SHPB device. 

Transmitted node Incident node 

Fi = 2Abσi(t) 

Dashpots: 

C = cbρAb 
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an axisymmetric model 

Phase 2: Simulation 

of the specimen 

response with a 

simplified model 

EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

115



 

The material of the specimen is described as an elastic-viscoplastic damaging continuum, see [1] for further 

details. Thereby, the rate effects are naturally accommodated. A simulation example using the present 

method is shown in Figure 2.         
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Figure 2: Simulation results: Incident waves with different pulse shaping techniques (a), experimental (b) 

and simulated (c) axial splitting failure mode of a Brazilian disc made of Kuru granite, measured and 

simulated tensile stresses of the disc (d), and forces P1 and P2 at contact surfaces of the disc and bar ends.   

 
The effect of different pulse shaping techniques (PS = pulse shaper, SB = striker bar, VI = variable 

impedance, E-P = elasto-plastic, E = elastic) with v0 = 10 m/s are illustrated in Figure 2a. Figures 2b-e show 

experimental and simulated results for a dynamic Brazilian disc test on Kuru granite. The experimental 

axial splitting failure mode (illustrated via tensile damage pattern) in Figure 2b is correctly predicted in 

Figure 2c. The striker velocity was 11.5 m/s in this test and a rubber pulse shaper was used. The 

experimental tensile stresses in Figure 2d are based on the elasticity solution of a diametrically loaded disc 

and, therefore, they are valid only up to the failure of the disc. The tensile stress is calculated according to: 

LDPT πσ /2 1= where L and D are the thickness and diameter (16 and 40.5 mm) of the disc, respectively. 

The discrepancy in the postpeak region of the results in Figure 2d is due to the fact that the diametrical 

splitting mode releases the tensile stresses much faster than the compressive stresses (the simulated stresses 

are recorded in a patch of six CST elements at the center of the disc). The simulated and experimental 

contact forces P1 and P2, shown in Figure 2e, are in fairly good agreement. Finally, it is noted that strong 

strain rate hardening effect is attested for Kuru granite in the experiments as the dynamic indirect tensile 

stress is about 34 MPa while the quasistatic tensile stress for Kuru granite is about 13 MPa.  
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A Mindlin-type mathematical model of microstructured solids with nonlinearities in the macro- and
microscale is used to study propagation of 1D solitary waves in such media (see [1] and references
therein). The results can be applied for the stress analysis as well as for the nondestructive testing of
materials. The model is derived by starting from the Lagrangian

L = K − W, K =
1

2
ρu2

t +
1

2
Iϕ2

t , W = W (ux, ϕ, ϕx). (1)

Here K is the kinetic energy, W – potential energy, ϕ – microdeformation, u – displacement, ρ – density
and I – microinertia, subindex denotes partial derivative with respect to space coordinate x or time t.
The Euler-Lagrange equations are used for deriving governing equations based on the free energy

W =
A

2
u2

x +
B

2
ϕ2 +

C

2
ϕ2

x + Dϕux +
N

6
u3

x +
M

6
ϕ3

x. (2)

Here A, B, C, D are material parameters responsible for the linear part of the model and N, M are
responsible for the nonlinearity in the macro- and microscale, respectively [1, 2]. Equations of motion
based on free energy (2) can be written as

ρutt = Dϕx + Auxx + Nuxuxx,

Iϕtt = Cϕxx + Mϕxϕxx − Bϕ − Dux.
(3)

For further analysis dimensionless variables U , X and T and parameters b, µ, δ, β, γ and λ are intro-
duced (see [2] for details). By making use of the slaving principle (see [1] for details) it is possible to
derive a single equation in terms of displacement U from the (3):

UTT − bUXX − µ

2

(
U2

X

)
X

= δ

(
βUTT − γUXX +

λ
√

δ

2
U2

XX

)

XX

. (4)

Equation (4) can be considered as an approximation of the full system of equations (3) and its wave
operator at the right hand side demonstrates explicitly the influence of the microstructure on the wave
propagation.

The main goals of the study are:
(i) to simulate the propagation of solitary waves in Mindlin-type microstructured solids over a wide
range of material parameters involved in free energy expression (2);
(ii) to analyse the influence of nonlinear and microstructural properties of the media on the character
of the solution, i.e., on the character of the wave propagation.

Equations (3) and (4) are solved numerically under localised initial and periodic boundary conditions

U(X, 0) = U0sech
2B0X, U(X, T ) = U(X + 2kmπ, T ), 0 ≤ X < 2kπ, m = 1, 2, . . . . (5)

Here 2kπ is the length of the space period. For the numerical integration the pseudospectral method
and for the analysis of the time-space behaviour of numerical solutions the discrete spectral analysis
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are applied (see [3, 4] and references therein for details). In most cases the speed c of the initial pulse
U(X, 0) is taken to be zero, which results in UT (X, 0) = 0 and can be interpreted as starting from the
peak of the interaction of two waves propagating in opposite directions. For the full system of equations
(3) two more initial conditions are needed for the microdeformation. We assume that at T = 0 the
microdeformation and the corresponding velocity are zero, i.e., ϕ(X, 0) = 0 and ϕT (X, 0) = 0.

A typical solution of the full system of equations (3) is presented in Fig. 1. One can see that besides
two solitary waves a certain radiation is formed from the initial localised pulse. Our analysis has
demonstrated that in many cases these two solitary waves can travel at nearly constant speeds and
amplitudes over relatively long time intervals notwithstanding to the influence of the emerged radiation
[4]. In other words, in a certain domain of material parameters the behaviour of the solution is very
close to that of solitons.

T
im

e 
→

Space →

Figure 1: Formation, propagation and interaction of two solitary waves from a localised initial pulse
in case of the the full system of equations (3).

During the presentation we will demonstrate how do the values of (i) (linear) parameters B and C,
purely related to the properties of the microstructure (see eq. (2)); (ii) (linear) parameter D, related to
the interaction between macro - and microstructural properties; and (iii) parameters M and N , related
to nonlinear properties of the micro - as well as macrostructure, influence the wave propagation.
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Resonant ultrasound spectroscopy  (RUS) is a technique for investigation of elastic properties of solids based 

on the inversion of natural frequencies of free elastic vibrations of a small simply shaped specimen. The 

method can, in principle, provide the full elastic tensor of the sample from a single measurement, which is 

considerable advantage e.g. in the characterization of low symmetry single crystals.  

 

Authors have modified the standard RUS experimental setup replacing the piezo-crystal transducers by 

pulse-laser as the source of ultrasonic vibration and scanning laser interferometer as the receiver, which 

brought the following improvements: 
 

1) There is not any mechanical coupling between the specimen and transducers, which improves 

resonance quality and measurement reproducibility. 

2) The measurement is more appropriate to carry out in temperature and vacuum chambers. 

3) The scanning laser interferometer provides information about eigenmode shapes, which enable 

mode identification and thus considerably improve the inversion calculation. 

4) We can observe the temperature evolution of one individual mode, which allows evaluation of 

elastic constants and their temperature derivatives with the same relative accuracy. 

5) Reliable measurement of  quality of resonances, attenuations, and evaluation of internal friction 

coefficients    
  

Above improvements of the RUS method ([1-3] in details) enable to evaluate elasticity and internal friction 

of layered materials, thin films on substrates, FGM (functionally graded material), and polycrystalline 

materials, e.g. [4-6].  An overview of the use of RUS methods for the problems of material research is 

presented. 
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For characterization of novel materials such as ferroics, FGMs and other functional materials, a variety of 

ultrasonic methods have been developed during the past decades, covering the all possible sample 

geometries: bulks, layered structures and thin films. A great effort is usually devoted to experimental 

arrangements and the instrumentation, including various modifications of the acoustic microscopy, resonant 

ultrasound spectroscopy, laser-based ultrasound, etc. Nevertheless, the precise evaluation of elastic 

properties of studied solids from experimentally obtained acoustic data sets (phase velocities, resonant 

frequencies, etc.) is still a substantial problem. Each experimental arrangement itself enables the evaluation 

of all independent elastic coefficients, but the sensitivity to the individual sought parameters differs from 

method to method. Thus, it seems to be a good idea to combine data from different measurements (e.g. 

pulse-echo and resonant ultrasound spectroscopy). On this purpose, we need a tool for sensitivity analysis of 

each method as well as for their combinations. 

 

In this contribution, we describe the evaluation of elastic coefficients from resonant ultrasound spectroscopy 

(RUS) measurements. RUS method consists in the measurement of dynamical response of a free-standing  

sample, and an inverse procedure used for the determination of material parameters (elastic components or 

their combinations) from an optimal fit of corresponding computed and measured resonant frequencies.                                                                  

The frequency spectra are computed by the Ritz method with properly chosen functional basis (e.g. Legendre 

polynomials). The procedure is a multivariable nonlinear inverse problem, the solution of which represents 

the keystone problem of the RUS methods [1,2].  It was shown, that incorporation of  modal analysis, i.e.    

identification and following association of computed and measured resonance modes (based on 

experimentally obtained resonant modal shapes) significantly improves the minimization of the error 

function. The efficiency of the determination of the elastic coefficients by acoustic data inversion  is 

improved by deriving the analytical expression of the gradient and the Hessian of the error function. This 

modified RUS method was applied for quantitative analysis of strongly anisotropic crystals of intermetallics, 

layered (fine twinned) solids, weak elastic anisotropy of textured materials, functionally graded materials and 

thin films [3,4,5,6].  

 
This procedure may be adopted for other approaches based on wave propagation (bulk waves, surface 

acoustic waves (SAW), and guided waves, generally).  The direct problem in all mentioned cases can be also 

solved by the Ritz method with suitable constrains (free surfaces of the sample for RUS, infinite 

homogeneous medium for bulk waves, one infinite free surface for SAW). This approach enables a unified 

representation of all acoustic methods via the resonant frequencies, and, consequently, a formulation of a 

joint objective function for a combination of two or more of them. 

 

As an example, we will show results from application of RUS and SAW  for  evaluation of carbon layers 

deposited on Si wafers. Nanocrystalline diamond coatings (NCD) prepared under different conditions (FAST 

and SLOW growing) and diamond like carbon coating (DLC) were analyzed. The obtained SAW dispersion 

curves (Figure 1) enable the determination of both the elastic moduli and  the thickness of the layer. 
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Figure 1 : Dispersive curves of SAW, propagating  in carbon surface layer  

on Si substrate and evaluation of  material properties of the layers 

 (points  - experimental values,  solid lines- best-fit calculation ). 
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The phenomenon of dispersion is the reason why waves with different wavelengths travel at different 

speeds in the same material. This phenomenon appears in cylindrical rods when the radius of the rod is a lot 

larger than the wavelength of the wave propagated in the rod. The magnitude of the effect depends on the 

Poisson's ratio value of the material. This effect needs to be taken into account in several cases, for 

example, in the high strain-rate testing with a Hopkinson bar apparatus. The strain pulses travelling in the 

incident and transmitter bars suffer this type of dispersion, and results of better quality are obtained if a 

correction, based on dispersion theory (e.g the classical Pochhammer-Chree analytical solution), is 

performed. 

 

A study has been conducted on the ability of the EUROPLEXUS code to capture wave dispersion 

in cylindrical rods with circular cross-section. EUROPLEXUS is a fast transient dynamics explicit 

Finite Element code suitable for simulating wave propagation in continuous media. A new tool has 

been developed to calculate the dispersion curves for “longitudinal” wave propagation modes from 

a numerical simulation. These curves relate phase-velocities and the corresponding wavelengths 

for each mode. Two different methodologies are implemented for the extraction of the desired data 

from a numerical solution and for the construction of the Pochhammer-Chree dispersion curves. 

 

 In both cases dynamic excitation in the axial direction is applied at the near end of a semi-infinite 

rod. The history of the load is different for each methodology. In the first methodology a set of 

numerical simulations is performed where the applied load is a harmonic excitation for each 

desired frequency. In the second methodology a single simulation is performed with a step 

function load. Although the second methodology needs a much more complicated post treatment 

procedure, the total time for the dispersion curves extraction is reduced significantly since with 

just one simulation the whole data set for all the frequencies under investigation is calculated. The 

identification of the contributing modes is based on Fourier transform techniques of the calculated 

rod response both in the time and in the space domains. The various steps and the whole procedure 

have been automated in the code in order to optimise the efficiency of each methodology.  

 

The dispersion curves resulting from a numerical simulation are compared with the analytical ones 

obtained by solving the corresponding Pochhammer-Chree equation. The two results are found to 

be in excellent agreement. The performance of the methodologies for various models, with respect 

to the type of finite elements employed (e.g. linear, parabolic etc.) and to the density of the mesh, 

is discussed and assessed. An investigation of the influence of Poisson’s ratio on the dispersion 

curves of a cylindrical rod with circular cross-section has also been carried out. 

 

 

EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

123



 

 
 

Figure 1: Dispersion curves (Analytical-Numerical) for a cylindrical rod. 
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Traditionally the evolution equations of generalized continuum mechanics (e.g. microdeformation or
Cosserat continua) are obtained by the analogy of elasticity and continuum mechanics. However,
evolution equations of internal variables are routinely generated by the Second Law of thermodynam-
ics. The long recognized problem is that the evolution equations of internal variables are ordinary
differential equations and on the other hand their character is dissipative and cannot model inertial
effects.

Recently it was recognized, that dual internal variables with a weakly nonlocal constitutive state space
can overcome the above mentioned problematic aspects [1]. Moreover, one can get a general structure
that incorporates generalized continua, like the theory of Mindlin [2] and gives an insight to other
phenomena, too [3, 4].

However, the evolution equations of dual internal variables in [1] were introduced without considering
the basic balances of continuum mechanics, and this fact was not considered in [2]. In this presentation
we will investigate the continuum mechanics on the material manifold with two weakly nonlocal
internal variables. The thermodynamic constraints are analysed with the help of Liu’s procedure.
The basic equations of dissipative, generalized Mindlin theory are derived and in the case of zero
entropy production the evolution equations of the usual Mindlin theory are recovered.

The basic balances of the continuum in a Piola-Kirchhoff framework are introduced as constraints of
the Second Law inequality. Those are the balances of momentum and energy:

̺0v̇
i − ∂jT

ij = 0,

̺0ė + ∂iq
i = 0,

where ρ0 is the density, T ij is the first Piola-Kirchhoff stress, e is the total energy and qi is its flux.
The Einstein summation rule for the repeated indices is applied. The relation of the deformation
gradient and the velocity field is fixed by the following constraint:

Ḟ i
j − ∂jv

i = 0. (1)

The evolution equations of the internal variables Ψij and βij are

Ψ̇ij = f ij , β̇ij = gij . (2)

Here the constitutive functions
T ij , qi, f ij , gij , s, J i (3)

are defined on the weakly nonlocal constitutive state space spanned by the following variables:

∂jv
i, F i

j , ∂kF
i
j , e, ∂ie, Ψ

ij , ∂kΨ
ij , ∂klΨ

ij , βij , ∂kβ
ij , ∂klβ

ij . (4)
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After some calculations ne can give a complete solution of all the Liu equations and obtain the entropy
production in the following form:

∂i

(
1

T

)(
qi + viT

ij
)

︸ ︷︷ ︸
q̂i

+
1

T

(
T ij + ̺T∂Fijs

)

︸ ︷︷ ︸
T̂ ij

∂ivj − (
∂Ψijs − ∂k∂∂kΨijs

)
︸ ︷︷ ︸

−Aij

̺f ij −

(
∂βijs − ∂k∂∂kβijs

)

︸ ︷︷ ︸
−Bij

̺gij ≥ 0

One can derive the evolution equations of the dissipative, heat conducting generalized continua by
introducing linear relationships between the constitutive thermodynamic fluxes q̂i, T̂ ij , f ij , gij and
their multipliers, the thermodynamic forces. The requirement of nonnegative entropy production
gives several restrictions on the coefficients. The different special cases, e.g. Mindlin theory, arise in
a straightforward manner.

Thermodynamics is long ago thought to be connected to stability of continua. The simplest possible
expectation is generic stability, the stability of homogeneous equilibrium. This requirement can be
investigated by dispersion relations [5]. In the presentation an analysis of generic stability and the
corresponding dispersion relations of the thermodynamic theory of generalized continua is shown.
Some examples to demonstrate the characteristic features of the generalization beyond Mindlin are
also given.
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Introduction 
 

The problem of possible replacement of an infinite solid by a solid of finite size with artificial boundary 

conditions, transparent for outgoing waves, is discussed. In contrast to other different analytical or semi-

analytical approaches, or to the implementation of perfectly matched layers [1], the non-reflecting boundary 

conditions in the frequency domain are suggested in the nonlocal modal formulations. The infinite part Ω  of 

solid or structure considered is assumed in the form of layered cylinder or layered slab (or layered strip for 

the case of 2-D geometry) as shown in Fig.1 (a). The layer materials can be elastic with transversal isotropy. 

The finite inner part of solid may have more complicated geometry and include inelastic processes. Omitting 

the cumbersome details let us describe the main steps below. 

 

Foundations 
 

The derivation is based on such fundamental property of 2-D and 3-D eigenwaves in elastic waveguide as 

their generalized orthogonality. These properties for waves in strips and cylinders with homogeneous 

boundary conditions (stress free, rigidly clamped, etc.) have been intensively studied since 70
th 

[2–4]. In the 

longitudinal direction these waves propagate as ( )tkzie ω−  and the “wavefront” in this direction is plane. 

Nevertheless, for the case of 3-D “wavefront” as for the eigenwaves in a slab with the propagation law 
( )( )krHe 2,1

n

tiω− , the orthogonality can be also proved [5, 6]. Physically, the orthogonality is based on 

symmetry of the respective energy functional and reciprocity [7, 8]. Mathematically, the orthogonality 

relations are expressed in the form of integral over the waveguide cross section – plane or in the form of 

cylindrical surface – for waves with any wavenumbers 2

s

2

m kk ≠  from the spectrum. For our purpose one 

corollary is very important: while representing the field as the series of eigenwaves with direct and opposite 

directions of propagation, the orthogonality relations permit one to obtain each magnitude as such integrals 

using the total field and the particular eigenwave.  

Thus, the idea is the following: to represent the field in the infinite part of solid in the form of series of 

outgoing and ingoing waves, and to require that the magnitude of parasitic waves must equal zero.     

 

Main results 
 

(1) A formulation of the non-reflecting boundary conditions as the set of integral relations including the 

unknown displacements and stresses on the cross section – a common boundary between the finite inner part 

and the infinite outer part of solid – and including the same field values for each particular wave with 

positive direction of propagation. The latter means the correct sign of group velocity for real wavenumber 

mk  and the correct sign of 
mkIm  providing wave decay for complex 

mk . This demand is equivalent to the 

absence of magnitude for the opposite wave ( ) 0kA m =− .  Note, that for each frequency we have a finite 

number of real 
mk  and the infinite set of complex 

mk . In the case of 3-D slab there is an additional 
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dependence ( ) 0k,nA m =−  of the order of angular harmonic θ↔θ nsinncos . In the case of cylinder the 

spectrum itself also depends on n : ( )nkk mm = .    

More details can be found in [9]. The dependence (or double dependence) on the infinite set is not very 

convenient for numerical implementation. In order to avoid this disadvantage the obtained integrals can be 

combined and transformed to special sums.  

(2) Another formulation of non-reflecting boundary conditions contains only three types of integrals. Instead 

of particular waves for each 
mk  we use Green’s functions. Two of them represent the response to the 

concentrated forces applied in the tangential directions with respect to the cross section. The third Green 

function is a response to the center of extension in the longitudinal direction.  For the case of strip or cylinder 

this is just a dipole (double forces) solution. Each concentrated is applied in the point of the cross section 

considered or of the parallel cross section situated at the arbitrary small distance. The illustration for 3-D slab 

is shown in Fig. 1 (b, c) for the cross section of virtual cylinder, complementary to the region Ω . 

It can be proved that the formulations (1) and (2) are equivalent. In the numerical procedure the formulation 

(2) can be used for each node of the grid dicretizing the cross section boundary. 

 

(a)  

 

 

 

(b)  

 (c)  

Figure 1: Geometry of solid and example of concentrated loads. 
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Experiments with plane shock waves in condensed matter present a way to study the properties of 

materials at extremely high strain rates with well-controllable loading conditions [1]. Information 

about the strain-rate and the temperature dependences of the yield stress of metals at high strain rates of 

shock-wave compression constitutes a basis for developing the models and governing relationships 

describing mechanical response of materials. In this paper, we present results of investigations of the 
response of pure (99.99%) polycrystalline aluminum to shock-wave loading over wide range of 

temperatures and strain rates.  

 In experiments, plane samples of different thickness were impacted by 0.5 mm thick copper flyer plates. 

The sample thickness was varied from 0.1 mm to 2 mm, the initial temperature was varied from 300 K up to 

932 K that is about 1 K below the aluminum melting point. The free surface velocity histories of the 

shocked samples were recorded with a VISAR [2] at nanosecond time resolution. Results of the 

measurements at 300 K and 932 K are shown in Fig. 1. The waveforms demonstrate formation of distinct 

elastic precursor waves the stress at front of which (the Hugoniot elastic limit – HEL) decreases with  the 

propagation distance and anomalously grows with temperature. Measurements of decay of the elastic 

precursor wave give us estimation of initial plastic strain rate as a function of stress [3, 4] which in turn may 

be treated in terms of the dislocation dynamics. 
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Figure 1. Velocity histories recorded at 300 K (a) and 932 K (b) after impact loading of aluminum samples 

of different thickness (shown, in mm, near the waveforms. The arrows show the waveform parameters uHEL 

and ∆upb used for estimating the yield and spall strengths, respectively. 
 

Assuming that the phonon drag of moving dislocations is the only mechanism responsible of the material 

dynamic strength allows determination of the density of the mobile dislocations at different strain rates and 

temperatures. The found values of the mobile dislocations densities, Fig. 2, suggest that in order to maintain 

high rate of the plastic deformation just behind the elastic precursor front the intense and very fast 
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dislocation multiplication is required. Noteworthy that the strain rate dependence of the density of mobile 

dislocations in aluminum stays almost unchanged between 300 K and the aluminum melting point, Fig.3. 
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Figure 2. Density of mobile dislocations in aluminum as a function of plastic strain rate. 

Figure 3. Density of mobile dislocations in aluminum as a function of temperature. 

 

The spall strength of aluminum (determined with the samples of 1 and 2-mm thickness) is found to be 

constant and equal ~ 1 GPa over the 300 - 800 K temperature range. Preheating of the aluminum samples 

above 800 K results in the gradual decline of the spall strength although at 1 K below the melting point the 

dynamic tensile strength of aluminum is still substantial, of about 0.6 GPa. Such variation of the spall 

strength of pure metals with temperature was found previously in silver and tin and seems to be typical for 

pure metals. 

To summarize, the presently obtained data confirm earlier observed anomalous thermal strengthening of fcc 

metals at high strain rates. The temperature effect on the flow stress at fixed strain rate is compatible with 

the strength mechanism based on dislocation deceleration by oncoming phonon flow. The performed 

analysis of the decay of elastic precursor wave with propagation distance allows estimating the densities of 

mobile dislocations at different plastic strain rates. The values of these densities imply that at the top of 

elastic precursor wave an intense and fast multiplication of dislocations takes place. The amount of 

dislocations required for maintaining a definite plastic strain rate stays virtually constant between 300 and 

932 K. 
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École Centrale Paris
CNRS
France
E-mail: shahramkhazaee@gmail.com
Page: 69

137



EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

Klimeš Luděk
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The Ångström Laboratory
Uppsala University
Box 534
SE-751 21
Uppsala
Sweden
E-mail: bengt.lundberg@angstrom.uu.se
Page: 67

Lurie Konstantin A.
Worcester Polytechnic Institute
Worcester
Massachusetts
USA
E-mail: klurie@wpi.edu
Page: 75, 87

139



EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

Machová Anna
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Budapest
Hungary
E-mail: n.mitsui@gmail.com
Page:

140



EUROMECH Colloquium 540 Prague, Czech Republic, 1–3 Oct 2012

Morsbøl Jonas
Department of Mechanical and Manufacturing Engineering
Aalborg University
Aalborg
Denmark
E-mail: jm@m-tech.aau.dk
Page: 93

Nguyen Duc C.D.
Department of Civil and Structural Engineering
University of Sheffield
United Kingdom
E-mail: cia07dn@sheffield.ac.uk
Page: 95

Nguyen Vu-Hieu
Université Paris-Est
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