

INTERNATIONAL YEAR OF LIGHT 2015

Academy of Sciences Institute of Photonics and Electronics v.v.i. Technology of Optical Fibers

www.ufe.cz

Outline

Intro	optical fibers
Technologies	MCVD preform preparation fiber drawing
Application	telecommunications fiber lasers (sensors)
Summary	
LABO	MCVD, fiber drawing, sol-gel, magnetron sputtering

Optical fibers

Optical fibers

Optical losses in optical fibers

- trasparency of 3 mm of window-glass \approx 2 km of optical fiber

Purity of materials

- 1. Per Analysis PA (99 99,5 %)
- 2. Semiconductor PP (99,9995 %)
- **3.** Ultra-pure FO Optipur / for trace analysis [ppb]

% - 10⁻²

- ppm 10⁻⁶ (parts per million)
- ppb 10⁻⁹ (parts per billion) : content of impurities acceptable in FO Optipur materials

Ultra-pure technologies - CVD!

Optical fiber preparation - technology

CVD - Chemical Vapor Deposition TECHNOLOGIES

Production and deposition of material in solid state from starting materials in gaseous state through a chemical reaction :

A(g) + B(g) = AB(s)

Preform preparation - MCVD

MCVD – (Modified) Chemical Vapor Deposition

Sequential sintering of thin glassy layers (of thickness 1-20 µm) onto inner wall of silica substrate resulting in bulk material – preform

high purity (~ 10¹ ppb) high precision (better than 1 %)

Microphoto of cross section of Tomography of the refractive-index produced preform profile of preform

High purity material due to FO-Optipur purity starting materials.

■ High quenching rate ranging from 10² to 10³ °C/s !

MCVD model

[A.B. Chynoweth, 1979, M. Shimizu, 1986, Y. Ohmori, 1983, S. H. Wemple, 1973, H. Wehr 1986, I. Kasik, 2005, K. Sanada, 1980, M. M. Karim 1994

MCVD model

Process parameters :

Variable :

- flow rates (Si, Ge, P, B, F, Ox ...)
- deposition temperature

Adjustable :

- temperature of starting materials (liquids)
- burner speed
- pressure
- rotation speed of the substrate tube
- substrate tube dimensions

[McChesney and Nagel, 1982, Wood, 1987, Kirchhof, 1986]

Other CVD technologies

Drawing of optical fiber from preforms

Diameter
80-1000 µm

Temperature 1800-2100°C

No textile

No thermo-insulation

Comparison

CVD (Chemical)

x PVD (Physical)

MCVD OVD etc. DC magnetron sputtering vacuum evaporation etc.

Layer thickness

1 – 10¹ μm 1 - 10¹ nm (however, both are reported as "thin layers")

Deposition rate

HIGH

LOW

Products

Layers, bulks

Layers only

Comparison conventional (M)CVD Χ **Starting materials** gaseous (g) or liquid (l) (s) solid state *melting point of oxides different* melting point comparable **Purification methods** distillation recrystallisation, remelting **Structure of products Graded** - profiles Homogeneous **Material purity** ppb (10⁻⁹, i.e. 10⁻⁷ mol%) 10⁻³ mol% (99,999%)

Application Fiber Telecommunication fibers (cables) environmental ... **Special fibers Non-linear** optics Fiber lasers, amplifiers ...

Telecommunications

SM - singlemode

200 km telecom line - test

Telecommunications

Vláknový zesilovač, laser

[C.J. Koester, E. Snitzer, Appl.Opt. (3) 1964, 1182], [S.B. Poole, J.Lightwave Tech. LT-4 (**1986**), 870], [E.Desurvire, J.Lightwave Tech. LT-7 (1987), 835]

Stimulated emission \rightarrow laser

Amplification by Stimulated Emission of Radiation

<u>ufe</u>

* H. Jelínková, Čs. Časopis pro fyziku, No. 4-5, 2011

Fiber lasers vers. solid state lasers (SSL)

High brightness + flexibility

fs pulses **5 PW** / 25x25 cm ELI Beamlines [10¹⁵ W/um²]

CW 40- 100 kW / 10 um² IPG Photonics [10¹⁵ W/ um²]

SPECIAL OPTICAL FIBERS for fiber lasers & amplifiers

Tm³⁺-Al₂O₃-SiO₂ fibers for Tm -doped fiber amplifier at 1470 nm

SPECIAL OPTICAL FIBERS for fiber lasers & amplifiers

Optical fiber sensors

In vivo detection of pH in small samples (droplets, cells)

OPTICAL FIBERS – Materials - UV

- silica fibers SUPRASIL n_{200 nm} = 1.55 [ceramoptec.de, OceanO, IPE ...]
- planar silica, crystalline CaF₂ (MgF₂) [edmundoptics, technicalglass ...]

OPTICAL FIBERS – Materials – VIS/NIR

Silica n₆₃₃ =1.457 & doped silica n₆₃₃ = 1.45-1.50 [corning, lucent, ocean_o, IPE] Glass (silicate - Simax, Vycor, Pyrex) n₅₈₈ =1.5-1.95 [schott, LiFaTec.de, IPE...] Plastic n₅₈₈ =1.5-1.6 [mitsubishi.com, luceat.it, unlimited-inc.com...]

OPTICAL FIBERS – Materials - IR

- fluoride glasses [univ-rennes1.fr ...] (up to ~4 μm)
- sapphire [CRYTUR] (up to ~4 μm)
- silver-halides $AgCl_xBr_{1-x}$ (up to 15 μ m)
- chalco glasses (Se, As₂S₃, As₂Se₃...) [oxford-electronics, orc.soton.ac.uk] (< 20 μm)
- refractive indexes 2-20um ~ 2 2.5 >> silicate glasses [LiFaTec]

SUMMARY

- Fiber technology : preparation of structures of high precision from materials of ultra-high purity (impurities in ppbs only). Difference between CVD and PVD.
- 2. Fiber preparation in two steps : preform preparation and fiber drawing. (M)CVD technique (preform) makes possible to prepare multilayered tailored structures of suitable level of purity.
- 3. Fibers conventional (passive) and special (active).
- 4. Research of optical fibers (CR) :

References

- **J. M. Senior** : Optical fiber communications Principle and practise, Pearson Education Limited, Harlow, England, 2009.
- A. Mendez, F.T. Morse : Specialty optical fibers handbook,

Elsevier Science & Technol, USA, 2006.

- J. Schrofel, K. Novotný : Optické vlnovody, SNTL, 1986
- **Saaleh,** Fotonika (1 4), Matfyzpres
- S. R. Nagel, J. B. McChesney, K. L. Walker: An overview of the MCVD process and performance, IEEE J. Quantum Electron. QE-18 (1982) 459-477

Peterka - Vláknové lasery

- Československý časopis pro fyziku 1/2010, 4-5/2010, 1/2011
- Jemná mechanika a optika 55 (2010)
- Sdělovací technika 3/2011

