Baloun, J., Nevrtalova, E., Kovacova, V., Hudzieczek, V., Cegan, R., Vyskot, B., Hobza, R.
JOURNAL OF PLANT PHYSIOLOGY
171:
1188-1196,
2014
Keywords:
Copper, Genes coding ROS-eliminating and Cu-transporting proteins, RNA-Seq database, Tissue-specific transcription
Abstract:
Silene vulgaris possesses ecotype-specific tolerance to high levels of copper in the soil. Although this was
reported a few decades ago, little is known about this trait on a molecular level. The aim of this study
was to analyze the transcription response to elevated copper concentrations in two S. vulgaris ecotypes
originating from copper-contrasting soil types – copper-tolerant Lubietova and copper-sensitive Stranska
skala. To reveal if plants are transcriptionally affected, we first analyzed the HMA7 gene, a known key
player in copper metabolism. Based on BAC library screening, we identified a BAC clone containing a
SvHMA7 sequence with all the structural properties specific for plant copper-transporting ATPases. The
functionality of the gene was tested using heterologous complementation in yeast mutants. Analyses of
SvHMA7 transcription patterns showed that both ecotypes studied up-regulated SvHMA7 transcription
after the copper treatment. Our data are supported by analysis of appropriate reference genes based on
RNA-Seq databases.
To identify genes specifically involved in copper response in the studied ecotypes, we analyzed transcription
profiles of genes coding Cu-transporting proteins and genes involved in the prevention of
copper-induced oxidative stress in both ecotypes. Our data show that three genes (APx, POD and COPT5)
differ in their transcription pattern between the ecotypes with constitutively increased transcription
in Lubietova. Taken together, we have identified transcription differences between metallifferous and
non-metalliferous ecotypes of S. vulgaris, and we have suggested candidate genes participating in metal
tolerance in this species.
Fulltext: contact IEB authors
IEB authors: Roman Hobza