INSTITUTE OF MATHEMATICS

Quantitative coarse embeddings of quasi-Banach spaces into a Hilbert space

Michal Kraus

む ACADEMY

THE

Preprint No. 70-2015
PRAHA 2015

QUANTITATIVE COARSE EMBEDDINGS OF QUASI-BANACH SPACES INTO A HILBERT SPACE

MICHAL KRAUS

Abstract

We study how well a quasi-Banach space can be coarsely embedded into a Hilbert space. Given any quasi-Banach space X which coarsely embeds into a Hilbert space, we compute its Hilbert space compression exponent. We also show that the Hilbert space compression exponent of X is equal to the supremum of the amounts of snowflakings of X which admit a bi-Lipschitz embedding into a Hilbert space.

1. Introduction

Let $\left(M, d_{M}\right)$ and $\left(N, d_{N}\right)$ be metric spaces and let $T: M \rightarrow N$ be a mapping. Then T is called a coarse embedding if there are nondecreasing functions $\rho_{1}, \rho_{2}:[0, \infty) \rightarrow[0, \infty)$ such that $\lim _{t \rightarrow \infty} \rho_{1}(t)=\infty$ and

$$
\rho_{1}\left(d_{M}(x, y)\right) \leq d_{N}(T(x), T(y)) \leq \rho_{2}\left(d_{M}(x, y)\right) \text { for all } x, y \in M
$$

We say that M coarsely embeds into N if there is a coarse embedding of M into N. The reader should be warned that what we call a coarse embedding is called a uniform embedding by some authors. We use the term coarse embedding because in the nonlinear geometry of Banach spaces the term uniform embedding is used for a uniformly continuous injective mapping whose inverse is also uniformly continuous.

Randrianarivony [Ra, Theorem 1] gave a characterization of those quasi-Banach spaces which coarsely embed into a Hilbert space. More precisely, she proved that a quasi-Banach space coarsely embeds into a Hilbert space if and only if it is linearly isomorphic to a subspace of $L_{0}(\mu)$ for some probability space $(\Omega, \mathcal{B}, \mu)\left(L_{0}(\mu)\right.$ is the space of all equivalence classes of real measurable functions on $(\Omega, \mathcal{B}, \mu)$ with the topology of convergence in probability). In this note, we are interested in how well a quasi-Banach space can be coarsely embedded into a Hilbert space. To measure it, we will use the following notion introduced by Guentner and Kaminker [GK, Definition 2.2].

Suppose again that $\left(M, d_{M}\right)$ and $\left(N, d_{N}\right)$ are metric spaces, with M unbounded. Recall that a mapping $T: M \rightarrow N$ is large-scale Lipschitz if there is $A>0$ and $B \geq 0$ such that $d_{N}(T(x), T(y)) \leq A d_{M}(x, y)+B$ for all $x, y \in M$. The compression exponent of M in N, denoted by $\alpha_{N}(M)$, is defined to be the supremum of all $\alpha \geq 0$ for which there is a large-scale Lipschitz mapping $T: M \rightarrow N$ and constants $C, t>0$ such that $d_{N}(T(x), T(y)) \geq C d_{M}(x, y)^{\alpha}$ if $d_{M}(x, y) \geq t$ (with the understanding that $\alpha_{N}(M)=0$ if there is no such α). It is clear that $\alpha_{N}(M) \leq 1$ (since M is unbounded) and that if $\alpha_{N}(M)>0$, then M coarsely embeds into N. The closer $\alpha_{N}(M)$ is to one, the "better" we can coarsely embed M into N. The Hilbert space compression exponent of M, denoted by $\alpha(M)$, is the supremum of all $\alpha \geq 0$ for which there is a Hilbert space H, a large-scale Lipschitz mapping $T: M \rightarrow H$ and constants $C, t>0$ such that $\|T(x)-T(y)\|_{H} \geq C d_{M}(x, y)^{\alpha}$ if $d_{M}(x, y) \geq t$.

[^0]Equivalently,

$$
\alpha(M)=\sup _{H \text { is a Hilbert space }} \alpha_{H}(M)
$$

Analogous remarks to those on $\alpha_{N}(M)$ apply to $\alpha(M)$ as well.
Our method of establishing a lower estimate for the Hilbert space compression exponent of a quasi-Banach space actually gives a stronger information. We will use one more type of parameter which will capture this additional information.

Let $\left(M, d_{M}\right)$ and $\left(N, d_{N}\right)$ be metric spaces. Recall that a mapping $T: M \rightarrow N$ is called a bi-Lipschitz embedding if there are constants $A, B>0$ such that

$$
\begin{equation*}
A d_{M}(x, y) \leq d_{N}(T(x), T(y)) \leq B d_{M}(x, y) \text { for all } x, y \in M \tag{1}
\end{equation*}
$$

Recall also that if $0<\alpha<1$, then d_{M}^{α} is also a metric on M (the space (M, d_{M}^{α}) is sometimes called the α-snowflaked version of $\left(M, d_{M}\right)$). We denote by $s_{N}(M)$ the supremum of all $0<\alpha \leq 1$ for which the space (M, d_{M}^{α}) admits a bi-Lipschitz embedding into $\left(N, d_{N}\right)$. Let further $s(M)$ be the supremum of all $0<\alpha \leq 1$ for which the space $\left(M, d_{M}^{\alpha}\right)$ admits a bi-Lipschitz embedding into a Hilbert space. It is clear that if M is unbounded, then $0 \leq s_{N}(M) \leq \alpha_{N}(M) \leq 1$ and $0 \leq$ $s(M) \leq \alpha(M) \leq 1$. The parameter $s_{N}(M)$ was introduced and studied by Albiac and Baudier $[\mathrm{AB}]$ in the case when M and N were ℓ_{p}-spaces.

We use symbols $\alpha_{N}(M), \alpha(M), s_{N}(M)$ and $s(M)$ when the metrics on M and N are clear from the context, otherwise we write for example $\alpha_{N}\left(M, d_{M}\right)$.

The values of $s(X)$ and $\alpha(X)$ are known if X is a space ℓ_{p} or $L_{p}(0,1)$ for $0<$ $p<\infty$. Let us recall the results. Recall first that if $0<p<1$, then the canonical metric on ℓ_{p} is defined by $d_{p}(x, y)=\sum_{i=1}^{\infty}\left|x_{i}-y_{i}\right|^{p}$, where $x=\left(x_{i}\right), y=\left(y_{i}\right)$, and similarly the canonical metric on $L_{p}(0,1)$ is defined by $d_{p}(f, g)=\int_{0}^{1}|f(t)-g(t)|^{p} \mathrm{~d} t$. Baudier [Ba, Corollaries 2.23 and 2.19] proved that if $0<p<q<\infty$ and $q \geq 1$, then

$$
\begin{equation*}
s_{\ell_{q}}\left(\ell_{p}\right)=\alpha_{\ell_{q}}\left(\ell_{p}\right)=\frac{\max \{p, 1\}}{q} \tag{2}
\end{equation*}
$$

(the case $q=1$ was already proved in [Al, Proposition 4.1(ii)]). It follows that if $0<p \leq 2$, then

$$
\begin{equation*}
s\left(\ell_{p}\right)=\alpha\left(\ell_{p}\right)=\frac{\max \{p, 1\}}{2} \tag{3}
\end{equation*}
$$

If $p>2$, then ℓ_{p} does not coarsely embed into a Hilbert space (this was first proved in [JR]), hence $s\left(\ell_{p}\right)=\alpha\left(\ell_{p}\right)=0$.

It also follows from [Ba, after Corollary 2.19], [MN, Remark 5.10] and [Al, Proposition 6.5] that if $0<p \leq 2, q \geq 1$ and $p<q$, then

$$
s_{L_{q}(0,1)}\left(L_{p}(0,1)\right)=\alpha_{L_{q}(0,1)}\left(L_{p}(0,1)\right)=\frac{\max \{p, 1\}}{\min \{q, 2\}} .
$$

Hence if $0<p \leq 2$, then

$$
\begin{equation*}
s\left(L_{p}(0,1)\right)=\alpha\left(L_{p}(0,1)\right)=\frac{\max \{p, 1\}}{2} . \tag{4}
\end{equation*}
$$

If $p>2$, then $s\left(L_{p}(0,1)\right)=\alpha\left(L_{p}(0,1)\right)=0$ since $L_{p}(0,1)$ does not coarsely embed into a Hilbert space (because it contains an isometric copy of ℓ_{p}).

Let us mention that unlike the case of the spaces ℓ_{p} described in (2), the precise values of $s_{L_{q}(0,1)}\left(L_{p}(0,1)\right)$ and $\alpha_{L_{q}(0,1)}\left(L_{p}(0,1)\right)$ are not known if $2<p<q$. However, some estimates are known. If $2<p<q$, a construction due to Mendel and Naor [MN, Remark 5.10] shows that $\alpha_{L_{q}(0,1)}\left(L_{p}(0,1)\right) \geq s_{L_{q}(0,1)}\left(L_{p}(0,1)\right) \geq \frac{p}{q}$, and Naor and Schechtman [NS] recently proved that $s_{L_{q}(0,1)}\left(L_{p}(0,1)\right)<1$.

In this note, we compute the values of $s(X)$ and $\alpha(X)$ for any quasi-Banach space X which coarsely embeds into a Hilbert space. A few remarks are in order.

If X is a Banach space with a norm $\|\cdot\|$, then the canonical metric on X is given by $(x, y) \mapsto\|x-y\|$ and there is no problem with the definition of $s(X)$ and $\alpha(X)$. However, if X is a general quasi-Banach space, we cannot speak about some canonical metric on X. The usual way how to introduce a metric on X is to use a theorem of Aoki [Ao] and Rolewicz [Ro] (see also [BL, Proposition H.2]), which says that there is $0<r \leq 1$ and an equivalent quasi-norm $\|$.$\| on X$ which is r subadditive, that is, $\|x+y\|^{r} \leq\|x\|^{r}+\|y\|^{r}$ for all $x, y \in X$. Then $(x, y) \mapsto\|x-y\|^{r}$ is an invariant metric on X, which induces the same topology on X as the original quasi-norm. Of course, there are many such metrics on X and $s(X)$ and $\alpha(X)$ depend on the metric. (On the other hand, it is clear that the coarse embeddability of X into a Hilbert space does not depend on the choice of the above described metric. When we say that X coarsely embeds into a Hilbert space, it is understood that it is with respect to any such metric on X.) So, if X is a quasi-Banach space which coarsely embeds into a Hilbert space, we compute $s(X)$ and $\alpha(X)$ with respect to any such metric on X. The result is stated in Theorem 3.1. If X does not coarsely embed into a Hilbert space, then, of course, $s(X)=\alpha(X)=0$ with respect to any such metric on X. The corresponding results for the spaces ℓ_{p} and $L_{p}(0,1)$, $0<p<\infty$, mentioned above are a particular case of this since the canonical metrics on ℓ_{p} and $L_{p}(0,1)$ for any $0<p<\infty$ are of the form described above.

2. Preliminaries

The notation and terminology is standard, as may be found for example in [BL]. All vector spaces throughout the paper are supposed to be over the real field. Recall that if $(\Omega, \mathcal{B}, \mu)$ is a measure space, where μ is a nonnegative measure, and $0<p<\infty$, then $L_{p}(\mu)$ is the (quasi-)Banach space of all equivalence classes of real measurable functions f on $(\Omega, \mathcal{B}, \mu)$ for which $\|f\|_{p}=\left(\int|f|^{p} \mathrm{~d} \mu\right)^{\frac{1}{p}}<\infty$. If $1 \leq$ $p<\infty$, then $\|\cdot\|_{p}$ is a norm on $L_{p}(\mu)$, whereas if $0<p<1$, it is only a quasi-norm (except in the trivial cases when $L_{p}(\mu)$ is zero or one-dimensional). If $0<p<1$, then the canonical metric on $L_{p}(\mu)$ is given by $d_{p}(f, g)=\|f-g\|_{p}^{p}=\int|f-g|^{p} \mathrm{~d} \mu$. If $1 \leq p<\infty$, then the canonical metric on $L_{p}(\mu)$ is given by the norm (as on any Banach space), and we denote it by d_{p} as well, so $d_{p}(f, g)=\|f-g\|_{p}$. If not stated otherwise, all metric properties of the space $L_{p}(\mu)$ for any $0<p<\infty$ are regarded with respect to the metric d_{p}. Special cases like $L_{p}(0,1), \ell_{p}$ and $\ell_{p}^{n}, n \in \mathbb{N}$, are defined in a standard way.

Let X be a quasi-Banach space (for a brief overview of quasi-Banach spaces see for example [BL, Appendix H]). As we have already mentioned, by the theorem of Aoki and Rolewicz, there is $0<r \leq 1$ and an equivalent quasi-norm $\|$.$\| on X$ which is r-subadditive, that is, $\|x+y\|^{r} \leq\|x\|^{r}+\|y\|^{r}$ for all $x, y \in X$. In particular, $(x, y) \mapsto\|x-y\|^{r}$ is an invariant metric on X, which we denote by $d_{\|\cdot\|, r}$ and which induces the same topology on X as the original quasi-norm. Let $0<r \leq 1$. An r-subadditive quasi-norm on X is called an r-norm (so a 1-norm is just a norm). If there is an equivalent r-norm on X, then we say that X is r-normable (and instead of 1-normable we just say normable). We denote by M_{X} the set of all $0<r \leq 1$ for which X is r-normable. Furthermore, we define $r_{X}=\sup M_{X}$. By the theorem of Aoki and Rolewicz, we have $M_{X} \neq \emptyset$ and hence $r_{X}>0$. It is clear that M_{X} is either the interval $\left(0, r_{X}\right]$ or $\left(0, r_{X}\right)$.

For example, if X is a Banach space, then clearly $M_{X}=(0,1]$ and $r_{X}=1$. Let $0<p<1$ and consider a space $L_{p}(\mu)$ for some nonnegative measure μ. Then $\|\cdot\|_{p}$ is a p-norm on $L_{p}(\mu)$ and the canonical metric d_{p} on $L_{p}(\mu)$ is the metric $d_{\|\cdot\|_{p}, p}$. If $L_{p}(\mu)$ is in addition infinite-dimensional, then it is not hard to prove that $M_{L_{p}(\mu)}=(0, p]$, and hence $r_{L_{p}(\mu)}=p$.

As we have said, if X is a quasi-Banach space which coarsely embeds into a Hilbert space, then our goal is to compute $s\left(X, d_{\|\cdot\|, r}\right)$ and $\alpha\left(X, d_{\|\cdot\|, r}\right)$ for any $r \in M_{X}$ and any equivalent r-norm $\|$.$\| on X$. To state (and prove) the result, we will need the notion of type of a quasi-Banach space and some of its properties.

A quasi-Banach space X, equipped with a quasi-norm $\|\cdot\|$, is said to have type p, where $0<p \leq 2$, if there is a constant $C>0$ such that for every $n \in \mathbb{N}$ and every $x_{1}, \ldots, x_{n} \in X$ we have

$$
\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \leq C^{p} \sum_{i=1}^{n}\left\|x_{i}\right\|^{p},
$$

where \mathbb{E} denotes the expectation with respect to a uniform choice of signs $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in$ $\{-1,1\}^{n}$. Note that if $|||\cdot|||$ is a quasi-norm on X equivalent to $\|\cdot\|$, then $(X,|||\cdot|||)$ has type p if and only if $(X,\|\cdot\|)$ has type p. We define

$$
p_{X}=\sup \{0<p \leq 2: X \text { has type } p\}
$$

The quantities p_{X} and r_{X} are related as follows.
Lemma 2.1. Let X be a quasi-Banach space. Then $r_{X}=\min \left\{p_{X}, 1\right\}$.
Proof. If $r \in M_{X}$, then it is clear that X has type r. Hence $r_{X} \leq p_{X}$ and since $r_{X} \leq 1$, we obtain $r_{X} \leq \min \left\{p_{X}, 1\right\}$.

Let us show that $r_{X} \geq \min \left\{p_{X}, 1\right\}$. If $p_{X}>1$, then, by [Ka2, Theorem 2.1(2)], X is normable, and therefore $r_{X}=1=\min \left\{p_{X}, 1\right\}$. If $p_{X} \leq 1$, then, by [Ka2, Theorem 2.1(1)], $r_{X} \geq p_{X}=\min \left\{p_{X}, 1\right\}$.

In particular, it follows from Lemma 2.1 that if X is a quasi-Banach space, then $p_{X}>0$ (since $r_{X}>0$). Let us mention that we will not actually need the full strength of Lemma 2.1, but only the trivial inequality $r_{X} \leq p_{X}$.

We will also use the following result. For Banach spaces it is the classical theorem of Maurey and Pisier [MP] (see also [MS, 13.2. Theorem]). The generalization to quasi-Banach spaces presented here was proved by Kalton [Ka1]. Recall that if X and Y are quasi-Banach spaces and $T: X \rightarrow Y$ is a linear mapping, then one defines $\|T\|=\sup \{\|T(x)\|:\|x\| \leq 1\}$. A quasi-Banach space Y is said to be finitely representable in a quasi-Banach space X if for every $\varepsilon>0$ and every finitedimensional subspace E of Y there is a subspace F of X with $\operatorname{dim} F=\operatorname{dim} E$ and a linear isomorphism $T: E \rightarrow F$ such that $\|T\| \cdot\left\|T^{-1}\right\| \leq 1+\varepsilon$.

Theorem 2.2 (Kalton). Let X be an infinite-dimensional quasi-Banach space equipped with an r-norm, where $0<r \leq 1$. Then $\ell_{p_{X}}$ is finitely representable in X.

The above theorem follows from [Ka1, Theorem 4.6]. Let us mention that [Ka1, Theorem 4.6] is stated for the so-called convexity type $p(X)$ of X instead of for our p_{X}. However, it is not difficult to prove using the results of $[\mathrm{Ka} 1]$ that $p(X)=p_{X}$.

3. Main Result

Theorem 3.1. Let X be a quasi-Banach space which coarsely embeds into a Hilbert space. Then for every $r \in M_{X}$ and every equivalent r-norm $\|$.$\| on X$ we have

$$
s\left(X, d_{\|\cdot\|, r}\right)=\alpha\left(X, d_{\|\cdot\|, r}\right)=\min \left\{\frac{p_{X}}{2 r}, 1\right\} .
$$

Before we turn to the proof of the above theorem, let us make a few remarks. First, note that Theorem 3.1 yields in particular that if X is a Banach space which coarsely embeds into a Hilbert space, then

$$
\begin{equation*}
s(X)=\alpha(X)=\frac{p_{X}}{2} . \tag{5}
\end{equation*}
$$

As we have said before, (3) and (4) follow from Theorem 3.1. Indeed, let $0<p \leq 2$ and consider an infinite-dimensional space $L_{p}(\mu)$ for some nonnegative measure μ. Then $L_{p}(\mu)$ coarsely embeds into a Hilbert space (see [No, Proposition 4.1] or Lemma 3.2 bellow). If $1 \leq p \leq 2$, then we can use (5) and obtain

$$
s\left(L_{p}(\mu)\right)=\alpha\left(L_{p}(\mu)\right)=\frac{p_{L_{p}(\mu)}}{2}=\frac{p}{2}
$$

If $0<p<1$, then Theorem 3.1 yields

$$
\begin{aligned}
s\left(L_{p}(\mu)\right)=\alpha\left(L_{p}(\mu)\right)=s\left(L_{p}(\mu), d_{\|\cdot\|_{p}, p}\right)=\alpha & \left(L_{p}(\mu), d_{\|\cdot\|_{p}, p}\right) \\
& =\min \left\{\frac{p_{L_{p}(\mu)}}{2 p}, 1\right\}=\frac{1}{2}
\end{aligned}
$$

In particular, this gives (3) and (4).
Let X be a quasi-Banach space which coarsely embeds into a Hilbert space, let $r \in M_{X}$ and let $\|$.$\| be an equivalent r$-norm on X. By Theorem 3.1 and Lemma 2.1 we have

$$
\alpha\left(X, d_{\|\cdot\|, r}\right)=\min \left\{\frac{p_{X}}{2 r}, 1\right\} \geq \min \left\{\frac{p_{X}}{2 r_{X}}, 1\right\} \geq \frac{1}{2}
$$

and this estimate is of course sharp $\left(\alpha\left(\ell_{1}\right)=\frac{1}{2}\right)$. This is not true for general metric spaces. For example, Arzhantseva, Druţu and Sapir [ADS, Theorem 1.5] proved that for every $\alpha \in[0,1]$ there is a finitely generated group, equipped with a word length metric, that coarsely embeds into a Hilbert space and whose Hilbert space compression exponent is equal to α.

Note also that in Theorem 3.1 we cannot omit the assumption that X coarsely embeds into a Hilbert space. Indeed, if X is a quasi-Banach space which does not coarsely embed into a Hilbert space, $r \in M_{X}$ and $\|$.$\| is an equivalent r$-norm on X, then $s\left(X, d_{\|.\|, r}\right)=\alpha\left(X, d_{\|\cdot\|, r}\right)=0<\min \left\{\frac{p_{X}}{2 r}, 1\right\}$, since $p_{X}>0$.

Let us now prove Theorem 3.1. Let us first consider the inequality $s\left(X, d_{\|\cdot\|, r}\right) \geq$ $\min \left\{\frac{p_{X}}{2 r}, 1\right\}$. Our method of proof is a quantification of Randrianarivony's proof that if X is a quasi-Banach space which is linearly isomorphic to a subspace of $L_{0}(\mu)$ for some probability space $(\Omega, \mathcal{B}, \mu)$, then X coarsely embeds into a Hilbert space [Ra, Proof of Theorem 1]. We will use the following well-known fact.

Lemma 3.2. Let $0<p \leq 2$ and let $(\Omega, \mathcal{B}, \mu)$ be a measure space, where μ is a nonnegative measure. Then there is a Hilbert space H and a mapping $S: L_{p}(\mu) \rightarrow H$ such that $\|S(x)-S(y)\|_{H}=\|x-y\|_{p}^{\frac{p}{2}}$ for all $x, y \in L_{p}(\mu)$.
Proof. The function $\|.\|_{p}^{p}$ on $L_{p}(\mu)$ is negative definite by [BL, p. 186, Examples. (iii)] (for a survey on negative definite kernels and functions see [BL, Chapter 8]) and $\|0\|_{p}^{p}=0$, and therefore, by [BL, Proposition 8.5(ii)], there is a Hilbert space H and a mapping $S: L_{p}(\mu) \rightarrow H$ such that $\|x-y\|_{p}^{p}=\|S(x)-S(y)\|_{H}^{2}$ for all $x, y \in L_{p}(\mu)$. Let us mention that the proof of [BL, Proposition 8.5(ii)] actually gives a complex Hilbert space H, but it is easy to see that there is a real Hilbert space H with the desired properties.

Proof of $s\left(X, d_{\|\cdot\|, r}\right) \geq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$ in Theorem 3.1. Let $r \in M_{X}$ and let $\|$.$\| be an$ equivalent r-norm on X.

Since X coarsely embeds into a Hilbert space, [Ra, Theorem 1] implies that there is a probability space $(\Omega, \mathcal{B}, \mu)$ such that X is linearly isomorphic to a subspace of $L_{0}(\mu)$. By [BL, Theorem 8.15], then, the space X is linearly isomorphic to a subspace of $L_{p}(\mu)$ for every $0<p<p_{X}$.

Let p be such that $0<p<p_{X}$ and let $\varphi: X \rightarrow L_{p}(\mu)$ be an isomorphism into. Then there are $A, B>0$ such that

$$
A\|x\| \leq\|\varphi(x)\|_{p} \leq B\|x\| \text { for every } x \in X
$$

By Lemma 3.2, there is a Hilbert space H and a mapping $S: L_{p}(\mu) \rightarrow H$ such that

$$
\|S(x)-S(y)\|_{H}=\|x-y\|_{p}^{\frac{p}{2}} \text { for all } x, y \in L_{p}(\mu)
$$

Let $T=S \circ \varphi$. Then T maps X into H and for all $x, y \in X$ we have

$$
A^{\frac{p}{2}}\left(\|x-y\|^{r}\right)^{\frac{p}{2 r}} \leq\|T(x)-T(y)\|_{H} \leq B^{\frac{p}{2}}\left(\|x-y\|^{r}\right)^{\frac{p}{2 r}}
$$

Hence if p is such that $\frac{p}{2 r} \leq 1$, then T is a bi-Lipschitz embedding of $\left(X, d_{\|\cdot\|, r}^{\frac{p}{2 r}}\right.$) into H. It follows that $s\left(X, d_{\|\cdot\|, r}\right) \geq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$.

Remark 3.3. The above proof actually shows that if $r \in M_{X}$ and $\|$.$\| is an equiv-$ alent r-norm on X, then for every $\alpha>0$ such that $\alpha<\frac{p_{X}}{2 r}$ and $\alpha \leq 1$ the space $\left(X, d_{\|\cdot\|, r}^{\alpha}\right)$ admits a bi-Lipschitz embedding into a Hilbert space.

Since the inequality $s\left(X, d_{\|\cdot\|, r}\right) \leq \alpha\left(X, d_{\|\cdot\|, r}\right)$ in Theorem 3.1 is trivial, to complete the proof of Theorem 3.1 it only remains to prove the inequality $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq$ $\min \left\{\frac{p_{X}}{2 r}, 1\right\}$.

First, let us recall several useful notions. Let $\left(M, d_{M}\right)$ and $\left(N, d_{N}\right)$ be metric spaces and let $T: M \rightarrow N$ be a mapping. The Lipschitz constant of T is defined by

$$
\operatorname{Lip}(T)=\sup _{x, y \in M, x \neq y} \frac{d_{N}(T(x), T(y))}{d_{M}(x, y)}
$$

If $T: M \rightarrow N$ is injective, then the distortion of T is defined by

$$
\operatorname{distortion}(T)=\operatorname{Lip}(T) \cdot \operatorname{Lip}\left(T^{-1}\right)
$$

where T^{-1} is regarded as a mapping on $T(M)$. Let us mention that if distortion $(T)<$ ∞, then T is a bi-Lipschitz embedding and distortion $(T)=\inf \frac{B}{A}$, where the infimum is taken over all constants $A, B>0$ for which (1) holds. The distortion of M in N is defined by

$$
c_{N}(M)=\inf _{T: M \rightarrow N \text { injective }} \operatorname{distortion}(T) .
$$

A metric space $\left(M, d_{M}\right)$ is called d-discrete, where $d>0$, if $d_{M}(x, y) \geq d$ for all $x, y \in M, x \neq y$. The diameter of M is defined by $\operatorname{diam}(M)=\sup _{x, y \in M} d_{M}(x, y)$.

We will use the following modification of a lemma of Austin [Au, Lemma 3.1], which in its original form was used for estimating from above the compression exponents in L_{p}-spaces of certain groups. A version of Austin's lemma was also used by Baudier [Ba, proof of Corollary 2.22] to show that if $0<p \leq 1 \leq q<\infty$, then $\alpha_{L_{q}}\left(\ell_{p}\right) \leq \frac{1}{\min \{q, 2\}}$.

Lemma 3.4. Let X be a quasi-Banach space, $r \in M_{X}$ and $\|$.$\| be an equivalent$ r-norm on X. Let Y be a Banach space. Suppose further that $\left(M_{n}, \delta_{n}\right), n \in \mathbb{N}$, are finite d-discrete metric spaces, where $d>0$, such that

- $\operatorname{diam}\left(M_{n}\right) \rightarrow \infty$,
- there is $\gamma \in(0,1]$ and $A, B>0$ such that for each $n \in \mathbb{N}$ there is a mapping $f_{n}: M_{n} \rightarrow X$ satisfying

$$
A \delta_{n}(x, y)^{\gamma} \leq\left\|f_{n}(x)-f_{n}(y)\right\|^{r} \leq B \delta_{n}(x, y) \text { for all } x, y \in M_{n}
$$

- there is $\eta \in(0,1]$ and $K>0$ such that $c_{Y}\left(M_{n}\right) \geq K \operatorname{diam}\left(M_{n}\right)^{\eta}$ for every $n \in \mathbb{N}$.
Then $\alpha_{Y}\left(X, d_{\|\cdot\|, r}\right) \leq \frac{1-\eta}{\gamma}$.
Proof. If $\alpha_{Y}\left(X, d_{\|\cdot\|, r}\right)=0$, then the result is trivial, so suppose that $\alpha_{Y}\left(X, d_{\|\cdot\|, r}\right)>$ 0 . Let $\alpha \in\left(0, \alpha_{Y}\left(X, d_{\|\cdot\|, r}\right)\right]$ be such that there is a large-scale Lipschitz mapping
$T:\left(X, d_{\|\cdot\|, r}\right) \rightarrow Y$ and constants $C, t>0$ such that $\|T(x)-T(y)\|_{Y} \geq C\left(\|x-y\|^{r}\right)^{\alpha}$ if $\|x-y\|^{r} \geq t$. Then for some $D>0$ we have

$$
C\left(\|x-y\|^{r}\right)^{\alpha} \leq\|T(x)-T(y)\|_{Y} \leq D\|x-y\|^{r} \text { if }\|x-y\|^{r} \geq t
$$

By rescaling if necessary, we may clearly suppose that $t \leq A d^{\gamma}$.
Let $n \in \mathbb{N}$. Let us estimate from above the distortion of $T \circ f_{n}: M_{n} \rightarrow Y$. If $x, y \in M_{n}, x \neq y$, then

$$
\left\|f_{n}(x)-f_{n}(y)\right\|^{r} \geq A \delta_{n}(x, y)^{\gamma} \geq A d^{\gamma} \geq t
$$

hence

$$
C\left(\left\|f_{n}(x)-f_{n}(y)\right\|^{r}\right)^{\alpha} \leq\left\|T \circ f_{n}(x)-T \circ f_{n}(y)\right\|_{Y} \leq D\left\|f_{n}(x)-f_{n}(y)\right\|^{r}
$$

and therefore

$$
C A^{\alpha} \delta_{n}(x, y)^{\gamma \alpha} \leq\left\|T \circ f_{n}(x)-T \circ f_{n}(y)\right\|_{Y} \leq D B \delta_{n}(x, y)
$$

(in particular, $T \circ f_{n}$ is injective). Consequently,

$$
\begin{aligned}
& \operatorname{distortion}\left(T \circ f_{n}\right)=\operatorname{Lip}\left(T \circ f_{n}\right) \cdot \operatorname{Lip}\left(\left(T \circ f_{n}\right)^{-1}\right) \\
& =\max _{x, y \in M_{n}, x \neq y} \frac{\left\|T \circ f_{n}(x)-T \circ f_{n}(y)\right\|_{Y}}{\delta_{n}(x, y)} \cdot \max _{x, y \in M_{n}, x \neq y} \frac{\delta_{n}(x, y)}{\left\|T \circ f_{n}(x)-T \circ f_{n}(y)\right\|_{Y}} \\
& \leq \frac{B D}{A^{\alpha} C} \max _{x, y \in M_{n}, x \neq y} \delta_{n}(x, y)^{1-\gamma \alpha} \\
& =\frac{B D}{A^{\alpha} C} \operatorname{diam}\left(M_{n}\right)^{1-\gamma \alpha} . \\
& \text { Hence }
\end{aligned}
$$

$$
c_{Y}\left(M_{n}\right) \leq \frac{B D}{A^{\alpha} C} \operatorname{diam}\left(M_{n}\right)^{1-\gamma \alpha}
$$

and from the assumption that $c_{Y}\left(M_{n}\right) \geq K \operatorname{diam}\left(M_{n}\right)^{\eta}$ it follows that

$$
\operatorname{diam}\left(M_{n}\right)^{\eta} \leq \frac{B D}{A^{\alpha} C K} \operatorname{diam}\left(M_{n}\right)^{1-\gamma \alpha}
$$

Since $\operatorname{diam}\left(M_{n}\right) \rightarrow \infty$, we obtain $\eta \leq 1-\gamma \alpha$, and therefore $\alpha \leq \frac{1-\eta}{\gamma}$. Hence $\alpha_{Y}\left(X, d_{\|\cdot\|, r}\right) \leq \frac{1-\eta}{\gamma}$.

Proof of $\alpha\left(X, d_{\|.\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$ in Theorem 3.1. If the space X is finite-dimensional, then the statement is trivial. So suppose that X is infinite-dimensional, and let $r \in M_{X}$ and $\|$.$\| be an equivalent r$-norm on X. To obtain the upper estimate for $\alpha\left(X, d_{\|\cdot\|, r}\right)$, we will use Lemma 3.4. The role of the metric spaces $\left(M_{n}, \delta_{n}\right)$ in Lemma 3.4 will be played by the following sequence of metric spaces. For $n \in \mathbb{N}$, let $H_{n}=\{0,1\}^{n}$ (the so-called Hamming cube), equipped with the ℓ_{1} metric d_{1} (i.e. the metric inherited from ℓ_{1}^{n} when considering H_{n} as a subset of ℓ_{1}^{n}). In other words, the distance between two sequences from H_{n} is equal to the number of places where they differ (this is also called the Hamming distance). Then $\left(H_{n}, d_{1}\right)$ is finite, 1 -discrete and $\operatorname{diam}\left(H_{n}, d_{1}\right)=n$.

Let us first construct appropriate embeddings of the Hamming cubes H_{n} into X. Let $n \in \mathbb{N}$. By Theorem 2.2, there is a linear mapping $S_{n}: \ell_{p_{X}}^{n} \rightarrow X$ such that

$$
\|x\|_{p_{X}} \leq\left\|S_{n}(x)\right\| \leq 2\|x\|_{p_{X}} \text { for every } x \in \ell_{p_{X}}^{n}
$$

Define a mapping $\varphi_{n}: H_{n} \rightarrow \ell_{p_{X}}^{n}$ by $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{n}\right)$. Then for $x=$ $\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right) \in H_{n}$ we have

$$
\left\|\varphi_{n}(x)-\varphi_{n}(y)\right\|_{p_{X}}=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{p_{X}}\right)^{\frac{1}{p_{X}}}=\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right)^{\frac{1}{p_{X}}}=d_{1}(x, y)^{\frac{1}{p_{X}}}
$$

where the second equality follows from the fact that $\left|x_{i}-y_{i}\right| \in\{0,1\}$ for every i. Let $f_{n}=S_{n} \circ \varphi_{n}: H_{n} \rightarrow X$. If $x, y \in H_{n}$, then

$$
d_{1}(x, y)^{\frac{r}{p_{X}}} \leq\left\|f_{n}(x)-f_{n}(y)\right\|^{r} \leq 2^{r} d_{1}(x, y)^{\frac{r}{p_{X}}} \leq 2^{r} d_{1}(x, y),
$$

where the last inequality holds since $d_{1}(x, y)$ is either zero or greater or equal to one and $\frac{r}{p_{X}} \leq 1$ by Lemma 2.1.

Now, let H be an infinite-dimensional Hilbert space. It follows from the work of Enflo [En] (see also [Ma, 15.4.1 Theorem]) that $c_{H}\left(H_{n}, d_{1}\right)=\sqrt{n}=\operatorname{diam}\left(H_{n}, d_{1}\right)^{\frac{1}{2}}$ for every $n \in \mathbb{N}$. We apply Lemma 3.4 and obtain

$$
\alpha_{H}\left(X, d_{\|\cdot\|, r}\right) \leq \frac{1-\frac{1}{2}}{\frac{r}{p_{X}}}=\frac{p_{X}}{2 r} .
$$

Hence $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq \frac{p_{X}}{2 r}$, and since $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq 1$, we have $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq$ $\min \left\{\frac{p_{X}}{2 r}, 1\right\}$.

Note that the above proof of the inequality $\alpha\left(X, d_{\|.\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$ in Theorem 3.1 does not use the assumption that the space X coarsely embeds into a Hilbert space.

Let us conclude with several remarks.
Remark 3.5. The inequality $s\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$ in Theorem 3.1 can easily be proved using the notion of Enflo type.

Recall that a metric space $\left(M, d_{M}\right)$ has Enflo type p, where $1 \leq p<\infty$, if there is a constant $C>0$ such that for every $n \in \mathbb{N}$ and every $f:\{-1,1\}^{n} \rightarrow M$ we have

$$
\begin{equation*}
\mathbb{E} d_{M}(f(\varepsilon), f(-\varepsilon))^{p} \leq C^{p} \sum_{i=1}^{n} \mathbb{E} d_{M}\left(f(\varepsilon), f\left(\varepsilon_{1}, \ldots, \varepsilon_{i-1},-\varepsilon_{i}, \varepsilon_{i+1}, \ldots, \varepsilon_{n}\right)\right)^{p} \tag{6}
\end{equation*}
$$

where \mathbb{E} denotes the expectation with respect to a uniform choice of signs $\varepsilon=$ $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{-1,1\}^{n}$. We set

$$
\operatorname{E-type}(M)=\sup \{1 \leq p<\infty: M \text { has Enflo type } p\}
$$

(note that this is a supremum of a nonempty set since M always has Enflo type 1 by the triangle inequality).

Now, let X be a quasi-Banach space, $r \in M_{X}$ and $\|\cdot\|$ be an equivalent r-norm on X. It is easy to prove that then

$$
\operatorname{E-type}\left(X, d_{\|\cdot\|, r}\right) \leq \frac{p_{X}}{r}
$$

Suppose that $\alpha \in(0,1]$ is such that $\left(X, d_{\|.\|, r}^{\alpha}\right)$ admits a bi-Lipschitz embedding into a Hilbert space H. It is well known that E-type $(H)=2$ (this can be proved following the ideas from [En]). Using [AB, Proposition 2.3] we obtain

$$
\frac{\operatorname{E-type}\left(X, d_{\|\cdot\|, r}\right)}{\alpha} \geq \operatorname{E-type}(H)=2
$$

hence

$$
\alpha \leq \frac{\operatorname{E-type}\left(X, d_{\|\cdot\|, r}\right)}{2} \leq \frac{p_{X}}{2 r}
$$

Therefore $s\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$.
Note that as in the proof of the inequality $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$ in Theorem 3.1 we did not use the assumption that the space X coarsely embeds into a Hilbert space.

Remark 3.6. The choice of the ℓ_{1} metric on the Hamming cubes H_{n} in the proof of the inequality $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$ in Theorem 3.1 for X infinite-dimensional was not essential. Given $r \in M_{X}$ and an equivalent r-norm $\|$.$\| on X$, we can actually use the ℓ_{p} metric d_{p} on H_{n} for any $p \in[1,2)$ such that $p \leq \frac{p_{X}}{r}$ (note that $\frac{p_{X}}{r} \geq 1$ by Lemma 2.1 and that we do not need to consider the ℓ_{p} metrics for $0<p<1$ since they are all equal to the ℓ_{1} metric on $\left.H_{n}\right)$. Indeed, take such a p. Then $\left(H_{n}, d_{p}\right)$ is 1-discrete and $\operatorname{diam}\left(H_{n}, d_{p}\right)=n^{\frac{1}{p}}$ for every $n \in \mathbb{N}$. Following the same lines as above, we construct for every $n \in \mathbb{N}$ a mapping $f_{n}: H_{n} \rightarrow X$ such that for all $x, y \in H_{n}$ we have

$$
d_{p}(x, y)^{\frac{p r}{p_{X}}} \leq\left\|f_{n}(x)-f_{n}(y)\right\|^{r} \leq 2^{r} d_{p}(x, y)^{\frac{p r}{p_{X}}} \leq 2^{r} d_{p}(x, y),
$$

where the last inequality holds since $d_{p}(x, y)$ is either zero or greater or equal to one and $\frac{p r}{p_{X}} \leq 1$ by our assumption on p. If H is an infinite-dimensional Hilbert space, then $c_{H}\left(H_{n}, d_{p}\right)=\operatorname{diam}\left(H_{n}, d_{p}\right)^{1-\frac{p}{2}}$ for every $n \in \mathbb{N}$ (this may be proved following the same lines as in [Ma, 15.4.1 Theorem]). Lemma 3.4 then yields

$$
\alpha_{H}\left(X, d_{\|\cdot\|, r}\right) \leq \frac{1-\left(1-\frac{p}{2}\right)}{\frac{p r}{p_{X}}}=\frac{p_{X}}{2 r}
$$

and we again conclude that $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$.
Besides taking $p=1$, another natural choice would be to take $p=\max \left\{p_{X}, 1\right\}$ if $p_{X}<2$. If $p_{X}=2$, then we have trivially $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq 1=\min \left\{\frac{p_{X}}{2 r}, 1\right\}$.
Remark 3.7. If $p_{X}>1$, we can give an alternative proof of the inequality $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$ in Theorem 3.1 by reducing it to the case of ℓ_{p}-spaces, which is already known from [Ba]. Suppose that X is an infinite-dimensional quasiBanach space with $p_{X}>1$ which coarsely embeds into a Hilbert space. By [Ka2, Theorem 2.1(2)], X is normable, so we can assume that X is a Banach space.

Let us first estimate $\alpha(X)$ (that is, the Hilbert space compression exponent of X with respect to the canonical metric on X given by the norm). It is easy to see that there is an infinite-dimensional separable closed subspace Y of X such that $p_{Y}=$ p_{X}. Clearly, the space Y coarsely embeds into a Hilbert space. By [Ra, Theorem $1]$, there is a probability space $(\Omega, \mathcal{B}, \mu)$ such that Y is linearly isomorphic to a subspace of $L_{0}(\mu)$. Since $p_{Y}>1,[\mathrm{BL}$, Theorem 8.15] implies that Y is isomorphic to a subspace of $L_{1}(\mu)$. Since Y is separable, [Wo, III.A.2] implies that there is a separable $L_{1}\left(\mu^{\prime}\right)$ for some nonnegative measure μ^{\prime} such that Y is isomorphic to a subspace of $L_{1}\left(\mu^{\prime}\right)$. It follows from the isomorphic classification of separable $L_{1^{-}}$ spaces [Wo, III.A.1] that Y is isomorphic to a subspace of $L_{1}(0,1)$. By a theorem of Guerre and Levy [GL, Théorème 1], there is a subspace of Y isomorphic to $\ell_{p_{Y}}$. Hence, by (3),

$$
\alpha(X) \leq \alpha\left(\ell_{p_{Y}}\right)=\frac{p_{Y}}{2}=\frac{p_{X}}{2} .
$$

Now, let $r \in M_{X}=(0,1]$ and let $\|\cdot\|$ be an equivalent r-norm on X. It follows easily from the definition that $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq \frac{1}{r} \alpha(X)$, and therefore $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq$ $\frac{1}{r} \frac{p_{X}}{2}$. Hence $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$.

Remark 3.8. The proof of the inequality $\alpha\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{2 r}, 1\right\}$ in Theorem 3.1 can be generalized to give an upper estimate for compression exponents of quasi-Banach spaces in general Banach spaces.

First, suppose that a metric space $\left(M, d_{M}\right)$ has Enflo type $p \in[1, \infty)$ with a constant $C>0$ (see Remark 3.5 for the definition). Let $n \in \mathbb{N}$ and consider the ℓ_{1} metric d_{1} on $\{-1,1\}^{n}$. Let $f:\{-1,1\}^{n} \rightarrow M$ be injective. Using the estimate

$$
\frac{1}{\operatorname{Lip}\left(f^{-1}\right)} d_{1}\left(\varepsilon, \varepsilon^{\prime}\right) \leq d_{M}\left(f(\varepsilon), f\left(\varepsilon^{\prime}\right)\right) \leq \operatorname{Lip}(f) d_{1}\left(\varepsilon, \varepsilon^{\prime}\right) \text { for all } \varepsilon, \varepsilon^{\prime} \in\{-1,1\}^{n}
$$

we obtain easily from (6) that

$$
\operatorname{distortion}(f)=\operatorname{Lip}(f) \cdot \operatorname{Lip}\left(f^{-1}\right) \geq \frac{1}{C} n^{1-\frac{1}{p}}
$$

Hence (recall that $H_{n}=\{0,1\}^{n}$)

$$
c_{M}\left(H_{n}, d_{1}\right)=c_{M}\left(\{-1,1\}^{n}, d_{1}\right) \geq \frac{1}{C} n^{1-\frac{1}{p}} .
$$

Now, let X be a quasi-Banach space, $r \in M_{X},\|\cdot\|$ be an equivalent r-norm on X, and let Y be a Banach space. Let us show that then $\alpha_{Y}\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{r p_{Y}}, 1\right\}$. If X is finite-dimensional, then the statement is trivial. So suppose that X is infinite-dimensional. If $p_{Y}=1$, then, since $r \leq p_{X}$ by Lemma 2.1, we have trivially $\alpha_{Y}\left(X, d_{\|\cdot\|, r}\right) \leq 1=\min \left\{\frac{p_{X}}{r p_{Y}}, 1\right\}$. So suppose that $p_{Y}>1$. If Y has type $p>1$, then, by a theorem of Pisier [Pi, Theorem 7.5], it has Enflo type q for every $1 \leq q<p$. So if $p \in\left(1, p_{Y}\right)$, then Y has Enflo type p (say with a constant C), and therefore $c_{Y}\left(H_{n}, d_{1}\right) \geq \frac{1}{C} n^{1-\frac{1}{p}}=\frac{1}{C} \operatorname{diam}\left(H_{n}, d_{1}\right)^{1-\frac{1}{p}}$ for every $n \in \mathbb{N}$. Using the same method as in the proof of Theorem 3.1, we obtain

$$
\alpha_{Y}\left(X, d_{\|\cdot\|, r}\right) \leq \frac{1-\left(1-\frac{1}{p}\right)}{\frac{r}{p_{X}}}=\frac{p_{X}}{r p} .
$$

Hence $\alpha_{Y}\left(X, d_{\|\cdot\|, r}\right) \leq \min \left\{\frac{p_{X}}{r p_{Y}}, 1\right\}$.
To illustrate this result and its limitations, let $0<p<q<\infty$ and $q \geq 1$. As mentioned in (2), we then have $\alpha_{\ell_{q}}\left(\ell_{p}\right)=\frac{\max \{p, 1\}}{q}$. Our result above gives the estimate

$$
\alpha_{\ell_{q}}\left(\ell_{p}\right) \leq \frac{\max \{\min \{p, 2\}, 1\}}{\min \{q, 2\}}
$$

which is clearly an equality if in addition $q \leq 2$, but not if $q>2$.
Acknowledgments. I would like to thank Jesús Bastero for providing me with Kalton's unpublished paper [Ka1].

References

[Al] F. Albiac, Nonlinear structure of some classical quasi-Banach spaces and F-spaces, J. Math. Anal. Appl. 340 (2008), no. 2, 1312-1325.
[AB] F. Albiac and F. Baudier, Embeddability of snowflaked metrics with applications to the nonlinear geometry of the spaces L_{p} and ℓ_{p} for $0<p<\infty$, J. Geom. Anal. 25 (2015), no. 1, 1-24.
[Ao] T. Aoki, Locally bounded linear topological spaces, Proc. Imp. Acad. Tokyo 18 (1942), 588-594.
[ADS] G. Arzhantseva, C. Druţu and M. Sapir, Compression functions of uniform embeddings of groups into Hilbert and Banach spaces, J. Reine Angew. Math. 633 (2009), 213-235.
[Au] T. Austin, Amenable groups with very poor compression into Lebesgue spaces, Duke Math. J. 159 (2011), no. 2, 187-222.
[Ba] F. Baudier, Quantitative nonlinear embeddings into Lebesgue sequence spaces, to appear in J. Topol. Anal.
[BL] Y. Benyamini and J. Lindenstrauss, Geometric Nonlinear Functional Analysis, Coll. Pub. 48, Amer. Math. Soc., Providence, RI, 2000.
[En] P. Enflo, On the nonexistence of uniform homeomorphisms between L_{p}-spaces, Ark. Mat. 8 (1969), 103-105.
[GK] E. Guentner and J. Kaminker, Exactness and uniform embeddability of discrete groups, J. London Math. Soc. (2) 70 (2004), no. 3, 703-718.
[GL] S. Guerre and M. Levy, Espaces ℓ^{p} dans les sous-espaces de L^{1}, Trans. Amer. Math. Soc. 279 (1983), no. 2, 611-616.
[JR] W.B. Johnson and N.L. Randrianarivony, $\ell_{p}(p>2)$ does not coarsely embed into a Hilbert space, Proc. Amer. Math. Soc. 134 (2006), no. 4, 1045-1050.
[Ka1] N.J. Kalton, The convexity type of quasi-Banach spaces, unpublished (1977). (Available at http://kaltonmemorial.missouri.edu/publications.shtml)
[Ka2] N.J. Kalton, Quasi-Banach spaces, in Handbook of the Geometry of Banach Spaces, Vol. 2, 1099-1130, North-Holland, Amsterdam, 2003.
[Ma] J. Matoušek, Lectures on Discrete Geometry, Graduate Texts in Mathematics, 212, Springer-Verlag, New York, 2002.
[MP] B. Maurey and G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), no. 1, 45-90.
[MN] M. Mendel and A. Naor, Euclidean quotients of finite metric spaces, Adv. Math. 189 (2004), no. 2, 451-494.
[MS] V.D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math., 1200, Springer-Verlag, Berlin, 2001.
[NS] A. Naor and G. Schechtman, Metric X_{p} inequalities, preprint.
[No] P.W. Nowak, Coarse embeddings of metric spaces into Banach spaces, Proc. Amer. Math. Soc. 133 (2005), no. 9, 2589-2596.
[Pi] G. Pisier, Probabilistic methods in the geometry of Banach spaces, in Probability and Analysis (Varenna, 1985), 167-241, Lecture Notes in Math., 1206, Springer, Berlin, 1986.
[Ra] N.L. Randrianarivony, Characterization of quasi-Banach spaces which coarsely embed into a Hilbert space, Proc. Amer. Math. Soc. 134 (2006), no. 5, 1315-1317.
[Ro] S. Rolewicz, On a certain class of linear metric spaces, Bull. Acad. Polon. Sci. Cl. III. 5 (1957), 471-473, XL.
[Wo] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Studies in Advanced Mathematics, 25, Cambridge University Press, Cambridge, 1991.

Institute of Mathematics AS CR, Žitná 25, 11567 Praha 1, Czech Republic
E-mail address: kraus@math.cas.cz

[^0]: 2010 Mathematics Subject Classification. Primary 46B20; Secondary 46A16, 51F99, 46B85.
 This work was supported by the grant GAČR 201/11/0345.

