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GENERALIZED DARCY–OSEEN RESOLVENT PROBLEM

DAGMAR MEDKOVÁ, MARIYA PTASHNYK, AND WERNER VARNHORN

Abstract. In this paper we study the well-posedness of a coupled Darcy-

Oseen resolvent problem, describing the fluid flow between free fluid domains

and porous media separated by a semipermeable membrane. The influence of
osmotic effects, induced by the presence of a semipermeable membrane, on the

flow velocity is reflected in the transmission conditions on the surface between

the free-fluid domain and the porous medium. To prove the existence of a
weak solution of the generalized Darcy-Oseen resolvent system we consider

two auxiliary problem: a mixed Navier-Dirichlet problem for the generalized

Oseen resolvent system and Robin problem for an elliptic equation related to
the general Darcy equations.

1. Introduction

The transport of macromolecules from a free fluid domain to a porous medium
separated by a semipermeable membrane is an important biological question as
well as an interesting and challenging problem for the mathematical modelling and
analysis. As examples for selective transport of macromolecules between free fluid
and porous medium, we can consider transport of macromolecules by water in
plant tissues or by blood in arteries. Water flow in plant tissues takes place in
two different physical domains separated by semipermeable membranes, denoted as
symplast and apoplast [5]. The apoplast is composed of cell walls and intercellular
spaces, while the symplast is constituted by cell insides, which can be connected by
plasmodesmata. The complex microstructure of the apoplast, composed of poly-
mers and microfibrils, can be represented as a porous medium and the water flow
in the cell walls and intercellular space is modeled by Darcy’s law. The Stokes
and/or Brinkmann equations can be used to define the flow velocity in the cell in-
side (cytoplasm) and plasmodesmata. Similar situation is found in models of early
atherosclerotic lesions [8] or low-density lipoproteins transfer through arterial walls,
e.g. [19, 20, 25]. Here, the blood velocity in artery lumen is described by Stokes
or Navier-Stokes equations, while arterial walls are modelled as porous media and
Darcy equations are considered.

The aim of this article is to study the well-posedness of a general coupled free-
fluid and porous-medium model for transport processes in biological tissues. The
main difference of our problem to coupled Stokes–Darcy, Brinkman-Darcy, and
Navier-Stokes–Darcy problems studied before (see e.g. [13, 14, 15, 24] and references
therein) is that the free fluid and the porous media domains do not interact directly.
A semipermeable membrane separates there two domains and controls actively
and passively the fluxes of the water (or blood) and the solutes [5, 8]. Thus the
appropriate transmission conditions on the boundary between free-fluid domain and
porous media need to be considered to represented the regulation of the water (or
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blood) flow from the cell inside (or artery lumen) into the intercellular space (or
arterial walls), [5, 8].

In contrast to previous work on transport of macromolecules from artery lumen
to arterial walls [8], where the dependence of fluid flow across the membrane on the
oncotic pressure difference was neglected (to simplify the analysis), we consider the
influence of the osmotic effect on the flow velocity. This is reflected in the trans-
mission conditions on the boundary between cell insides and cell walls, comprising
the normal component of the Darcy velocity vD ·n and a given function g ·n. The
function g ·n corresponds to the difference between the solute concentrations in the
cell insides and the intercellular space (or in the artery lumen and arterial walls),
respectively, see e.g. [5, 8]. Our model includes also the situation when only a part
of the boundary between the cell insides and the intercellular space (cell walls) is
semipermeable.

The analysis presented here is a generalization of the results obtained in [18],
where a coupled Stokes–Darcy system with a constant permeability in the Darcy
equations was analysed. For the flow velocity in the domain with free fluid we
consider generalized Oseen resolvent equations, while the fluid flow in the porous
medium is modelled by the Darcy equations with a general space-dependent per-
meability tensor. Althrough, there are many results on existence of solutions of
Oseen system [2, 3, 4, 10, 22, 23], coupled generalized Darcy–Oseen problem was
not considered before.

To prove the existence of a weak solution of the generalized Darcy–Oseen resol-
vent problem we consider two auxiliary problem: a mixed Navier–Dirichlet prob-
lem for the generalized Oseen resolvent system and a Robin problem for an elliptic
equation related to the general Darcy equations. The Riesz representation theorem
for a continuous linear functional on the Hilbert space H1(Ω) and the fact that
H−1/2(∂Ω) is a closed subspace of the dual space [H1(Ω)]′ are used to prove the
existence of a weak solution of the Robin type problem. To show the existence of
a solution of a mixed Navier–Dirichlet problem for the generalized Oseen resolvent
system we combine the existence results for a mixed Navier–Dirichlet problem for
Stokes system, obtained in [18], and a compact perturbation argument.

Notice that considering some of the parameters in the generalized Oseen resolvent
equations to be zero we recover Stokes, Oseen or Brinkmann system. Brinkman
equations describe flows through some types of porous media (i.e. fibrous porous
media for swarms of particles of low concentration) [6, 7, 21]. The Brinkman sys-
tem is also an extension of Darcy’s law when boundary layer regions near the
soil phase of a porous media cannot be neglected [9] and can be derived from the
Stokes or Navier–Stokes system with slip boundary conditions at the surfaces of
solid structures [1]. Brinkman system can also be viewed as an approximation of
the Navier–Stokes equations at low Reynolds numbers, see e.g. [15]. The Oseen
problem is a popular linearization of the Navier-Stokes equations [2, 11]. Thus,
modelling the fluid flow in the symplast of plant tissues by generalized Oseen re-
solved equations allow us to consider the situation when the water flow inside plant
cells is modelled by Stokes equations and Brinkmann equations describe the water
velocity in plasmodesmata.

The paper is organized as follows. In Section 2 we formulate mathematical
model for transport processes in a domain composed of free fluid domain and a
porous medium separated by a semipermeable membrane. In Sections 3 and 4 two
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auxiliary problems: the mixed Navier–Dirichlet problem for an Oseen resolvent
system and the Robin type problem are analyzed. The main result of the paper,
i.e. the existence and uniqueness (up to a constant for pressures) of a weak solution
of the generalized Darcy–Oseen resolvent problem, is proved in Section 5.

2. Formulation of the mathematical model

Let Ω ⊂ R3 be a bounded domain, i.e. a bounded open connected set, with
Lipschitz boundary ∂Ω, and suppose that ΩS is a nonempty subdomain of Ω with
Lipschitz boundary ∂ΩS such that ΩS 6= Ω. Then ΩD := Ω \ΩS is a bounded open
set, not necessarily connected. We suppose that ΩD has a Lipschitz boundary, too.
Note that ∂ΩS ∩ ∂ΩD ∩ Ω is always nonempty, and it is locally the graph of a
Lipschitz function. Let Γ denote a nonempty closed subset of ∂ΩS ∩ ∂ΩD. Then Γ
might reach the boundary ∂Ω or not. If G is a component of ΩD, we suppose that
Γ ∩ ∂G has positive surface measure.

In Ω we consider the following coupled boundary value transmission problem:

−η∆vS + λvS + k · ∇vS +∇pS = 0, div vS = 0 in ΩS ,(1)

vD + K∇pD = 0, div vD = 0 in ΩD,(2)

vS = f on ∂ΩS \ Γ,(3)

vD · n = h on ∂ΩD \ Γ,(4)

vD · n− vS · n = h, vS
τ = fτ on Γ,(5) [

−Tη(vS , pS)n− αvS +
1
2
(k · n)vS

]
· n = βpD + γvD · n− g · n on Γ.(6)

Here k ∈ R3, and η, β > 0, α, γ ≥ 0 are constants, K = (Kij) is a symmetric
3 × 3–matrix function with entries Kij ∈ L∞(ΩD), and λ = (λij) is a measurable
3×3–matrix function with entries λij ∈ L∞(ΩD). Notice that k ·∇v = (k ·∇v1,k ·
∇v2,k · ∇v3).

The vector vD = (vD
1 , vD

2 , vD
3 ) denotes the generalized Darcy velocity vector in

ΩD, and vS = (vS
1 , vS

2 , vS
3 ) represents the generalized Oseen resolvent velocity in

ΩS . In the transmission condition (6),

Tη(vS, pS) = 2η DvS − pSI

means the stress tensor, where

Dv =
1
2
[
∇v + (∇v)T

]
is the symmetric 3× 3 - gradient of v and I the 3× 3 - unity matrix. We denote by
nS and by nD the exterior unit normal vectors of ΩS and ΩD, respectively. By n
we mean n = nS on ∂ΩS and n = −nD on ∂ΩD. Moreover, we use vn = (v · n)n
for the normal part of v, and vτ = v − vn for the tangential part of v. Finally,
we suppose that the matrix function K satisfies a uniform ellipticity condition, i.e.
there exists a constant a > 0 such that for a.a. x ∈ ΩD we have

(7)
3∑

i,j=1

Kij(x) ξiξj ≥ a|ξ|2 ∀ ξ = (ξ1, ξ2, ξ3) ∈ R3,
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and that the matrix λ is nonnegative, i.e. for a.a. x ∈ ΩS we have

(8)
3∑

i,j=1

λij(x) ξiξj ≥ 0 ∀ ξ = (ξ1, ξ2, ξ3) ∈ R3.

The equation (2) represents a generalization of the standard Darcy equations
where K = I. For λ = 0 and k = 0 the system (1) coincides with the Stokes
system, for λ = 0 and k 6= 0 with the Oseen system, and for λ = c I with c > 0 and
k 6= 0 with the Oseen resolvent system. Finally, if k = 0 and ξ · (λ(x) ξ) > 0 for
a.a. x ∈ ΩS and 0 6= ξ ∈ R3, then (1) is called the Brinkman system.

In the next we suppose that there exists some Θ ∈ [H1(ΩS)]3 with Θ = 0 on
∂Ω \ Γ, with Θτ = 0 on Γ, and with

(9)
∫

Γ

Θ · n dσy = 1 .

Note that the latter condition is certainly satisfied if the surface Γ contains a non-
trivial sufficiently smooth part (of class C2).

Notice that the situations when ∂ΩS \ Γ = ∅ or ∂ΩD \ Γ = ∅ are included in the
analysis presented here. If ΩS ⊂ Ω and ∂ΩS = Γ, then the condition (3) disappears.
As examples we can consider a domain Ω = {x ∈ R3; |xj | < 2, j = 1, 2, 3},
ΩS = {x ∈ R3; |x| < 1}, ΩD = Ω \ ΩS , and Γ = {x ∈ R3; |x| = 1}.) In the
situation when ΩD ⊂ Ω and ∂ΩD = Γ the boundary condition (4) disappears. For
example, if Ω = {x ∈ R3; |xj | < 2, j = 1, 2, 3}, ΩD = {x ∈ R3; |x| < 1}, and
Γ = {x ∈ R3; |x| = 1}. Such structure is characteristic for plant cells that are
connected with each other via plasmodesmata. Then the domain ΩS represents cell
inside and plasmodesmata and the domain ΩD describes a cell wall and intercellular
space.

The interface Γ might reach the boundary, e.g. Ω = {x ∈ R3; |xj | < 3}, ΩS =
{x ∈ Ω; x1 < 0}, ΩD = {x ∈ Ω; 0 < x1}, and Γ = {x ∈ R3; x1 = 0, |x2| ≤
3, |x3| ≤ 3}, or might not reach the boundary, e.g. Ω = {x ∈ R3; 1 < |x| < 3},
ΩS = {x ∈ R3; 2 < |x| < 3}, ΩD = {x ∈ R3; 1 < |x| < 2}, Γ = {x ∈ R3; |x| = 2},
∂ΩD \ Γ = {x ∈ R3; |x| = 1}, ∂ΩS \ Γ = {x ∈ R3; |x| = 3}.

3. A Mixed Navier-Dirichlet problem for the Oseen resolvent system

To prove the main result of the paper, i.e. the existence of a unique (up to a
constant for pressures) weak solution of the model (1)–(6), we shall use two auxiliary
problems.

As a first auxiliary problem, in this section we consider a mixed Navier–Dirichlet
problem for the generalized Oseen resolvent system:

For a given f ∈ [H1/2(∂ΩS)]3 and g ∈ [H−1/2(∂ΩS)]3 find a weak solution
v ∈ [H1(ΩS)]3 and p ∈ L2(ΩS) of the problem

(10)

−η∆v + λv + k · ∇v +∇p = 0, div v = 0 in ΩS ,

v = f on ∂ΩS \ Γ,

vτ = fτ on Γ,[
Tη(v, p)n + bv − 1

2
(k · n)v

]
n

= gn on Γ,
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where k ∈ R3 and η, b > 0 are constants.

Definition 3.1. We say that (v, p) ∈ [H1(ΩS)]3 × L2(ΩS) is a weak solution of
the problem (10) if the boundary conditions v = f on ∂ΩS \ Γ and vτ = fτ on Γ
are fulfilled in the sense of traces, and if it holds

(11)

∫
ΩS

{
2ηDv : DΦ + λv ·Φ− p div Φ +

1
2
[
Φ · (k · ∇v)− v · (k · ∇Φ)

]}
dy

+
∫

∂ΩS

bv ·Φ dσy = 〈g,Φ〉H−1/2, H1/2

for all Φ ∈ VΓ, where

VΓ =
{
v ∈ [H1(ΩS)]3; v = 0 on ∂ΩS \ Γ, vτ = 0 on Γ

}
.

The above integral relation follows from (10) with help of Green’s formula, which
also implies that a weak solution of the problem (10) is contained in the space

Wη,λ,k(ΩS) =
{
(v, p) ∈ H1(ΩS)3 × L2(ΩS); −η∆v + λv + k · ∇v +∇p = 0,

div v = 0
}
.

Moreover, if v ∈ H2(ΩS)3 and p ∈ H1(ΩS), then all boundary conditions are sat-
isfied in the sense of traces.

For the following we need some special Sobolev trace spaces on the boundary
∂ΩS , i.e. the space

VΓ =
{
v ∈ [H1/2(∂ΩS)]3; v = 0 on ∂ΩS \ Γ, vτ = 0 on Γ

}
of traces of the space VΓ, and the space of restrictions

WΓ =
{(

v
∣∣
∂ΩS\Γ

, vτ

∣∣
Γ

)
; v ∈ [H1/2(∂ΩS)]3

}
,

the latter equipped with the norm

‖v‖WΓ = inf
{
‖u‖H1/2(∂ΩS); u ∈ [H1/2(∂ΩS)]3,u = v on ∂ΩS \ Γ, uτ = vτ on Γ

}
.

Since WΓ coincides with the factor-space [H1/2(∂ΩS)]3/VΓ, it is a Banach space.
By V ′

Γ we denote the dual space of VΓ. According to the theorem of Hahn-Banach
this dual space can be represented by

V ′
Γ =

{
gn

∣∣
Γ
; g ∈ [H−1/2(∂ΩS)]3

}
.

According to [12, Theorem 6.9.2] there exists a bounded linear extension operator
E : H1/2(∂ΩS) → H1(ΩS) such that ϕ is the trace of Eϕ.

For (v, p) ∈ Wη,λ,k(ΩS) we define [Tη(v, p)n− 1
2 (k · n)v]n|Γ ∈ V ′

Γ by〈[
Tη(v, p)n− 1

2
(k · n)v

]
n

∣∣∣
Γ
,Φ

〉
H−1/2, H1/2

=
∫

ΩS

{
2ηDv : D(EΦ) + (λv) · (EΦ)

+
1
2
[
(EΦ) · (k · ∇v)− v · (k · ∇EΦ)

]
− p div(EΦ)

}
dy

for all Φ ∈ VΓ.
In order for

[
Tη(v, p)n− 1

2 (k · n)v
]
n

∣∣
Γ

to be well defined we shall show that its
definition does not depend on the choice of the extension operator E.
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Proposition 3.2. If (v, p) ∈ Wη,λ,k(ΩS), then
[
Tη(v, p)n− 1

2 (k ·n)v
]
n

∣∣
Γ

does not
depend on the choice of the extension operator E.

Proof. Consider Φ ∈ VΓ and Φ̃ ∈ [H1(ΩS)]3 with Φ̃ = Φ on ∂ΩS . Then EΦ− Φ̃ ∈
[H1

0 (ΩS)]3. If (v, p) ∈ Wη,λ,k(ΩS), then Green’s formula implies∫
ΩS

{
2ηDv : D(EΦ− Φ̃) + (λv) · (EΦ− Φ̃)

+
1
2
[
(EΦ− Φ̃) · (k · ∇v)− v · (k · ∇(EΦ− Φ̃))

]
− p div(EΦ− Φ̃)

}
dy = 0.

Hence
[
Tη(v, p)n − 1

2 (k · n)v
]
n

∣∣
Γ

does not depend on the choice of the extension
operator E. �

The following proposition ensures the unique solvability of the mixed Navier–
Dirichlet problem (10) for the Oseen resolvent system.

Proposition 3.3. For a constant b > 0 define

U b,η,λ,k(vS , pS) =
(
vS

∣∣
∂ΩS\Γ

, vS
τ

∣∣
Γ
,

[
Tη(v, p)n− 1

2
(k · n)v

]
n

∣∣∣
Γ

+ bvn

∣∣
Γ

)
.

Then U b,η,λ,k : Wη,λ,k(ΩS) → WΓ × V ′
Γ is an isomorphism.

Hence for f ∈ [H1/2(∂ΩS)]3, g ∈ [H−1/2(∂ΩS)]3 there exists a unique solution
of the problem (10), and (vS , pS) is a solution of the problem (10) if and only if
(vS , pS) ∈ Wη,λ,k(ΩS) and

U b,η,λ,k(vS , pS) =
(
f
∣∣
∂ΩS\Γ

, fτ
∣∣
Γ
, gn

∣∣
Γ

)
.

Proof. Using the Green formula we obtain that (vS , pS) is a solution of problem
(10) if and only if

(vS , pS) ∈ Wη,λ,k(ΩS) and U b,η,λ,k(vS , pS) = (f |∂ΩS\Γ fτ |Γ, gn|Γ).

Moreover, the definition of U b,η,λ,k implies that

U b,η,λ,k : Wη,λ,k(ΩS) → WΓ × V ′
Γ

is a bounded linear operator.
As next we have to show that U b,η,λ,k : Wη,λ,k(ΩS) → WΓ×V ′

Γ is an isomorphism.

We suppose first that λ ≡ 0 and k = 0. In this case it is shown in [18] that the
problem (10) is uniquely solvable and

U b,η,0,0 : Wη,0,0(ΩS) → WΓ × V ′
Γ

is an isomorphism.

We prove the proposition for arbitrary λ and k using a compact perturbation
argument. One of the problem in the analysis of the system (10) is that the operator
U b,η,λ,k is defined on the space Wη,λ,k(ΩS) that depends on η, λ and k. To overcome
this problem we extend these operators on some common space. Denote

H(ΩS ,div) =
{
v ∈ [H1(ΩS)]3; div v = 0

}
.
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Define the operator T b,η,λ,k
1 : H(ΩS ,div)× L2(ΩS) → V ′Γ by

〈T b,η,λ,k
1 (v, p),Φ〉 =

∫
ΩS

[
2ηDv : DΦ + λv ·Φ− p div Φ

+
1
2
[
Φ · (k · ∇v)− v · (k · ∇Φ)

]]
dy +

∫
∂ΩS

bv ·Φ dσy

for Φ ∈ VΓ, and the operator T b,η,λ,k
2 : H(ΩS ,div)× L2(ΩS) → WΓ × V ′Γ by

T b,η,λ,k
2 (v, p) =

(
v
∣∣
∂ΩS\Γ

, vτ

∣∣
Γ
, T b,η,λ,k

1 (v, p)
)

.

Notice that
T b,η,λ,k

2 (v, p) = (f ,g)

for f ∈ WΓ and g ∈ V ′Γ means that

− η∆v + λv + k · ∇v +∇p = g, div v = 0 in ΩS ,

v = f on ∂ΩS \ Γ,

vτ = fτ ,
[
Tη(v, p)n + bv − 1

2
(k · n)v

]
n

= gn on Γ.

In the following we show that

T b,η,λ,k
2 : H(ΩS ,div)× L2(ΩS) → WΓ × V ′Γ

is an isomorphism.
To do so, first suppose that λ ≡ 0, k = 0. If T b,η,0,0

2 (v, p) = 0 then (v, p) is a
solution of the problem (10) with λ ≡ 0, k = 0 and with homogeneous boundary
conditions. For this case we have proved in [18] that (v, p) = 0.

Let now (f ,g) ∈ WΓ × V ′Γ be given. Then g ∈ [H1(ΩS)3]′ and according to [11,
Chapter IV, Theorem 1.1] there exists (ṽ, p̃) ∈ [H1(ΩS)]3 × L2(ΩS) such that

−η∆ṽ +∇p̃ = g, div ṽ = 0 in ΩS ,

ṽ = 0 on ∂ΩS .

This means that T b,η,0,0
1 (ṽ, p̃)−g is supported on ∂ΩS , and hence g−T b,η,0,0

1 (ṽ, p̃) ∈
V ′

Γ. Moreover, in [18] we have proved that there exists (u, π) ∈ Wη,0,0(ΩS) such
that(

u
∣∣
∂ΩS\Γ

,uτ

∣∣
Γ

)
=

(
f
∣∣
∂ΩS\Γ

, fτ
∣∣
Γ

)
and T b,η,0,0

1 (u, π) = g − T b,η,0,0
1 (ṽ, p̃).

Consider v = ṽ + u and p = p̃ + π. Then from the definition of ṽ and u we
obtain div v = 0 and

T b,η,0,0
2 (v, p) =

(
f
∣∣
∂ΩS\Γ

, fτ
∣∣
Γ
,g

)
.

This implies that

T b,η,0,0
2 : H(ΩS ,div)× L2(ΩS) → WΓ × V ′Γ

is an isomorphism.
Next we consider a general matrix function λ with bounded entries and k ∈

R3, such that λ satisfies the assumption (8). Then, Sobolev’s imbedding theorem
ensures that

T b,η,λ,k
2 − T b,η,0,0

2 : H(ΩS ,div)× L2(ΩS) → WΓ × V ′Γ
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is a compact operator. Since T b,η,0,0
2 : H(ΩS ,div) × L2(ΩS) → WΓ × V ′Γ is an

isomorphism, the operator T b,η,λ,k
2 : H(ΩS ,div)× L2(ΩS) → WΓ × V ′Γ is Fredholm

with index 0.
Consider now (v, p) ∈ H(ΩS ,div) × L2(ΩS) such that T b,η,λ,k

2 (v, p) = 0. Then
(v, p) ∈ Wη,λ,k(ΩS), v = 0 on ∂ΩS \ Γ, and vτ = 0 on Γ. Since div v = 0, we have

0 = 〈T1
b,η,λ,k(v, p),v〉 =

∫
ΩS

[
2η|Dv|2 + (λv) · v

]
dy +

∫
∂ΩS

b|v|2 dσy.

Thus Dv ≡ 0 and v = 0 on ∂ΩS . Since Dv ≡ 0, we have that v is linear by [17,
Lemma 3.1]. Since ∆v = 0 in Ω and v = 0 on ∂Ω, we infer that v ≡ 0. So, (v, p)
is a solution of the problem (10) with λ ≡ 0, k = 0, f ≡ 0, g ≡ 0. Therefore p ≡ 0.
Hence, the operator T b,η,λ,k

2 : H(ΩS ,div) × L2(ΩS) → WΓ × V ′Γ is a Fredholm
operator with index 0 and with trivial kernel, so it is an isomorphism.

From the definition of T b,η,λ,k
1 (v, p) we have that T b,η,λ,k

1 (v, p) is supported on
∂ΩS if and only if (v, p) ∈ Wη,λ,k(ΩS). Hence, T b,η,λ,k

1 (v, p) ∈ V ′
Γ if and only if

(v, p) ∈ Wη,λ,k(ΩS). Then, since T b,η,λ,k
2 : H(ΩS ,div)× L2(ΩS) → WΓ × V ′Γ is an

isomorphism, we have that U b,η,λ,k = T b,η,λ,k
2 : Wη,λ,k(ΩS) → WΓ × V ′

Γ is also an
isomorphism. �

4. Robin type problem

The second auxiliary problem is the following Robin problem, related to the
generalized Darcy equations,

div(K∇p) = 0 in ΩD,(12)

nD ·K∇p + p = f on ∂ΩD.(13)

Here nD is the unit exterior normal of ΩD and f ∈ H−1/2(∂ΩD). For p ∈ H1(ΩD)
we define

(14) 〈∂D
Kp, ϕ〉 ≡

∫
ΩD

(K ∇p) · ∇ϕ dy, ϕ ∈ H1(ΩD).

We remark that ∂D
Kp is supported on ∂ΩD, i.e. ∂D

Kp ∈ H−1/2(∂ΩD), if and only if
p is a solution of (12) in the sense of distributions (a weak solution). If this is true
then ∂D

Kp has a meaning of the conormal derivative nD · K(x)∇p from (13), i.e.
∂D

Kp = nD ·K∇p.

Definition 4.1. We say that p ∈ H1(ΩD) is a solution of the Robin problem (12)–
(13) if

(15) 〈UKp, ϕ〉 := 〈∂D
Kp, ϕ〉+

∫
∂ΩD

p ϕ dσy = 〈f, ϕ〉 ∀ϕ ∈ H1(ΩD).

Proposition 4.2. The operator

UK : H1(ΩD;K) → H−1/2(∂ΩD)

is an isomorphism, where

H1(ΩD;K) =
{
p ∈ H1(ΩD); div(K∇p) = 0

}
.

Hence if f ∈ H−1/2(∂ΩD) then there exists a unique solution of the Robin
problem (12)–(13), and u ∈ H1(ΩD) is a solution of this problem if and only if
u ∈ H1(ΩD;K) and UKu = f .
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Proof. From (14) and (15), and the assumption on K, we have that 〈UKp, ϕ〉 de-
fines an inner product on H1(ΩD) and the corresponding norm is equivalent to
the original norm in H1(ΩD). According to the Riesz representation theorem
UK : H1(ΩD) → [H1(ΩD)]′ is an isomorphism. The space H−1/2(∂ΩD) is a closed
subspace of the dual space [H1(ΩD)]′ formed by distributions from [H1(ΩD)]′ sup-
ported on ∂ΩD. Since H1(ΩD;K) = U−1

K ([H1(ΩD)]′), we obtain the assertion
stated in the proposition. �

5. Generalized Oseen–Darcy problem

In this section we shall study the original coupled problem (1)–(6). Since vD ·n =
vS · n + h on Γ, we can rewrite (6) as[

Tη(vS , pS)n− 1
2
(k · n)vS

]
· n + βpD + (α + γ)vS · n = g̃ · n

or in the vector form[
Tη(vS , pS)n− 1

2
(k · n)vS

]
n

+ βpDn + (α + γ)vS
n = g̃n,

where g̃n = gn − hn. Instead of this transmission condition we can consider a bit
more general condition

(16)
[
Tη(vS , pS)n− 1

2
(k · n)vS

]
n

+ βpDn + (AvS)n = g̃n on Γ,

where A is a matrix function of the type 3 × 3 with Aij ∈ L∞(∂ΩS), which is
nonnegative on Γ, i.e.

(17)
(
A(x)ξ

)
· ξ ≥ 0 ∀ x ∈ Γ, ∀ ξ ∈ R3.

We shall study the transmission problem (1)–(5), (16) under assumption g̃ ∈
[H−1/2(∂ΩS)]3, h ∈ H−1/2(∂ΩD), and f ∈ [H1/2(ΩS)]3.

Definition 5.1. We say that (vS , pS) ∈ [H1(ΩS)]3 × L2(ΩS) and (vD, pD) ∈
[L2(ΩD)]3 ×H1(ΩD) is a solution of the problem (1)–(5), (16) if

(i) (vS , pS) is a solution of the system (1) in the sense of distributions,
i.e. (vS , pS) ∈ Wη,λ,k(ΩS),

(ii) (vD, pD) is a solution of the system (2) in the sense of distributions,
i.e. pD ∈ H1(ΩD;K) and vD = −K∇pD in ΩD,

(iii) the boundary conditions vS = f on ∂ΩS \ Γ and vS
τ = fτ on Γ are satisfied

in the sense of traces,

(iv)
[
Tη(vS , pS)n− 1

2
(k · n)vS

]
n

∣∣
Γ

+ βpDnχΓ

∣∣
Γ

+ [AvS ]n
∣∣
Γ

= g̃n

∣∣
Γ

and

∂D
KpD = h + vS · nχΓ.

Here χΓ is the characteristic function of Γ.

First we show the uniqueness of a solution (vS , pS) ∈ [H1(ΩS)]3 × L2(ΩS)/R
and (vD, pD) ∈ [L2(ΩD)]3 ×H1(ΩD)/R of the problem (1)–(5), (16).

Proposition 5.2. Let (vS , pS) ∈ [H1(ΩS)]3×L2(ΩS) and (vD, pD) ∈ [L2(ΩD)]3×
H1(ΩD) be a solution of the problem (1)–(5), (16) with f ≡ 0, h ≡ 0, and g̃ ≡ 0.
Then there exists a constant c such that pS = βc, vS ≡ 0, vD ≡ 0, and pD = c.
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On the other hand, if pS = βc, vS ≡ 0, vD ≡ 0, pD = c for some constant c,
then (vS , pS ,vD, pD) is a solution of the problem (1)–(5), (16) with f ≡ 0, h ≡ 0,
and g̃ ≡ 0.

Proof. Since vS = 0 on ∂ΩS \ Γ and vS
τ = 0 on Γ, we have vS ∈ VΓ. Since vS

τ = 0
on Γ, we have vS · (AvS)n = vS · (AvS) on Γ. Using the fact that

∂D
KpD = vS · nχΓ

and [
Tη(vS , pS)n− 1

2
(k · n)vS

]
n

∣∣∣
Γ

+ βpDnχΓ

∣∣
Γ

+
(
AvS

)
n

∣∣
Γ

= 0,

we obtain

0 =
〈[

Tη(vS , pS)n− 1
2
(k · n)vS

]
n

∣∣
Γ

+ βpDnχΓ

∣∣
Γ

+ (AvS)n
∣∣
Γ
,vS

〉
=

∫
ΩS

[
2η|DvS |2 + (λvS) · vS

]
dy + β

〈
∂D

KpD, pD
〉

+
∫

Γ

vS · (AvS)ndσy

=
∫

ΩS

[
2η|DvS |2 + (λvS) · vS

]
dy + β

∫
ΩD

(K∇pD) · ∇pDdy +
∫

Γ

vS · (AvS)dσy

≥
∫

ΩS

2η|DvS |2dy + aβ

∫
ΩD

|∇pD|2dy.

From the last inequality we deduce that ∇pD = 0 in ΩD and DvS = 0 in ΩS .
Hence pD is constant on each component of Ω and vD = −K∇pD = 0.

According to (5) we have vS ·n = vD ·n = 0 on Γ. Since vS = 0 on ∂ΩS \Γ and
vS

τ = 0 on Γ, we infer that vS = 0 on ∂ΩS . Using the fact that DvS ≡ 0, we obtain
that the functions vS

j , for j = 1, 2, 3, are affine (see [16, Lemma 6]), and therefore
harmonic. The maximum principle for harmonic functions yields that vS

j ≡ 0, for
j = 1, 2, 3.
Using the equation (1) and the fact that vS ≡ 0, we obtain ∇pS = η∆vS−λvS−k ·
∇v = 0. Thus there exists a constant c̃ such that pS = c̃.

We have proved that pD is constant on each component of Ω, vD ≡ 0, vS ≡ 0
and pS ≡ c̃. Then, using the boundary conditions 0 = [Tη(vS , pS)nS − 1

2 (k ·n)vS ] ·
n + βpD + (AvD) · n = −c̃ + βpD on Γ, we conclude that pD = c̃/β. Considering
c = βc̃ we obtain the first statement of the proposition.

Substituting pS = βc, vS ≡ 0, vD ≡ 0, pD = c, with some constant c, into
(1)–(5), (16), we obtain that the equations are satisfied for f ≡ 0, h ≡ 0, and g̃ ≡ 0.

�

Lemma 5.3. Let g̃ ∈ [H−1/2(∂ΩS)]3, f ∈ [H1/2(∂ΩS)]3, h ∈ H−1/2(∂ΩD). If
there exists a solution of the problem (1)–(5), (16), then

(18) 〈h, 1〉 =
∫

∂ΩS\Γ
f · nS dσy.

Proof. Let (vS , pS) ∈ [H1(ΩS)]3×L2(ΩS) and (vD, pD) ∈ [L2(ΩD)]3×H1(ΩD) be
a solution of the problem (1)–(5), (16). For ϕ ≡ 1 we have

〈∂D
KpD, 1〉 =

∫
ΩD

(K∇pD) · ∇ϕ dy = 0.
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Since div vS = 0, Green’s theorem yields

(19)
∫

∂ΩS

vS · nS dσy = 0,

see e.g. [11, Chapter 4]. Using the fact that ∂D
KpD = vD · n and the equality (19),

we obtain

(20)
0 = 〈∂D

KpD, 1〉 = 〈h, 1〉+
∫

Γ

vS · nS dσy −
∫

∂ΩS

vS · nS dσy

= 〈h, 1〉 −
∫

∂ΩS\Γ
f · nS dσy.

�

Theorem 5.4. Consider g̃ ∈ [H−1/2(∂ΩS)]3, f ∈ [H1/2(∂ΩS)]3, h ∈ H−1/2(∂ΩD).
Then there exists a solution of the problem (1)–(5), (16) if and only if the compa-
tibility condition (18) is satisfied.

Proof. We notice that (vS , pS) and (vD, pD) is a solution of the problem (1)–(5),
(16) if and only if (vS , pS) ∈ Wη,λ,k(ΩS), pD ∈ H1(ΩD;K) and vD = −K∇pD

together with
U(vS , pS , pD) =

(
f
∣∣
∂ΩS\Γ

, fτ
∣∣
Γ
, g̃n

∣∣
Γ
, h

)
,

where the operator U : Wη,λ,k(ΩS) × H1(ΩD;K) → WΓ × V ′
Γ × H−1/2(∂ΩD) is

given by

U(vS , pS , pD) =
(
vS

∣∣
∂ΩS\Γ

, vS
τ

∣∣
Γ
,
[
Tη(vS , pS)n− 1

2
(k · n)vS

]
n

∣∣
Γ

+βpDn
∣∣
Γ

+
[
AvS

]
n

∣∣
Γ
, ∂D

KpD − vS · nχΓ

)
.

We also define the operator Ũ : Wη,λ,k(ΩS)×H1(ΩD;K) → WΓ×V ′
Γ×H−1/2(∂ΩD)

as
Ũ(vS , pS , pD)

=
(
vS

∣∣
∂ΩS\Γ

,vS
τ

∣∣
Γ
,
[
Tη(vS , pS)n− 1

2
(k · n)vS

]
n

∣∣
Γ

+
[
vS
n + βpDn

]∣∣
Γ
, ∂D

KpD + pD
)
.

Notice that

(Ũ − U)(vS , pS , pD) =
(
0, 0,vS

n

∣∣
Γ
−

[
AvS

]
n

∣∣
Γ
,vS · nχΓ + pD

)
.

Consider fixed [F,G] ∈ WΓ × V ′
Γ and h ∈ H−1/2(∂ΩD). According to Proposi-

tion 4.2 there exists a unique pD ∈ H1(ΩD;K) such that ∂D
KpD + pD = h. Propo-

sition 3.3 ensures the existence of a unique (vS , pS) ∈ Wη,λ,k(ΩS) such that(
vS

∣∣
∂ΩS\Γ

,vS
τ

∣∣
Γ
,
[
Tη(vS , pS)n− 1

2
(k · n)vS

]
n

∣∣
Γ

+ vS
n

∣∣
Γ

)
=

(
F,

[
Gn − βpDn

]∣∣
Γ

)
.

Hence Ũ : Wη,λ,k(ΩS)×H1(ΩD;K) → WΓ×V ′
Γ×H−1/2(∂ΩD) is an isomorphism.

The operator U − Ũ : Wη,λ,k(ΩS) × H1(ΩD;K) → WΓ × V ′
Γ × H−1/2(∂ΩD) is

compact by the Sobolev imbedding theorem. Thus the operator U is a Fredholm
operator with index 0. By Proposition 5.2 we have that the dimension of the kernel
of U is equal to 1. Therefore the range of U is a subspace of WΓ×V ′

Γ×H−1/2(∂ΩD)
of the codimension 1. Hence, using Lemma 5.3 we deduce that there exists a solution
of the problem (1)–(5), (16) if and only if (18) holds true. �
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