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QUANTITATIVE COARSE EMBEDDINGS OF QUASI-BANACH

SPACES INTO A HILBERT SPACE

MICHAL KRAUS

Abstract. We study how well a quasi-Banach space can be coarsely embed-
ded into a Hilbert space. Given any quasi-Banach space X which coarsely

embeds into a Hilbert space, we compute its Hilbert space compression ex-

ponent. We also show that the Hilbert space compression exponent of X is
equal to the supremum of the amounts of snowflakings of X which admit a

bi-Lipschitz embedding into a Hilbert space.

1. Introduction

Let (M,dM ) and (N, dN ) be metric spaces and let T : M → N be a map-
ping. Then T is called a coarse embedding if there are nondecreasing functions
ρ1, ρ2 : [0,∞)→ [0,∞) such that limt→∞ ρ1(t) =∞ and

ρ1(dM (x, y)) ≤ dN (T (x), T (y)) ≤ ρ2(dM (x, y)) for all x, y ∈M.

We say that M coarsely embeds into N if there is a coarse embedding of M into
N . The reader should be warned that what we call a coarse embedding is called a
uniform embedding by some authors. We use the term coarse embedding because in
the nonlinear geometry of Banach spaces the term uniform embedding is used for a
uniformly continuous injective mapping whose inverse is also uniformly continuous.

Randrianarivony [Ra, Theorem 1] gave a characterization of those quasi-Banach
spaces which coarsely embed into a Hilbert space. More precisely, she proved that a
quasi-Banach space coarsely embeds into a Hilbert space if and only if it is linearly
isomorphic to a subspace of L0(µ) for some probability space (Ω,B, µ) (L0(µ) is the
space of all equivalence classes of real measurable functions on (Ω,B, µ) with the
topology of convergence in probability). In this note, we are interested in how well
a quasi-Banach space can be coarsely embedded into a Hilbert space. To measure
it, we will use the following notion introduced by Guentner and Kaminker [GK,
Definition 2.2].

Suppose again that (M,dM ) and (N, dN ) are metric spaces, with M unbounded.
Recall that a mapping T : M → N is large-scale Lipschitz if there is A > 0 and
B ≥ 0 such that dN (T (x), T (y)) ≤ AdM (x, y)+B for all x, y ∈M . The compression
exponent of M in N , denoted by αN (M), is defined to be the supremum of all α ≥ 0
for which there is a large-scale Lipschitz mapping T : M → N and constants C, t > 0
such that dN (T (x), T (y)) ≥ CdM (x, y)α if dM (x, y) ≥ t (with the understanding
that αN (M) = 0 if there is no such α). It is clear that αN (M) ≤ 1 (since M is
unbounded) and that if αN (M) > 0, then M coarsely embeds into N . The closer
αN (M) is to one, the “better” we can coarsely embed M into N . The Hilbert space
compression exponent of M , denoted by α(M), is the supremum of all α ≥ 0 for
which there is a Hilbert space H, a large-scale Lipschitz mapping T : M → H
and constants C, t > 0 such that ‖T (x) − T (y)‖H ≥ CdM (x, y)α if dM (x, y) ≥ t.
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2 MICHAL KRAUS

Equivalently,
α(M) = sup

H is a Hilbert space
αH(M).

Analogous remarks to those on αN (M) apply to α(M) as well.
Our method of establishing a lower estimate for the Hilbert space compression

exponent of a quasi-Banach space actually gives a stronger information. We will
use one more type of parameter which will capture this additional information.

Let (M,dM ) and (N, dN ) be metric spaces. Recall that a mapping T : M → N
is called a bi-Lipschitz embedding if there are constants A,B > 0 such that

(1) AdM (x, y) ≤ dN (T (x), T (y)) ≤ BdM (x, y) for all x, y ∈M.

Recall also that if 0 < α < 1, then dαM is also a metric on M (the space (M,dαM )
is sometimes called the α-snowflaked version of (M,dM )). We denote by sN (M)
the supremum of all 0 < α ≤ 1 for which the space (M,dαM ) admits a bi-Lipschitz
embedding into (N, dN ). Let further s(M) be the supremum of all 0 < α ≤ 1 for
which the space (M,dαM ) admits a bi-Lipschitz embedding into a Hilbert space.
It is clear that if M is unbounded, then 0 ≤ sN (M) ≤ αN (M) ≤ 1 and 0 ≤
s(M) ≤ α(M) ≤ 1. The parameter sN (M) was introduced and studied by Albiac
and Baudier [AB] in the case when M and N were `p-spaces.

We use symbols αN (M), α(M), sN (M) and s(M) when the metrics on M and
N are clear from the context, otherwise we write for example αN (M,dM ).

The values of s(X) and α(X) are known if X is a space `p or Lp(0, 1) for 0 <
p < ∞. Let us recall the results. Recall first that if 0 < p < 1, then the canonical
metric on `p is defined by dp(x, y) =

∑∞
i=1 |xi − yi|p, where x = (xi), y = (yi), and

similarly the canonical metric on Lp(0, 1) is defined by dp(f, g) =
∫ 1

0
|f(t)−g(t)|pdt.

Baudier [Ba, Corollaries 2.23 and 2.19] proved that if 0 < p < q < ∞ and q ≥ 1,
then

(2) s`q (`p) = α`q (`p) =
max{p, 1}

q

(the case q = 1 was already proved in [Al, Proposition 4.1(ii)]). It follows that if
0 < p ≤ 2, then

(3) s(`p) = α(`p) =
max{p, 1}

2
.

If p > 2, then `p does not coarsely embed into a Hilbert space (this was first proved
in [JR]), hence s(`p) = α(`p) = 0.

It also follows from [Ba, after Corollary 2.19], [MN, Remark 5.10] and [Al, Propo-
sition 6.5] that if 0 < p ≤ 2, q ≥ 1 and p < q, then

sLq(0,1)(Lp(0, 1)) = αLq(0,1)(Lp(0, 1)) =
max{p, 1}
min{q, 2}

.

Hence if 0 < p ≤ 2, then

(4) s(Lp(0, 1)) = α(Lp(0, 1)) =
max{p, 1}

2
.

If p > 2, then s(Lp(0, 1)) = α(Lp(0, 1)) = 0 since Lp(0, 1) does not coarsely embed
into a Hilbert space (because it contains an isometric copy of `p).

Let us mention that unlike the case of the spaces `p described in (2), the precise
values of sLq(0,1)(Lp(0, 1)) and αLq(0,1)(Lp(0, 1)) are not known if 2 < p < q.
However, some estimates are known. If 2 < p < q, a construction due to Mendel
and Naor [MN, Remark 5.10] shows that αLq(0,1)(Lp(0, 1)) ≥ sLq(0,1)(Lp(0, 1)) ≥ p

q ,

and Naor and Schechtman [NS] recently proved that sLq(0,1)(Lp(0, 1)) < 1.
In this note, we compute the values of s(X) and α(X) for any quasi-Banach

space X which coarsely embeds into a Hilbert space. A few remarks are in order.
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If X is a Banach space with a norm ‖.‖, then the canonical metric on X is given
by (x, y) 7→ ‖x − y‖ and there is no problem with the definition of s(X) and
α(X). However, if X is a general quasi-Banach space, we cannot speak about some
canonical metric on X. The usual way how to introduce a metric on X is to use
a theorem of Aoki [Ao] and Rolewicz [Ro] (see also [BL, Proposition H.2]), which
says that there is 0 < r ≤ 1 and an equivalent quasi-norm ‖.‖ on X which is r-
subadditive, that is, ‖x+y‖r ≤ ‖x‖r +‖y‖r for all x, y ∈ X. Then (x, y) 7→ ‖x−y‖r
is an invariant metric on X, which induces the same topology on X as the original
quasi-norm. Of course, there are many such metrics on X and s(X) and α(X)
depend on the metric. (On the other hand, it is clear that the coarse embeddability
of X into a Hilbert space does not depend on the choice of the above described
metric. When we say that X coarsely embeds into a Hilbert space, it is understood
that it is with respect to any such metric on X.) So, if X is a quasi-Banach space
which coarsely embeds into a Hilbert space, we compute s(X) and α(X) with
respect to any such metric on X. The result is stated in Theorem 3.1. If X does not
coarsely embed into a Hilbert space, then, of course, s(X) = α(X) = 0 with respect
to any such metric on X. The corresponding results for the spaces `p and Lp(0, 1),
0 < p <∞, mentioned above are a particular case of this since the canonical metrics
on `p and Lp(0, 1) for any 0 < p <∞ are of the form described above.

2. Preliminaries

The notation and terminology is standard, as may be found for example in [BL].
All vector spaces throughout the paper are supposed to be over the real field.
Recall that if (Ω,B, µ) is a measure space, where µ is a nonnegative measure, and
0 < p < ∞, then Lp(µ) is the (quasi-)Banach space of all equivalence classes of

real measurable functions f on (Ω,B, µ) for which ‖f‖p =
(∫
|f |pdµ

) 1
p <∞. If 1 ≤

p <∞, then ‖.‖p is a norm on Lp(µ), whereas if 0 < p < 1, it is only a quasi-norm
(except in the trivial cases when Lp(µ) is zero or one-dimensional). If 0 < p < 1,
then the canonical metric on Lp(µ) is given by dp(f, g) = ‖f − g‖pp =

∫
|f − g|pdµ.

If 1 ≤ p < ∞, then the canonical metric on Lp(µ) is given by the norm (as on
any Banach space), and we denote it by dp as well, so dp(f, g) = ‖f − g‖p. If not
stated otherwise, all metric properties of the space Lp(µ) for any 0 < p < ∞ are
regarded with respect to the metric dp. Special cases like Lp(0, 1), `p and `np , n ∈ N,
are defined in a standard way.

Let X be a quasi-Banach space (for a brief overview of quasi-Banach spaces see
for example [BL, Appendix H]). As we have already mentioned, by the theorem
of Aoki and Rolewicz, there is 0 < r ≤ 1 and an equivalent quasi-norm ‖.‖ on X
which is r-subadditive, that is, ‖x+y‖r ≤ ‖x‖r+‖y‖r for all x, y ∈ X. In particular,
(x, y) 7→ ‖x− y‖r is an invariant metric on X, which we denote by d‖.‖,r and which
induces the same topology on X as the original quasi-norm. Let 0 < r ≤ 1. An
r-subadditive quasi-norm on X is called an r-norm (so a 1-norm is just a norm). If
there is an equivalent r-norm on X, then we say that X is r-normable (and instead
of 1-normable we just say normable). We denote by MX the set of all 0 < r ≤ 1
for which X is r-normable. Furthermore, we define rX = supMX . By the theorem
of Aoki and Rolewicz, we have MX 6= ∅ and hence rX > 0. It is clear that MX is
either the interval (0, rX ] or (0, rX).

For example, if X is a Banach space, then clearly MX = (0, 1] and rX = 1.
Let 0 < p < 1 and consider a space Lp(µ) for some nonnegative measure µ. Then
‖.‖p is a p-norm on Lp(µ) and the canonical metric dp on Lp(µ) is the metric
d‖.‖p,p. If Lp(µ) is in addition infinite-dimensional, then it is not hard to prove that
MLp(µ) = (0, p], and hence rLp(µ) = p.
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As we have said, if X is a quasi-Banach space which coarsely embeds into a
Hilbert space, then our goal is to compute s(X, d‖.‖,r) and α(X, d‖.‖,r) for any
r ∈ MX and any equivalent r-norm ‖.‖ on X. To state (and prove) the result, we
will need the notion of type of a quasi-Banach space and some of its properties.

A quasi-Banach space X, equipped with a quasi-norm ‖.‖, is said to have type p,
where 0 < p ≤ 2, if there is a constant C > 0 such that for every n ∈ N and every
x1, . . . , xn ∈ X we have

E

∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

≤ Cp
n∑
i=1

‖xi‖p,

where E denotes the expectation with respect to a uniform choice of signs (ε1, . . . , εn) ∈
{−1, 1}n. Note that if |||.||| is a quasi-norm on X equivalent to ‖.‖, then (X, |||.|||)
has type p if and only if (X, ‖.‖) has type p. We define

pX = sup{0 < p ≤ 2 : X has type p}.
The quantities pX and rX are related as follows.

Lemma 2.1. Let X be a quasi-Banach space. Then rX = min{pX , 1}.

Proof. If r ∈ MX , then it is clear that X has type r. Hence rX ≤ pX and since
rX ≤ 1, we obtain rX ≤ min{pX , 1}.

Let us show that rX ≥ min{pX , 1}. If pX > 1, then, by [Ka2, Theorem 2.1(2)],
X is normable, and therefore rX = 1 = min{pX , 1}. If pX ≤ 1, then, by [Ka2,
Theorem 2.1(1)], rX ≥ pX = min{pX , 1}. �

In particular, it follows from Lemma 2.1 that if X is a quasi-Banach space, then
pX > 0 (since rX > 0). Let us mention that we will not actually need the full
strength of Lemma 2.1, but only the trivial inequality rX ≤ pX .

We will also use the following result. For Banach spaces it is the classical theorem
of Maurey and Pisier [MP] (see also [MS, 13.2. Theorem]). The generalization to
quasi-Banach spaces presented here was proved by Kalton [Ka1]. Recall that if
X and Y are quasi-Banach spaces and T : X → Y is a linear mapping, then one
defines ‖T‖ = sup{‖T (x)‖ : ‖x‖ ≤ 1}. A quasi-Banach space Y is said to be
finitely representable in a quasi-Banach space X if for every ε > 0 and every finite-
dimensional subspace E of Y there is a subspace F of X with dimF = dimE and
a linear isomorphism T : E → F such that ‖T‖ · ‖T−1‖ ≤ 1 + ε.

Theorem 2.2 (Kalton). Let X be an infinite-dimensional quasi-Banach space
equipped with an r-norm, where 0 < r ≤ 1. Then `pX is finitely representable
in X.

The above theorem follows from [Ka1, Theorem 4.6]. Let us mention that [Ka1,
Theorem 4.6] is stated for the so-called convexity type p(X) of X instead of for our
pX . However, it is not difficult to prove using the results of [Ka1] that p(X) = pX .

3. Main result

Theorem 3.1. Let X be a quasi-Banach space which coarsely embeds into a Hilbert
space. Then for every r ∈MX and every equivalent r-norm ‖.‖ on X we have

s(X, d‖.‖,r) = α(X, d‖.‖,r) = min
{pX

2r
, 1
}
.

Before we turn to the proof of the above theorem, let us make a few remarks.
First, note that Theorem 3.1 yields in particular that if X is a Banach space which
coarsely embeds into a Hilbert space, then

(5) s(X) = α(X) =
pX
2
.
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As we have said before, (3) and (4) follow from Theorem 3.1. Indeed, let 0 < p ≤ 2
and consider an infinite-dimensional space Lp(µ) for some nonnegative measure µ.
Then Lp(µ) coarsely embeds into a Hilbert space (see [No, Proposition 4.1] or
Lemma 3.2 bellow). If 1 ≤ p ≤ 2, then we can use (5) and obtain

s(Lp(µ)) = α(Lp(µ)) =
pLp(µ)

2
=
p

2
.

If 0 < p < 1, then Theorem 3.1 yields

s(Lp(µ)) = α(Lp(µ)) = s(Lp(µ), d‖.‖p,p) = α(Lp(µ), d‖.‖p,p)

= min

{
pLp(µ)

2p
, 1

}
=

1

2
.

In particular, this gives (3) and (4).
Let X be a quasi-Banach space which coarsely embeds into a Hilbert space, let

r ∈ MX and let ‖.‖ be an equivalent r-norm on X. By Theorem 3.1 and Lemma
2.1 we have

α(X, d‖.‖,r) = min
{pX

2r
, 1
}
≥ min

{
pX
2rX

, 1

}
≥ 1

2
,

and this estimate is of course sharp (α(`1) = 1
2 ). This is not true for general metric

spaces. For example, Arzhantseva, Druţu and Sapir [ADS, Theorem 1.5] proved
that for every α ∈ [0, 1] there is a finitely generated group, equipped with a word
length metric, that coarsely embeds into a Hilbert space and whose Hilbert space
compression exponent is equal to α.

Note also that in Theorem 3.1 we cannot omit the assumption that X coarsely
embeds into a Hilbert space. Indeed, if X is a quasi-Banach space which does not
coarsely embed into a Hilbert space, r ∈ MX and ‖.‖ is an equivalent r-norm on
X, then s(X, d‖.‖,r) = α(X, d‖.‖,r) = 0 < min

{
pX
2r , 1

}
, since pX > 0.

Let us now prove Theorem 3.1. Let us first consider the inequality s(X, d‖.‖,r) ≥
min

{
pX
2r , 1

}
. Our method of proof is a quantification of Randrianarivony’s proof

that if X is a quasi-Banach space which is linearly isomorphic to a subspace of
L0(µ) for some probability space (Ω,B, µ), then X coarsely embeds into a Hilbert
space [Ra, Proof of Theorem 1]. We will use the following well-known fact.

Lemma 3.2. Let 0 < p ≤ 2 and let (Ω,B, µ) be a measure space, where µ is a
nonnegative measure. Then there is a Hilbert space H and a mapping S : Lp(µ)→ H

such that ‖S(x)− S(y)‖H = ‖x− y‖
p
2
p for all x, y ∈ Lp(µ).

Proof. The function ‖.‖pp on Lp(µ) is negative definite by [BL, p. 186, Examples.
(iii)] (for a survey on negative definite kernels and functions see [BL, Chapter 8])
and ‖0‖pp = 0, and therefore, by [BL, Proposition 8.5(ii)], there is a Hilbert space

H and a mapping S : Lp(µ) → H such that ‖x − y‖pp = ‖S(x) − S(y)‖2H for all
x, y ∈ Lp(µ). Let us mention that the proof of [BL, Proposition 8.5(ii)] actually
gives a complex Hilbert space H, but it is easy to see that there is a real Hilbert
space H with the desired properties. �

Proof of s(X, d‖.‖,r) ≥ min
{
pX
2r , 1

}
in Theorem 3.1. Let r ∈MX and let ‖.‖ be an

equivalent r-norm on X.
Since X coarsely embeds into a Hilbert space, [Ra, Theorem 1] implies that there

is a probability space (Ω,B, µ) such that X is linearly isomorphic to a subspace
of L0(µ). By [BL, Theorem 8.15], then, the space X is linearly isomorphic to a
subspace of Lp(µ) for every 0 < p < pX .

Let p be such that 0 < p < pX and let ϕ : X → Lp(µ) be an isomorphism into.
Then there are A,B > 0 such that

A‖x‖ ≤ ‖ϕ(x)‖p ≤ B‖x‖ for every x ∈ X.
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By Lemma 3.2, there is a Hilbert space H and a mapping S : Lp(µ)→ H such that

‖S(x)− S(y)‖H = ‖x− y‖
p
2
p for all x, y ∈ Lp(µ).

Let T = S ◦ ϕ. Then T maps X into H and for all x, y ∈ X we have

A
p
2 (‖x− y‖r)

p
2r ≤ ‖T (x)− T (y)‖H ≤ B

p
2 (‖x− y‖r)

p
2r .

Hence if p is such that p
2r ≤ 1, then T is a bi-Lipschitz embedding of (X, d

p
2r

‖.‖,r)

into H. It follows that s(X, d‖.‖,r) ≥ min
{
pX
2r , 1

}
. �

Remark 3.3. The above proof actually shows that if r ∈MX and ‖.‖ is an equiv-
alent r-norm on X, then for every α > 0 such that α < pX

2r and α ≤ 1 the space
(X, dα‖.‖,r) admits a bi-Lipschitz embedding into a Hilbert space.

Since the inequality s(X, d‖.‖,r) ≤ α(X, d‖.‖,r) in Theorem 3.1 is trivial, to com-
plete the proof of Theorem 3.1 it only remains to prove the inequality α(X, d‖.‖,r) ≤
min

{
pX
2r , 1

}
.

First, let us recall several useful notions. Let (M,dM ) and (N, dN ) be metric
spaces and let T : M → N be a mapping. The Lipschitz constant of T is defined by

Lip(T ) = sup
x,y∈M,x6=y

dN (T (x), T (y))

dM (x, y)
.

If T : M → N is injective, then the distortion of T is defined by

distortion(T ) = Lip(T ) · Lip(T−1),

where T−1 is regarded as a mapping on T (M). Let us mention that if distortion(T ) <
∞, then T is a bi-Lipschitz embedding and distortion(T ) = inf BA , where the infi-
mum is taken over all constants A,B > 0 for which (1) holds. The distortion of M
in N is defined by

cN (M) = inf
T : M→N injective

distortion(T ).

A metric space (M,dM ) is called d-discrete, where d > 0, if dM (x, y) ≥ d for all
x, y ∈M,x 6= y. The diameter of M is defined by diam(M) = supx,y∈M dM (x, y).

We will use the following modification of a lemma of Austin [Au, Lemma 3.1],
which in its original form was used for estimating from above the compression
exponents in Lp-spaces of certain groups. A version of Austin’s lemma was also
used by Baudier [Ba, proof of Corollary 2.22] to show that if 0 < p ≤ 1 ≤ q < ∞,
then αLq

(`p) ≤ 1
min{q,2} .

Lemma 3.4. Let X be a quasi-Banach space, r ∈ MX and ‖.‖ be an equivalent
r-norm on X. Let Y be a Banach space. Suppose further that (Mn, δn), n ∈ N, are
finite d-discrete metric spaces, where d > 0, such that

• diam(Mn)→∞,
• there is γ ∈ (0, 1] and A,B > 0 such that for each n ∈ N there is a mapping
fn : Mn → X satisfying

Aδn(x, y)γ ≤ ‖fn(x)− fn(y)‖r ≤ Bδn(x, y) for all x, y ∈Mn,

• there is η ∈ (0, 1] and K > 0 such that cY (Mn) ≥ Kdiam(Mn)η for every
n ∈ N.

Then αY (X, d‖.‖,r) ≤ 1−η
γ .

Proof. If αY (X, d‖.‖,r) = 0, then the result is trivial, so suppose that αY (X, d‖.‖,r) >
0. Let α ∈ (0, αY (X, d‖.‖,r)] be such that there is a large-scale Lipschitz mapping
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T : (X, d‖.‖,r)→ Y and constants C, t > 0 such that ‖T (x)−T (y)‖Y ≥ C(‖x−y‖r)α
if ‖x− y‖r ≥ t. Then for some D > 0 we have

C(‖x− y‖r)α ≤ ‖T (x)− T (y)‖Y ≤ D‖x− y‖r if ‖x− y‖r ≥ t.

By rescaling if necessary, we may clearly suppose that t ≤ Adγ .
Let n ∈ N. Let us estimate from above the distortion of T ◦ fn : Mn → Y . If

x, y ∈Mn, x 6= y, then

‖fn(x)− fn(y)‖r ≥ Aδn(x, y)γ ≥ Adγ ≥ t,

hence

C(‖fn(x)− fn(y)‖r)α ≤ ‖T ◦ fn(x)− T ◦ fn(y)‖Y ≤ D‖fn(x)− fn(y)‖r,

and therefore

CAαδn(x, y)γα ≤ ‖T ◦ fn(x)− T ◦ fn(y)‖Y ≤ DBδn(x, y)

(in particular, T ◦ fn is injective). Consequently,

distortion(T ◦ fn) = Lip(T ◦ fn) · Lip
(
(T ◦ fn)−1

)
= max
x,y∈Mn,x 6=y

‖T ◦ fn(x)− T ◦ fn(y)‖Y
δn(x, y)

· max
x,y∈Mn,x6=y

δn(x, y)

‖T ◦ fn(x)− T ◦ fn(y)‖Y

≤ BD

AαC
max

x,y∈Mn,x 6=y
δn(x, y)1−γα

=
BD

AαC
diam(Mn)1−γα.

Hence

cY (Mn) ≤ BD

AαC
diam(Mn)1−γα

and from the assumption that cY (Mn) ≥ Kdiam(Mn)η it follows that

diam(Mn)η ≤ BD

AαCK
diam(Mn)1−γα.

Since diam(Mn) → ∞, we obtain η ≤ 1 − γα, and therefore α ≤ 1−η
γ . Hence

αY (X, d‖.‖,r) ≤ 1−η
γ . �

Proof of α(X, d‖.‖,r) ≤ min
{
pX
2r , 1

}
in Theorem 3.1. If the space X is finite-dimen-

sional, then the statement is trivial. So suppose that X is infinite-dimensional, and
let r ∈ MX and ‖.‖ be an equivalent r-norm on X. To obtain the upper estimate
for α(X, d‖.‖,r), we will use Lemma 3.4. The role of the metric spaces (Mn, δn) in
Lemma 3.4 will be played by the following sequence of metric spaces. For n ∈ N,
let Hn = {0, 1}n (the so-called Hamming cube), equipped with the `1 metric d1
(i.e. the metric inherited from `n1 when considering Hn as a subset of `n1 ). In other
words, the distance between two sequences from Hn is equal to the number of places
where they differ (this is also called the Hamming distance). Then (Hn, d1) is finite,
1-discrete and diam(Hn, d1) = n.

Let us first construct appropriate embeddings of the Hamming cubes Hn into
X. Let n ∈ N. By Theorem 2.2, there is a linear mapping Sn : `npX → X such that

‖x‖pX ≤ ‖Sn(x)‖ ≤ 2‖x‖pX for every x ∈ `npX .

Define a mapping ϕn : Hn → `npX by (x1, . . . , xn) 7→ (x1, . . . , xn). Then for x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ Hn we have

‖ϕn(x)− ϕn(y)‖pX =

(
n∑
i=1

|xi − yi|pX
) 1

pX

=

(
n∑
i=1

|xi − yi|

) 1
pX

= d1(x, y)
1

pX ,
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where the second equality follows from the fact that |xi − yi| ∈ {0, 1} for every i.
Let fn = Sn ◦ ϕn : Hn → X. If x, y ∈ Hn, then

d1(x, y)
r

pX ≤ ‖fn(x)− fn(y)‖r ≤ 2rd1(x, y)
r

pX ≤ 2rd1(x, y),

where the last inequality holds since d1(x, y) is either zero or greater or equal to
one and r

pX
≤ 1 by Lemma 2.1.

Now, let H be an infinite-dimensional Hilbert space. It follows from the work of
Enflo [En] (see also [Ma, 15.4.1 Theorem]) that cH(Hn, d1) =

√
n = diam(Hn, d1)

1
2

for every n ∈ N. We apply Lemma 3.4 and obtain

αH(X, d‖.‖,r) ≤
1− 1

2
r
pX

=
pX
2r
.

Hence α(X, d‖.‖,r) ≤ pX
2r , and since α(X, d‖.‖,r) ≤ 1, we have α(X, d‖.‖,r) ≤

min
{
pX
2r , 1

}
. �

Note that the above proof of the inequality α(X, d‖.‖,r) ≤ min
{
pX
2r , 1

}
in The-

orem 3.1 does not use the assumption that the space X coarsely embeds into a
Hilbert space.

Let us conclude with several remarks.

Remark 3.5. The inequality s(X, d‖.‖,r) ≤ min
{
pX
2r , 1

}
in Theorem 3.1 can easily

be proved using the notion of Enflo type.
Recall that a metric space (M,dM ) has Enflo type p, where 1 ≤ p <∞, if there

is a constant C > 0 such that for every n ∈ N and every f : {−1, 1}n →M we have

(6) E dM (f(ε), f(−ε))p ≤ Cp
n∑
i=1

E dM (f(ε), f(ε1, . . . , εi−1,−εi, εi+1, . . . , εn))p,

where E denotes the expectation with respect to a uniform choice of signs ε =
(ε1, . . . , εn) ∈ {−1, 1}n. We set

E-type(M) = sup{1 ≤ p <∞ : M has Enflo type p}

(note that this is a supremum of a nonempty set since M always has Enflo type 1
by the triangle inequality).

Now, let X be a quasi-Banach space, r ∈ MX and ‖.‖ be an equivalent r-norm
on X. It is easy to prove that then

E-type(X, d‖.‖,r) ≤
pX
r
.

Suppose that α ∈ (0, 1] is such that (X, dα‖.‖,r) admits a bi-Lipschitz embedding

into a Hilbert space H. It is well known that E-type(H) = 2 (this can be proved
following the ideas from [En]). Using [AB, Proposition 2.3] we obtain

E-type(X, d‖.‖,r)

α
≥ E-type(H) = 2,

hence

α ≤
E-type(X, d‖.‖,r)

2
≤ pX

2r
.

Therefore s(X, d‖.‖,r) ≤ min
{
pX
2r , 1

}
.

Note that as in the proof of the inequality α(X, d‖.‖,r) ≤ min
{
pX
2r , 1

}
in Theorem

3.1 we did not use the assumption that the space X coarsely embeds into a Hilbert
space.
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Remark 3.6. The choice of the `1 metric on the Hamming cubes Hn in the proof of
the inequality α(X, d‖.‖,r) ≤ min

{
pX
2r , 1

}
in Theorem 3.1 for X infinite-dimensional

was not essential. Given r ∈MX and an equivalent r-norm ‖.‖ onX, we can actually
use the `p metric dp on Hn for any p ∈ [1, 2) such that p ≤ pX

r (note that pX
r ≥ 1 by

Lemma 2.1 and that we do not need to consider the `p metrics for 0 < p < 1 since
they are all equal to the `1 metric on Hn). Indeed, take such a p. Then (Hn, dp)

is 1-discrete and diam(Hn, dp) = n
1
p for every n ∈ N. Following the same lines as

above, we construct for every n ∈ N a mapping fn : Hn → X such that for all
x, y ∈ Hn we have

dp(x, y)
pr
pX ≤ ‖fn(x)− fn(y)‖r ≤ 2rdp(x, y)

pr
pX ≤ 2rdp(x, y),

where the last inequality holds since dp(x, y) is either zero or greater or equal to
one and pr

pX
≤ 1 by our assumption on p. If H is an infinite-dimensional Hilbert

space, then cH(Hn, dp) = diam(Hn, dp)
1− p

2 for every n ∈ N (this may be proved
following the same lines as in [Ma, 15.4.1 Theorem]). Lemma 3.4 then yields

αH(X, d‖.‖,r) ≤
1− (1− p

2 )
pr
pX

=
pX
2r

and we again conclude that α(X, d‖.‖,r) ≤ min
{
pX
2r , 1

}
.

Besides taking p = 1, another natural choice would be to take p = max{pX , 1}
if pX < 2. If pX = 2, then we have trivially α(X, d‖.‖,r) ≤ 1 = min

{
pX
2r , 1

}
.

Remark 3.7. If pX > 1, we can give an alternative proof of the inequality
α(X, d‖.‖,r) ≤ min

{
pX
2r , 1

}
in Theorem 3.1 by reducing it to the case of `p-spaces,

which is already known from [Ba]. Suppose that X is an infinite-dimensional quasi-
Banach space with pX > 1 which coarsely embeds into a Hilbert space. By [Ka2,
Theorem 2.1(2)], X is normable, so we can assume that X is a Banach space.

Let us first estimate α(X) (that is, the Hilbert space compression exponent of X
with respect to the canonical metric on X given by the norm). It is easy to see that
there is an infinite-dimensional separable closed subspace Y of X such that pY =
pX . Clearly, the space Y coarsely embeds into a Hilbert space. By [Ra, Theorem
1], there is a probability space (Ω,B, µ) such that Y is linearly isomorphic to a
subspace of L0(µ). Since pY > 1, [BL, Theorem 8.15] implies that Y is isomorphic
to a subspace of L1(µ). Since Y is separable, [Wo, III.A.2] implies that there is a
separable L1(µ′) for some nonnegative measure µ′ such that Y is isomorphic to a
subspace of L1(µ′). It follows from the isomorphic classification of separable L1-
spaces [Wo, III.A.1] that Y is isomorphic to a subspace of L1(0, 1). By a theorem
of Guerre and Levy [GL, Théorème 1], there is a subspace of Y isomorphic to `pY .
Hence, by (3),

α(X) ≤ α(`pY ) =
pY
2

=
pX
2
.

Now, let r ∈ MX = (0, 1] and let ‖.‖ be an equivalent r-norm on X. It follows
easily from the definition that α(X, d‖.‖,r) ≤ 1

rα(X), and therefore α(X, d‖.‖,r) ≤
1
r
pX
2 . Hence α(X, d‖.‖,r) ≤ min

{
pX
2r , 1

}
.

Remark 3.8. The proof of the inequality α(X, d‖.‖,r) ≤ min
{
pX
2r , 1

}
in Theorem

3.1 can be generalized to give an upper estimate for compression exponents of
quasi-Banach spaces in general Banach spaces.

First, suppose that a metric space (M,dM ) has Enflo type p ∈ [1,∞) with a
constant C > 0 (see Remark 3.5 for the definition). Let n ∈ N and consider the `1
metric d1 on {−1, 1}n. Let f : {−1, 1}n →M be injective. Using the estimate

1

Lip(f−1)
d1(ε, ε′) ≤ dM (f(ε), f(ε′)) ≤ Lip(f)d1(ε, ε′) for all ε, ε′ ∈ {−1, 1}n,
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we obtain easily from (6) that

distortion(f) = Lip(f) · Lip(f−1) ≥ 1

C
n1−

1
p .

Hence (recall that Hn = {0, 1}n)

cM (Hn, d1) = cM ({−1, 1}n, d1) ≥ 1

C
n1−

1
p .

Now, let X be a quasi-Banach space, r ∈MX , ‖.‖ be an equivalent r-norm on X,
and let Y be a Banach space. Let us show that then αY (X, d‖.‖,r) ≤ min{ pXrpY , 1}.
If X is finite-dimensional, then the statement is trivial. So suppose that X is
infinite-dimensional. If pY = 1, then, since r ≤ pX by Lemma 2.1, we have triv-
ially αY (X, d‖.‖,r) ≤ 1 = min{ pXrpY , 1}. So suppose that pY > 1. If Y has type

p > 1, then, by a theorem of Pisier [Pi, Theorem 7.5], it has Enflo type q for every
1 ≤ q < p. So if p ∈ (1, pY ), then Y has Enflo type p (say with a constant C), and

therefore cY (Hn, d1) ≥ 1
Cn

1− 1
p = 1

C diam(Hn, d1)1−
1
p for every n ∈ N. Using the

same method as in the proof of Theorem 3.1, we obtain

αY (X, d‖.‖,r) ≤
1− (1− 1

p )
r
pX

=
pX
rp
.

Hence αY (X, d‖.‖,r) ≤ min{ pXrpY , 1}.
To illustrate this result and its limitations, let 0 < p < q < ∞ and q ≥ 1.

As mentioned in (2), we then have α`q (`p) = max{p,1}
q . Our result above gives the

estimate

α`q (`p) ≤
max{min{p, 2}, 1}

min{q, 2}
,

which is clearly an equality if in addition q ≤ 2, but not if q > 2.

Acknowledgments. I would like to thank Jesús Bastero for providing me with
Kalton’s unpublished paper [Ka1].
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