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Abstract

Recall that theRado graphis the unique countable graph that realizes all one-
point extensions of its finite subgraphs. The Rado graph is well-known to be
universal and homogeneous in the sense that every isomorphism between finite
subgraphs ofR extends to an automorphism ofR.

We construct a graph of the smallest uncountable cardinality ω1 which has
the same extension property asR, yet its group of automorphisms is trvial. We
also present a similar, although technically more complicated, construction of
a complete metric space of densityω1, having the extension property like the
Urysohn space, yet again its group of isometries is trivial.This improves a recent
result of Bielas.

MSC (2010): 03C50, 05C63.
Keywords: Amalgamation, Rado graph, Urysohn space.

1 Introduction

Recall that a structureM is homogeneousif every isomorphism between finitely gen-
erated substructures ofM extends to an automorphism ofM . A structureM is ω-
saturatedif for every finitely generated structuresA ⊆ B every embedding ofA into
M extends to an embedding ofB into M . Of course, in this definition only structures
from a fixed classC are considered. Finally, a structureM is C-universal if every
X ∈ C embeds intoM . A countably generated homogeneousC-universal structure
that also belongs toC is called theFraïssé limitof C (or, more precisely, of the class
of finitely generated structures that are inC). The key fact needed for the existence
of a Fraïssé limit is theamalgamation propertysaying that for every two embeddings
e1 : A → B1, e2 : A → B2, whereA,B1, B2 ∈ C are finitely generated, there exist
embeddingsf1 : B1 → C, f2 : B2 → C with C ∈ C, making the diagram

B1
f1

// C

A

e1

OO

e2
// B2

f2

OO

commuting. Note that in case of relational languages (that is, languages with relation
symbols only) finitely/countably generated structures arefinite/countable. One of the
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typical and well explored classes is the classG of countable graphs. Its Fraïssé limit is
theRado graph.

Another, formally not fitting into the above framework, is the classM of complete
separable metric spaces. Here, being finitely generated still means finite, yet a count-
ably generated substructure is a separable closed subspace. All other concepts are the
same as before. The “Fraïssé limit” ofM is theUrysohn spaceU, constructed by
Urysohn [8] in his last work, published in 1927. A rational version ofM, denoted by
QM, is the class of countable metric spaces with rational distances. This fits into the
model theoretic setting and its Fraïssé limit is therational Urysohn spaceQU, which
is the unique countableω-saturated rational metric space. Its metric completion isthe
Urysohn spaceU.

Our aim is to present two examples ofω-saturated structures with trivial automor-
phism groups (such structures are calledrigid). Namely, we construct anω-saturated
rigid graph of cardinalityω1 and a rigidω-saturated complete metric space of den-
sity ω1. The second examples is an improvement of a recent result of Bielas [1], who
constructed an example with the same properties, however its density is large (strictly
above the continuum).

In order to construct the announced examples, we prove the existence of an em-
beddinge : M → M , whereM is either the Rado graph or the Urysohn spaceU, such
that no non-tirivial automorphism ofe[M ] extends toM . In the case of graphs such a
result has already been proved by Imrich, Klavžar, and Trofimov [4].

Our results show that uncountable or non-separableω-saturated structures can have
properties very far from being homogeneous. This gives riseto a question whether
there exist uncountable (or non-separable)ω-saturated structures that are homogeneous
with respect to its finitely generated substructures. It turns out that the answer is af-
firmative as long as the class admits a so-calledKatětov functor. In that case it is not
hard to see that for each uncountable cardinalκ there exists a homogeneousω-saturated
structure of sizeκ. We sketch the arguments in the next section. For precise definitions
and results on Katětov functors we refer to [6].

2 Katětov functors andω-saturated structures

Let C be a fixed class of countably generated structures, where in case of metric spaces
“countably generated” means “closed separable”. We denoteby Flim(C) the Fraïssé
limit of C, namely, the unique countably generated (complete separable, in case of
metric spaces) structureL that is homogeneous andC-universal. It is well-known that
Flim(C) exists if and only ifC has the joint embedding property (every two finitely
generated structures are isomorphic to substructures of some C ∈ C), the amalga-
mation property, and contains countably many isomorphic types of finitely generated
structures. In the case of metric spaces the last condition is not satisfied, although the
Urysohn space still shares all the properties of model-theoretic Fraïssé limits. For gen-
eral theory of Fraïssé limits we refer to [3], for category-theoretic generalizations see
[5].

Recall that theageof a structureX, denoted byAge(X), is the class of all finitely
generated structures isomorphic to substructures ofX. Clearly,C = Age(Flim(C)), as
long asFlim(C) exists.

Definition 1. We say that structure (not necessarily countable) X isFraïssé-likefor C
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if Age(X) = C and it isω-saturated. In the particular classes of countable graphs and
complete separable metric spaces, we shall sayRado-likeandUrysohn-likeinstead of
Fraïssé-like.

From now on we will be mostly interested in Fraïssé-like structures of cardinality
ω1. It can be proved that every such structure is the colimit of acontinuous transfinite
chain of lengthω1 of the following form:

Flim(C) →֒ Flim(C) →֒ . . . →֒ Flim(C) →֒ . . . .

The embeddings in this sequence can be of course completely arbitrary; in typical
cases there are continuum many possibilities for an embeddingFlim(C) →֒ Flim(C).
Continuity of the chain simply means that the structures at limit steps are colimits of
the smaller ones. Note that the colimit of a chain of first-order structures is simply its
union, while the colimit of a chain of complete metric spaces(with isometric embed-
dings) is the completion of its union.

Assume that we have such structureX, we say that it isgiven bya sequence
(Flim(C), ei)i<ω1

, whereei are embeddings as above (more precisely,ei is the embed-
ding of ith copy ofFlim(C) into (i + 1)st copy ofFlim(C)). We will use the obvious
notationeji , denoting the embedding ofith structure of the chain into thejth structure.
It is straightforward to see that for every automorphismα of X there is a closed and
unbounded set of indicesS ⊆ ω1 such thatα is invariant onFlim(C)α for everyα ∈ S,
whereFlim(C)α denotes theαth copy ofFlim(C) in the chain.

Definition 2. To everye : Flim(C) → Flim(C) we assignGe ≤ Aut(Flim(C)) such
thatα ∈ Aut(Flim(C)) is in Ge iff there isβ ∈ Aut(Flim(C)) such that the following
diagram commutes

Flim(C)
β

// Flim(C)

Flim(C)

e

OO

α
// Flim(C)

e

OO

.

We say that suchβ ∈ Aut(Flim(C)) is invariant overe andα can be extendedvia
e. We can define a subgroupHe ≤ Aut(Flim(C)) which consist of those elements
which are invariant overe. There is a natural homomorphismh : He → Ge which
is onto. To every Fraïssé-like structureX given by a sequence(Flim(C), ei)i<ω1

we
assign a treeTX . Its elements are automorphisms ofFlim(C) for all i < ω1 and the
ordering is given by the relation of being invariant and can be extended i.e.α ≥ β iff
α ∈ Aut(Flim(C)), β ∈ Aut(Flim(C)) andβ is an extension ofα given by someeji .
In fact,X has a non-trivial automorphism iffTX has a cofinal branch, different from
the branch of identities.

General approach by using so-calledKatětov functors(see [6]) gives a sufficiant
condition for the existence of homogeneus Fraïssé-like structureX. For example,
graphs and metric spaces admit a Katětov functor. More generally,C has a Kaťetov
functor whenever it has push-outs in the category of homomorphisms, see [6].

Roughly speaking, a Katětov functor assigns to each structureX a bigger structure
K(X) ⊇ X realizing all one-point extensions of finitely generated substructers of
X. Furthermore,K is a functor, which means that it assigns to each embedding its
extension, and this assignment preserves identities and compositions.
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Proposition 1. If there is a Katětov functor then there is a non-trivial embeddinge :
Flim(C) → Flim(C) such thatGe = Aut(Flim(C)).

Theorem 1. If there is a Katětov functor then there isX = (Flim(A), ei)i<ω1
that is

homogenous.

Proof. Takeei := e from previous the proposition.

We prove in the next sections that for graphs and metric spaces the opposite extreme
possibility can hold as well.

3 The Rado graph

LetA be the Fraïssé class of finite graphs with embeddings. Fraïssé limit of A is called
the Rado graph and we denote it byR. Let just recall its well known characterisation.

For everyX, Y disjoint subsets ofR there is an elementx ∈ R which
is connected with an edge to all elements inX and not connected to all
elements inY .

By general theory every countable graph having this property is isomorphic toR.
For better reading we call each Fraïssé -like graph Rado-like. just for the sake of
completeness recall the definition.

Definition 3. Let X be a graph onω1 vertices. Then it is Rado-like iff it is the colimit
of a chain of the form(R, ei)i<ω1

.

As we have mentioned above, there is a Katětov functor for graphs, therefore we
have:

Corollary 1. There exists a homogeneous Rado-like graph.

Now we turn our attention to the opposite of Proposition 1 from the previous sec-
tion. The following result was proved by Imrich, Klavžar, and Trofimov. We present a
slightly different proof, as similar techniques will be used later.

Theorem 2([4]). There is an embeddinge : R → R such thatGe = {id}.

Proof. DenoteR = (V,E). Let A1 ⊆ N be infinite and fix the unique increasing
enumeration onA1 i.e. A1 = {a1 < a2 < ...}. Fix an enumeration of all distinct
ordered pairs of vertices fromR and denote it by{u1, u2, ...}. We add toR countable
many verticesV1 := {v1, v2, ...} and some edges such that it will be again isomorphic
to R.

We want to add edges between vertices fromV1 in such a way thatdV1
(vi) = ai

(dV1
denotes the degree with respect toV1) and there is a path[v1, v2, ...]. This is always

possible because the setA1 is infinite. We proceed by induction. In then-th step we
already have thatd(vn) = k for somek < an so we add edges{an, am}n<m≤n+an−k.

Fix an enumeration{W1,W2, ...} of all disjoint ordered pairs of finite subsets of
V ∪ V1 such that the following holds

• for everyj ∈ N there isi = 0, 1 such thatW i
j ∩ V1 6= ∅,
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• for everyn ∈ N the following holds(W 1
n ∪W 2

n) ∩ {vn, vn+1, ...} = ∅.

Such enumeration always exists. The construction will be asfollows. In then-th step
we add{vn, u1

n} as edge and we do not add{vn, u2
n}. We take care of the pairWn in

such a way thatwn is a witness from the originalR for a vertex which is connected to
all W 1

n ∩ V , not to any ofW 2
n ∩ V and it has not been used yet in any previous step.

Finally we add these edges{{wn, v} : v ∈ V1 ∩W 1
n}.

To complete the proof we have to show that we obtain a Rado graph and that it has
the required properties. We can easily check that the Rado property is satisfied due to
the construction. Assume now that we have an automorphismα ∈ Ge. For everyi 6= j

we havedV1
(vi) 6= dV1

(vj) which implies that the induced graph onV1 is rigid. That
means that every extension have to be identity onV1. Assume now thatα moves at
least one vertex i.e.α(x) = y andx 6= y. But this pair has a number, sayk, and this
means that{x, vk} is an edge which forces{α(x) = y, ᾱ(vk) = vk} to be an edge too,
but{vk, y} is not an edge. This is a contradiction.

Theorem 3. There exists a Rado-like graph that is rigid.

Proof. We use induction to build a sequence of graphs{Ri}i<ω1
. We will denote

vertices ofRi by Vi and edges byEi. Fix an almost disjoint family{Ai}i<ω1
and fix

the increasing ordering on eachAi i.e.Ai = {ai,0 < ai,1 < ...}. LetR0 := R. Assume
that we have constructed{Ri}i<α with the following properties:

• Rβ =
⋃

i<β Ri for β limit,

• Ri ⊆ Ri+1 and|Vi+1 \ Vi| = ω for all i < α,

• Ri ≃ R for all i < α,

• if v ∈ Vj andw ∈ Vi where0 < j < i < α then{v, w} 6∈ Ei,

• for every pair{v, w} ∈ [R0]
2 and everyi < α there isu ∈ Vi+1 \ Vi such that

{u, v} ∈ Ei+1 and{u, w} 6∈ Ei+1.

If α is limit then put simplyRα =
⋃

i<αRα. If α is a succesor thenVα := Vα−1 ∪
{vα,0, vα,1, ...}. We need to add edges in such a way that the conditions above are
satisfied. First, it is clear that we are not allowed to add edges inVα−1. We add edges
between{vα,0, vα,1, ...} in such a way as in the proof of the previous theorem, so that
d(vα,k) = aα,k and the induced graph on{vα,0, vα,1, ...} is connected. Finally we need
to add edges between{vα,0, vα,1, ...} andR0 to makeRα ≃ R. This can be done
similarly as in the previous proof once we use the fact that for a pair of subgraphs
G1, G2 ⊆ Vα which we want to extend by one element connected to all vertices ofG1

and to none ofG2 we can always chooseu ∈ R0 which has this property for the pair
G1 ∩ Rα−1, G2 ∩ Rα−1, due to the construction, namely the fourth condition in the
above list.

To finish the proof it is enough to show that for allj < i < ω1 the groupGej,i is triv-
ial. Suppose it is not. There is a nontrivialα ∈ Aut(Rj) andβ ∈ Aut(Ri) such that
ej,i ◦α = β ◦ej,i. We prove that forv ∈ Vj+1 \Vj it holds thatβ(v) = v. Indeed, other-
wiseβ(Vj+1\Vj) = Vk+1\Vk for somej < k < i since{vj+1,0, vj+1,1, ...} = Vj+1\Vj

is connected andβ is an automorphism; but this meansAj+1 = {d(vj+1,l)}l<ω =
d(vk+1,l)l<ω = Ak+1 which is a contradiction unlessj = k andβ ↾ Vj+1 \ Vj = id.
Together with the fourth condition from above we have thatβ ↾ R0 = id and con-
sequently with the same arguments we conclude thatβ(v) = v for all v ∈ Vk+1 \ Vk

wherek < i.
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4 The Urysohn space

In this section by anembeddingwe always mean an isometric embedding. Given a
metric spaceX, its metric will be denoted byd; the distance from a pointx to a setS
will be denoted byd(x, S). Recall that theUrysohn spaceU is a separable complete
metric space satisfying the following property

(E) For every finite metric spacesE ⊆ F and for every embeddinge : E → U there
exists an embeddingf : F → U such thatf ↾ E = e.

As in the graph case, this property characterizesU up to isometries and it implies
homogeneity with respect to finite metric spaces.

Definition 4. We say that a metric spaceX of densityω1 is Urysohn-likespace iff it is
complete and can be represented as the colimit of a chain(U, ei)i<ω1

.

The following fact is easy to prove, by a simple closing-off argument.

Proposition 2. A complete metric spaceX is Urysohn-like if and only if it has density
ω1 and satisfies condition (E).

As in the graph case it is known that there is Katětov functor for metric spaces so
we have.

Corollary 2. There exists a homogeneous Urysohn-like space.

Our goal is to construct an Urysohn-like spaceX that is rigid. We want to prove
similar results as in the Rado-like case. We may use a similarstrategy as in the graph
case to prove that there is an embeddinge : U → U which does not extend any non-
trivial automorphism (recall that an isomorphism is a bijective isometry). Roughly
speaking, we shall add a special pointx toU and then fill the space such that we obtain
again an isometric copy ofU in such a way that this special pointx must be preserved
by every automorphic extension. Since the Urysohn space hasno isolated points, we
must assure ourselves that after filling the space with some countable dense part to
obtain againU there will be no point in its closure with similar propertiesasx has.

For a metric spaceX we denote its metric extension by adding a set{xi}i∈I as
X ⊕i∈I xi. This notation means that not only we add the points but we have already
chosen a metric on the new space. We denote the metric on all spaces byd because it
is always clear from the context which space we mean. The Fraïssé limit of all finite
rational metric spaces is denoted byQU. It is well-known thatQU = U.

Definition 5. Given a positiver ∈ R defineMr to be the category of finite metric
spaces with the following property. Objects are spaces of the formE ⊕ x whereE is
a finite metric space,x is a special distinguished point andd(x, y) ≥ r for all y ∈ E.
Isometric embeddingsf : E ⊕ x → F ⊕ x′ are morphisms inMr provided that
f(x) = x′. We denote byQMr the subcategory ofMr consisting of all rational
metric spaces.

We always denote the special point byx. First observation is thatQMr is a Fraïssé
class since it has amalgamations similar as in the category of metric spaces. The next
definition is crucial, as it distinguishes continuum many different one point extensions
of U.
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Definition 6. For0 < r ∈ R we say that the one point extensionU⊕x of the Urysohn
space isr-Urysohn(or r-Urysohn typeor simplyr-type) iff the following holds

• d(x,U) = r,

• for every pairE⊕x ⊆ F⊕x ∈ Mr and for every embeddinge : E⊕x → U⊕x

such thate(x) = x there is an embeddingf : F ⊕ x → U ⊕ x such that
f ↾ E ⊕ x = e.

Observation 1. For every0 < r ∈ R there is an r-type and it is unique up to isomor-
phisms (i.e., isometries preserving the special point).

Proof. We prove that ther-typeU⊕ x is the completion of the Fraïssé limit ofQMr.
It is the same argument as in the proof ofQU = U, because the Fraïssé limit ofQMr

has the formQU⊕ x.
Uniqueness can be proved by the back-and-forth argument when we fix a countable

dense set in each space as in the case of proving uniqueness ofU.

Observation 2. Let e : U →֒ U be an isometric embedding and letx be a realization
of somer-type overe(U). Assume that we have a pairα, β whereα : U → U is an
automorphism andβ extendsα via e. Thenβ(x) is again anr-type overe(U).

We need to define another type of one point extensions ofU which will fill-out the
space making it again Urysohn in such a way that no limit pointof a sequence of this
types is anr-type.

Definition 7. For an arbitrary metric spaceX we say that the one point extension
X ⊕ x has finite supportoverX (or it is a finitely supported type, or x realizes a
finitely supported type) iff there is a finite setY ⊆ X such that

d(x, z) = inf{d(x, y) + d(y, z) : y ∈ Y }.

It can be easily shown that the formula above is a correct definition of a metric.

Lemma 1. Assume that we have a spaceU ⊕i∈N xi ⊕ y wherey realizes a type with
finite support overU ⊕i∈N xi. Theny does not realize anyr-type for0 < r ∈ R over
U.

Proof. We will construct a finite spaceE ⊕ w which is not realized inU ⊕ y when
sendingw to y. Moreoverd(w,E) can be arbitrarily big, which means that it is not
an r-type for anyr ∈ R. Assume that there aren points{ai}i≤n realizing the finite
support ofy. Fix a numberL bigger than anyd(y, ai).

Let the universe of the spaceE be formed byn+2 distinct points{wi}i≤n+1∪{w}.
Let the metric be as follows

• for i 6= j setd(wi, wj) = 2L,

• d(w,wi) = L.

It is easy to see that this is actually a metric space. We claimthat it cannot be realized in
the sense described before. Suppose it is. So there is a mappingf : E⊕w → U⊕y such
thatf(w) = y. Denotef(wi) asyi. By the pigeon hole principle there arei 6= j and
k ≤ n such thatd(y, yi) = d(y, ak)+d(ak, wi) andd(y, yj) = d(y, ak)+d(ak, yj). But
U⊕i∈Nxi⊕y is a metric space so we must have2L = d(yj, yi) ≤ d(yj, ak)+d(ak, yi) =
2L− 2nk, which is a contradiction.
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A natural question is how far can the closestr-type realized byz be from our fixed
pointy of finite support. Imagine that there is a mappingf : E⊕w → U⊕ z such that
e(w) = z. By the triangle inequality and an argument leading to a contradiction in the
previous proof, we have for the contradicting pairwj, wi andk ≤ n that

d(z, y) + L = d(z, y) + d(z, f(wi) ≥ d(y, f(wi)) = d(y, ak) + d(ak, f(wi)).

Again by the triangle inequality

d(ak, f(wj)) + d(ak, f(wi)) ≥ d(f(wj), f(wi)) = 2L

thereforemax{d(ak, f(wi)), d(ak, f(wj))} ≥ L. All these together gives rise to

d(z, y) + L ≥ d(y, ak) + max{d(ak, yi), d(ak, yj)} ≥ d(y, ak) + L.

Lemma 2. Assume that we have a spaceU ⊕i∈N xi ⊕ y wherey realizes a type with
finite support overU⊕i∈N xi. Then it is not anr-type overU for anyr ∈ R. Moreover,
every realizationz of somer-type must satisfyd(z, y) ≥ d(y,U⊕i∈N xi).

Proof. The additional part follows from the above discussion and

d(z, y) ≥ d(y, ak) ≥ min
i≤n

{d(y, ai)} = d(y,U⊕i∈N xi).

Assume that we have a separable metric spaceX. We want to enlarge it toX ⊕i<ω

xi such thatX ⊕i<ω xi ≃ U. There is a construction using so-called Katětov maps.
There is a natural metric on the spacetp(X) of all one point extensions of the metric
spaceX, but this space may no longer be separable. The Katětov construction adds
to X the subspace oftp(X) which is generated by all extensions with finite support.
We denote it byX1 and putXn+1 := (Xn)1. It is not surprising that

⋃

n<ω X
n ≃ U.

Because the subspace oftp(X) generated by types of finite support is separable, it
suffices to choose only countable many such types and add all of them. After iterating
this process we may re-enumerate these types in such a way that X ⊕i<ω xi ≃ U

andxn has finite support overX ⊕i<n xi. So in fact for every separable metric space
there is a sequence of finitely supported types, but with the support on the previously
defined ones, turning it toU. This can be described more directly. Fix a countable
dense setY ⊆ X and build a spaceY ⊕i<ω yi such thatyn has rational finite support
overY ⊕i<n yi. We have to make sure that we eventually use all such types. That is
possible since there are only countably many possibilities. In the next definition we
just state what we mean by iterated finite support which will be needed as the previous
comment suggests.

Definition 8. Let X be a metric space and consider its extensionX ⊕i≤n yi such that
yk has finite support overX ⊕i<k yi for all k ≤ n. We assign toyn a finite subset
syn(X) ⊆ X such that for ally ∈ syn(X) there is a finite subsequence{yik}k≤m

with yn = yi0 , y = yim andyik+1
is in the support ofyik for all k < m. We denote

all such subsequences associated to a pointy by seqyn→y(X). We define a function
dyn : Y → R by

dyn(y) := min

{

m−1
∑

k=0

d(yik , dik+1
) : {yik}k≤m ∈ seqyn→y(X)

}

.
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The setsyn(X) is finite and forz ∈ X we can compute any distanced(yn, z) by

d(yn, z) = min{dyn(y) + d(y, z) : y ∈ syn(X)}

because it is just an iteration of finite support. Notice thatd(yn, y) ≤ dyn(y) for all
y ∈ suppyn(X) but the equality does not hold in general. In fact there is a subset of
syn(X) for which it does hold andd(yn, z) can be calculated using this subset only.
Let us denote this subset bysuppyn(X). Then the type whichyn realizes overX is
finitely supported on thesuppyn(X) with distances described above.

Lemma 3. LetX = (U⊕j<ω xj) be a metric space. Assume that we have an extension
X ⊕i≤n yi such thatyk has finite support overX⊕i<k yi for all k ≤ n and assume that
we add a pointz realizing anr-type overU. Than we have that

d(yn, z) ≥ d(yn,U⊕j<ω xj).

Proof. This follows immediately from the previous lemma because, due to the discus-
sion above,yn is in fact finitely supported overX.

Before we prove the next lemma, recall that the Urysohnr-type isU⊕x = QU⊕ x,
whereQU⊕ x is the Fraïssé limit ofQMr.

Lemma 4. For a sequence{ri}i<ω with ri > 1 there is an extension of the Urysohn
spaceU⊕i<ω xi with following properties

• xi realizes eachri-type,

• d(xi, xj) > 1 for i 6= j,

• for every pair of points{x, y} ∈ [QU]2 there isi < ω such thatd(x, xi) +
d(x, y) = d(xi, y).

Proof. Fix an enumeration of all pairs{x, y} ∈ [QU]2. We denote it by{pk}k<ω and
usepk = {p0k, p

1
k}.

Next we proceed by induction. Assume that we have already constructedU⊕i<nxi

with given properties and we want to extend it to a pointxn. We describe the first
element of a sequence in the categoryQMri We denote it byE ⊕ x. We choose
E = {p0n, p

1
n} ⊆ QU in such a way that we can find a metric onE ⊕ x such that

d(x, p0n) + d(p0n, p
1
n) = d(x, p1n). Then we take the closure of the Fraïssé limitU⊕ xn

and embedd it in the spaceU ⊕i<n xi in a proper way i.e. mappingE from the limit
to E ⊆ QU. Then take the amalgamation given by the push-out (i.e., themaximal
amalgamation). We are done, becaused(xn, xi) ≥ rn + ri.

Theorem 4. There is an embeddinge : U → U such thatGe = {id}.

Proof. For a fixed sequence{ri}i<ω with ri > 1 takeU ⊕i<ω xi as in the previous
lemma. We use the argument described in a discussion above tocreate a dense set
of the Urysohn space of the formQU ⊕i<ω xi ⊕j<ω yj, whereyj is a finite type over
QU ⊕i<ω xi ⊕k<j yk. We claim that after takingQU⊕i<ω xi ⊕j<ω yj ≃ U the only
r-types over the originalU are realized by{xi}i<ω. Assume that there isz which
realizes anr-type andd(z,U ⊕i∈N xi) > ǫ. So there is a pointyk which realizes
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a finitely supported type overU ⊕i∈N xi ⊕j<k yj such thatd(yk, z) < ǫ
4

and this is
impossible due to the previous lemma, because

ǫ

4
> d(yk, z) ≥ d(yk,U⊕i∈N xi) ≥ d(z,U⊕i∈N xi)− d(yk, z) = ǫ−

ǫ

4
.

Suppose that we have an automorphismα ∈ Aut(U) and we can extend it by some
β ∈ Aut(U) via e. Because for everyri there is exactly oneri-type in the extended
U, we have thatβ(xi) = xi. Assume that for somez ∈ U we haveα(z) = y 6= z.
Due to the construction of{xi}i<ω, there are alwaysk < ω and pointsz′, y′ ∈ QU

close enough toy, z such thatd(xk, z
′) = d(z′, y′)+ d(xk, y

′) contradictingd(xk, z) =
d(β(xk), β(z)) = d(xk, y) which should hold becauseβ is an isometry.

We need a generalization of the previous lemma to prove the main theorem. In
fact, we need to generalize it for the situation when we iterate by adding arbitrary and
finitely supported types together. To be more concrete, let us describe such a situation.
Assume that we have a finite extension of a spaceX0 by some points with finite support
overX0, i.e., we setY0 := X0 ⊕i<n1

y0,i. Then we add finitely many points with
arbitrary support overY0, i.e.,X1 := Y0 ⊕i<k1 x0,i. We repeat this procedurem times
obtaining

X := X0 ⊕j<m,i<kj xj,i ⊕p<m,q<np
yp,q.

For every one point extensionX ⊕ y with finite support we may defines∗y(X) which
is a subset ofX0 ⊕j<m,i<kj xj,i defined by the following:z ∈ s∗y(X) iff there exists
a sequence of pairs of numbers{pi, qi}i<m′ strictly decreasing in the first coordinate
and such thatypi+1,qi+1

is in the support ofypi,qi (where bysupportwe mean its finite
support overXpi), yp0,q0 is in the support ofy, andz is in the support ofypm′

−1,qm′
−1

.
Similarly as in the previous case, we may define a functiond∗y : s∗y(X) → R,

whered∗y(z) is the minimal sum of distances over all sequences going fromy to z as
described above. This is a generalization of the previous definition, because we can
calculate distances only forx ∈ X0 by

d(y, x) = min{dy(z) + d(z, x) : z ∈ s∗y(X)}

which can be verified similarly as before.

Lemma 5. Consider a spaceX := (U ⊕j<m,i<kj xj,i ⊕p<m,q<np
yp,q) ⊕ y described

in the previous paragraph. Then for every pointz realizing anr-type overU we have
thatd(y, z) ≥ d(y,U⊕j<m,i<kj xj,i). In particular,y does not realize anyr-type over
U.

Proof. We only need to observe that the type ofy overU is in fact finitely supported,
however its supports∗y(X) may not be contained inU. But the proof of the previous
cases requires only points fromU to obtain the inequality so we may use it as well to
obtain

d(y, z) ≥ min{d∗y(z), z ∈ s∗y(X)} ≥ d(y,U⊕j<m,i<kj xj,i).

Theorem 5. There is a rigid Urysohn-like space.
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Proof. We proceed by induction of lengthω1. Fix a matrix{rα,j}α<ω1,j<ω of pairwise
different real numbers, whererα,j > 1 such thatrα,j → ∞ asj → ∞. Next we define a
transfinite sequence of spaces and their countable dense parts as follows. PutX0 := U

andX
′

0 := QU. Forα limit let Xα :=
⋃

β<αXβ andX
′

α :=
⋃

β<αX
′

β. Assume that
we have already constructed{Xα}β≤α and thatU ≃ Xβ for all β ≤ α. Givenα + 1,
first enumerate all tuples ofX ′

α by {pj}j<ω in such a way thatd(p0j , p
1
j) ≤ rα,j. This is

possible sincerα,j → ∞ asj → ∞. PutXα⊕j<ω xα,j, wherexα,j realizes anrα,j-type
overXα and a separate tuplepj as in the proof of the previous theorem.

Moreover this can be done in such a way that for eachxα,j there isy ∈ X0

with d(y, x) = rα,j. We use homogeneity ofU here. We may always find a trian-
gle{w, p0j , p

1
j} ⊆ Xα such thatw ∈ X0 andd(w, p0j) ≥ d(w, p1j) > rα,j . Let us define

the four-point metric space{z, q0j , q
1
j , xα,j} by the following conditions.

• d(z, qlj) = d(w, plj), d(q
0
j , q

1
j ) = d(p0j , p

1
j),

• d(xα,j , z) = rα,j , d(xα,j, q
0
j ) = d(z, q1j ) andd(xα,j , q

1
j ) = d(z, q1j ) + d(q1j , q

1
j ).

One can easily verify that this is indeed a metric space. Now once we haveU ⊕ xα,j

andxα,j realizes anrα,j-type then it must contain our just-defined four-point space. By
the homogeneity ofU we may assume thatz = w andqlj = plj . Finally fill-out the
spaceX

′

α⊕j<ω xα,j by finitely supported types{yi}i<ω as in previous cases in order to
obtainXα+1 := Xα ⊕j<ω xα,j ⊕i<ω yi ≃ U and defineX

′

α+1 := X
′

α⊕j<ω xα,j ⊕i<ω yi.
Finally, letX :=

⋃

α<ω1
Xα.

Fix β < ω1. We claim that allr- types overXβ are in the set

Y := Xβ ⊕β≤α<ω1,j<ω xα,j .

Suppose that there isz ∈ X which realizes anr-type overXβ and d(z, Y ) > ǫ.
There must beα < ω1 such thatz ∈ Xα. We find t ∈ X

′

α with d(t, z) < ǫ
4

which
has a finite support over someX

′

γ ⊕j<ω xγ,j ⊕l<n yl whereγ < α. If we consider
s∗t (X

′

β ⊕β≤ζ≤γ,j<ω xζ,j) then we suddenly are in the same situation as in one of the
previous lemmas, because|s∗t (X

′

β ⊕β≤ζ≤γ,j<ω xζ,j)| < ω. Thus we obtain again a
contradiction:

ǫ

4
> d(t, z) ≥ d(t, Xβ ⊕β≤ζ≤γ,j<ω xζ,j) ≥ d(z,Xβ ⊕β≤ζ≤γ,j<ω xζ,j)−d(t, z) ≥ ǫ−

ǫ

4
.

The matrix{rα<ω1,j<ω} contains pairwise different real numbers and every auto-
morphismf : X → X must be invariant on club manyXβ. More precisely, there is
a closed unbounded setS ⊆ ω1 such that forβ ∈ S the restriction off to Xβ is an
automorphism ofXβ. Fix β ∈ S. We havef(xβ,j) = xβ,j for all j < ω, because
xβ,j realizesrβ,j-type and it cannot be moved since it is the only one inX. The reason
is that we have for eachxα,j some pointy ∈ X0 such thatd(xα,j , y) = rα,j due to
the construction, so if among the set{xα,j}β<α<ω1,j<ω there is somer-type overXβ

then it must respect its valuerα,j, because we haved(xα,j, Xβ) = rα,j. Due to similar
construction ofXβ+1 as in the previous theoremf has to be identity onXβ, therefore
it has to be identity onX.
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http://arxiv.org/abs/1412.1850

[7] R. Rado,Universal graphs and universal functions, Acta Arith. 9 (1964) 331–340

[8] P.S. Urysohn,Sur un espace métrique universel, I, II, Bull. Sci. Math. (2) 51 (1927)
43–64, 74–90

12

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

