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Abstract

Recall that thdRado graphs the unique countable graph that realizes all one-
point extensions of its finite subgraphs. The Rado graph itkmewn to be
universal and homogeneous in the sense that every isorsorfdtgtween finite
subgraphs oRR extends to an automorphism Bf

We construct a graph of the smallest uncountable cardmalitwhich has
the same extension property Bs yet its group of automorphisms is trvial. We
also present a similar, although technically more comg#itaconstruction of
a complete metric space of density, having the extension property like the
Urysohn space, yet again its group of isometries is triviais improves a recent
result of Bielas.

MSC (2010): 03C50, 05C63.
Keywords: Amalgamation, Rado graph, Urysohn space.

1 Introduction

Recall that a structuré/ is homogeneous every isomorphism between finitely gen-
erated substructures aff extends to an automorphism &f. A structure) is w-
saturatedif for every finitely generated structures C B every embedding ofl into

M extends to an embedding 6finto M. Of course, in this definition only structures
from a fixed clasg” are considered. Finally, a structuié is C-universalif every
X € C embeds intaV/. A countably generated homogenedalisniversal structure
that also belongs t6 is called theFraissé limitof C (or, more precisely, of the class
of finitely generated structures that aredp The key fact needed for the existence
of a Fraisseé limit is thamalgamation propertgaying that for every two embeddings
ei: A — By, es: A — By, WwhereA, By, B, € C are finitely generated, there exist
embeddingy;: B; — C, fy: By — C with C' € C, making the diagram

B —1= C

At

A By

€2

commuting. Note that in case of relational languages (#hdanguages with relation
symbols only) finitely/countably generated structuresfemige/countable. One of the



typical and well explored classes is the clgssf countable graphs. Its Fraisseé limitis
theRado graph

Another, formally not fitting into the above framework, i®tblassM of complete
separable metric spaces. Here, being finitely generatétstns finite, yet a count-
ably generated substructure is a separable closed subgdhother concepts are the
same as before. The “Fraissé limit” aff is the Urysohn spacédJ, constructed by
Urysohn [8] in his last work, published in 1927. A rationalsien of M, denoted by
QM, is the class of countable metric spaces with rational desgs. This fits into the
model theoretic setting and its Fraissé limit is tagonal Urysohn spac&U, which
is the unique countable-saturated rational metric space. Its metric completidhes
Urysohn spacé].

Our aim is to present two exampleswisaturated structures with trivial automor-
phism groups (such structures are callgid). Namely, we construct an-saturated
rigid graph of cardinalityw; and a rigidw-saturated complete metric space of den-
sity w;. The second examples is an improvement of a recent resuietdg 1], who
constructed an example with the same properties, howevdeitsity is large (strictly
above the continuum).

In order to construct the announced examples, we prove tiseeage of an em-
beddinge: M — M, whereM is either the Rado graph or the Urysohn sp@csuch
that no non-tirivial automorphism ef M/] extends tal/. In the case of graphs such a
result has already been proved by Imrich, Klavzar, and Tr@fif].

Our results show that uncountable or non-separatdaturated structures can have
properties very far from being homogeneous. This givestosa question whether
there exist uncountable (or non-separablegaturated structures that are homogeneous
with respect to its finitely generated substructures. hduwut that the answer is af-
firmative as long as the class admits a so-caatetov functor In that case it is not
hard to see that for each uncountable cardirthere exists a homogeneausaturated
structure of size:. We sketch the arguments in the next section. For preciseitiafis
and results on Ké&tov functors we refer to [6].

2 Katétov functors andw-saturated structures

LetC be a fixed class of countably generated structures, whessaaf metric spaces
“countably generated” means “closed separable”. We ddmpidim(C) the Fraissé
limit of C, namely, the unique countably generated (complete selearabcase of
metric spaces) structudethat is homogeneous adduniversal. It is well-known that
Flim(C) exists if and only ifC has the joint embedding property (every two finitely
generated structures are isomorphic to substructuresmé 66 € C), the amalga-
mation property, and contains countably many isomorplpesyof finitely generated
structures. In the case of metric spaces the last condgiantisatisfied, although the
Urysohn space still shares all the properties of modelrdtenFraissé limits. For gen-
eral theory of Fraissé limits we refer to [3], for categongdretic generalizations see
[5].

Recall that theageof a structureX, denoted by\ge(X), is the class of all finitely
generated structures isomorphic to substructures.alearly,C = Age(Flim(C)), as
long asFlim(C) exists.

Definition 1. We say that structure (not necessarily countable) Rr&sseé-likefor C



if Age(X) = C and it isw-saturated. In the particular classes of countable graptis a
complete separable metric spaces, we shalRago-likeandUrysohn-likeinstead of
Fraisseé-like.

From now on we will be mostly interested in Fraissé-like cites of cardinality
w1. It can be proved that every such structure is the colimitodmtinuous transfinite
chain of lengthu; of the following form:

Flim(C) — Flim(C) — ... < Flim(C) < . ...

The embeddings in this sequence can be of course completatyaay; in typical
cases there are continuum many possibilities for an embgddim(C) — Flim(C).
Continuity of the chain simply means that the structuresait steps are colimits of
the smaller ones. Note that the colimit of a chain of firstesrstructures is simply its
union, while the colimit of a chain of complete metric spa@eih isometric embed-
dings) is the completion of its union.

Assume that we have such structuxe we say that it isgiven bya sequence
(Flim(C), €;)i<w,» Wheree; are embeddings as above (more precisglis the embed-
ding of ith copy of Flim(C) into (¢ + 1)st copy ofFlim(C)). We will use the obvious
notatione’, denoting the embedding éth structure of the chain into thgh structure.
It is straightforward to see that for every automorphisrof X there is a closed and
unbounded set of indices C w; such thatv is invariant ont'lim(C),, for everya € S,
whereFlim(C), denotes theth copy ofFlim(C) in the chain.

Definition 2. To everye : Flim(C) — Flim(C) we assignz. < Aut(Flim(C)) such
thata € Aut(Flim(C)) isin G. iff there is 5 € Aut(Flim(C)) such that the following
diagram commutes

Flim(C) —2— Flim(C) .

Flim(C) Flim(C)

«

We say that such € Aut(Flim(C)) is invariantovere anda can be extendeda
e. We can define a subgrouf. < Aut(Flim(C)) which consist of those elements
which are invariant ovee. There is a natural homomorphisin: H, — G. which
is onto. To every Fraissé-like structuke given by a sequenc@'lim(C), €;);<.,, We
assign a tre€’y. Its elements are automorphismskifm(C) for all i < w; and the
ordering is given by the relation of being invariant and carektended i.ea > j iff
a € Aut(Flim(C)), 8 € Aut(Flim(C)) andf is an extension ofi given by some/.

In fact, X has a non-trivial automorphism iify has a cofinal branch, different from
the branch of identities.

General approach by using so-callédtétov functorgsee [6]) gives a sufficiant
condition for the existence of homogeneus Fraissé-likecgire X. For example,
graphs and metric spaces admit a&av functor. More generally; has a Kaétov
functor whenever it has push-outs in the category of homptisms, see [6].

Roughly speaking, a Kétov functor assigns to each structuea bigger structure
K(X) D X realizing all one-point extensions of finitely generatetdsttucters of
X. Furthermore K is a functor, which means that it assigns to each embedding it
extension, and this assignment preserves identities angasitions.
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Proposition 1. If there is a Katétov functor then there is a non-trivial eeddinge :
Flim(C) — Flim(C) such thatG, = Aut(Flim(C)).

Theorem 1. If there is a Katétov functor then there I = (Flim(A), ¢;);<., that is
homogenous.

Proof. Takee, := e from previous the proposition. O

We prove in the next sections that for graphs and metric sthesopposite extreme
possibility can hold as well.

3 The Rado graph

Let A be the Fraissé class of finite graphs with embeddings. Erhiisis of A is called
the Rado graph and we denote it Ry Let just recall its well known characterisation.

For every X, Y disjoint subsets oRR there is an element € R which
is connected with an edge to all elementsXinand not connected to all
elements int.

By general theory every countable graph having this prgpsiisomorphic toR.
For better reading we call each Fraissé -like graph Rado-likist for the sake of
completeness recall the definition.

Definition 3. Let X be a graph oo, vertices. Then it is Rado-like iff it is the colimit
of a chain of the form{R, ¢;); ., -

As we have mentioned above, there is a&av functor for graphs, therefore we
have:

Corollary 1. There exists a homogeneous Rado-like graph.

Now we turn our attention to the opposite of Proposition hfrihe previous sec-
tion. The following result was proved by Imrich, Klavzardafrofimov. We present a
slightly different proof, as similar techniques will be ddater.

Theorem 2([4]). There is an embedding: R — R such thatG, = {id}.

Proof. DenoteR = (V,E). Let A; C N be infinite and fix the unique increasing
enumeration o; i.e. A; = {a; < as < ...}. Fix an enumeration of all distinct
ordered pairs of vertices fro and denote it byfuy, u, ...}. We add toR countable
many verticed/; := {vy, vy, ...} and some edges such that it will be again isomorphic
toR.

We want to add edges between vertices frigiin such a way thatly, (v;) = a;
(dv, denotes the degree with respectip and there is a pathy, vo, ...]. Thisis always
possible because the sét is infinite. We proceed by induction. In theth step we
already have that(v,,) = k for somek < a,, So we add edge§u,,, @, Fn<m<nta,—k-

Fix an enumeratiod Wy, W5, ...} of all disjoint ordered pairs of finite subsets of
V' U V; such that the following holds

o foreveryj € Nthereisi = 0,1 such that?; N V; # 0,

4



e for everyn € N the following holds(W! U W2) N {v,, vpy1, ...} = 0.

Such enumeration always exists. The construction will biel®wvs. In then-th step
we add{v,,u!} as edge and we do not add,, u>}. We take care of the pai¥/,, in
such a way that,, is a witness from the origin& for a vertex which is connected to
all w! NV, not to any ofi”2 NV and it has not been used yet in any previous step.
Finally we add these edgé$w,, v} :v e ViNW!}

To complete the proof we have to show that we obtain a Raddgrag that it has
the required properties. We can easily check that the Ramjzepty is satisfied due to
the construction. Assume now that we have an automorphisnd-.. For everyi # j
we havedy, (v;) # dy, (v;) which implies that the induced graph & is rigid. That
means that every extension have to be identitypn Assume now thatv moves at
least one vertex i.ex(z) = y andz # y. But this pair has a number, sayand this
means thafz, v, } is an edge which force§y(x) = y, a(vy) = v} to be an edge too,
but {vx, y} is not an edge. This is a contradiction. O

Theorem 3. There exists a Rado-like graph that is rigid.

Proof. We use induction to build a sequence of graghs };..,. We will denote
vertices ofR; by V; and edges by;. Fix an almost disjoint family{ A;},.,, and fix
the increasing ordering on eadhi.e. A; = {a;0 < a;1 < ...}. LetRy := R. Assume
that we have constructd?; };., with the following properties:

® Rp = ;.5 Rifor g limit,

e R, CRiyyand|V \ Vi| =wforalli < a,

e R, ~Rforalli < «,

e if v e V;andw € V; where0 < j <i < athen{v,w} & E,

for every pair{v, w} € [Ro)*> and everyi < « there isu € V;;; \ V; such that
{u,v} € By and{u,w} & E;.;.
If v is limit then put simplyR, = |J,_, Ra- If « is a succesor thel, = V,_; U
{Va0,va1,..-}. We need to add edges in such a way that the conditions abeve ar
satisfied. First, it is clear that we are not allowed to addesdgV/,, ;. We add edges
between{v, ¢, va.1, ...} in such a way as in the proof of the previous theorem, so that
d(Vak) = aqr and the induced graph dm, o, va.1, ...} IS connected. Finally we need
to add edges betweef, o, Va1, ...} andR, to makeR, ~ R. This can be done
similarly as in the previous proof once we use the fact thatafair of subgraphs
G, Gy C V, which we want to extend by one element connected to all \e=xtdG:,
and to none of7, we can always choose € R, which has this property for the pair
G1 N Re-1,G2 N R,_1, due to the construction, namely the fourth condition in the
above list.

To finish the proof it is enough to show that for gl 7 < w, the group’, , is triv-
ial. Suppose it is not. There is a nontriviale Aut(R;) ands € Aut(R;) such that
e;ioa = [oe;;. We prove thatfor € V., \ V; it holds that3(v) = v. Indeed, other-
wise5(Vi1\V;) = Virr \ Vi forsomej < k < isince{v; 10, vj411, ..} = Vi \V;
is connected and is an automorphism; but this meads ; = {d(vj+1,;)}icw =
d(Vr41,)i<w = Ar+1 Which is a contradiction unless= k andfg | Vi \ V; = id.
Together with the fourth condition from above we have that R, = id and con-
sequently with the same arguments we concludegha)t = v for all v € Vj4 \ Vi
wherek < i. O



4 The Urysohn space

In this section by arembeddingve always mean an isometric embedding. Given a
metric spaceX, its metric will be denoted by; the distance from a point to a setS

will be denoted byi(z, S). Recall that theJrysohn spacéJ is a separable complete
metric space satisfying the following property

(E) For every finite metric spacds C F' and for every embedding: £ — U there
exists an embedding: F — U such thatf | £ = e.

As in the graph case, this property characteridegp to isometries and it implies
homogeneity with respect to finite metric spaces.

Definition 4. We say that a metric spacé of densityw; is Urysohn-likespace iff it is
complete and can be represented as the colimit of a ¢hRi# )., -

The following fact is easy to prove, by a simple closing-afjument.

Proposition 2. A complete metric spac¥ is Urysohn-like if and only if it has density
w1 and satisfies condition (E).

As in the graph case it is known that there is &at functor for metric spaces so
we have.

Corollary 2. There exists a homogeneous Urysohn-like space.

Our goal is to construct an Urysohn-like spaXehat is rigid. We want to prove
similar results as in the Rado-like case. We may use a sistilategy as in the graph
case to prove that there is an embeddingU — U which does not extend any non-
trivial automorphism (recall that an isomorphism is a Hijeeisometry). Roughly
speaking, we shall add a special pairtb U and then fill the space such that we obtain
again an isometric copy @f in such a way that this special poinimust be preserved
by every automorphic extension. Since the Urysohn spacad&slated points, we
must assure ourselves that after filling the space with saynatable dense part to
obtain agairlU there will be no point in its closure with similar properti&sz has.

For a metric spac& we denote its metric extension by adding a §et};c; as
X @®;er ;. This notation means that not only we add the points but we laiready
chosen a metric on the new space. We denote the metric oreaktsiby because it
is always clear from the context which space we mean. Theg&dimit of all finite
rational metric spaces is denoted@y. It is well-known thatQU = U.

Definition 5. Given a positiver € R define M,. to be the category of finite metric
spaces with the following property. Objects are spacesefdm £ & x whereFE is

a finite metric spacey is a special distinguished point adfz, y) > r forall y € E.
Isometric embeddingg : £ & x — F & 2/ are morphisms inM,. provided that
f(xz) = 2/. We denote byQM, the subcategory of, consisting of all rational
metric spaces.

We always denote the special pointhyFirst observation is th&@.M,. is a Fraissé
class since it has amalgamations similar as in the catedgonetiic spaces. The next
definition is crucial, as it distinguishes continuum marfjedent one point extensions
of U.



Definition 6. For0 < r € R we say that the one point extensiom x of the Urysohn
space is-Urysohn(or r-Urysohn typeor simplyr-typé iff the following holds

e d(z,U) =r,

e foreverypairE®x C Fdx € M, and for every embedding: Edr — Udx
such thate(x) = x there is an embedding : FF ® z — U @ x such that
fITEDx=ce.

Observation 1. For every0 < r € R there is an r-type and it is unique up to isomor-
phisms (i.e., isometries preserving the special point).

Proof. We prove that the-typeU @ x is the completion of the Fraissé limit @iM,..
It is the same argument as in the proof@P = U, because the Fraissé limit @M,
has the fornQU & .

Uniqueness can be proved by the back-and-forth argument whaéix a countable
dense set in each space as in the case of proving uniquenéss of O

Observation 2. Lete : U — U be an isometric embedding and lebe a realization
of somer-type overe(U). Assume that we have a pait 5 wherea : U — U is an
automorphism ang extendsy via e. Theng(z) is again anr-type overe(U).

We need to define another type of one point extensiofiswhich will fill-out the
space making it again Urysohn in such a way that no limit pofrg sequence of this
types is anr-type.

Definition 7. For an arbitrary metric spac& we say that the one point extension
X @ x has finite supporbver X (or it is afinitely supported typeor = realizes a
finitely supported typeff there is a finite set” C X such that

d(z,z) = inf{d(z,y) + d(y,z) 1y € Y'}.
It can be easily shown that the formula above is a correctitdefirof a metric.

Lemma 1. Assume that we have a spddep,-n x; & y Wherey realizes a type with
finite support ovelU ®;cn x;. Theny does not realize any-type for0 < » € R over
U.

Proof. We will construct a finite spac& @ w which is not realized iU @ y when
sendingw to y. Moreoverd(w, E') can be arbitrarily big, which means that it is not
anr-type for anyr € R. Assume that there are points{a; };<, realizing the finite
support ofy. Fix a numbelL bigger than anyl(y, a;).

Let the universe of the spaéebe formed byn+ 2 distinct points{w; };<,,+1 U{w}.
Let the metric be as follows

e fori 7£ 7 Setd(wi, U)j) = 2L,
[ d(w,wz) = L.

Itis easy to see that this is actually a metric space. We dlaatit cannot be realized in
the sense described before. Suppose itis. So there is amygppE dw — Udy such
that f(w) = y. Denotef(w;) asy;. By the pigeon hole principle there are# j and
k < n suchthati(y. v,) = d(y. ay) +d(ay. ;) andd(y. y,) = d(y. ax) + d(ay. y,). But
U®;enz; @y is a metric space so we must hade= d(y;, y;) < d(y;, ax)+d(ak, v;) =
2L — 2n;, which is a contradiction. O



A natural question is how far can the closedype realized by be from our fixed
pointy of finite support. Imagine that there is a mappihgF @ w — U @ 2z such that
e(w) = z. By the triangle inequality and an argument leading to areaittion in the
previous proof, we have for the contradicting pait; w; andk < n that

d(z,y) + L =d(z,y) +d(z, f(w;) > d(y, f(w;)) = d(y, ar) + d(ax, f(w;)).

Again by the triangle inequality
d(ay, f(wy)) + d(ag, f(w)) = d(f(w;), f(w:)) = 2L
thereforemax{d(ay, f(w;)), d(ax, f(w;))} > L. All these together gives rise to
d(z,y) + L > d(y, ay) + max{d(ag, y;), d(ag,y;)} > d(y,ax) + L.

Lemma 2. Assume that we have a spddep,-n x; & y Wherey realizes a type with
finite support ovell ®;cn ;. Then itis not an-type overU for anyr € R. Moreover,
every realization: of somer-type must satisfy(z, y) > d(y, U @jen ;).

Proof. The additional part follows from the above discussion and
d(z,y) > d(y, ar) > min{d(y, a;)} = d(y, U ien 2,).

O

Assume that we have a separable metric spacé/e want to enlarge it t&' ®;,
x; such thatX &;.,, x; ~ U. There is a construction using so-called &at maps.
There is a natural metric on the spapéX ) of all one point extensions of the metric
spaceX, but this space may no longer be separable. Thétdatconstruction adds
to X the subspace af(X) which is generated by all extensions with finite support.
We denote it byX' and putX”*! := (X™)!. Itis not surprising thatJ, _, X" ~ U.
Because the subspace i X) generated by types of finite support is separable, it
suffices to choose only countable many such types and adtith#m. After iterating
this process we may re-enumerate these types in such a waxXtha. ., z; ~ U
andz,, has finite support ovek &,.,, x;. So in fact for every separable metric space
there is a sequence of finitely supported types, but with tippart on the previously
defined ones, turning it t&J. This can be described more directly. Fix a countable
dense set” C X and build a spac& @;.,, y; such thaty, has rational finite support
overY @;., y;- We have to make sure that we eventually use all such typest ih
possible since there are only countably many possibilitieghe next definition we
just state what we mean by iterated finite support which valhkeeded as the previous
comment suggests.

Definition 8. Let X be a metric space and consider its extensfom,<,, y; such that
yi has finite support ovek @, y; for all £ < n. We assign tqy, a finite subset
Sy, (X) € X such that for ally € s, (X) there is a finite subsequenée;, }v<m
with y,, = i, ¥ = v;,, andy;, ., is in the support of;, for all £ < m. We denote
all such subsequences associated to a poby seq,, ., (X). We define a function
d,, :Y = Rby

m—1
dy, (y) == min {Z d(Yiys diyr) * {YiTezm € s€y,—y(X) } :

k=0



The sets,, (X) is finite and forz € X we can compute any distanégy,,, =) by

d(Yn, 2) = min{d,, (y) +d(y,2) 1 y € 5, (X)}

because it is just an iteration of finite support. Notice @, y) < d,,(y) for all

y € supp,, (X) but the equality does not hold in general. In fact there istesstof
Sy, (X)) for which it does hold and(y,, z) can be calculated using this subset only.
Let us denote this subset Bypp,, (X). Then the type whicly, realizes overX is
finitely supported on theupp,, (X) with distances described above.

Lemma 3. LetX = (U®,, z;) be a metric space. Assume that we have an extension
X ®;<n y; such thaty, has finite support ovek &, y; for all £ < n and assume that
we add a point realizing anr-type overU. Than we have that

d(yna Z) > d(yn, U DBj<w ZEj).

Proof. This follows immediately from the previous lemma because, i the discus-
sion abovey, is in fact finitely supported ovex. O

Before we prove the nextlemma, recall that the Urysoitype isUdz = QU & z,
whereQU & z is the Fraissé limit o) M,

Lemma 4. For a sequencdr; };.,, with r; > 1 there is an extension of the Urysohn
spaceU @;, x; with following properties

e 1; realizes each;-type,
o d(z;,x;) > 1fori # j,

e for every pair of points{z,y} € [QUJ? there isi < w such thatd(z,z;) +
d(z,y) = d(xi, y).

Proof. Fix an enumeration of all pairsz, y} € [QU]?. We denote it by{py }+., and
usepr = {p}, Pk }-

Next we proceed by induction. Assume that we have alreadstaactedU &, , x;
with given properties and we want to extend it to a paipt We describe the first
element of a sequence in the categ@y1,, We denote it byE & x. We choose
E = {p°,pl} € QU in such a way that we can find a metric éh¢> = such that
d(z,p?) +d(p°,pL) = d(z,pl). Then we take the closure of the Fraissé libhip z,,
and embedd it in the spa&&®;,, =; in a proper way i.e. mapping from the limit
to £ C QU. Then take the amalgamation given by the push-out (i.e.ntheimal
amalgamation). We are done, becadg§eg,, z;) > r, + r;. O

Theorem 4. There is an embedding: U — U such that, = {id}.

Proof. For a fixed sequencér;};., with r; > 1 takeU &, z; as in the previous
lemma. We use the argument described in a discussion abaredte a dense set
of the Urysohn space of the for@U ®,.., z; ®,<., y;, Wherey; is a finite type over
QU ®icw = Br<; yr. We claim that after takin@QU @, ., z; ®,-, y; ~ U the only
r-types over the original are realized by{z;},.,. Assume that there is which
realizes an--type andd(z,U @;en x;) > €. So there is a poing, which realizes




a finitely supported type ovell ®;cn z; ®j< y; Such thatd(y,, 2) < { and this is

impossible due to the previous lemma, because

€ €

1 > d(yYr, 2) > d(yr, U @ien i) > d(2, U @jen 23) — d(yp, 2) = € — 1
Suppose that we have an automorphism Aut(U) and we can extend it by some

p € Aut(U) via e. Because for every; there is exactly one;-type in the extended

U, we have thapi(z;) = z;. Assume that for some € U we havea(z) = y # z.

Due to the construction ofz;};-.,, there are always < w and pointsz’, vy’ € QU

close enough tg, z such thati(zy, z') = d(2',y') + d(xx, y') contradictingd(xy, z) =

d(B(zk), B(z)) = d(x, y) which should hold becaugegis an isometry. O

We need a generalization of the previous lemma to prove thie thaorem. In
fact, we need to generalize it for the situation when we iteby adding arbitrary and
finitely supported types together. To be more concrete slelascribe such a situation.
Assume that we have a finite extension of a spEgby some points with finite support
over Xy, i.e., we sett; := Xy ®;p, yo;. Then we add finitely many points with
arbitrary support oveYy, i.e., X; := Yy @k, xo,. We repeat this procedure times
obtaining

X = Xo ®j<mii<k; Tji Pp<mg<ny Yp,g-

For every one point extensioki @ y with finite support we may defing (.X') which
is a subset oy © ;< i<k, 5, defined by the followingz € s;(X) iff there exists
a sequence of pairs of numbdts, ¢; } ;.. Strictly decreasing in the first coordinate
and such thay,, . , ..., is in the support ofy,, ,, (where bysupportwe mean its finite
support overX,,,), ¥4, IS in the support of;, andz is in the supportofy, , ., ..
Similarly as in the previous case, we may define a functipn s;(X) — R,
whered; (z) is the minimal sum of distances over all sequences going fraa: as
described above. This is a generalization of the previotisiien, because we can

calculate distances only fare X, by
d(y,z) = min{d,(2) + d(z,7) : z € 5,(X)}
which can be verified similarly as before.

Lemma 5. Consider a spac& := (U @©j<m,i<k; Tji Cp<m,g<n, Ypq) © y described
in the previous paragraph. Then for every pointealizing anr-type overU we have
thatd(y, z) > d(y, U ©j<mi<k; 75:). In particular, y does not realize any-type over
U.

Proof. We only need to observe that the typeyadverU is in fact finitely supported,
however its support; (X) may not be contained ily. But the proof of the previous
cases requires only points frothto obtain the inequality so we may use it as well to
obtain

d(y, z) > min{d,(2), 2z € s,(X)} = d(y, U Qjcm,i<k; Tji)-

Theorem 5. There is a rigid Urysohn-like space.
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Proof. We proceed by induction of lengthy. Fix a matrix{r,_; } a<., j<. Of pairwise
different real numbers, wherg ; > 1 such that, ; — coasj — co. Nextwe define a
transfinite sequence of spaces and their countable dertseapdollows. PuiX, := U
and X, := QU. Fora limit let X, := {J,_, X andX,, := U, X;. Assume that
we have already constructg¢,, } s<, and thatU ~ X for all 5 < a. Givena + 1,
first enumerate all tuples o€/, by {p; } ;.. in such a way that(p{, p;) < r.;. Thisis
possible since, ; — oo asj — oco. PutX, @, z. ;, wherez, ; realizes am, ;-type
over X, and a separate tupte as in the proof of the previous theorem.

Moreover this can be done in such a way that for eagh there isy € X,
with d(y,z) = r,;. We use homogeneity df here. We may always find a trian-
gle{w,p}, pj} € X, such thatw € X, andd(w,p}) > d(w,p;) > 7. Let us define
the four-point metric spacgz, ¢f, ¢;, z.,;} by the following conditions.

o d(z,¢}) = d(w,p}), d(qf, qj) = d(p), p}),

o d(Ta,2) = Tayj, d(Ta, @) = d(z,q;) andd(za 5, q;) = d(2, q;) + d(g;. 4;).
One can easily verify that this is indeed a metric space. Nogeave havél @ z,,
andz, ; realizes am, ;-type then it must contain our just-defined four-point spd&e
the homogeneity ot/ we may assume that = w and¢, = p}. Finally fill-out the
spaceX,, @, 7. ; by finitely supported typesy; }:-., as in previous cases in order to
ObtainXaH = Xa EB]'<W Ta,j Dicw Yi = Uand defineX'(;H = Xél EBj<w Lo, j Di<w Yi-

Finally, let X := |, ., Xa-
Fix 5 < w;. We claim that all-- types overX; are in the set

Y = Xﬂ Dp<a<wr,j<w Ta,j-

Suppose that there is € X which realizes amr-type overX; andd(z,Y) > e.
There must ber < w; such that: € X,. We findt € X, with d(t,z) < £ which

has a finite support over son?é; Djcw Ty j Dicn Y1 Wherey < a. If we consider
s71(X} ®p<ccrjcw T¢;) then we suddenly are in the same situation as in one of the
previous lemmas, becau$€ (X; ®s<c<qj<w T¢j)| < w. Thus we obtain again a
contradiction:

€ €
7 > At 2) 2 dt, X @p<sqijcw Te) 2 d(2, Xp Dpzezyjcw Teg) —d(t 2) 2 €= 7.

The matrix{r,«., j<.} contains pairwise different real numbers and every auto-

morphismf : X — X must be invariant on club man¥s. More precisely, there is

a closed unbounded sgtC w, such that for3 € S the restriction off to X3 is an
automorphism ofXs. Fix 3 € S. We havef(zs,;) = xg; for all j < w, because
xg ; realizesrs ;-type and it cannot be moved since it is the only on&(inThe reason

is that we have for each, ; some pointy € X, such thatd(z, ;,y) = 7., due to

the construction, so if among the set, ; } s<a<w j<o there is some-type overXg
then it must respect its valug ;, because we hav§z, ;, X3) = r, ;. Due to similar
construction ofX 5, as in the previous theorefhas to be identity ok, therefore

it has to be identity orX. O
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