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Abstract 
 

We study a learning process in which subjects extrapolate from their experience of similar 
past strategic situations to the current decision problem. When applied to coordination 
games, this learning process leads to contagion of behavior from problems with extreme 
payoffs and unique equilibria to very dissimilar problems. In the long-run, contagion results 
in unique behavior even though there are multiple equilibria when the games are analyzed 
in isolation. Characterization of the long-run state is based on a formal parallel to rational 
equilibria of games with subjective priors. The results of contagion due to learning share 
the qualitative features of those from contagion due to incomplete information, but 
quantitatively they differ. 
 

Abstrakt 
 
Studujeme process učení v němž hráči extrapolují svou zkušenost z podobných minulých 
strategických situací k nynějšímu problému. V případě koordinačních her vede tento proces 
učení k šíření ustáleného chování z her s extrémními pravidly a nepřímo k selekci 
rovnovážných stavů i ve velmi rozdílných hrách. Z dlouhodobého hlediska je rovnovážný 
stav jedinečný, ačkoliv, kdyby byla každá hra zkoumaná odděleně, rovnovážných stavů by 
bylo několik. Při výpočtu rovnovážného stavu využíváme podobnost  s koordinačními 
hrami s asymetrickou informací. 
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1 Introduction

In standard models of learning, players repeatedly interact in the same game, and use their

experience from the history of play to myopically optimize in each period. In many cases of

interest, decision-makers are faced with many different strategic situations, and the number

of possibilities is so vast that a particular situation is virtually never experienced twice.

The history of play may nonetheless be informative when choosing an action, as previous

situations, though different, may be similar to the current one. A tacit assumption of standard

learning models is that players extrapolate from their experience of previous interactions

similar to the current one.

The central message of this paper is that such extrapolation has important effects:

similarity-based learning can lead to contagion of behavior across very different strategic

situations. Two situations that are not directly similar may be connected by a chain of in-

termediate situations, along which each is similar to the neighboring ones. One effect of this

contagion is to select a unique long-run action in situations that would allow for multiple

steady states if analyzed in isolation. For this to occur, the extrapolations at each step of

the similarity-based learning process need not be large; in fact, the contagion effect remains

even in the limit as extrapolation is based only on increasingly similar situations.

We focus here on the application of similarity-based learning to coordination games. Con-

sider, as an example, the class of 2×2 games Γ(θ) in Table 1 parameterized by a fundamental,

θ. Action I, interpreted as investing, is strategically risky, as its payoff depends on the action

of the opponent. The safe action, NI, gives a constant payoff of 0. For extreme values of

θ, the game Γ(θ) has a unique equilibrium as investing is dominant for θ > 1, and the safe

action is dominant for θ < 0. When θ lies in the interval (0, 1), the game has two strict pure

strategy equilibria.

The contagion effect can be sketched without fully specifying the learning process, which

we postpone to Section 3. Two myopic players interact in many rounds in a game Γ(θt), with

θt selected at random in each round. Roughly, we assume that players estimate payoffs for

the game Γ(θ) on the basis of past experience with fundamentals similar to θ, and that two

games Γ(θ) and Γ(θ′) are viewed by players as similar if the difference |θ − θ′| is small.
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I NI
I θ, θ θ − 1, 0
NI 0, θ − 1 0, 0

Table 1: Payoffs in the Example of Section 2.

Since investing is dominant for all sufficiently high fundamentals, there is some θ above

which players eventually learn to invest. Now consider a fundamental just below θ, say

θ − ε. At θ − ε, investing may not be dominant, but players view some games with values

of θ above θ as similar. Since the opponent has learned to invest in these games, strategic

complementarities in payoffs increase the gain from investing. When ε is small, this increase

outweighs the potential loss from investing in games below θ, where the opponent may not

invest. Thus players learn to invest in games with fundamentals below, but close to θ, giving

a new threshold θ′ above which both players invest.

Repeating the argument with θ replaced by θ′, investment continues to spread to games

with smaller fundamentals, even though these are not directly similar to games in the dom-

inance region. The process continues until a threshold fundamental θ is reached at which

the gain from investment by the opponent above θ is exactly balanced by the loss from non-

investment by the opponent below θ. Not investing spreads contagiously beginning from low

values of the fundamental by a symmetric process. Together, these processes meet at the

same threshold, giving rise to a unique long-run outcome, provided that similarity drops off

quickly in distance.1

Contagion effects have previously been studied in local interaction and incomplete infor-

mation games. In local interaction models, actions may spread contagiously across members

of a population because each member has an incentive to coordinate with her neighbors in

a social network (e.g. Morris (2000)). In incomplete information games with strategic com-

plementarities (global games), actions may spread contagiously across types because private

information gives rise to uncertainty about the actions of other players (Carlsson and van

Damme 1993). Unlike these models, contagion through learning depends neither on any

network structure nor on high orders of reasoning about the beliefs of other players. The

1In other words, players place much more weight on values of the fundamental very close to the present one
when forming their payoff estimates.
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contagion is driven solely by a natural solution to the problem of learning one’s own payoffs

when the strategic situation is continually changing. This problem is familiar from econo-

metrics, where one often wishes to estimate a function of a continuous variable using only

a finite data set. The similarity-based payoff estimates used by players in our model have a

direct parallel in the use of kernel estimators by econometricians. Moreover, the use of such

estimates for choosing actions is consistent with the case-based decision theory of Gilboa and

Schmeidler (2001), who propose similarity-weighted payoff averaging as a general theory of

decisions under uncertainty.

While the learning model we have described is one of complete information, the same

reasoning applies when, as in the global game model, players imperfectly observe the value of

the fundamental. In order to directly compare the process of contagion through learning to

that from incomplete information, players in the general model of Section 3 observe private

signals of the fundamental that may be noisy. The fundamental and signals are independently

drawn in each round. From the history of play, players have experience with realized payoffs

for signals similar to, but different from, their current signal. They estimate the current

payoffs based on the payoffs of similar types in the past.

The main tool for understanding the result of contagion through learning is a formal

parallel to rational play in a modified version of the game. This modified game differs from

the original game only in the priors: players eventually behave as if they incorrectly believe

their own signal to be noisier than it actually is, while holding correct beliefs about the

precision of the other players’ signals. More precisely, players learn not to play strategies

that would be serially dominated in the modified version of the game (see Theorem 3.1).

This result enables us to solve the modified game by extending the techniques of Carls-

son and van Damme (1993), further developed by Morris and Shin (2003). With complete

information, the original game has a continuum of equilibria, but contagion leads to a unique

learning outcome when similarity is concentrated on nearby fundamentals. With small noise

in observations of the fundamental, the underlying game has a unique equilibrium as a result

of contagion from incomplete information. In this case, there is also a unique learning out-

come when similarity is concentrated, but this outcome depends on the relative size of the

noise compared to the concentration of the similarity. In particular, the process of contagion

4



through learning does not generally coincide with that of contagion from incomplete infor-

mation. However, the qualitative features of these processes agree, as both converge to play

of symmetric threshold strategies, and give rise to comparative statics of the same sign.

After an illustrative example in the following section, Section 3 describes the general

learning model, and characterizes its long-run behavior in terms of the modified game. Sec-

tion 4 fully identifies the long-run state in the limit of small noise and narrow similarity

distributions, and examines comparative statics. Section 5 reviews the related literature.

2 Example

This section presents an example to illustrate in more detail the process of contagion through

learning before describing the general model in Section 3.

The underlying family of coordination problems consists of the 2-player games in Table 1.

We denote by u(ai, a−i, θ) the payoff to choosing action ai when the opponent chooses action

a−i, and the fundamental is θ.

The game is played repeatedly in periods t ∈ N, with the fundamental θt drawn indepen-

dently across periods according to a uniform distribution on an interval [−b, 1 + b], where

b > 0. Each realization θt is perfectly observed by both players, who play a myopic best

response to their beliefs in each period. Beliefs are based on players’ previous experience,

but since θ is drawn from a continuous distribution, players (almost surely) have no past

experience with the current game Γ(θt), and must extrapolate from their experience playing

different games. In each period, players directly estimate payoffs as a weighted average of

historical returns in which the weights are determined by the similarity between the current

and past fundamentals. Strategic considerations play no role in these estimates: players treat

the past actions of their opponents as given. Thus following any history
{
θs, a

1
s, a

2
s

}
s<t

, the

estimated payoff to player i from choosing action ai given the fundamental θt is

∑
s<t g(θs − θt)u(ai, a−i

s , θs)∑
s<t g(θs − θt)

, (1)

where g(·) is the similarity function determining the relative weight assigned to past cases.
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For this example, suppose that g(·) is the density corresponding to a uniform distribution on

the interval [τ c−1
2 , τ c+1

2 ], where c ∈ [−1, 1] and τ ∈ (0, b]. Beliefs may be chosen arbitrarily if

the history contains no fundamental similar to θt, that is, if
∑

s<t g(θs − θt) = 0.

The learning process is stochastic, but suppose that the empirical distribution of realized

cases may be approximated by the probability distribution over θ (this idea is formalized in

Section 3 below). By focusing on the most extreme strategies remaining for the opponent

at each stage of the learning process—those involving investment at the most or the fewest

fundamentals—we may bound the payoff estimates independently of the precise evolution

of the opponent’s strategy. Accordingly, consider a fixed strategy l : Θ → {0, 1} of the

opponent, where 1 is associated with investing and 0 with the safe action. Upon observing

the fundamental θ, the player forms estimates of the true payoffs to investing u(1, l(θ), θ) =

θ + l(θ)− 1, and to the safe action u(0, l(θ), θ) = 0. Similarity-based learning leads to payoff

estimates ∫
Θ

(
θ′ + l(θ′)− 1

)
g(θ′ − θ)dθ′ (2)

from choosing to invest, and 0 from the safe action. The expression (2) is formally equivalent

to the conditional expectation E[Θ′ + l(Θ′) − 1|θ] when θ is an imprecise signal of θ′, with

noise distributed according to density g(·). Thus, in the longrun, the similarity-based learner

behaves as if her observation of θ were not the true fundamental, but only a noisy signal.

Let θ̃(θ) =
∫
Θ θ

′g(θ′−θ)dθ′ denote the posterior expected value E[Θ′|θ] of the fundamental

after observing the signal θ under this “virtual signal” interpretation of the payoff estimates.

Players (eventually) learn to invest at those values of θ for which θ̃(θ) lies above 1, because

the estimated payoff is positive even if the opponent has never invested.

Next, consider some θ for which θ̃(θ) = 1 − α, with α > 0 small relative to τ . Suppose

that a sufficiently long time has passed since the completion of the first learning stage as to

make this earlier history negligible. Close to half of the similarity weight at this θ will be

assigned to past cases θ′ with θ̃(θ′) > 1. In these cases, the opponent always invests, causing

the estimated benefit to investing in these cases to outweigh the estimated loss for smaller

values of the fundamental where the opponent may not invest. Players therefore learn to

invest at fundamentals θ with θ̃(θ) > 1− α, for some α > 0.
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Following this second learning stage, we may apply the same argument for fundamentals θ

with θ̃(θ) = 1−α−α for small α > 0. Iterating the argument in this way, players eventually

learn to invest for ever lower fundamentals. The process continues until a threshold θ is

reached at which the gain in the estimated return to investing due to the opponent investing

above θ is exactly offset by the loss in this return if the opponent chooses the safe action

below θ.

The same reasoning applies to the safe action beginning from low fundamentals, giving

rise to a threshold θ below which both players choose the safe action. The threshold θ satisfies

the same offsetting-payoff condition as θ. Since the virtual estimate θ̃(θ) is increasing in θ,

this condition is satisfied for a unique fundamental θ∗. Thus the two contagion processes

meet at the same threshold θ = θ = θ∗. At this threshold, players are indifferent between

their two actions given their long-run payoff estimates. Thus we have

θ̃ (θ∗)− 1 +
∫

Θ
lθ∗(θ′)g(θ′ − θ∗)dθ′ = 0,

where lθ∗(θ′) is the threshold strategy with threshold θ∗.

The threshold θ∗ depends on the shape of the similarity function. The threshold type’s

estimate of the likelihood that her opponent invests is equal to the similarity weight the type

assigns to higher fundamentals: in this case, c+1
2 . The long-run threshold therefore solves

θ̃ (θ∗) + c−1
2 = 0.

In Section 3, we introduce the general model of similarity-based learning. In addition to

more general payoff functions, and general similarity functions gi(·), we allow for incomplete

information in the observation of the fundamental. Long-run behavior is influenced by both

the true error in players’ signals and the virtual error arising from the use of extrapolation

in similarity-based learning.

3 The Learning Model

The model is comprised of an underlying game, which shares much of the structure of global

games, together with a dynamic process by which players form beliefs about their payoffs as
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a function of the observed history. We begin by describing the underlying game.

Two players play a common value game Γσ. In this game, a state θ is drawn from a

connected space Θ ⊆ R according to the continuous distribution Φ(·) with density φ(·).

Each player i then receives a possibly noisy signal xi ∈ Xi ⊆ R of the state θ given by

xi = θ + σεi, where εi is drawn from a continuous distribution with density f i(·). These

draws are independent across players. The parameter σ governing the precision of the signals

is assumed to be nonnegative; in particular, we consider not only the incomplete information

case of σ > 0, but also the complete information case of σ = 0 in which the state θ becomes

common knowledge before the players choose their actions. Letting p
(
θ, x1, x2

)
denote the

probability density associated with the combination
(
θ, x1, x2

)
when σ > 0, we have2

p
(
θ, x1, x2

)
= φ(θ)f1

(
x1 − θ

σ

)
f2

(
x2 − θ

σ

)
.

Each player has two actions, 0 and 1 (these correspond, respectively, to the actions NI

and I in the Introduction above). Payoffs depend only on the state θ and the action profile.

To economize on notation, we normalize the payoff from action 0 to be equal to 0 in every

state θ, and write u (θ, l) for the expected payoff from choosing action 1 in state θ when the

opponent chooses action 1 with probability l.3 More generally, u(θ, l) represents the difference

in payoffs from choosing action 1 instead of action 0 given θ and l.

We place the following restrictions on the payoffs throughout:

A1. u(θ, l) is increasing in θ.

A2. u(θ, l) is non-decreasing in l.

A3. Uniform limit dominance: there exists some θ and ε > 0 such that u(θ, l) > ε whenever

θ ≥ θ and u(θ, l) < −ε whenever θ ≤ −θ (for all l ∈ [0, 1]).

A4. Bounded payoffs: there exists some V ∈ R such that |u(θ, l)| < V uniformly for all

(θ, l) ∈ Θ× [0, 1].

Assumptions A2 and A3 are quite standard in global games (see, e.g., Morris and Shin (2003)).

2When σ = 0, we have x1 = x2 = θ, and the density is simply φ(θ).
3The reason for defining payoffs so as to allow a non-linear dependence on the probability distribution over the

opponent’s action is to facilitate the move to a model with a continuum of players, in which l represents the share
of the population choosing action 1.

8



For simplicity, Assumption A1 strengthens the usual nondecreasing payoffs assumption. This

additional strength is needed only to guarantee that the function m̃(x, x) defined below

possesses a unique root; the corresponding uniqueness condition is assumed directly in the

earlier literature.

The learning process is based on the idea that players estimate their possible payoffs based

on play in past situations, with more similar situations being assigned greater weight in this

estimate. More precisely, fixing σ ≥ 0, we suppose that the game Γσ is played in each period

t = 1, 2, . . ., with the fundamental and signals drawn independently across periods. Let θt, xi
t,

and ai
t denote, respectively, the payoff-relevant state, player i’s signal, and player i’s action

in period t.

Regardless of her own action, each player i learns at the end of each period t the payoff

u
(
θt, a

j
t

)
that she received, or would have received, from choosing action 1. The assumption

that players learn counterfactual payoffs from actions that they have not chosen simplifies the

analysis by ensuring that initial beliefs do not prevent players from learning. We offer two

interpretations of this assumption. In certain applications, the counterfactual payoff may be

directly observable from public reports in the media. Thus, for example, in a currency attack,

even those who have not participated learn about the outcome of the attack. Alternatively,

one may suppose that in each period, players have a small but fixed probability of choosing

their action at random, independently of the history of play, either by mistake or for the

purpose of experimentation. As this error probability becomes small, the long-run outcomes

approach those of our model.

Each player i is endowed with a similarity function gi : R −→ R that depends only on the

difference between two types, so that the weight placed by type x on experience as type x′ is

given by gi (x′ − x). The similarity function is assumed to be non-negative everywhere and

integrable, and we will normalize it to be a probability density function. Following a history

ht =
(
θs, x

1
s, x

2
s, a

1
s, a

2
s

)
s=1,...,t

, type xi of player i forms the estimated return to action 1 by

r
(
xi;ht

)
:=
∑t

s=1 u
(
θs, a

−i
s

)
gi
(
xi

s − xi
)∑t

s=1 g
i (xi

s − xi)
(3)

whenever the denominator on the right-hand side is non-zero. Player i chooses action 1 in
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period t if and only if this estimated return is positive. This formulation captures the notion

that players form estimates of payoffs based on their experience with similar types, and, as

usual in the literature on learning in games, behave myopically based on these estimates. We

place no restrictions on behavior when
∑t

s=1 g
i
(
xi

s − xi
)

= 0,4 and all of our results hold for

any specification of behavior or beliefs at these histories.

This learning process is a form of case-based decision theory, as formulated by Gilboa and

Schmeidler (2001). Alternatively, the model has a cognitive interpretation based on Billot

et al. (2005), who describe and axiomatize a belief formation process according to which

a statistician estimates the probability of an outcome on the basis of its frequency among

previous cases, where these cases are weighted by their similarity to the present one. Our

players can be viewed as statisticians satisfying the axioms of Billot et al., who, after forming

beliefs, maximize their expected payoffs.5 The key axioms in both Gilboa and Schmeidler

(2001) and Billot et al. (2005) preclude learning of the similarity function, which is consistent

with our modelF in which similarity is exogenous.

The informational requirements of the learning process are modest. In particular, players

need not have any initial knowledge of their own payoff function, nor must they observe their

opponent’s actions, payoffs, or types. It is even possible for players to follow this process

without knowing that they are involved in strategic interaction, as they are simply forming

estimates of the optimal action based on their own payoff history in similar situations.

To simplify the analysis, the payoff estimates r
(
xi;ht

)
place equal weight on all past

observations regardless of how much time has elapsed. More generally, one could suppose

that observations are discounted over time according to a non-increasing sequence δ(τ) ∈

(0, 1] by modifying equation (3) to include an additional factor of δ(t − s) in each sum. In

the undiscounted model, the convergence results presented below rely on the property that

changes in payoff estimates in a single period become negligible once players have accumulated

enough experience. Since this property continues to hold as long as the series
∑∞

τ=0 δ(τ)

diverges, we conjecture that all of our results hold in this more general setting. If, on the

other hand, this sum converges, then the situation becomes more complicated, as the learning

4That is, when the history of play contains no cases similar to the present one.
5This connection is subject to the caveat that Billot et al. assume a finite outcome space, whereas the outcome

space is infinite here.
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process will not converge in general. It is therefore not possible for the long-run behavior to

agree with that of the undiscounted process in every period. However, as long as memory

is “sufficiently long,” we expect this agreement to occur in a large fraction of periods. For

example, if memory is discounted exponentially, so that δ(τ) = ρτ for some ρ ∈ (0, 1), then

we expect play to be consistent with our results most of the time when ρ is close to 1.

The following technical assumptions are required for the analysis:

A5. Each similarity function gi(·) is bounded by some M i.

A6. Each similarity function gi(·) is uniformly continuous.6

Since gi(x) is a probability density function, Assumption A6 implies that similarity tends to

zero in distance; that is, limx→∞ gi(x) = limx→−∞ gi(x) = 0. Otherwise, there must exist

some ε > 0 such that for each M there is some x > M for which gi(x) > ε. By the uniform

continuity of gi(·), this implies that there exist infinitely many disjoint intervals of fixed length

on which gi(·) is everywhere greater than ε
2 , contradicting that gi(·) is integrable.

Let pi
x(·) denote the marginal density corresponding to the distribution of the signal

of player i. With incomplete information, we have pi
x(x) =

∫
Θ φ(θ)f i

(
x−θ
σ

)
dθ, and with

complete information, pi
x(x) = φ(x).

A7. The marginal densities pi
x(·) are continuous.

Note that in the incomplete information case, Assumption A7 allows for discontinuities in

the densities φ(·) and f i(·); for example, this assumption holds if the discontinuities of both

of these densities are topologically isolated.

In order to ensure that learning occurs everywhere in finite time, we assume:

A8. Either the state and type spaces are compact, or each similarity function gi(·) has full

support on the real line.

3.1 Long-run Characterization

The learning process described above converges, in a sense that will be made precise below,

to the set of strategies surviving IEDS in a game with subjective priors that we will refer to

6All of the results hold if instead we suppose that for each i, there exists some xi below which gi is non-decreasing,
and above which it is non-increasing.
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as the modified game. Whereas the underlying game describes the actual situation in which

the players interact, the modified game describes a virtual situation in which rational players

would exhibit the same behavior as the learning players of our model (in the longrun).

In order to motivate the formulation of beliefs in the modified game, consider the incom-

plete information case (σ > 0). Recall that under the specified learning dynamics, behavior

is determined by the sign of the numerator of the estimated return in (3). Against a fixed

strategy aj(x′) of the opponent, the expected value of this numerator is proportional to

∫
Xi

∫
Xj

∫
Θ u
(
θ, aj(x′)

)
gi(x− xi)p(θ, x, x′)dθdx′dx∫

Xi

∫
Xj

∫
Θ p(θ, x, x

′)gi(x− xi)dθdx′dx

=
∫

Xj

∫
Θ
u
(
θ, aj(x′)

)
qi(θ, x′|xi)dθdx′, (4)

where

qi
(
θ, xj |xi

)
=

∫
Xi p

(
θ, x, xj

)
gi
(
x− xi

)
dx∫

Θ

∫
Xj

∫
Xi p (θ, x, x′) gi (x− xi) dxdx′dθ

. (5)

Note that the right-hand side of (4) is precisely the expected payoff to player i from playing

action 1 given the posterior beliefs qi(θ, x′|xi), suggesting that the long-run behavior under

the learning dynamics should correspond to rational behavior given these subjective beliefs.

The modified game is identical to the underlying game, except that the beliefs of type

xi of player i are given in the incomplete information case by qi
(
θ, xj |xi

)
. In the complete

information case (σ = 0), the beliefs of each type xi assign probability one to the event

xj = θ, and correspond to the density

qi
(
θ|xi

)
=

φ(θ)gi
(
θ − xi

)∫
Θ φ(θ)gi (θ − xi) dθ

. (6)

An equivalent definition of the modified game specifies the subjective priors from which

the posterior beliefs qi may be derived. These priors correspond to an incorrect model of

signal formation on the part of each player. To be precise, consider a model in which, after

θ is drawn according to the correct distribution, player i’s signal is formed in a two-stage

process. The first stage of this process is the same as for the signal in the underlying game;

that is, a noisy signal x̃ = θ + σε̃ of θ is generated by drawing ε̃ according to the density

12



f i(·). What player i observes, however, is a noisy signal x of x̃ drawn according to the density

gi(x̃− x). The beliefs qi correspond to this two-stage process when player i holds the correct

beliefs about her opponent’s signal, namely that it arises from only the first stage of this

process. The effect of learning by similarity in the long-run may therefore be viewed as if

players add noise to their own signals, but not to that of their opponents. This interpretation

explains in part why many of the results discussed below are close, but not identical to those

of the standard global games literature. In particular, when there is complete information in

the underlying global game, this form of subjective noise may lead to a unique equilibrium

in the same way that adding small noise does in global games with rational players.

Given any game with subjective priors, we may define (interim) dominated strategies in

the same way as for Bayesian games with common priors.7 In fact, we will require a slightly

stronger form of dominance in which the payoff difference exceeds some fixed π ≥ 0. To define

this formally, let ui
(
θ, ai, a−i

)
denote the payoff to player i from the action profile

(
ai, a−i

)
when the fundamental is θ. The action ai ∈ {0, 1} is π-dominated for type xi against a set

S−i of strategies for the opponent if there exists some other action ãi such that

Eqi(θ,x−i|xi)u
i
(
θ, ãi, s−i

(
x−i
))
− Eqi(θ,x−i|xi)u

i
(
θ, ai, s−i

(
x−i
))
> π

for all s−i ∈ S−i.8 In words, the expected payoff of type xi based on her posterior beliefs

could be increased by more than π by playing a different action, regardless of the strategy of

the opponent. We call a strategy π-dominated for player i if it specifies a π-dominated action

for some type. As usual, we will say simply that si is dominated if it is π-dominated with

π = 0.

The need to consider π-domination instead of ordinary strict domination arises because of

the difference between estimated returns following finite histories and their long-run expec-

tations. In the proof of Theorem 3.1 below, we show that for any π > 0, estimated payoffs

under the learning process almost surely eventually lie within π of the corresponding expected

7Since no other notion of domination will be employed here, we henceforth drop the term “interim” and refer
simply to “dominated strategies.”

8The notion of π-domination should not be confused with the unrelated concept of p-dominance that has appeared
in the literature on higher-order beliefs.
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payoffs in the modified game. It follows that actions that are π-dominated in the modified

game will (almost surely eventually) not be played under the learning process. The following

lemma shows that considering π-domination for arbitrary π > 0 suffices to prove the result

for π = 0, that is, for strict domination.

Lemma 3.1. Suppose that action a ∈ {0, 1} is serially dominated for type x of player i.

Then there exists some π > 0 such that action a is serially π-dominated for type x.

The idea of the proof, which is relegated to the appendix, is that as π is made to decrease

toward zero, smaller sets of strategies survive iterated elimination of π-dominated strategies

(IEπDS). The lemma states that the set obtained in the limit is equal to that from ordinary

IEDS. Suppose this is not the case, and consider any type x for which they differ. The

argument proceeds by induction on the round in which elimination occurs under ordinary

IEDS for this type, call it N . We show that by choosing π sufficiently small, the set of

types on which IEπDS differs from IEDS in the first N − 1 rounds can be made to have an

arbitrarily small measure, and hence this difference has an arbitrarily small impact on the

possible expected payoffs received by type x.

Given any subset α ⊆ {0, 1}, let Xi(α) ⊆ Xi denote the set of types of player i for which

α is precisely the set of serially undominated actions in the modified game. The main result

of this section, given in the following theorem, shows that, in the longrun, players will not

play strategies that are serially dominated in the modified game.

Theorem 3.1. The probability that play under the specified dynamics is consistent with IEDS

in the modified game approaches one as time tends to infinity. Moreover, on any compact set

of types not intersecting X ({0, 1}), convergence almost surely occurs in finite time.

Proof. See appendix.

Using the strong law of large numbers, it is relatively straightforward to show that for

a given type against a fixed strategy, the long-run payoff estimate is equal to the expected

payoff in the modified game. The main difficulty in the proof of the preceding theorem arises

because, in order for the analogue of IEDS to occur under the learning dynamics, infinite sets

of types must “eliminate” actions in finite time. Accordingly, the proof demonstrates that it
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is possible to reduce the problem to one involving a finite state space while introducing only

an arbitrarily small error in the payoff estimates.

4 Limit Results and Comparative Statics

4.1 Narrow Similarity and Small Noise

By Theorem 3.1, applying IEDS in the modified game allows us to identify strategies that

may survive in the long-run of the learning process. We therefore shift our attention in this

section to the solution of the modified game.

¿From this point on, we focus on the case in which the densities φ(·) and f i(·) have full

support on the real line, and assume that the game and the learning process are symmetric

with respect to players; that is, f1(·) = f2(·) and g1(·) = g2(·). Since it follows that the

subjective beliefs in the modified game take the same form, we drop the player index from

qi(·). Like the underlying game, the modified game does not have a unique equilibrium in

general. However, the techniques developed for global games with rational players (see, e.g.,

Morris and Shin (2003)) can be extended to show that uniqueness arises as long as the noise

and the similarity weights are both sufficiently concentrated on a narrow interval. In order

to make this precise, we introduce a similarity parameter τ ∈ R++, and replace the similarity

function g(x′−x) with 1
τ g
(

x′−x
τ

)
. Decreasing τ increases the similarity weight given to types

x′ close to x.

The proof of the following proposition closely follows that of the corresponding result

in Morris and Shin (2003). They show that in the limit as σ tends to zero, the essentially

unique serially undominated strategy for each player is defined by the threshold θ∗ solving∫ 1
0 u(θ, l)dl = 0, with action 0 taken by types below θ∗, and action 1 by types above θ∗. The

following result identifies the long-run solution under the learning dynamics in the limit with

both small noise (σ → 0) and narrow similarity (τ → 0), while holding the ratio σ
τ fixed.

Proposition 4.1. For any δ > 0, there exists γ > 0 such that for any γ ∈ (0, γ), if the

strategy s(x) survives IEDS in the modified game Γm(σ̃γ, τ̃γ), then s(x) = 0 for x < θ∗ − δ
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and s(x) = 1 for x > θ∗ + δ, where, for σ > 0, θ∗ solves

∫ 1

0
u(θ, l)dH(l) = 0 (7)

and H(·) is defined by

H(l) =
∫

Ξ
g(ξ)

(
1− F

(
τ̃

σ̃
ξ + F−1(1− l)

))
dξ, (8)

and for σ = 0, θ∗ solves

G(0)u(θ, 0) + (1−G(0))u(θ, 1) = 0, (9)

where G(·) is the distribution function corresponding to the density g(·).

The expression 1 − F
(

τ̃
σ̃ ξ + F−1(1− l)

)
in (8) is the equilibrium belief over l in the

underlying game for a player observing a signal at distance σξ from the threshold. A player

in the modified game observing the threshold signal x is uncertain over the true value x′,

and thus her belief H(l) is an average of the rational beliefs induced by signals close to the

threshold.

Proof. The proof in the complete information case is similar to, but simpler than that for the

incomplete information case, and is omitted.

Let σ = σ̃γ, τ = τ̃ γ, and qθ (θ|x) denote the marginal density associated with the subjec-

tive beliefs q (θ, x′|x) given σ and τ . Define

m̃σ,τ (x, k) ≡
∫

Θ
qθ(θ|x)u

(
θ, 1− F

(
k − θ

σ

))
dθ, (10)

which is the expected payoff to action 1 for type x in the modified game Γm (σ, τ) when the

opponent plays a threshold strategy with threshold k. Step 1 consists of showing that action

0 is serially dominated for x > θ
∗ and action 1 is serially dominated for x < θ∗, where θ∗ and

θ∗ are, respectively, the maximal and minimal roots of m̃σ,τ (x, x) = 0. The proof of step 1

is essentially the same as the relevant portion of the proof of Proposition 2.1 in Morris and
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Shin (2003), and we therefore do not repeat it here.9

Step 2 consists of expressing m̃σ,τ (x, k) in terms of mσ(x, k) of the underlying standard

global game, defined by

mσ(x, k) ≡
∫

Θ
p(θ|x)u

(
θ, 1− F

(
k − θ

σ

))
dθ,

where p (θ|x) denotes the objective conditional distribution in the underlying game (given

σ). The only difference between this and m̃σ,τ (x, k) is that mσ(x, k) is computed with the

use of objective conditional probabilities p(θ|x), whereas m̃σ,τ (x, k) uses the subjective beliefs

qθ(θ|x).

We have

qθ(θ|x) =
∫

X
p(θ|x′)qx′(x′|x)dx′,

where

qx′(x′|x) =
px (x′) 1

τ g(
x′−x

τ )∫
X px (x̃′) 1

τ g(
x̃′−x

τ )dx̃′
.

Substituting this expression and interchanging the order of integrals in (10), we obtain

m̃σ,τ (x, k) =
∫

X
qx′(x′|x)mσ(x′, k)dx′,

which completes step 2.

Step 3 consists of computing the limits limτ→0 qx′(x′|x) and limσ→0mσ(x, k). Note that,

since
∫ x+ε
x−ε

1
τ g
(

x′−x
τ

)
dx′ =

∫ ε
τ
−ε
τ

g (z) dz, given any δ > 0 and ε > 0, there exists some τ > 0

such that
∫ x+ε
x−ε

1
τ g
(

x′−x
τ

)
dx′ > 1− δ. In particular, for any function ψ (·) that is continuous

at x, we have

lim
τ→0

∫
X
ψ
(
x′
) 1
τ
g

(
x′ − x

τ

)
dx′ = ψ (x) .

9The basic idea is that if action 1 has been eliminated for all types below k < θ∗, then m̃σ,τ (x, k) < 0 for x
sufficiently close to k, indicating that there are further types for which action 1 can be eliminated. There is a slight
complication in that m̃σ,τ (x, k) may not be increasing in x. As a result, the inductive procedure of their proof may
eliminate fewer strategies than IEDS, which poses no problem for the claim of Step 1 here. In addition, the fact
that m̃σ,τ (x, k) is decreasing in k for each x suffices to guarantee the monoticity of the sequences used in Morris
and Shin’s proof.
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It follows that

lim
τ→0

τqx′ (x+ τξ|x) = lim
τ→0

px (x+ τξ) g(ξ)∫
X px (x̃′) 1

τ g(
x̃′−x

τ )dx̃′
= g (ξ) ,

and for each x, convergence is uniform on compact subsets of Ξ since px and g are continuous.

Morris and Shin (2003, Appendix A) show that

mσ(x, k) =
∫ 1

l=0
u(k − σF−1(l), l)dΨσ(l;x, k),

where Ψσ(·;x, k) is a distribution function over the interval [0, 1]. Moreover, as σ → 0,

Ψσ(l;x+ σξ, x) → 1− F (ξ + F−1(1− l)) (11)

uniformly.

Step 4 consists of taking the limit as γ → 0 and combining the limits from Step 3.

Accordingly, we have

m̃(x, x) = lim
γ→0

∫
X
qx′(x′|x)mσ̃γ(x′, x)dx′

= lim
γ→0

∫
X
qx′(x′|x)

∫ 1

l=0
u(x− σ̃γF−1(l), l)dΨσ̃γ(l;x′, x)dx′

= lim
γ→0

∫
Ξ
τ̃ γqx′(x+ τ̃ γξ|x)

∫ 1

l=0
u(x− σ̃γF−1(l), l)dΨσ̃γ(l;x+ τ̃ γξ, x)dξ

=
∫

Ξ
g (ξ)

∫ 1

l=0
u(x, l)d

(
lim
γ→0

Ψσ̃γ(l;x+ τ̃ γξ, x)
)
dξ

=
∫ 1

l=0
u(x, l)d

(∫
Ξ
g (ξ)

(
lim
γ→0

Ψσ̃γ(l;x+ τ̃ γξ, x)
)
dξ

)
,

with the interchanging of the limit and the integral justified by uniform convergence on

compact subsets of Ξ× (0, 1).

Substituting the limit from (11) gives

m̃(x, x) =
∫ 1

l=0
u(x, l)d

(∫
Ξ
g (ξ)

(
1− F (

τ̃

σ̃
ξ + F−1(1− l))

)
dξ

)
.
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Thus defining

H (l) =
∫

Ξ
g (ξ)

(
1− F (

τ̃

σ̃
ξ + F−1(1− l))

)
dξ,

we have

m̃(x, x) =
∫ 1

l=0
u(x, l)dH (l) .

Since u (x, l) is increasing in x, it follows that the equation m̃(x, x) = 0 has at most one root.

It follows from uniform limit dominance that there exist signals x and x such that action 1

is dominated for x < x and action 0 is dominated for x > x. Thus we may restrict attention to

signals in some compact set X, on which m̃σ̃γ,τ̃γ(x, x) converges to m̃(x, x) uniformly. Given

any neighborhood N of the unique root x∗ of m̃(x, x), there exists some ε > 0 such that the

absolute value of m̃(x, x) is uniformly bounded away from zero outside of N . Choosing γ > 0

small enough so that whenever γ < γ, m̃σ̃γ,τ̃γ(x, x) is within ε of m̃(x, x) everywhere on X,

guarantees that m̃σ̃γ,τ̃γ(x, x) has no root in X \N .

Proposition 4.1 can be generalized from to 2 to N players in a straightforward way.10 Let

the payoff to investment be ũ(θ, k) under a pure strategy profile in which k players invest.

Let

u(θ, l) ≡
N∑

k=1

(
N − 1
k − 1

)
lk−1(1− l)N−kũ(θ, k) (12)

be the expected payoff to investment if each player independently randomizes and invests

with probability l. Suppose that ũ(θ, k) is non-decreasing in k, which implies that u(θ, l) is

non-decreasing in l. With this definition of payoffs, Proposition 4.1 applies to the N player

case unchanged, and the limit long-run threshold is characterized by equation (7) with the

distribution H(l) satisfying (8). Moreover, let us rewrite the pure strategy profile payoff as

ũ(θ, k) = v
(
θ, k

N

)
, where v : R× [0, 1] → R. Then limN→∞ u(θ, l) = v(θ, l), as all the weight

in the summation in (12) becomes concentrated at k = l. In particular, as N grows large,

the long-run threshold converges to the solution of

∫ 1

0
v(θ, l)dH(l) = 0,

10The generalized proofs require only an expansion of notation, and are available upon request.
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just as in the two player case.

For each ratio ρ = τ̃
σ̃ , let θ∗ρ denote the threshold defined by equation (7) when ρ is

finite, and by (9) when ρ = ∞ (that is, when σ̃ = 0). In addition, let θ∗gg denote the

threshold corresponding to the unique serially undominated strategy of the underlying game

in the small noise limit. In general, the long-run threshold θ∗ρ differs from the global game

prediction θ∗gg, and is sensitive to both the noise and similarity distributions. The following

corollary identifies sufficient conditions under which the quantitative predictions agree.

Corollary 4.1. Suppose that the noise and similarity distributions are symmetric about 0,

and the payoff function u(θ, l) is linear in l. Then for σ̃ > 0, the long-run threshold θ∗τ̃
σ̃

is

identical to the equilibrium threshold θ∗gg of the underlying global game.

Proof. By the symmetry of the noise distribution, we have F−1(l) = −F−1(1 − l), which

implies that

H(1− l) =
∫

Ξ
g(ξ)

(
1− F

(
τ̃

σ̃
ξ − F−1(1− l)

))
dξ.

Substituting ξ̃ = −ξ and using the symmetries g(ξ) = g(−ξ) and 1− F (−y) = F (y) gives

H(1− l) =
∫

Ξ
g(ξ̃)

(
F

(
τ̃

σ̃
ξ̃ + F−1(1− l)

))
dξ̃,

which is equal to 1 − H(l). Hence the distribution H(·) is symmetric about 1/2, which,

together with the linearity of u(θ, l) in l, implies that

∫ 1

0
u(θ, l)dH(l) =

∫ 1

0
u(θ, l)dl

for every θ.

The conditions of Corollary 4.1 are strong. Although symmetry of both the error distri-

bution and the similarity function guarantees symmetric beliefs over l, the thresholds in the

two models may not agree if payoffs depend non-linearly on l.

Proposition 4.1 allows for the computation of the long-run outcome as τ and σ approach

zero while holding σ
τ fixed. The following proposition states that as τ̃ becomes small relative

to σ̃, the equilibrium of the underlying game emerges as the long-run outcome of the learning
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model; on the other hand, as σ̃ > 0 becomes small relative to τ̃ , the long-run outcome

approaches that obtained under complete information. The latter result contrasts sharply

with the rational model, in which the predictions vary discontinuously at σ = 0.

Proposition 4.2. Suppose that the densities f(·) and φ(·) are bounded, and that each has

only finitely many discontinuities on any compact set. Then

1. For σ̃ > 0, the threshold θ∗τ̃
σ̃

of the learning model tends to the equilibrium threshold θ∗gg

as τ̃
σ̃ tends to zero; that is, limρ→0 θ

∗
ρ = θ∗gg

2. Suppose in addition that, for each θ, u(θ, l) is continuous in l at 0 and 1. Then the

incomplete information threshold θ∗τ̃
σ̃

tends to the complete information threshold θ∗∞ as

τ̃
σ̃ tends to infinity; that is, limρ→∞ θ∗ρ = θ∗∞.

Proof. See Appendix.

4.2 Comparative Statics

The predictions of the learning model are more ambiguous than those of the global games

model because the long-run threshold depends on the similarity function which is unknown to

an outside observer. Yet the comparative statics with respect to many parameters of practical

interest are unambiguous and have the same sign as in the global game model.

Consider the learning process characterized by τ̃ , σ̃ in the limit γ → 0, let the payoff func-

tion u(θ, l; z) depend on an exogenous parameter z, and assume throughout this subsection

that it is continuously differentiable with respect to θ and z.

Proposition 4.3. If the sign of ∂u
∂z (θ, l; z) is the same for all θ and l, then

sign

(
∂θ∗τ̃

σ̃

∂z

)
= sign

(
∂θ∗gg
∂z

)
= −sign

(
∂u

∂z

)
,

independent of τ̃ , σ̃ and g(·).

Proof. By Proposition 4.1, the long-run threshold θ∗τ̃
σ̃

is the solution to

∫ 1

0
u(θ, l; z)dH(l) = 0.
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By the implicit function theorem,

∂θ∗τ̃
σ̃

∂z
= −

∫ 1
0 uz(θ, l; z)dH(l)∫ 1
0 uθ(θ, l; z)dH(l)

.

The denominator is positive by Assumption A1, that returns are increasing in θ. The sign

of the numerator is equal to sign
(

∂u
∂z

)
. The sign does not depend on the distribution H(·)

and thus is independent of τ̃ , σ̃ and g(·), and therefore equal to the sign obtained when H(·)

corresponds to the uniform distribution on [0, 1].

Proposition 4.3 may be applied to many comparative statics analyses found in applications.

For instance, though the size of the effect depends on details of the model, the long-run

threshold always increases with the outside option value11, and decreases with the measure

of players.12 Heinemann, Nagel, and Ockenfels (2004) experimentally study both of these

comparative statics effects, and confirm the qualitative predictions of the global game model,

and thus also those of the present model.

Next we study comparative statics with respect to F (·) and g(·). Unlike in the global

game theory, the long-run threshold in the learning model generally depends on the error

distribution. However, translations of this distribution have no effect on the threshold. To

see this, consider a change in the error distribution from F (·) to F̃ (ε) = F (ε− µ) for µ ∈ R.

The distribution H(·) given by (8) in Proposition 4.1 becomes

H̃(l) =
∫

Ξ
g(ξ)

(
1− F̃

(
τ̃

σ̃
ξ + F̃−1(1− l)

))
dξ

=
∫

Ξ
g(ξ)

(
1− F

(
τ̃

σ̃
ξ + F−1(1− l) + µ− µ

))
dξ

= H(l).

The long-run thresholds under the two error distributions are therefore identical.

Now fix F (·) and consider two similarity functions g (·) and g̃ (·) such that the distribution

corresponding to g first-order stochastically dominates that corresponding to g̃. In this case,

11A game with payoff u(θ, l) in which the value of the outside option was raised from 0 to z can be re-normalized
to a game in which the outside option is 0, but ũ(θ, l) = u(θ, l)− z.

12Consider the limit of continuum of players. Increasing the measure of players from 1 to z is equivalent to
keeping the measure constant but changing the payoff function to ũ(θ, l) = u(θ, lz).
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we say that g is more optimistic than g̃, as a player characterized by g unambiguously assigns

more weight to similar higher signals than a player characterized by g̃.

Proposition 4.4. If g is more optimistic than g̃, then the long-run threshold of players

learning according to g is weakly lower than that of players learning according to g̃. The

inequality is strict if u(θ, l) is strictly increasing in l.

Proof. Let H(·) and H̃(·) be the distributions given by (8) in Proposition 4.1 corresponding

to g and g̃ respectively. Since 1 − F
(

τ̃
σ̃ ξ + F−1(1− l)

)
is decreasing in ξ, the first-order

stochastic domination of g̃ by g implies that H (l) < H̃ (l) for every l ∈ (0, 1); in other words,

H first-order stochastically dominates H̃. But then since u(θ, l) is non-decreasing in l, we

have ∫ 1

0
u(θ, l)dH(l) ≥

∫ 1

0
u(θ, l)dH̃(l)

for each θ, and therefore θ∗ ≤ θ̃∗.

4.3 The Environmental Multiplier

In this subsection, we analyze the impact of the prior distribution using an example of the

learning process with non-vanishing σ and τ . We keep the structure of the example compat-

ible with the setting of Chapter 3 of Morris and Shin (2003), in which the authors examine

the strategic influence of public information. This allows us to compare the influence of the

prior via the strategic link studied by Morris and Shin to that via learning.

The underlying game Γσ of this example is characterized by the payoff function in Table

1, the distribution of fundamentals θ ∼ N(y, ω2), and the distribution of error terms σεi ∼

N(0, σ2). Players are characterized by their similarity function 1
τ g(

x′−x
τ ), which we take to

be the density function of N(0, τ2).

Applying Theorem 3.1, the long-run behavior is consistent with IEDS in the modified

game Γm
σ,τ . We use the procedure utilized in the proof of Proposition 4.1 according to which

the solution of Γm
σ,τ reduces to solving m̃σ,τ (x, x) = 0. The normality of the distributions

and of the similarity function allows us to express m̃σ,τ (x, k) analytically. For this purpose,

we explicitly express the subjective probability distribution of X−i|xi. In the first step we
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compute the subjective probability distribution of Θ|x. In estimating θ, each player processes

two normally distributed signals, the public signal y and the private signal x. Each player

subjectively evaluates x as θ + σε + τξ where σε ∼ N(0, σ2) and τξ ∼ N(0, τ2). Thus,

ignoring the public signal y, the subjective Θ|x would be distributed as N(x, σ2+τ2). Finally,

incorporating the public signal y,

Θ|x ∼ N

(
y(σ2 + τ2) + xω2

ω2 + σ2 + τ2
,
ω2(σ2 + τ2)
ω2 + σ2 + τ2

)
. (13)

Players in the modified game have correct beliefs about the conditional distribution of

X−i|θ. The subjective belief X−i|x thus consists of a sum of the normal random variable in

(13) and N(0, σ2), which gives

X−i|x ∼ N

y(σ2 + τ2) + xω2

ω2 + σ2 + τ2︸ ︷︷ ︸
A(x)

,
ω2(σ2 + τ2) + σ2(ω2 + σ2 + τ2)

ω2 + σ2 + τ2︸ ︷︷ ︸
B2

 .

Recall that the function m̃σ,τ (x, k) is the subjective expected return in the modified game,

given that the opponent’s threshold is k. Hence, for the payoffs in Table 1, m̃σ,τ (x, k) =

A(x)− F
(

k−A(x)
B

)
, and the threshold x∗ is the root of

m̃σ,τ (x, x) = A(x)− F

(
x−A(x)

B

)
= 0. (14)

Keeping σ and τ fixed, the left hand side of (14) is strictly increasing in x for sufficiently

large ω, as can be verified by explicit computation of d
dx

(
A(x)− F

(
x−A(x)

B

))
. We assume

below that ω is sufficiently large, which rules out multiple equilibria.

We are now able to analyze the comparative statics of the threshold x∗ with respect to

the public signal y. Consider first the comparative statics under the limit τ → 0. Applying

the implicit function theorem to equation (14) gives

∂x∗

∂y
= −σ

2 + f((x− y)D)D(ω2 + σ2)
ω2 − f((x− y)D)D(ω2 + σ2)

, (15)

where D = 1q
(ω2+σ2)( 2ω2

σ2 )+1
. This result is equivalent to the result in Morris and Shin (2003,
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Section 3.1). The coincidence is a consequence of Proposition 4.2, which states that the

learning process converges to the equilibrium profile in the global game Γσ for τ � σ.

If the rational players were to ignore strategic considerations and only process the infor-

mation in the public signal, the effect would be of size ∂x∗

∂y = σ2

ω2 . But the actual effect in (15)

is larger due to the strategic behavior in the global game model. Although (15) also holds

in the learning model (in the limit τ → 0), the interpretation must differ, as the players do

not directly process public information, nor are they capable of any strategic reasoning. The

need for a different interpretation is even more pronounced if we consider the limit as σ → 0

holding τ > 0 fixed. In this case

∂x∗

∂y
= − τ

2 + f((x− y)E)E(ω2 + σ2)
ω2 − f((x− y)E)E(ω2 + σ2)

, (16)

where E = τ
ω

1√
ω2+τ2

. The public signal plays no informational role in the limit as players

observe the fundamental perfectly. However, the outcome of learning varies with y because

y defines the environment in which the learning takes place. Increasing y corresponds to an

improvement in the environment, and thus, ceteris paribus, improves players’ experiences.

Higher experienced returns translate into higher estimated returns; consequently, x∗ must

decrease in order to keep the threshold player indifferent between the two actions. We sum-

marize the difference in interpretations by renaming the “public information” multiplier to

be the “environmental” multiplier for the purposes of our model.

The difference in the interpretations of the multipliers in the global game and learning

models stems from the fact that the reasoning of players is entirely deductive in the global

game model, whereas it is entirely inductive in the learning model. Both of these assump-

tions are extreme. Consider a publicly announced change in the prior from Φ(θ) to Φ̃(θ) at

time t. According to the global game theory, players immediately and substantially adjust

their behavior. While the learning model also predicts a large impact on the behavior, it

predicts that there will be no immediate reaction; the adjustment occurs only in the lon-

grun. Some combination of the two models could lead to less extreme predictions involving

an instantaneous reaction combined with partial inertia.
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5 Related Literature

Processes of learning from similar games have been examined in several papers, which typ-

ically define similarity by an equivalence relation on a given set of games. LiCalzi (1995)

provides sufficient conditions for convergence of fictitious play with similarity-based learn-

ing in 2 × 2 games. Germano (2004) considers rules that specify a strategy for each game

in a given set G. Rules are subject to stochastic evolutionary selection, and those that do

not survive IEDS almost surely disappear in the longrun. Stahl and Van Huyck (2002)

demonstrate learning from similar games experimentally. Subjects repeatedly interacted in

stag-hunt games randomly drawn from a particular set, with the set being varied under two

different treatments. The observed long-run behavior in a particular game contained in both

sets varied across treatments, indicating that subjects were influenced by their experience

playing different games.

Jehiel and Koessler (2006) study steady states of learning processes in incomplete infor-

mation games. Let Ω be the set of states of the world. Learning by each player is governed

by a partition Ai of Ω: when learning an opponent’s action in state ω ∈ Ω, player i aggre-

gates the history of opponent’s strategy in all states in the set Ai(ω).13 Jehiel and Koessler

apply their equilibrium concept to a global game, assuming the coarsest similarity partition,

according to which each player completely disregards the circumstances under which her op-

ponent choses an action. The main predictions of our model arise at the opposite extreme, in

which only cases from a small neighborhood of the current case are given significant weight.

Another important difference, however, lies in Jehiel and Koessler’s formulation of similarity

as a partition, which prevents actions from spreading contagiously across types.

Argenziano and Gilboa (2005) consider coordination problems drawn from a finite set.

Players perfectly observe the current problem and form beliefs about their opponents’ strate-

gies by aggregating their experience in similar past games. When games with dominant

actions are sufficiently rare, the long-run outcome of learning depends on historical accidents.

Once most of the work on the present paper was completed, we discovered a paper by

13In a related paper, Jehiel and Samet (2004) suppose that players use partitions of their actions spaces in order
to estimate payoffs directly. While this approach is similar to that of our model, their paper is focused on very
different issues.
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Carlsson (2004) that proposes a learning model closely related to the one studied here. In his

model, players use similarity to estimate their opponent’s strategy in two-player, complete

information global games. Carlsson offers an informal argument to suggest that the learning

process can be approximated by the best-response dynamics of a modified game. Theorem 3.1

formalizes the corresponding result for binary action global games when similarity is instead

used to estimate payoffs directly. Carlsson’s focus is on providing evolutionary foundations

for the global game equilibrium, which agrees with the long-run outcome of learning under

the conditions of his model. Our analysis suggests that under more general conditions (in

particular, allowing for incomplete information in the learning process), the main qualitative

predictions of the learning and global game models coincide, although the outcomes may

differ quantitatively.

Milgrom and Roberts (1990) study supermodular games, of which global games are a

special case, and show that only serially undominated strategies are played in the long-run

under a large class of adaptive dynamics. These dynamics, however, require that players

adjust to the full strategies of their opponents. In games with large type spaces, where play

of the game (at most) reveals the actions assigned by strategies to the particular types that

are drawn, such dynamics are difficult to justify. The use of similarity in learning can be seen

as generating “close to” adaptive dynamics, as reflected in the modified serially undominated

result of Theorem 3.1.14

An alternative approach to learning in binary-action supermodular games is offered by

Beggs (2005), who proposes a class of adaptive learning rules where players are restricted to

using monotone (threshold) strategies. The threshold evolves based on payoffs from similar

types, with similarity weights becoming increasingly concentrated on nearer types over time.

Under stronger restrictions on similarity than those imposed here, the threshold strategies

converge to an equilibrium of the game.

14In addition, both Samuelson and Zhang (1992) and Nachbar (1990) specify classes of learning processes under
which players learn not to play serially dominated strategies; however, both papers assume finite sets of pure
strategies.
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6 Conclusion

The main difficulty in formulating a learning model for games with large type spaces is that

players must learn optimal behavior in many contingencies despite having relatively limited

experience. To enable learning in such games, we have supposed that players extrapolate

from their experience in past cases in which their type was similar to the current one. This

approach allows for learning even if interactions arise only rarely relative to the size of the

type space. In environments with strategic complementarities, this similarity-based learning

process leads to contagion of actions across types.

Contagion through learning shares the main qualitative features of contagion from incom-

plete information. Players learn to play symmetric threshold strategies, and the comparative

statics predictions share the same sign. Quantitatively, however, these two processes generally

lead to different outcomes. This difference is captured by the subjective priors of the modified

game, as compared to the objective priors of the usual incomplete information model. With

objective priors and small noise, players always believe with probability 1
2 that their oppo-

nent has received a signal greater than their own. With subjective priors, this probability

generally depends on the priors.

The extrapolations used by players in similarity-based learning typically lead to biases in

payoff estimates away from their true values. As similarity becomes more heavily concentrated

on nearby states, these biases disappear, but their impact on behavior does not. Narrowly

concentrated similarity is analogous to the bandwidth of a kernel estimator vanishing. Long-

run estimates are consistent under general conditions as long as the estimated function is

not changing. In a strategic setting, however, payoff estimates depend on the strategies

of the other players, which in turn depend on their own payoff estimates. Since short-run

biases in these estimates are unavoidable, their effects may persist over time even if the long-

run estimates are unbiased. Thus contagion through learning persists even as the biases in

similarity-based estimates vanish.

A well-known formal equivalence exists between Bayesian games and local interaction

models (see Morris (1997)). Under this equivalence, types correspond to members of a pop-

ulation, and posterior beliefs about the types of other players correspond to probabilities of
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being matched with the corresponding members of the population. This equivalence readily

extends to similarity-based learning. Learning payoffs from certain other types in a Bayesian

game is equivalent to learning payoffs from certain other players in a local interaction model.

In this setting, the modified game result indicates that the outcomes of learning may be

viewed as equilibria of a modified local interaction game. The subjective priors of the modi-

fied game in the Bayesian setting correspond to subjectivity concerning the structure of the

network in the local interaction setting. In these subjective networks, players generally be-

lieve that interactions are asymmetric: it may be that player i’s payoff depends on the action

of player j, but not vice versa.

We have explored the long-run outcomes of similarity-based learning only in a particular

class of games. However, this learning process may be applied more generally to the broad

class of games with large type spaces, in which standard learning models fail. We conjecture

that, under general conditions, players will learn not to play serially dominated strategies for

sufficiently concentrated similarity. Such a result would extend the theorem of Samuelson

and Zhang (1992) for finite games.

A Appendix

Proof of Lemma 3.1. First note that the uniform continuity of gi(·) implies that the beliefs

qi
(
·|xi
)

are uniformly continuous in xi for every
(
θ, xj

)
, and hence, for a fixed strategy of

the opponent, expected payoffs also vary continuously in the player’s own type.

Uniform limit dominance implies that, for some π > 0, there exist types x and x such that

action 1 is π-dominated for x < x and action 0 is π-dominated for x > x. Thus it suffices to

prove the result for types on any compact interval [b, c].

Step 1: First we show that given any ε > 0, there exists some δ > 0 such that changing

the opponent’s strategy on a set of Lebesgue measure at most δ changes the expected payoff

of any type by at most ε.

For any two strategies s, s′, let µ (s, s′) ∈ R+ ∪ {∞} denote the Lebesgue measure of the

set of types on which s and s′ differ. Let U (s, x) denote the expected payoff received by type

x when playing action 1 against an opponent who plays strategy s. Given any ε > 0 and any
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type x, define

δ (x; ε) = inf
s,s′

|U(s,x)−U(s′,x)|≥ε

µ
(
s, s′

)
.

In words, a measure of at least δ (x; ε) of the opponent’s types must change their actions in

order to induce a payoff change of at least ε for type x when choosing action 1. Dropping

the ε from the notation, clearly δ (x) > 0 everywhere, so if we show that δ (·) is continuous,

then it must attain a strictly positive minimum on the compact interval [b, c]. Accordingly,

suppose that there is a discontinuity of size at least η > 0 in δ (·) at some type x0 (that is,

there does not exist any γ > 0 such that |δ (x)− δ (x0) | < η whenever |x−x0| < γ). Suppose

that for every γ > 0 there exists some x ∈ (x0 − γ, x0 + γ) such that δ (x) > δ (x0) + η

(the argument is similar if instead δ (x0) > δ (x) + η). Let s and s′ be strategies for the

opponent such that µ (s, s′) < δ (x0) + η
2 and U (s, x0) − U (s′, x0) ≥ ε. Note that since

µ (s, s′) is finite, either s 6= 1 or s′ 6= 0. Thus there either exists some strategy s′′ such that

µ (s, s′′) ≤ η
2 and U (s′′, x0) > U (s, x0) or there exists some strategy such that µ (s′, s′′) ≤ η

2

and U (s′, x0) > U (s′′, x0). Suppose the former (the argument for the other case is similar).

Then we have U (s′′, x0) − U (s′, x0) > ε, and by the continuity of U (s′, ·) and U (s′′, ·),

there exists some neighborhood N of x0 such that U (s′′, x)− U (s′, x) > ε whenever x ∈ N ,

contradicting the definition of η since µ (s′′, s′) ≤ µ (s, s′) + µ (s, s′′) < δ (x0) + η.

Step 2: Given any type x for which action 0 (say) is eliminated in the Nth round, there

exists some π (x) > 0 such that the expected payoff for playing action 1 is at least π (x)

whenever the opponent plays an action consistent with N − 1 rounds of elimination. From

Step 1, it suffices to show that given any δ > 0, there exists some π > 0 small enough such

that N − 1 rounds of elimination of π-dominated strategies differs from N − 1 rounds of

elimination of dominated strategies on a set of types of measure at most δ.

Consider any positive sequence π1, π2, ... such that limn→∞ πn = 0. Fix a set S of strategies

for the opponent that contains a unique ”worst-case” strategy, that is, contains a strategy

s0 with the property that s0 (x) = 0 whenever s (x) = 0 for some s ∈ S (note that the

set of strategies surviving N rounds of iterated deletion of π-dominated strategies satisfies

this property for any π ≥ 0 and any N). Let X (n) denote the set of types that receive an

expected payoff greater than πn when playing action 1 against any strategy in S (equivalently,
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against s0), and let X denote the set of types for which action 1 is dominant against the set

S. Then X (n) is a monotone sequence of sets that increases to X in the limit, for otherwise

X \ limn→∞X (n) is non-empty, and any type contained in it cannot receive a positive payoff

when playing action 1 against s0, contradicting the definition of X.

We now proceed by induction on N . The result is trivial for N = 1. For N > 1, assume

the result to be true for N − 1, that is, assume that given any δ > 0, there exists some π > 0

for which N − 2 rounds of elimination of π-dominated strategies differs from N − 2 rounds of

elimination of dominated strategies on a set of types of measure at most δ. For each n and

π ≥ 0, let Sn (π) denote the set of strategies remaining for the opponent after n rounds of

iterated deletion of π-dominated strategies. Note that for each n, Sn (π) is non-decreasing in

π in the sense that s ∈ Sn (π) implies s ∈ Sn (π′) whenever π′ > π.

Given δ > 0, choose π′ > 0 small enough so that the set of types for which a given action

is dominated but not π′ -dominated against SN−2 (0) has measure at most δ. By Step 1,

there exists some δ′ > 0 such that changing the actions of at most a measure of δ′ of the

opponent’s types changes a player’s expected payoff by at most π′

2 . But then by the inductive

hypothesis, we can choose π′′ > 0 such that each element of SN−2 (π′′) differs from one of

SN−2 (0) on a set of types of measure at most δ′. Consider π = min
{

π′

2 , π
′′
}

. We need to

show that s ∈ SN−1 (π) implies that s differs from a member of SN−1 (0) on a set of types

of measure at most δ. Consider any type x. Since SN−2 (π) ⊆ SN−2 (π′′), the payoff received

by x from playing action 1 against any member of SN−2 (π) is within π′

2 of that from some

member of SN−2 (0). But then if either action is π′ -dominated for type x against SN−2 (0),

it must be π′

2 -dominated, and therefore π-dominated against SN−2 (π), as needed.

Proof of Theorem 3.1. We give the proof only for the incomplete information case, as that

for the complete information case is essentially the same, except that instead of partitioning

Θ × X1 × X2, it suffices to partition Θ alone. We begin with the case of a compact state

space, then show how the argument can be extended to non-compact spaces if the similarity

function has full support.

By the lemma, it suffices to prove the result for IEπDS in the modified game for any

π > 0. We proceed by induction on the round of deletion, n, fixing π > 0. For n = 0 there is

31



nothing to prove. Suppose for induction that there almost surely comes a time after which

each player i only plays strategies in the set Si(n− 1) of those consistent with n− 1 rounds

of IEπDS.

Suppose that action 1 is π-dominated for type x̃i against Sj(n− 1) in the modified game

(for j 6= i). Then ∫
Θ

∫
Xj

u
(
θ, l
(
x′
))
qi
(
θ, x′|x̃i

)
dx′dθ < −π

for all strategies l (·) ∈ Sj(n− 1). That is,

∫
Θ

∫
Xj

∫
Xi u (θ, l (x′)) p (θ, x, x′) gi

(
x− x̃i

)
dxdx′dθ∫

Θ

∫
Xj

∫
Xi p (θ, x, x′) gi (x− x̃i) dxdx′dθ

< −π (17)

for every l (·) ∈ Sj(n− 1). Defining

π′ := inf
xi
π

∫
Θ

∫
Xj

∫
Xi

p
(
θ, x, x′

)
gi
(
x− xi

)
dxdx′dθ,

the compactness of the type space implies that π′ > 0. Since u (θ, l) is nondecreasing in l for

every θ, inequality (17) implies that

∫
Θ

∫
Xj

∫
Xi

u
(
θ, l(x′)

)
p
(
θ, x, x′

)
gi
(
x− x̃i

)
dxdx′dθ < −π′, (18)

where l(·) is the strategy in Sj(n − 1) that chooses action 1 for every type for which this

action has not been eliminated.

Let Θ = [b, c] be the payoff-relevant state space, which, along with the type spaces, is

assumed to be compact. Given δ > 0, partition each Xi and Θ into a finite number of

subintervals of length at most δ. We will denote these partitions by Pδ

(
Xi
)

and Pδ (Θ)

respectively. To simplify the notation below, we assume that the partition Pδ

(
Xj
)

may be

chosen so that l(·) is Pδ

(
Xj
)
-measurable, and for µj ∈ Pδ

(
Xj
)
, we will write l

(
µj
)

for

l
(
xj
)

for xj ∈ µj . Otherwise, if it is not possible to choose the partition in this way, note

that, since expected payoffs are continuous in types, l−1(0) is an open set in Xj . We may

therefore choose the partition in such a way that only an arbitrarily small measure of types of

player j lie in elements of Pδ

(
Xj
)

on which l(·) is not constant. This small measure of types
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almost surely (henceforth a.s.) has an arbitrarily small impact on player i’s payoff estimates

in the long-run, and so will only affect the following argument by introducing an additional

arbitrarily small error term.

For any combination
(
ρ, µ1, µ2

)
∈ Pδ (Θ)× Pδ

(
X1
)
× Pδ

(
X2
)
, and any η > 0, the strong

law of large numbers guarantees that there will a.s. come a time after which the fraction of

earlier periods t having
(
θt, x

1
t , x

2
t

)
∈
(
ρ, µ1, µ2

)
is within η of the probability associated with

the event
(
ρ, µ1, µ2

)
. Since the number of such events is finite, there will almost surely come

a time after which this is true for all
(
ρ, µ1, µ2

)
∈ Pδ (Θ)× Pδ

(
X1
)
× Pδ

(
X2
)
.

We want to show that since the estimated payoff to type x̃i from action 1 in the modified

game is less than −π, the estimated payoff under the learning dynamics will a.s. eventually

lie below zero; hence this type learns to play action 0. By the induction hypothesis, any

finite history in which the opponent played strategies outside Sj(n − 1) will a.s. eventually

have arbitrarily small weight in player i’s payoff estimates. Thus it suffices to show that, a.s.,

eventually,
t−1∑
s=1

u
(
θs, l

(
xj

s

))
gi
(
xi

s − x̃i
)
< 0

since the denominator on the right-hand side of (3) is (eventually) positive. Accordingly, we

have

t−1∑
s=1

u
(
θs, l

(
xj

s

))
gi
(
xi

s − x̃i
)

≤ (t− 1)


∑

ρ,µ1,µ2

u(sup(ρ),l(µj))<0,

Pr(ρ,µ1,µ2)>0

(
Pr
(
ρ, µ1, µ2

)
− η
)
u
(
sup (ρ) , l

(
µj
))

infx∈µi gi
(
x− x̃i

)

+
∑

ρ,µ1,µ2

u(sup(ρ),l(µj))>0

(
Pr
(
ρ, µ1, µ2

)
+ η
)
u
(
sup (ρ) , l

(
µj
))

supx∈µi gi
(
x− x̃i

)
 ,

where η is chosen to be sufficiently small so that each term Pr
(
ρ, µ1, µ2

)
− η in the first sum

on the right-hand side is positive, which is possible since the partition is finite. We want to

show that for sufficiently small η and δ, the expression inside the parentheses is negative.

First, letting ρ (θ) denote the element of Pδ (Θ) containing θ, and similarly for µi (x) and
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µj(x), define the step function

ξi
(
θ, x, xj ; x̃i

)
=


u
(
sup (ρ (θ)) , l

(
xj
))

infx′∈µi(x) g
i
(
x′ − x̃i

)
if u

(
sup (ρ (θ)) , l

(
xj
))
< 0

u
(
sup (ρ (θ)) , l

(
xj
))

supx′∈µi(x) g
i
(
x′ − x̃i

)
if u

(
sup (ρ (θ)) , l

(
xj
))
≥ 0.

Since the set Pδ (Θ)×Pδ

(
X1
)
×Pδ

(
X2
)

is finite, and both u and gi are bounded, there exists

some finite K such that the integral
∫
Θ

∫
Xj

∫
Xi ξ

i
(
θ, x, x′; x̃i

)
p (θ, x, x′) dxdx′dθ is within ηK

of the bracketed expression. Thus by choosing η sufficiently small (given the partitions), it

suffices to show that
∫
Θ

∫
Xj

∫
Xi ξ

i
(
θ, x, x′; x̃i

)
p (θ, x, x′) dxdx′dθ < 0.

Since u (·, ·) is increasing in its first argument and defined on a compact set, given any

λ > 0, there may exist only finitely many discontinuities of u (·, 1) of size at least λ (that is, for

which there exists no δ > 0 such that u (θ, 1)− u (θ′, 1) ∈ (−λ, λ) whenever θ − θ′ ∈ (−δ, δ)),

and similarly for u (·, 0). Thus given any ε > 0, the partition Pδ (Θ) may be chosen so that

u (θ, 1)− u (θ′, 1) ∈ (−ε, ε) and u (θ, 0)− u (θ′, 0) ∈ (−ε, ε) whenever θ and θ′ lie in the same

element of Pδ (Θ). Similarly, since each gi (·) is uniformly continuous, given any ε > 0, we may

choose the partition Pδ

(
Xi
)

with δ small enough so that gi
(
x− x̃i

)
− gi

(
x′ − x̃i

)
∈ (−ε, ε)

whenever x, x′ ∈ µi for some µi ∈ Pδ

(
Xi
)
. That is, letting

ε = sup
θ,θ′

ρ(θ)=ρ(θ′)

max
{
u (θ, 1)− u

(
θ′, 1

)
, u (θ, 0)− u

(
θ′, 0

)}
and ε′ = sup

x̃,x,x′

µi(x)=µi(x′)

gi (x− x̃)− gi
(
x′ − x̃

)
,

we may choose the partitions in such a way as to make ε and ε′ arbitrarily small positive

numbers.

Recalling that gi(·) is bounded by M i, and u(·, ·) is bounded by V , we have

∣∣ξi
(
θ, x, x′; x̃i

)
− u

(
θ, l
(
x′
))
gi
(
x− x̃i

)∣∣ < εM i + ε′V + εε′,
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and therefore

∫
Θ

∫
Xj

∫
Xi

ξi
(
θ, x, x′; x̃i

)
p
(
θ, x, x′

)
dxdx′dθ

≤
∫

Θ

∫
Xj

∫
Xi

u
(
θ, l
(
x′
))
p
(
θ, x, x′

)
gi
(
x− x̃i

)
dxdx′dθ + εM i + ε′V + εε′,

which, by (18), is negative for ε and ε′ sufficiently small.

We have shown that if action 1 is π-dominated against Sj(n−1) for type x̃i in the modified

game, then there will almost surely come a time after which x̃i will not play this action under

the learning dynamics. Furthermore, the same payoff approximations apply to any type xi of

player i, with the only difference being a shift in the arguments of the similarity function. This

completes the proof of the inductive step. The symmetric argument proves the corresponding

result for action 0. This completes the proof of the first statement when the state space is

compact.

For the second statement, note that for any compact set S of types not intersecting

X ({0, 1}), there exists some π > 0 and n ∈ N such that after n rounds of elimination of

π-dominated strategies (in the modified game), only the serially undominated action remains

for each type in S. We have shown that under these conditions, there will almost surely come

a time after which types in S play only their serially undominated actions, as needed.

If the state space is not compact, instead of repeating the proof for the compact case, we

show only how the argument can be modified by the introduction of an arbitrarily small error

term in the payoff estimates.

Given δ > 0, we must show that there will a.s. be a period after which the probability

measure of the set of player i’s types playing actions consistent with IEDS in the modified

game is at least 1 − δ. Consider some interval [b, c] such that Pr
(
xi ∈ [b, c]

)
> 1 − δ, and

choose any x ∈ [b, c]. We want to show that for any ε > 0 there exist x, x, θ, θ such that there

will almost surely be some period T for which

∣∣∣∣∣∣∣∣∣
1∑t−1

s=1 g
i (xi

s − x)

∑
s=1,...,t−1

(θs,xi
s,xj

s)/∈[θ,θ]×[x,x]×[x,x]

u
(
θs, a

j
s

)
gi
(
xi

s − x
)
∣∣∣∣∣∣∣∣∣ < ε (19)
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whenever t > T ; that is, the contribution to the estimated payoff of those draws
(
θs, x

i
s, x

j
s

)
outside the compact space

[
θ, θ
]
×[x, x]×[x, x] can be made arbitrarily small by an appropriate

choice of x, x, θ, θ. The proof for the compact case may then proceed for types in the interval

[b, c] by partitioning the set
[
θ, θ
]
× [x, x] × [x, x] and allowing for an additional arbitrarily

small error term in the resulting bounds.15

The sum in the numerator may be naturally divided into parts according to whether θs

lies below, in, or above
[
θ, θ
]
, xj

s lies below, in, or above [x, x], and xi
s lies below, in, or above

[x, x].

Accordingly, consider

1∑t−1
s=1 g

i (xi
s − x)

∑
s=1,...,t−1

θs<θ

u
(
θs, a

j
s

)
gi
(
xi

s − x
)
.

For θ small enough, taking aj
s = 0 for all s gives an upper bound on the absolute value of this

expression. Furthermore, letting

gmin
(
xi
)

= inf
x∈[b,c]

gi
(
xi − x

)
and gmax

(
xi
)

= sup
x∈[b,c]

gi
(
xi − x

)
,

we have∣∣∣∣∣∣∣∣
1∑t−1

s=1 g
i (xi

s − x)

∑
s=1,...,t−1

θs<θ

u
(
θs, a

j
s

)
gi
(
xi

s − x
)∣∣∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∣∣
1∑t−1

s=1 g
min (xi

s)

∑
s=1,...,t−1

θs<θ

u (θs, 0) gmax
(
xi

s

)∣∣∣∣∣∣∣∣
for all x ∈ [b, c]. By the strong law of large numbers, the expression on the right-hand side

a.s. approaches

L (θ) :=

∣∣∣∣∣
∫
θ≤θ

∫
Xi u (θ, 0) gmax

(
xi
)
p
(
θ, xi

)
dxidθ∫

Θ

∫
Xi gmin (xi) p (θ, xi) dxidθ

∣∣∣∣∣ ,
where p

(
θ, xi

)
= φ (θ) f i

(
xi−θ

σ

)
represents the density associated with the combination

15It is important that the estimates in the proof for the compact state space are applied only to the types in the
interval [b, c], and not in the larger interval [x, x]. Since the additional error term can be made arbitrarily small
independent of the initial interval [b, c], the value of π′ does not depend on the choice of interval [x, x] here.
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(
θ, xi

)
in any period. Since gi is bounded by M i and u (θ, 0) < 0 for θ ≤ θ, we have

L (θ) ≤ −M i

∫
θ≤θ u (θ, 0)φ (θ) dθ∫

Θ

∫
Xi gmin (xi) p (θ, xi) dxidθ

.

Note that the denominator is positive since gi(·) is continuous and has full support. Since

u (·, a) is integrable with respect to the distribution Φ (·) for each a, the numerator can be

made arbitrarily small by choosing θ small, and the denominator is unaffected by this choice.

A similar argument applies for θs ≥ θ, and for xj
s /∈ [x, x], except with a (θ) := arg maxa |u (θ, a)|

instead of a = 0.

Finally, we consider the part of the sum in (19) where xi
s /∈ [x, x] and θ ∈

[
θ, θ
]
. Since

limx→∞ g (x) = limx→−∞ g (x) = 0, we can use a similar bound, except again with a (θ)

instead of a = 0. It follows that for each x ∈ [b, c], the contribution to the estimated payoff

arising from
(
θ, xi

)
∈
[
θ, θ
]
× (−∞, x) is bounded in absolute value by

∫ θ
θ=θ

∫
xi≤x u (θ, a (θ)) gmax

(
xi
)
p
(
θ, xi

)
dxidθ∫

Θ

∫
Xi gmin (xi) p (θ, xi) dxidθ

.

Given any ε > 0, we can choose x small enough so that gmax
(
xi
)
< ε for all xi ≤ x,

and therefore the numerator can be made arbitrarily small while the denominator remains

constant. The bound for
(
θ, xi

)
∈
[
θ, θ
]
× (x,∞) is similar.

Proof of Proposition 4.2. For the first statement, it suffices to show that mσ,τ (x, x) converges

to mσ (x, x) uniformly on compact subsets of X as τ → 0. Recall that

mσ (x, k) =

∫
Θ φ (θ) f

(
x−θ
σ

)
u
(
θ, 1− F

(
k−θ
σ

))
dθ∫

Θ φ (θ) f
(

x−θ
σ

)
dθ

.

For τ > 0,

mσ,τ (x, k) =

∫
Θ

∫
Xi φ (θ) f

(
x′−θ

σ

)
1
τ g
(

x′−x
τ

)
u
(
θ, 1− F

(
k−θ
σ

))
dx′dθ∫

Θ

∫
Xi φ (θ) f

(
x′−θ

σ

)
1
τ g
(

x′−x
τ

)
dx′dθ
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First consider the denominator of the last expression:

∫
Xi

∫
Θ
φ (θ) f

(
x′ − θ

σ

)
dθ

1
τ
g

(
x′ − x

τ

)
dx′ =

∫
Xi

px

(
x′
) 1
τ
g

(
x′ − x

τ

)
dx′.

Fix a compact subset Z ⊂ X. Given δ > 0 and ε > 0, there exists some τ > 0 such that∫ x+δ
x−δ

1
τ g
(

x′−x
τ

)
dx′ > 1 − ε. Since px is continuous on X, it is uniformly continuous on Z;

hence given η > 0, there exists some δ (η) > 0 not depending on x′ such that px (x′′) ∈

(px (x′)− η, px (x′) + η) whenever x′′ ∈ (x′ − δ (η) , x′ + δ (η)). Therefore, given ε > 0, there

exists some τ > 0 such that

∫
Xi

px

(
x′
) 1
τ
g

(
x′ − x

τ

)
dx′

∈

(∫ x+δ(ε)

x−δ(ε)
px

(
x′
) 1
τ
g

(
x′ − x

τ

)
dx′,

∫ x+δ(ε)

x−δ(ε)
px

(
x′
) 1
τ
g

(
x′ − x

τ

)
dx′ + ε sup px

(
x′
))

and ∫ x+δ(ε)

x−δ(ε)
px

(
x′
) 1
τ
g

(
x′ − x

τ

)
dx′ ∈ ((1− ε) (px (x)− ε) , px (x) + ε) .

Together these imply that

∫
Xi

px

(
x′
) 1
τ
g

(
x′ − x

τ

)
dx′ ∈

(
(1− ε) (px (x)− ε) , px (x) + ε

(
1 + sup px

(
x′
)))

,

and therefore
∫
Xi px (x′) 1

τ g
(

x′−x
τ

)
dx′ is within ε (1 + sup px (x′)) of px (x) regardless of x,

as needed.

The argument for the numerator is the same except that px (x′) is replaced by

U
(
x′;x

)
=
∫

Θ
φ (θ) f

(
x′ − θ

σ

)
u

(
θ, 1− F

(
x− θ

σ

))
dθ.

All that is needed is to verify that U (x′;x) is bounded and continuous in x′. Boundedness is

immediate from the boundedness of u (·) and px (·).

Let A and B ∈ R be upper bounds on f(·) and φ(·) respectively. Given ε > 0, there exists
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some compact subset Θ (ε) ⊂ Θ such that

U
(
x′;x

)
∈ (∫

Θ(ε)
φ (θ) f

(
x′ − θ

σ

)
u

(
θ, 1− F

(
x− θ

σ

))
dθ − εAV,

∫
Θ(ε)

φ (θ) f
(
x′ − θ

σ

)
u

(
θ, 1− F

(
x− θ

σ

))
dθ + εAV

)

for all x and x′. Let d be the number of discontinuities of f on Θ (ε), which is finite. Since

f is bounded, it is uniformly continuous on Θ (ε) wherever it is continuous. Accordingly, let

δ (ε) be such that |f
(

x′−θ
σ

)
− f

(
x′′−θ

σ

)
| < ε whenever |x′−θ

σ − x′′−θ
σ | < δ (ε) and x′−θ

σ lies at

a distance of at least δ (ε) from any discontinuity of f . Then changing x′ by at most δ (ε)

changes
∫
Θ(ε) φ (θ) f

(
x′−θ

σ

)
u
(
θ, 1− F

(
x−θ
σ

))
dθ by at most εV +2dδ (ε)ABV , which can be

made arbitrarily small, as needed.

The argument for the second statement is similar, except that 1
σf
(

x′−θ
σ

)
takes on the

role of 1
τ g
(

x′−x
τ

)
.
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