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Abstract

This study presents a laboratory experiment of the first and second price sealed bid
auctions with independent private values, where the distribution of bidder valuations is
unknown In our experimental setting, in first price auctions, bids are lower with the pres-
ence of ambiguity. This result is consistent with ambiguity loving in a model which al-
lows for different ambiguity attitudes. Alternative interpretations of this result, such as the
hostile nature hypothesis proposed by psychologists, are discussed in the paper. Another
departure from previous experimental studies is the use of subjects as auctioneers. We
find that compared to zero reserve prices the presence of auctioneers signifeduntlys
revenue in first price auctions. It also significantly reduces bidder earnings and efficiency.
Without knowledge of the distribution of bidder valuations and with auctioneers, the first
and second price auctions generate the same amount of revenue.
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Abstrakt

Tato Stadia prezentuje laboratérny experiment prvocenovych a druhocenovych auk-
cii s neverejnymi ponukami a nezavislymi sukromnymi hodnotami pre objekt aukcie,
v ktorych Statistické rozdelenie tychto hodnét nie je zname. V prostredi tohto exper-
imentu, u prvocenovych aukcii su ponuky su niZSie v pripade neznameho rozdelenia.
Tento vysledok je v sulade s pozitivhou preferenciou pre neznalost rozdelenia v mod-
eli, ktory umo#iuje rézne (pozitivhe alebo negativne) preferencie pre neznalost rozdele-
nia. Clanok sa tieZ zaoberd alternativnymi interpretaciami tohto vysledku, ako napriklad
psychologickou hypotézou nepriaznivého prostredia. DalSim rozdielom v porovnani s
predchadzajucimi Stadiami je pouzitie ludskych subjektov v roli aukcionarov. V porov-
nani s nulovymi vykignymi cenami, pritomnost fudskych aukcionarov Statisticky vyz-
namneznizujetrzbu v prvocenovych aukciach. Ich pritomnost' tieZ vyznamne zniZuje
zisk drazitefov a efektivitu. Pri nezndmom rozdeleni hodnét draZitefov a pritomnosti
f'udskych aukcionarov, prvocenové a druhocenové aukcie generuju Statisticky rovnaku
trzbu.



1 Introduction

Theoretical and experimental auction literature often assumes that both bidders and auc-
tioneers know the distribution of bidder valuation€onsequently, nearly all of the results
derive from such assumptions. However, in many real-world auctions, it is inappropriate
to assume that bidders know the distribution from which opponent valuations are drawn.
One prominent example is the Internet auctions. The online auction has become a fasci-
nating and fast-growing exchange mechanism (Lucking-Reiley, 2000a). Online auction
technology introduces several interesting features not available to traditional auctions.
For example, bidders can be geographically dispersed and bidding can be asynchronous.
These conveniences make it easier to obtain a relatively large group of bidders for an ob-
ject. These, and other special features of online auctions, make it important to re-examine
the implications of some key assumptions in auction theory and experiments. In this study,
we focus on the assumption that bidders know the distribution of other bidder valuations.
To select the right auction mechanism for environments such as the Internet, one needs
to answer two fundamental questions: how the absence of the knowledge of the distribu-
tion of bidder valuations affects bidder and auctioneer behavior, and how this change
in behavior affects the performance of various auction mechanisms. To address these
questions, we conduct laboratory experiments comparing treatments with an unknown
distribution of bidder valuations to those with a known distribution of bidder valuations.
The uncertainty about the probability distribution (of bidder valuations, for example)
created by missing information smbiguity Not knowing important information can
affect decision making, as illustrated by the Ellsberg (1961) paradox. Ellsberg’s two-color
problem uses two urns, one containing 50 red and 50 black balls called the known urn (or
the risky urn), and one containing 100 balls in an unknown combination of red and black

called the unknown urn (or the ambiguous urn). These two urns represent two distinct

For surveys of the theoretical literature see McAfee and McMillan (1987) and Klemperer (1999). For
a survey of the experimental literature, see Kagel (1995).



types of uncertainty. The first type of uncertainty, present in both urns, is uncertainty
as to which outcome will occur: red or black, and is termed “risk”. The second type of
uncertainty, present only in the unknown urn, is uncertainty about the probability of each
outcome itself and is termed “ambiguity”. In Ellsberg experiments, many people bet on
red from the known (vs. unknown) umnd on black from the known urn. However,
they are indifferent between the two colors when betting on only one urn. This pattern of
behavior is inconsistent with any model which uses probabilities, and is @atibdyuity
aversion The opposite of ambiguity aversion is callaehbiguity loving

Apart from online auctions, ambiguity is prevalent in many other real-world situa-
tions, for example, the success rate of some new drugs or clinical treatments (e.g., Curley,
Young and Yates (1989)), the insurance of certain classes of highly ambiguous risks,
such as environmental hazards (e.g., Priest, 1987) and terrorist attacks, the usefulness
of new features of consumer products (Kahn and Meyer, 1991), the outcomes of R&D,
incomplete contracting due to unforeseen contingencies, the audit selection procedures
of the IRS (Andreoni, Erard and Feinstein (1998)), and initial public offerings of small
privately-held firms.

Many researchers have studied ambiguity empirically. The studies can be broadly
classified into three categories. The first kind of empirical ambiguity research is Ells-
berg’s original thought experiment and replications of it. The second kind determines the
psychological causes of ambiguity. The third kind studies ambiguity in applied settings.
While many studies of the first kind find various degrees of ambiguity aversion, Curley
and Yates (1989) and Hogarth and Einhorn (1990), among others, find ambiguity loving
when subjects face an unknown urn and a known urn with a low probability of winning.
Some studies of ambiguity in experimental markets find mixed results. For example,
Sarin and Weber’s (1993) study of ambiguity in an experimental asset market uses a dou-
ble oral auction and a multi-unit Vickrey auction. This study finds that the market price

of the unambiguous bet is considerably larger than the market price of the ambiguous



bet? The main lesson from past empirical studies of ambiguity is that ambiguity affects
behavior. In this paper, we investigate how agents react to ambiguity in one important
class of settings, namely first price and second price sealed bid auctions.

There are several different approaches to formally model ambiguity. Among them,
maxmin expected utiliy(MMEU) and Choquet expected utilitf CEU) models are the
most prominent in applications. In this paper we useithdEU model, which is a natural
and tractable generalization of the MMEU model. Th&IEU, as we discuss in Section
2, allows for both ambiguity averse and ambiguity loving behavior.

Our experiment serves two purposes. First, we extend the large amount of research on
auctions to a more realistic setting with the presence of ambiguity to study how ambiguity
affects behavior and to reassess the ranking of first and second price sealed bid auctions
in this setting. Second, we study how subjects as auctioneers affect bidder behavior,
auctioneer revenue, bidder earnings and auction efficiency. The latter also serves as a
robustness check for the results of bidding behavior with the presence of ambiguity. We
must note, however, that the purpose of this paper is not to provide conclusive evidence
of the ambiguity attitude of bidders (as in the Ellsberg paradox). Rather, we analyze the
first and second price auctions using a model of preferences that is more general than
expected utility and that allows for different ambiguity attitudes and we see if, within
this framework, one can explain bidding behavior without assuming that bidders’ beliefs
are biased one way or the other. It will become clear in what follows that the observed
bidding behavior can be explained with different models (including expected utility) if
one allows bidders to hold very biased beliefs (and in fact we provide one such model
in Section 4.3). Yet we believe that the evidence here supports the claim that ambiguity

affects bidding behavior in the first price auction.

2Note that in the Sarin and Weber experiments, ambiguity is operationalized & la Ellsberg.

3In the maxmin expected utility model, decision makers have a set of priors and choose an action that
maximizes the minimum expected utility over the set of priors.

“4In the Choquet expected utility model, decision makers’ beliefs are represented by a nonadditive prob-
ability measure (capacity).



The paper is organized as follows. Section 2 introduces a theoretical model of sealed
bid auctions with risk and ambiguity. Section 3 presents the experimental design. Section

4 presents the main results. Section 5 concludes the paper.

2 A Model of Bidding with Ambiguity

This section develops a theoretical auction model incorporating risk and ambiguity. While
we do not believe that this equilibrium model captures all aspects of behavior in the ex-
periment, it provides a useful benchmark for our data analysis.

Three theoretical studies address the role of ambiguity in auctions. Salo and Weber
(1995) analyze the first price sealed bid auction using the Choquet expected utility model
with a convex capacity. In particular, they consider the case where bidders have a con-
stant relative risk aversion (CRRA) utility function and the Choquet capacity has a power
representation. In this case, they show that the equilibrium bidding function is linear.
In another study, Lo (1998) analyzes sealed bid auctions using the MMEU framework.
Specifically, he derives the equilibrium bidding function for linear utility functions, and
compares the first and second price auctions. Using the MMEU framework, Ozdenoren
(2002) extends and generalizes the results in Lo. He derives conditions under which risk
neutral bidders increase their bids in the first price auction as they become more ambiguity
averse. He then uses this result to compare the first and second price auctions.

Our model differs from the above models in two important ways. First we use-the
MEU framework to allow for both ambiguity averse and ambiguity loving behavior. This
framework is a generalization of both the maxmin and maxmax expected utility models.
Second, we consider bidders with general concave utility functions. As a result, previous
theory cannot be directly applied to our framework.

Throughout this section, we assume that there are two biddens 2. In addition, we

assume that there is one indivisible good for sale. In this model, we look at first and second



price auctions with independent private values with a reserve prigdders send their

bids simultaneously. For simplicity, we assume that the set of possible valuations of the
bidders is|0, 1], with V; denoting biddeli’s valuation. Only the bidder knows his own
valuation.

Our main departure from previous theoretical and experimental auction literature is
the assumption that bidders do not know the valuation distribution. We look at the case
where bidder valuations are known to be independent draws from dithey or 2 (-),
with positive andz.c.—continuous densitieg (-) and f2 (-), respectively. In our experi-
ment, we assume that? first order stochastically dominatés. Hence, we calF! the
low value distribution and™? the high value distribution. For each bidder, the probability,

9, of the event that his opponent’s valuation is drawn from the distributibis unknown.
We define) to be the random variable corresponding to the probability that the valuation
is drawn fromFL.

In the standard subjective expected utility (SEU) model, each bidder has a subjective
prior about the value of. However, if a bidder’s information abotitis too vague to be
represented by a single prior, it can be represented by a set of priors. In a seminal paper,
Gilboa and Schmeidler (1989) provide an axiomatization of the maxmin expected utility
model using a set of priors. Expected utility is a special case of MMEU, where the set of
beliefs contains only a single probability measure. In this model, a bidder’s prior on the
event that his opponent’s valuation is drawn from the distribufidris given by a set of
probability measures. The bidder’s utility is given by the minimum expected utility over
this set of priors. Intuitively, a set of priors reflects both ambiguity in the environment
and bidder difficulty in forming a well-defined single prior. The min operator, on the
other hand, reflects bidder aversion to such ambiguity. To illustrate how MMEU explains
Ellsberg type behavior, suppose a decision maker has a linear utility function and the set
of priorsis{(z,1 — z) : 0.4 <z < 0.6}, wherez is the probability of drawing a red ball

and1 —z is the probability of drawing a black ball from the unknown urn. The probability



of drawing either color from the known urn is 0.5. In this case, betting $1 on either color
from the ambiguous urn will give a maxmin expected utility of 0.4, whereas betting $1 on
either color from the known urn will give an expected utility of 0.5.

In general, decision makers may also have preferences that represent ambiguity loving
behavior (Heath and Tversky 1990). Such behavior can be captured using the maxmax
expected utility model, where the min operator is replaced by the max operator. We do not
want to restrict bidders’ ambiguity attitude a priori, therefore, we usextbMEU model
that allows for both ambiguity averse and ambiguity loving behavior.dHMEU model,
axiomatized by Ghirardato et al. (forthcoming), is a generalization of both the maxmin
and maxmax expected utility models. In this model, bidders compute the utility of an act
usinga times the minimum plug — o times the maximum expected utility over the set
of priors. Wheno equalsl, this model reduces to MMEU. WhenequalsD, it reduces
to maxmax EU. Note that the class of preferences this model represents is more general,
sincea can take all intermediate values.

Formally, letA be a closed and convex suliseftthe set of distribution functions over
[0, 1], representing a bidder’s belief about the distribution.dfet § = mingea [ 6dG (9)
andd = maxgea [ 6dG (5). Note that the sef\ is subjective and the séf, J] can in
general be a strict subset [ 1]. To see this, consider the case where the/séias a
single elementF. In this casej = § = expected value of". We assume thah is
independent of bidder valuations and is common knowledge to all bidders. When there
IS no ambiguity, the common knowledge assumption reduces to the standard common
knowledge assumption in auction theory.

In a first price auction, the bidder with the higher bid above the reserve price receives
the object and pays his bid to the seller. However, if both bids are below the reserve price,
the object is not sold. Ties are broken by a random device. A bid can be any number in

[0,00). A reserve price can be any numbeiinl]. The payoff for biddei is given by

5The restrictions om\ follow Gilboa and Schmeidler (1989).



Vi—b; |sz>b]andb127'
Wi(‘/;abiabjar) = ‘/z_bz or0 if bZ:bJ >r (l)

0 ifbi<bj0rbi<’l“.

The bidding strategy of bidderis given bys; : [0, 1}2 — [0, 00), mapping his own
valuation and reserve price into a bid. We assume that, in equilibrium, biddesws
both his own valuationl;, and bidder;’s strategy;s;, but not;’s valuation. Bidder best
replies to biddeyj’s strategy given his valuation, the reserve price and his beliefs

In our framework, the set of priorg), captures the ambiguity attitude. In order to
capture bidders’ risk attitude, we use a concave utility functian), with «(0) = 0,

u' > 0, andu” < 0. Assuming that bidding strategies are strictly increasing in her own
valuation® given the other bidder’s strategy, the reserve price, and bidderi's own

valuationV;, bidderi chooses her bid by maximizing
Ui(bi;‘/;,’f’, Sj) EU(‘/Z —bl) Fa [s;l(bi,r)} s (2)

wheresgl(bi,r) is the partial inverse of; with respect to its first argument, which, in
equilibrium, is biddeyj’s value, and, = (ad + (1 — @) ) F'+[1 — (ad + (1 — ) d)] F?
is the bidder’s belief about In other words, am-MEU bidder will behave as if she be-
lieves that her opponent’s valuation is drawn frdr with probability ad + (1 — )&
and from£2 with probability 1 — (aé +(1—-a) 3) . The derivation of Equation (2) is in
Appendix A.

Strategies; ands, areequilibrium strategiesf
U1<81(‘/17 T), ‘/;7 r, Sj) 2 Uz(bu V;a r, Sj)

for all (V;,r) € [0,1]%,b; € [0,00),7 = 1,2, andj = 3 — 4. In the following proposition,

5This assumption will later be verified in Equation 3.



we characterize the symmetric equilibrium strategy.

Proposition 1 The symmetric equilibrium bidding strategy is characterized by the fol-

lowing:
(@ if V< r, thens(V,r) € [0,7);
(b) if V.=r, thens(V,r) € [0,r]; and

(c) if V> r, thenr < s(V,r) < V, ands is characterized by

0s CEV)ulV —s(V,r)]
v = B W [V sV ©)
Proof: See Appendix A. |

This Proposition characterizes the symmetric equilibrium bidding strategies tor an
MEU bidder. Eqg. (3) in Proposition 1 is analogous to the equilibrium characterization for
the no-ambiguity case by Riley and Samuelson (1981) and Milgrom and Weber (1982).
In Section 4.2, we give a closed form solution of the equilibrium bidding function for a
special class of utility function. We now use a particular specificationFfoand 72 in
order to investigate further properties of the bidding function. We use this specification
later in the experiments. In Section 3, we discuss why we choose these functional forms.

We use the following specifications fér and 2. The low value distributior* cor-
responds to the case where we first choose the int¢dvg] with probability 2 and the
interval (3, 1] with probability 1. Subsequently, we choose the valuation from the cho-
sen interval uniformly. Similarly, the high value distributiéf? corresponds to the case
where we first choose the intervl, | with probability ; and the interval$, 1] with
probability%. Again, we then choose the valuation from the chosen interval uniformly.

More precisely, the two distribution functions are specified as follows:

10



3 1
2 if 0<z<=
Fl(x): 2 2
(-1 i b<ast

\

4
1 1
=T if 0<ax<s=
FQ(:E): 2 — — 2
t+(-H2if L<a<1

Figure 1 presents graphs of the cumulative distribution functidnend /2. Note that
neither F'! nor F? is uniform. A non-uniform distribution in first price auctions allows
the separation of equilibrium bidding functions from linear rules of thumb. We elaborate
on this issue in Section 4.

Recall thatF,, = (ad + (1 — @) ) F' + [1 — (ad + (1 — ) 6)] F2 Thus,F, can be

expressed as:

) O if 0<z<1
al\l) =
| 0+ (r—3)2-0) if j<e<l
(
0 if 0<az<i
— _ (4)

where

N | —

(5)

Equation (5) implies that the higher is, the lowerd will be. Recall from Equa-

tion (2) that the higher the parameteris, the more weight the decision maker puts on

11



the min functional. In this sense, higher values@feflect more ambiguity aversidn.
Consequently, lower values 6éfreflect more ambiguity aversion. To summarize, the pa-
rameter measures a bidder's ambiguity attitude. The intef#al] measures the amount
of ambiguity in the environment. Fixing the amount of ambiguity in the environment, the
paramete also measures a bidder’s ambiguity attitude. In the analysis, as we cannot
separately identifyy, § ands, we will used as a measure of ambiguity.

In order to identify when a bidder is ambiguity averse (or loving), we first need to

know when the bidder is ambiguity neutral, which is characterized by the next proposition.

Proposition 2 When the set of priors is the convex hull of two probability measurés,

and %, and whenv = %, the decision maker is an expected utility maximizer with beliefs

N |—=

given byl F'' + 1F?, and is consequently ambiguity neutral.

Proof: See Proposition 3 in Ghirardato, Klibanoff and Marinacci (1998). |
In our case, the set of priors is indeed the convex combination of two probability
distributions. This proposition gives us a natural benchmark for the case of ambiguity

neutrality, which allows us to formally define ambiguity aversion and ambiguity loving.

Definition 1 Whena = % the decision maker is ambiguity neutral; when> % the

decision maker is ambiguity averse; whenr: 3, the decision maker is ambiguity loving.

Using the above parameterizationsfof and /2, we can extend the characterization

of the bidding function provided in Proposition 1.

Corollary 1 With the parameterized distribution functio® and F2, the equilibrium

bidding strategy is characterized by

glV=s(Vir)] ifr<i <l
Swre={ 7 - ©
gV —=s(V,r)]h(V,0) ifmax{r,i} <V <1,

’In fact, Siniscalchi (2002) shows that, once the set of pridi®r, equivalently, the interva{léﬂ) is
fixed, the indexx can be interpreted as an ambiguity aversion parameter.

12



where

and
2—40
Mo b) = o e o
Proof: Substituting Eq. (4) into Eq. (3), we obtain the result. |

This more detailed characterization allows us to consider the impact of ambiguity on

the bidding function. This issue is addressed by the following Proposition.

Proposition 3 If » < V' < 1, 5(V,r,0) is independent of. If max {r,1} < V; <1,

s(V,r,0) is strictly decreasing i.

Proof: See Appendix A. |

This proposition shows that, in the range wherex {r, %} <V <1,anincrease in
ambiguity aversion (a decreasefinleads to higher bids, while an increase in ambiguity
loving (an increase if) leads to lower bids. The intuition is the following. When a bidder
IS more ambiguity averse, she is more pessimistic, which implies that she thinks that her
opponent’s valuation is more likely to be high. Therefore, she bids more.

In contrast, in a second price auction, the bidder who has the highest bid at least as
large as the reserve price receives the object and pays the maximum of the second highest
bid and the reserve price to the seller. If both bids are below the reserve price, the object is
not sold. Ties are broken by a random device. In this auction, bidding one’s true valuation
is a weakly dominant strategy, even with ambiguity aversion (see, e.g., Lo (1998)). This

leads to our next proposition.

Proposition 4 In a second price sealed bid auction, regardless of the bidder risk and
ambiguity attitudes, bidding one’s true valuation is a weakly dominant strategy when the
valuation is greater than the reserve price. When the valuation is less than or equal to the

reserve price, any bid below the reserve price is a weakly dominant strategy.

13



All theoretical results characterized in this section serve as a guidance for our experi-

mental design and data analysis.

3 Experimental Design

The experimental design reflects both theoretical and technical considerations. The de-
sign addresses the following objectives: to determine the effect of ambiguity on bidder

and auctioneer behavior, to reevaluate the performance of two auction mechanisms in the
presence of ambiguity, and to search for factors not considered in the theoretical frame-

work which might also affect bidder and auctioneer behavior.

3.1 Economic Environments

To study the effect of ambiguity on bidder and auctioneer behavior, we chibse2ax

2 design. In the first four treatments — first price auctions with known and unknown
distributions and second price auctions with known and unknown distributions — each
session consists of eight bidders randomly re-matched into groups of two each round.
In the other four treatments, each session consists of eight bidders and four auctioneers,
each of whom is randomly re-matched into a group of three each round, with each group
consisting of one auctioneer and two bidders.

Table 1 summarizes the relevant features of the experimental sessions, including infor-
mation conditions, number of subjects per session, auction mechanisms, treatment abbre-
viations, exchange rates and the total number of subjects in each of the eight treatments.
The exchange rates are set such that participant earnings in equilibrium are comparable
to the average earnings of past experiments conducted in the lab. For each treatment, we
conducted five independent sessions using networked computers at the Research Center

for Group Dynamics Laboratory at the University of Michigan. This design gives us a

14



total of forty independent sessions and four hundred subfjeetsiuited from an email
list of Michigan undergraduate and graduate stud&iise choice of th@ x 2 x 2 design

is based on the following considerations.

1. Known vs. unknown distributions: we use the treatments with known distributions

as a baseline to isolate the effects of ambiguity.

2. Eight-subject vs. twelve-subject treatments: In most previous experiments, experi-
menters act as auctioneers. To check the robustness of the results, we use subjects as
auctioneers in the twelve-subject treatments. This feature marks a major departure

from previous experiments. It adds robustness to a number of results.

3. First price vs. second price auctions: As the theoretical predictions for second price
auctions do not change with increased ambiguity while those for first price auctions
do, we use the first price auction to measure participant ambiguity attitude, and the
second price auction as a benchmark for detecting systematic behavioral changes

with the presence of ambiguity, which are unaccounted for in the theory.

One crucial decision in the design was how to implement ambiguity. In many psychol-
ogy experiments designed to test the Ellsberg paradox, subjects are told nothing about the
distribution of the unknown urn. We adopted a similar design in a pilot experiment con-
ducted in April 2001, but found no basis to infer what prior (or set of priors) the subjects
used. Thus, for analytical tractability, we narrow ambiguity to a single parameter in this
experiment. More specifically, bidder valuations are known to be independent draws from
either the low value distributioR™ (-) or the high value distributiof™ (-). We use the!
and F? specifications from Section 2, with two modifications. First, we re-scale the sup-

port to the interval0, 100]. Second, we discretize the support to the{de, - - - , 100}.

8Despite our explicit announcement in the advertisement that subjects could not participate in the auction
experiment more than once and our screening before each session, nine subjects participated twice.
SGraduate students in Economics were excluded from the list.

15



For each bidder, the probabilityof the event that his opponent’s valuation is drawn from
the distributionf™ is unknown. Therefore, we generate ambiguity regarding the valuation
distribution throughy.

In the experiment, each bidder’s valuation in each round is a random draw from the
set{1,2,---,100}. We choose), to be0.70 for two reasons. First, we want the com-
pound distribution to be non-uniform, which precludgs= 0.5. We choose not to use a
uniform distribution, since it might be a focal point in the absence of knowledge about the
true distribution. Furthermore, with a uniform distribution, one cannot separate equilib-
rium bidding strategies from linear rules of thumb in first price auctions (Chen and Plott
(1998)). Second, since most previous experiments demonstrate ambiguity aversion, we
want to put more weight on the low distribution to create an “optimistic" environment,
which leaves room for ambiguity averse bidders to learn. This consideration precludes
8o < 0.5. In treatments with known distributiody = 0.70 implies thats = § = 0.7. It
then follows from Eq. (5) thad = 6, = 1.2.

3.2 Experimental Procedure

At the beginning of each session, subjects randomly drew a PC terminal number. Then,
each subject was seated in front of the corresponding terminal, and given printed in-
structions. After the instructions were read aloud, subjects completed a set of Review
Questions, to test their understanding of the instructions. Afterwards, the experimenter
checked answers and answered questions. The instruction period varied between fifteen to
thirty minutes depending on the treatment. In the eight-subject sessions, all eight subjects
were seated in the same room. In the twelve-subject sessions, the four auctioneers went to
an adjacent lab after the instruction period while the bidders remained in the original lab.
In the treatments with unknown the auctioneers were privately informed of the value of

0 on their screen at the beginning of each round. Each round consisted of the following

stages:

16



1. In each of the twelve-subject treatments, each auctioneer set a reserve price, which

could be any integer between 1 and 100, inclusive.

2. Meanwhile, for treatments with an unknown distribution only, each bidder esti-
mated the chance that the valuation of dleerbidder in the group was drawn from
the high value distribution, i.e., an estimatelof §. The bidder also indicated his
confidence in his estimate: not confident at all, slightly confident, moderately con-
fident, fairly confident, or very confident. This confidence rating method to elicit
ambiguity attitude was proposed and evaluated by psychologists Curley, Young and
Yates (1989). Among three different methods to elicit subject ambiguity attitude in

decision making, they found this one to be the best.

3. Next, each bidder was informed of the reserve price of his auctioneer (in the twelve-
subject treatments) and his own valuation. Note that, in the eight-subject treatments,
the reserve price was implicitly set to zero. Then each bidder simultaneously and
independently submitted a bid, which could be any integer between 1 and 100,
inclusive. Bidders were instructed that if they did not want to buy they could submit

any positive integer below the reserve price.

4. Bids were then collected in each group and the object was allocated according to

the rules of the auction.

5. Afterwards, each bidder received the following feedback on his screen: his valua-
tion, his bid, the reserve price, the winning bid, whether he received the object, and

his payoff.

Each auctioneer received the following feedback: whether the object was sold, his

reserve price, the bids in his group, and his payoft.

The subjects did not receive the entire vector of valuations and the corresponding

bids, as in some previous studies, to slow down the learningaof thus preserve
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ambiguity for the initial rounds.

In each treatment, each session lasted thirty rounds with no practice rounds. At the
end of thirty rounds, all participants completed a questionnaire to elicit demographic in-
formation. The demographic results are reported in a companion paper.

Compared to Salo and Weber’'s (1994) laboratory study of ambiguity in first price
sealed bid auctions, our design has the following characteristics. First, we study both
first and second price auctions, while Salo and Weber study first price auctions. Second,
we have treatments with and without auctioneers, while Salo and Weber do not have
treatments with auctioneers. Third, we use a non-uniform distribution of valuations, while
Salo and Weber use the uniform distribution. Fourth, while Salo and Weber also examine
an unknown number of competitors and dichotomous auctions, we do not. Last, we used
four hundred subjects, while Salo and Weber used forty-eight subjects. The larger number
of observations enables us to obtain more precise estimates in our statistical analysis.

The experiments were conducted from October 2001 to January 2002. Each session
lasted from forty minutes to an hour. The exchange rates are presented in Table 1. The
average earnings were $18.78. Instructions are included in Appendix B. Data are available

from the authors upon request.

4 Results

We present experimental results in this section. Due to space limitations, survey results
are presented in a companion paper. Figure 2 presents the cross plot of bids against
values in all eight treatments. The first two columns are for the first price auctions, while
the second two columns are for the second price auctions. For each column, the top graph
is for the known treatment, while the bottom graph is for the unknown treatment. In all
twelve-subject treatments, we exclude observations where the valuation is less than or

equal to the reserve price. An immediate observation is that in first price auctions most
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bids are below the value (i.e., below the diagonal), while in second price auctions, bids
are often above the values. We now proceed to analyze the difference between treatments
with and without ambiguity.

We first estimate bidders’ ambiguity attitude in first price auctions by using three
different approaches. The nonparametric approach compares bids in the no-ambiguity
treatments and those in the ambiguity treatments, and infers bidders’ ambiguity attitude
based on Proposition 3. This approach imposes minimal assumptions on bidder behav-
ior. The structural approach is based on the equilibrium bidding function to be derived in
Corollary 2 and explicitly estimates the ambiguity parameter. Compared to the nonpara-
metric analysis, the structural approach requires more assumptions on the bidder utility
function. In the third approach, we extend the structural approach by using an individual
learning model. While the first two approaches are based on-fi&EU model, the third
approach is based on the SEU model.

We then examine the effects of ambiguity on bids, reserve prices, revenue, earnings
and efficiency. Note that, in all subsequent analysis, we normalize the valuations, reserve
prices and bids to be on the interyal 1], consistent with the notation in our theoretical

model.

4.1 Nonparametric Estimation of Ambiguity Attitude in First Price

Auctions

To estimate bidders’ ambiguity attitude, we first compare the bids in the no-ambiguity

treatment and those in the ambiguity treatment. As we have a full factorial design, keeping
everything else constant, any systematic variations in bids in the ambiguity treatments
compared to the no-ambiguity treatments can only be attributed to the variation in the
amount of ambiguity. In other words, in both treatments, bidder ambiguity preference,

remains the same, while the interv@l, ], changes.
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Recall that both the amount of ambiguity in the environment and the bidder's ambigu-
ity attitude are summarized in the parameteProposition 3 implies that highérleads
to lower bids. In the no-ambiguity treatmenis= 1.2 asé = 0.7 is known. Therefore, by
comparing bids in the ambiguity treatments and those in the no-ambiguity treatments, we
can determine whethérin the ambiguity treatments is greater (or less) than If bids
in the ambiguity treatments are lower, we can infer that 1.2, and vice versa. To infer
the bidder’'s ambiguity attitudes (i.ex) from 6, we need to assume that the center of the
interval [4, 6] is at or below0.7. This assumption puts a weak restriction on the amount
of weight on the low value distribution relative to the high value distribution. However,
it does not rule out the possibility of putting more than a 0.7 weight on the low value
distribution, e.g.[0.4, 1.0] is centered at 0.7 and thus is allowed by our assumption. A
natural place where the interval might be centeretl’is as suggested by the “principle
of insufficient reason,” which Luce and Raiffa (1957, p. 284) attribute to Jacob Bernoulli.
This case, too, is covered by this assumption. Under this assumptién; ifl.2, then
a < 1/2, implying ambiguity loving!? If § < 1.2, then bidder ambiguity attitude cannot
be determined precisely. For treatments withouti{ 13 andU1g) and with auctioneers
(K1, andU1,5), respectively, we compare the mean bids in the no-ambiguity treatment
with those in the ambiguity treatment, using the Wilcoxon ranksum test. We also compare
the median bids and get similar results.

Table 2 reports p-values for the Wilcoxon ranksum tests. The null hypothesis is that
mean bids are the same in treatments with and without ambiguity. The alternative hy-
pothesis is that bids are higher in the no-ambiguity treatment. In Round 1, all bids are
independent, therefore, we use each individual bid as an independent observation. From

Round 2 on, we use a session mean as an independent observation. As we expect the

1070 see this, note that if > 1.2, thenad + (1 — a)d > 0.7. Under our assumptiori§ + 6)/2 < 0.7.
Sowheny = 1/2, ad + (1 — a)§ < 0.7. Moreover,ad + (1 — «)é is decreasing . Together, these facts
imply thata: < 1/2.

11To see this, suppogé, 5] = [0.3,0.5], and suppose = 0, which is ambiguity loving, thed = 1 <
1.2; such a bidder would increase his bid in the ambiguity treatment, even though he is ambiguity loving.
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amount of ambiguity to decrease over time, we partition the data into early rounds (Round
1, Rounds 1-3, Rounds 1-5) and later rounds. For each time interval, we compare bids

over all values, as well as those in two subran@es.5] and (0.5, 1].

RESULT 1 (Ambiguity Attitude) In first price auctions, bids are lower in the ambiguity
treatments compared to the no-ambiguity treatments, which is consistent with ambiguity

loving.

SUPPORT. The last two columns in Table 2 reports p-values for one-sided Wilcoxon
ranksum tests, comparing (mean) bids for treatments with and without ambiguity, for the
value range of0.5, 1]. For the 8-subject treatments, it is significant in Round 1. For the
12-subject treatments, it is significant for Rounds 2-30, and weakly significant for Rounds
1-3, 4-30, 6-30 and 1-30. |

Result 1 presents a significant finding that bids are lower with the presence of ambi-
guity. From Proposition 3 and the analysis at the beginning of this subsection, this result
Is consistent with the hypothesis that bidders are ambiguity loving. This is the first main
result of this paper.

Result 1 is surprising, given that a large volume of empirical studies replicating the
Ellsberg urn experiment and variations confirm ambiguity aversion. How do we reconcile
our result with the “robust” ambiguity aversion finding in psychology? We turn to the
literature on the psychological causes of ambiguity aversion.

Note that the interpretation of ambiguity loving in auction settings is not exactly the
same as ambiguity loving in individual choice experiments such as the Ellsberg experi-
ment. In our auction setting, ambiguity loving implies that bidders put more weight on
the low value distribution when the true underlying weight is unknown. This, in turn,
implies that a bidder is pessimistic in thinking that his own valuations are more likely to
be low, but optimistic in thinking that his opponent’s valuations are also more likely to be

low. By contrast, in an Ellsberg urn experiment, ambiguity loving implies a preference for

21



the unknown urn when choosing between known and unknown urns, or pessimism when
missing information.

Fox and Tversky (1995) propose the comparative ignorance hypothesis, according
to which “ambiguity aversion is driven primarily by a comparison between events or be-
tween individuals, and it is greatly reduced or eliminated in the absence of such a compar-
ison." Since our experiment uses a between-subjects design, where subjects participated
in a treatment with either known or unknown distributions, not both, this could have con-
tributed to the reduction of ambiguity aversion. In other words, our results are consistent
with the comparative ignorance hypothesis. However, this hypothesis does not explain
why bidders are ambiguity loving.

Curley, Yates and Abrams (1986) investigate the plausibility of six hypotheses regard-
ing the psychological sources of ambiguity aversion in a series of urn experiments. Of
the six hypotheses, the other-evaluation hypothesis and the hostile nature hypothesis are
most relevant for our experiment. The other-evaluation hypothesis states that a decision
maker, in making a choice, anticipates that others will evaluate his decision, and there-
fore, makes the choice that is perceived to be most justifiable to others. The hostile nature
hypothesis conjectures that subjects perceive that the process by which the outcomes are
determined for the ambiguous option is antagonistic toward themselves, or at least com-
petitive. Comparing our experiment to previous individual choice experiments, we note
that ambiguity is particularly salient in the Ellsberg urn experiments, where a decision
maker’s only influence on the outcome is the choice of the urn. However, in the auction
context, ambiguity is not as salient. If we extend the other-evaluation and hostile nature
hypotheses to auctions, the outcome to be evaluated is affected by the underlying distri-
bution, as well as by bidder and auctioneer strategies. In this complex environment, the
prior most justifiable to others could well be such that the experimenter puts more weight
on the low value distribution, implying a more competitive outcome-generating process.

In order to get an idea of the magnitude of the ambiguity parameter and the dynamics
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of ambiguity attitude, we proceed to estimate the ambiguity parameter using a structural
approach in the--MEU framework and an individual learning model in the SEU frame-

work.

4.2 Structural Estimation of the Ambiguity Parameter in First Price

Auctions

In the previous subsection, we determined that bidders are ambiguity loving from a com-
parison of bids in the two treatments. To get an idea of the magnitude of the ambiguity
parameter), we now use the structural approach to directly estimatés is common
in the structural approach, we need additional assumptions to make the model tractable.
Our first assumption is that an ambiguity neutral bidder will use the uniform prior in the
ambiguity treatment, i.ef, + 6 = 1. As a result, Eq. (5) implies th#t< 1 corresponds
to ambiguity aversiord = 1 corresponds to ambiguity neutrality, afhd> 1 corresponds
to ambiguity loving. Our second assumption is that bidders have constant relative risk
averse (CRRA) utility functions of the forma(z) = 2%, whereg3 > 0. While there has
been no consensus on the right model for bidder behavior in first price auctions (see Kagel
(1995) and Cox (forthcoming) for surveys of this research), we choose to use CRRA due
to its analytical tractability. Because of these assumptions, results on the magnitude of
should be taken with caution.

We now compute the equilibrium bidding strategies forcaMEU bidder with a

CRRA utility function, using Proposition 1.

Corollary 2 With the parameterized distribution functiofd and /2, the equilibrium

bidding strategy for a bidder with a CRRA utility function is characterized by:
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Proof: See Appendix A. |

We use Corollary 2 to estimate the risk parameteand ambiguity parametet, In
the two control treatments with a known distributidki{s and K1,,), ambiguity does not
play a role, as bidders know the valued®fWhile treatment/'13 most closely approx-
imates previous experimental studies of first price sealed bid auctions, treakiment
serves as a robustness check of whether previous experimental results are sensitive to
auctioneers. We use these two treatments to estimate bidder risk attitudes.

We make the simplifying assumption that, within the same treatment, the risk param-
eter is common and known across individuals. Allowing heterogeneous risk parameters
across individuals would clearly fit the data better. However, one has to resort to the com-
putational approach, which requires makadyhocassumptions about the distribution of
risk parameters in the population as well as about independence across individuals and
rounds within the same session. Since our main goal is to separate the effects of risk
from ambiguity, we assume symmetric bidders to get closed form solutions without dis-
tributional assumptions. Moreover, we believe that the main conclusions would remain

unchanged even with heterogeneity. Thus, we estimate the following econometric model:
bit - S(‘/;'ta Tit; ﬁ7 90) + gita

wheres(-) is the bidding function characterized in Corollarybg;is the bid submitted by
bidderi at roundt; V;; is the private valuation of biddémat roundt; r;; is the reserve price

faced by biddef at roundt; 3 is the risk parametef, = 1.2; and§;; is the error term as-
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sumed to be orthogonal to both the valuation and the reserve pric&;(i£glVi:, ;) = 0.

The method of nonlinear least squares is used for parameter estimations. In all estima-
tions, standard errors and confidence intervals are computed by bootstrapping and are
adjusted for clustering at the session level, implying ghas allowed to be heteroscedas-

tic, and correlated across both individuals and rounds, but independent across sessions.
We use the bootstrap procedure to avoid distributional assumptiofig onrelying on
asymptotic distribution theory.

Table 3 reports the estimates@for treatmentds 13 and K115, respectively. In each
estimation, we use only those observations whére> r;;. For each treatment, we first
conduct a baseline estimation gfwith the restriction that = 1.2. We then repeat
the same estimation separately for different subranges of valuations and reserve prices
to evaluate the sensitivity of the estimate®fsince the bidding function has a different
functional form for each subrange. Finally, we run a control estimation which jointly
estimates? andd. In the control estimation of both treatmenfs= 1.2 lies within the
95% confidence interval, thus justifying the= 1.2 restriction in the known distribution
treatments. The estimated bidder risk parametgg is- 0.3622 for treatmenti'1g, and
B2 = 0.5651 for treatmenti' 1.

We find that our estimated risk parametei}622 and0.5651, are consistent with
recent estimates in private-value auction experiments, su¢h3agCox and Oaxaca
(1996)),[0.35,0.71] (Chen and Plott (1998)) aril48 (Goeree, Holt and Palfrey (2002)).
However, the estimated risk parameteris significantly different in treatments with auc-
tioneers. Specifically, bidders seem to be less risk averse in the presence of auctioneers.
There could be two reasons for this difference. First, bidders might have perceived the
games with and without auctioneers as different games. Indeed, auctioneers and, hence,
positive reserve prices cause nearly half the valuations to be below the corresponding re-

serve priced? It is possible that a bidder whose valuation is above the reserve price might

2In treatmentK 1,5, only 637 values out of 1200 observations are above the corresponding reserve
prices. We discuss the high reserve prices and its consequences in more detail after Result 5.
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take more risk to secure some aspiration level of payoffs. Second, we cannot rule out the
possibility that CRRA does not fully capture bidder behavior, and therefore, leading to
these two different estimates.

In subsequent analyses, we use the estimaied 0.3622 for the eight-subject treat-
ments and’;; = 0.5651 for the twelve-subject treatments to isolate the effects of risk
and ambiguity. As a robustness check, we repeat all the subsequent estimation proce-
dures forg, = 0.32 and g = 0.42 for the eight-subject treatments, afid = 0.40 and
B, = 0.66 for the twelve-subject treatments. These alternative valugsase reason-
able lower and upper bounds based on the estimat@santl their respective confidence
intervals reported in Table 3.

We now estimaté using Corollary 2, with the modification of allowirtgto vary over
time but not over bidders. More specifically, we febe a cubic polynomial of time to
partially capture the effects of updating.

Figure 3 presents estimated time pathg)pfogether with their bootstrapped con-
fidence intervals, with adjustment for clustering at the session level in treatments with
unknown distributions{(1s andU1;5). The top row presents the results for the eight-
subject treatment{1g), while the bottom row presents the results for the twelve-subject
treatment {/1,,). For each treatment, the first column uses the baseline estimates of the
risk parameteg from the corresponding treatments with known distributions. The second
and third columns serve as robustness checks by using the corresponding lower and upper
bounds ofj respectively. In all six graphs, the estimated ambiguity paramaseat least

one, suggesting that bidders are ambiguity loving.

RESULT 2 (Estimation of the Ambiguity Parameter 6) : In all rounds, but particu-
larly in the early rounds (1-5), the estimated ambiguity paramétisrat least one, with
the lower boundaries of all confidence intervals for the eight-subject treatments being at
least one, and with the lower boundaries of all confidence intervals for the twelve-subject

treatments being approximately one or above one. This rejects ambiguity aversion in
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both the eight- and twelve-subject treatments. In the eight-subject treatments, starting
from round 2, both ambiguity aversion and ambiguity neutrality are rejected in favor of

ambiguity loving.

SUPPORT.In all six graphs of Figure 3, we see that the estim#teslat least one. Fur-
thermore, the lower boundaries of all confidence intervals for the eight-subject treatments
(the top row) are at least one, while the lower boundaries of all confidence intervals for
the twelve-subject treatments (the bottom row) are approximately one or above dhe.
Result 2 confirms Result 1 that our data are consistent with ambiguity loving in first
price auctions. Apart from the two assumptions discussed earlier, the structural estimation
restricts the ambiguity parameteto be the same across individuals in any given round.

In the next subsection, we will relax this assumption by modelling individual learning.

4.3 Learning in First Price Auctions

In this subsection, we extend the structural approach by explicitly allowing bidders to in-
dividually update their priors about the ambiguity parameteased on past observations

of their own valuations and the auction outcomes. This third approach is mainly used for
robustness checks when we partially relax the symmetry assumption in the equilibrium
model. Unlike mainstream learning literature, which focuses on short, intermediate and
long-run learning dynamics, the objective of this analysis is to verify Result 2 by using the
entire set of time series data to infer a bidder’s prior distribultieforethe auction. Since

there is no consensus on the appropriate updating rule in-¥M&U or CEU framework,

we use a standard SEU framework with Bayesian updating, a benchmark in learning mod-
els. The theoretical derivation of this updating rule is in Appendix A. Here, we outline

the theory and the corresponding estimation procedure for our updating rule.

1. We assume that bidders start with some identical prior distribution over the param-

eterd, which can be parameterized using a beta distribution. A beta distribution
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incorporates special cases of interests, such as uniform, unimodal, and bimodal

distributions, and has only two parameters, facilitating computation.

2. In each round, each bidder generates his Bayesian posterior using the Bayes rule
based on the following signals about either his own valuation or his opponent’s

valuation.

(&) A bidder observes his own valuation.

(b) In the case where he does not get an object and the object is sold, the bidder
is informed of the winning bid in his group and hence infers his opponent’s

valuation by inverting the symmetric bidding function.

(c) In the case where he does not get an object and the object is not sold, the

bidder infers that his opponent’s valuation is below the reserve price.

(d) In the case where the bidder gets the object, he infers that his opponent’s

valuation does not exceed his own valuation.

3. Each bidder’s actual posterior is a weighted average of his prior and his generated
Bayesian posterior. Note that this approach incorporates Bayesian updating and no
updating as special cases. We allow different posterior weights for the first type of
signal (based on a bidder’s observation of his own valuation) and for the other three
types of signals (based on the bidder’s observation of auction outcomes), referred

to as Weight 1 and Weight 2, respectively.

4. For each parameter combination (two parameters of the beta distribution, Weight
1 and Weight 2), we use the entire time series data set for each bidder to generate
predicted bids based on the updating theory outlined above. Then we search for the

parameter combination that minimizes the sum of squared devitiogtsveen the

B3\We use mean squared deviation rather than maximum likelihood because we do not know the distribu-
tion of the bid residuals.
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actual and generated bids. Weights 1 and 2 are search@dlomith a step size of

0.2. For each combination of Weights 1 and 2, we use an algorithm similar to hill-

climbing to locate the minimum of the objective function over the two parameters of

the beta distribution. Our computation shows that, conditional on the two weights,
the negative of the objective function is single-peaked in the two parameters of the

beta distribution.

Recall that in a standard SEU framework, a bidder has a single prior, i.e., in Eq. (5)
0 = 6. Therefore, in a SEU framework, bidders put less weight on the low value distribu-
tion if the estimated mean of< 0.5, equal weight on the low and high value distributions
if the estimated mean aof = 0.5, and more weight on the low value distribution if the
estimated mean of > 0.5.

Table 4 presents the results of the updating analysis for the eight-subject as well as
the twelve-subject treatments with unknown distributions. In each treatment, we estimate
both the baseline and the lower and upper bounds of the risk parametéor each
estimation, we present the minimum sum of squared deviations, the two parameters of the
initial beta distribution (Par. 1 and Par. 2), the mean of the initial beta distribution implied
by the two parameters, and Weights 1 and 2. For each estimation, we also present the
percentiles (2.5, 5, 95 and 97.5) of the corresponding bootstrépgistribution of the

implied mean.

RESULT 3 (Prior Inferred from Updating) : The mean of the estimated prior dis-
tribution of ¢ is 0.8438 in the eight-subject treatment arid7500 in the twelve-subject
treatment. The hypothesis of subjects putting more weight on the high value distribution

is rejected for the twelve-subject treatment, but not for the eight-subject treatment.

In order to reduce the amount of computation, in the bootstrapping procedure we use a grid of 0, 0.5
and 1 for Weights 1 and 2. This coarse grid size might account for the result that the estimated Weights 1
and 2 are corner solutions.
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SUPPORT. The results in Table 4 indicate that for the eight-subject treatment and the
baseline estimate gf = 0.3622, the mean of the estimated prior(is3438, with a two-
sided 95% bootstrapped confidence interval0of250, 0.9688]. For the twelve-subject
treatment and the baseline estimatejof= 0.5651, the mean of the estimated prior is
0.7500, with a two-sided 95% bootstrapped confidence intervad 6600, 0.8438]. Both
point estimates suggest that bidders put more weight on the low value distribution. In
addition, in the twelve-subject treatment the one-sided confidence interval indicates that
this result is statistically significant at the 5% level. In the eight-subject treatment, the
result is not statistically significant at the 5% level. |

To summarize, we have used three different approaches to determine a bidder’'s ambi-
guity attitude. The first approach compares the mean bids in treatments with and without
ambiguity and finds that bids are lower in treatments with ambiguity, which is consistent
with ambiguity loving. The second approach estimates the ambiguity parameter to be at
least one, rejecting ambiguity aversion. In our third approach, allowing for individual up-
dating, we again infer that the mean of the estimated initial prior distributiénssfbove
0.5 in both the eight and the twelve-subject treatments. Combining all three approaches,
we conclude that ambiguity affects bidder behavior in first price auctions in our experi-
mental setting, and our data are consistent with the hypothesis that bidders are ambiguity

loving.

4.4 Second Price Auctions

For second price auctions, we use a structural approach based on Proposition 4, which
states that bidding one’s true valuation is a weakly dominant strategy with or without am-

biguity. To test this hypothesis, we use an OLS regression with clustering at the session
level. We use Bid as the dependent variable, and Value as the only independent variable.
We do not include a constant because of the theoretical prediction. We conduct the esti-

mation on treatments with known and unknown distributions for both the early (1-5 and
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1-10) and later rounds (11-30). We combine both the Known and Unknown treatments in

one regression to gain additional efficiency. Results are presented in Table 5.

RESULT 4 (Effects of Ambiguity in Second Price Auctions): Ambiguity has no sig-
nificant effect on bids in earlier rounds or later rounds. However, in rounds 1-10 of the
Known treatment and rounds 11-30 of both treatments, subjects bid significantly more

than their valuations.

SUPPORT. Table 5 presents the OLS regression results for second price auctions. The
coefficient estimates show how much subjects bid compared to their valuations. The
standard errors are in parentheses. The asterisks next to the standard errors indicate the
significance levels in one-sided Wald tests of the null hypothesis of bids being equal to
values against the alternative hypothesis of bids exceeding values. The null hypothesis is
rejected at the 5% significance level in rounds 1-10 of the Known treatment and rounds
11-30 of both treatments. The last line of the table displays the Waddatistics for the
equality of coefficients between the known and unknown treatments for the early and later
rounds, respectively. None of these statistics is significant at the 10% significancd level.
The finding that ambiguity has no effects on bidding behavior in second price auctions
confirms our theoretical prediction. The finding that participants overbid is consistent
with previous experimental findings (Kagel, Harstad and Levin, 1987). Interestingly, the
extent of overbidding increases in later rounds, which not only confirms that participants
do not seem to learn the dominant strategy, but also indicates that they depart further from

the dominant strategy in later rounds.

4.5 Auctioneer Behavior: Reserve Price Setting

Having examined the effects of ambiguity on bidder behavior in the two auction mecha-

nisms, we now turn to auctioneer behavior.
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We first characterize the optimal reserve price from the auctioneer’s perspective. In
our experiment, the auctioneer always knows the true distribution of bidder valuations.
We assume that the auctioneer also has a CRRA utility funeti@n),= =*, where\ > 0.

Note that the auctioneer’s risk parametercould differ from the bidders’ risk parameter,

G. Infirst price auctions, the optimal reserve price depends on the risk attitudes of both the
auctioneer X) and the bidders), as well as on the ambiguity parametgr,Given this

set of parameters, we compute the optimal reserve price, presented in Table 6. In second
price auctions, we can characterize the auctioneer’s optimal reserve price analytically, as

presented in the following proposition.

Proposition 5 In second price auctions with or without ambiguity, for any values of
B, € (0, 1], the optimal reserve price is given byin{%%ﬂ, 0.5}, wherefly = 6, + £ =

1.2.

Proof: See Appendix A. |

Since the auctioneer always knows the true distribution of bidder valuations in our
experimental setting, Proposition 5 implies that the optimal reserve price in the second
price auction is the same with or without ambiguity.

For risk averse or risk neutral bidders, we generate the following hypotheses, derived

from Proposition 5 as well as from numerical computations.

HYPOTHESIS 1 In a first price auction, the optimal reserve price should not exceed
0.4167 in treatments without ambiguity. It should not excéedll in treatments with
ambiguity. In a second price auction, the optimal reserve price should not eRcEed

in all treatments.

Hypothesis 1 is shown numerically in Table 6. Table 6 reports the optimal reserve price for
first price auctions for each given set of risk parametéa(d)\) as well as the auctioneer

estimate of the bidders’ ambiguity parameterThe pattern in Table 6 is consistent with
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Proposition 5 of Riley and Samuelson (1981), which states that risk-neutral auctioneer’s
optimal reserve price is a declining function of the degree of bidder risk aversion. The last
column of Table 6 reports the optimal reserve price for second price auctions, computed
directly from Proposition 5. The computational procedure leading to the results in Table

6 is in Appendix A.

HYPOTHESIS 2 In a first price auction, the optimal reserve price is lower (higher) in
the case with ambiguity than in the case without, if with ambiguity the seller believes that
bidders put less (more) weight on the low value distribution than the actual weight of

dp =0.7,0r6 < 1.2 (6 > 1.2).

Hypothesis 2 is shown numerically in Table 6. Hypothesis 2 states that, for fixed risk
parameterg and\, the optimal reserve prices increase WithThis can be seen from the

table, since, along each row, the optimal reserve prices incredse@gsases.

HYPOTHESIS 3 In a second price auction, the optimal reserve price is the same with

or without ambiguity.
Hypothesis 3 follows immediately from Proposition 5.

HYPOTHESIS 4 Without ambiguity, the optimal reserve price in a first price auction is

less than that in a second price auction.
Hypothesis 4 can be obtained by comparing the two boldfaced columns in Table 6.

HYPOTHESIS 5 With ambiguity, the optimal reserve price in a first price auction is
less than that in a second price auction, when the auctioneer believes that bidders put

less weight on the low value distribution than the actual weiglt-6f0.7.

Hypothesis 5 is derived from a combination of Hypotheses 2, 3 and 4.
Figure 4 presents the mean reserve price plus/minus one standard deviation in each of

the four treatments. The dashed line is the maximum reserve price predicted by the theory
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in each treatment. Two patterns are immediately obvious. First, in all treatments except
U152, mean reserve prices for individual rounds are often above the maximum predicted
by the theory. Second, there does not appear to be much learning, as we do not observe
any reduction in the standard deviations. We formally test and present the results below.
Table 7 reports the average reserve price in early rounds (1-5) and over all rounds
(1-30) for each session in each treatment. The last two columns report the alternative
hypotheses and the results of the one-tailed permutation tests. In summarizing the results,
we use the shorthand to denote a result where the null hypothesis of equality cannot be
rejected at the ten percent significance level. We use FPA for first price auctions, and SPA

for second price auctions.
RESULT 5 (Reserve Price):

1. In ten out of twenty independent sessions, the average reserve price is above the

upper bounds of the optimal reserve price.

2. Effects of information conditions:

(a) FPA: no ambiguity> ambiguity, significant in early rounds and over all

rounds.

(b) SPA: no ambiguityx ambiguity, significant in early rounds; no ambiguity

ambiguity over all rounds.
3. Effects of mechanisms:

(a) Without ambiguity: FPA> SPA, significant in early rounds; FPA SPA over

all rounds.

(b) With ambiguity: FPA< SPA, significant in early rounds and over all rounds.

SUPPORT. The last column of Table 7 reports the results of the one-sided permutation

tests. [ |
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Part 1 of Result 5 shows that in only half of the sessions, the average reserve price
is within the limits predicted by Hypothesis 1. In particular, in three treatméiiis
K215, andU2,,), the session average reserve prices are too high compared to the optimal
reserve price predicted by the theory. From Figure 4, the mean reserve price in second
price auctions increases over time, consistent with overbidding which increases over time
(Table 5). Compared witlik'1,5, the mean reserve price i1, is always below the
theoretical maximum, consistent with lower bids in first price auctions with ambiguity.

Part 2 (a) is consistent with Hypothesis 2 if the auctioneers believe that bidders weigh
the high value distribution more than the actual weight. Part 2 (b) is consistent with
Hypothesis 3 except in the early rounds. Interestingly, Part 3 (a) is not consistent with
Hypothesis 4, which predicts that, without ambiguity, the optimal reserve price in a second
price auction is more than that in a first price auction. Indeed, we find that Hypothesis 4
is reversed in the early rounds, and that the average reserve price between FPA and SPA is
indistinguishable over all rounds. Finally, the finding that, with ambiguity, second price
auctions have a higher reserve price than first price auctions (Part 3 (b)) is consistent with
Hypothesis 5.

Both Parts 2 (a) and 3 (b) of Result 5 suggest that auctioneers believe that the bidders
put more weight on the high value distribution than the actual weight. However, this
finding does not imply that auctioneers believe that bidders are ambiguity averse, since it
includes the case of bidders having a uniform priordet 1).

All these results are individual level results, regarding how ambiguity affects bidder
and auctioneer behavior. We now turn to aggregate results, which have important impli-

cations for auction design.

4.6 Revenue, Earnings and Efficiency

In this subsection, we present aggregate results. Specifically, we examine the effects of the

auction mechanisms (first vs. second price auctions), information conditions (ambiguity
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vS. no ambiguity treatments), and auctioneers (eight- vs. twelve-subject treatments) on
auctioneer revenue, bidder earnings and overall auction efficiency.

In most previous auction experiments, the auctioneer’s role is either completely ig-
nored (i.e., the reserve price is set to zero), or the experimenter is the auctioneer (e.g.,
Lucking-Reiley 2000b). In contrast, in our twelve-subject treatments, subjects are auc-
tioneers, thus enabling revenue comparisons across different treatments with endogenous
reserve prices. With a zero reserve price, revenue is a direct consequence of bidder be-
havior, i.e., the higher the bids, the higher the revenue. However, this relationship is
not necessarily true with auctioneers present, since revenue is affected by both bidding

behavior and reserve prices.

RESULT 6 (Revenue): Without ambiguity, FPA generates significantly higher revenue
than SPA. With ambiguity and without auctioneers, FPA again generates significantly
higher revenue than SPA. With ambiguity and active auctioneers, however, FPA and SPA

generates the same amount of revenue.

SUPPORT. Table 8 presents the average revenue in the early rounds (1-5) and over all
thirty rounds for each session in each treatment. The last two columns report the alterna-
tive hypotheses and results of the one-tailed permutation tests for the effects of auction
mechanisms and information conditions. The last two rows report the same information
for the effects of auctioneers. |

Result 6 is consistent with theory. The Revenue Equivalence Theorem states that,
without ambiguity and with risk neutrality, FPA and SPA generate the same expected
revenue. With risk aversion, bidders bid more in the FPA but not in the SPA,; therefore,
we obtain the usual result that FPA generates more revenue than the SPA. This result also
holds when ambiguity is introduced. When, in addition, active auctioneers are introduced,
the revenue dominance of the first price auction disappears.

In addition, we also observe that in FPA in the early rounds of the eight-subject
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treatment, revenue is significantly less when ambiguity is introduced, a consequence of
ambiguity-loving bidders. In SPA, ambiguity does not affect revenue over all rounds of
both the eight- and the twelve-subject treatments, which is consistent with the theory. Fi-
nally, we find that the presence of auctionaeduiced-PA revenue. In first price auctions,

the auctioneers would have been significantly better off if they were forced to set a zero
reserve price. This is a consequence of auctioneers setting high reserve prices discussed
in the previous subsection.

Closely related to auctioneer revenue is bidder earnings. We expect auction mecha-
nisms and information conditions to have opposite effects on bidder earnings compared
to auctioneer revenue. We also expect auctioneers to reduce bidder earnings.

Table 9 presents the average bidder earnings in early rounds (1-5) and over all thirty
rounds for each session in each treatment. The last two columns report the alternative
hypotheses and results of the one-tailed permutation tests for the effects of auction mech-
anisms and information conditions. The last two rows report the same information for the
effects of auctioneers. We find that bidder earnings are significantly higher in a second
price auction compared to a first price auction. The fact that auctioneers significantly
reduce bidder earnings reflects the level of reserve prices.

The last group level result we examine is efficiency. Following the tradition in the
auction literature, we define efficiency as equal to one hundred percent if the object goes
to the bidder with the higher valuation. We therefore measure the frequency with which
the bidder with the higher valuation wins the object. The session level average is reported

in Table 10.

RESULT 7 (Efficiency) : Without auctioneers, the average efficiency is 88.83%. With
auctioneers, the average efficiency is significantly reduced (to 71.12%). With ambiguity

and with auctioneers, FPA is significantly more efficient than SPA.

SUPPORT. Table 10 presents the average efficiency for each session in each treatment
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and the results of the one-sided permutation tests. Efficiency of the eight-subject sessions
is significantly higher than the corresponding twelve-subject sessignscai.01 (one-
sided permutation test). |
Theoretically, both first and second price auctions should yield one hundred percent
efficiency under a zero reserve price. Without auctioneers, we find that average efficiency
is fairly close to 90%. This finding is largely consistent with the theory and previous ex-
periments. However, in the twelve-subject treatments, efficiency is affected by the reserve
prices. For example, with ambiguity, the average reserve price in FPA is significantly less
than that in SPA, which leads to a higher efficiency in FPA. The fact that the presence of
active auctioneers significantly reduces efficiency suggests that the high efficiency esti-

mates of previous experiments might have been an artifact of a zero reserve price.

5 Conclusions

In many real world auctions, such as Internet auctions, bidder information regarding other
bidders’ valuations is vague. To explore the effect of this vagueness on bidder and auction-
eer behavior, we study first price and second price sealed bid auctions with independent
private values, where the distribution of bidder valuatiomas known. We derive the
symmetric equilibrium using the-MEU framework. We then test our theoretical predic-
tions to examine how ambiguity affects bidder and auctioneer behavior and to reassess
the ranking of the first and second price sealed bid auctions.

Previous experimental studies on ambiguity mostly focus on Ellsberg individual choice
experiments, while previous auction experiments mostly assume that the distribution of
bidder valuations is common knowledge. Our study extends the experimental auction
literature to a more realistic setting with ambiguity. It also extends studies of ambigu-
ity to an important applied setting, to determine whether findings from individual choice

experiments are robust in the auction context.
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We show that ambiguity affects bidder behavior in first price auctions. Contrary to the
results of many previous studies in Ellsberg urn experiments, in our experimental auction
setting, the results are consistent with ambiguity loving. This surprising result is also
consistent with the comparative ignorance hypothesis and the hostile nature hypothesis
proposed by psychologists.

Finally, we extend previous auction experiments by using subjects as auctioneers. We
study how auctioneers affect bidder behavior, revenue, earnings and efficiency. Our find-
ings show that auctioneers set reserve prices higher than the theoretical prediction, with
interesting consequences for auctioneer revenue, bidder earnings and auction efficiency.
Specifically, auctioneerseducerevenue in first price auctions compared to treatments
without auctioneers. High reserve prices also reduce bidder earnings and auction ef-
ficiency. With ambiguity-loving bidders and with real auctioneers, the first price and
second price auctions generate the same amount of revenue.

These findings have important implications for auction design in settings with ambigu-
ity (and auctioneers). Our results suggest that from the revenue perspective, the designer
ought to be indifferent between first and second price auctions. If efficiency is the most

important objective, the designer ought to choose first price auctions.
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APPENDIX A.

Derivation of Eg. (2): Conditional ond € [0, 1], the distribution of the opponent’s
valuations is given by F'' + (1 — §) F2. Then, in light of thea-MEU theory, bidder
i's utility is a weighted average of the utility of a maxmin EU bidder (weightand a
maxmax EU bidder (weight — «), where the set of beliefs ovéris given byA. Then,
conditional on the opponent strategy beinigand using the shorthand notatiaf for

7 [Vi, bi, s;(V;, ), r], the bidder’s payoff U (b;; Vi, r, s;) is given by

Uilbis Vi)
:agleig{// () d [SFN(V, (—6)F2(V-)]dG(6)}
1—agl6a§{// () d [SF (V) + (1 - 6) F (V-)]dG(é)}
_amln{</ 5dG ( )) UO w () dF" (V)}Jr(/ol( —5)dG(6)> Uolu(m)dﬁ(vj)”
+ - ) {may (/ 0469 [/Olum)dFl(m} ¥ (/ (1= 0)) [/Olum)dﬁ(vj)“
~a{s [/Olum)dFl(vj)} (1) [/OluwdFQ(vj)]}

+(1-a) {5 [/Olu(m)dFl(Vj)} +(1-9) {/01 u(m)dﬁ(vj)] }
- [uar.)

= u (Vi — bi) Fuls; ' (bi, 7)IX {0, 50}

whereF, = (ad + (1 —a)8) F' + [1 — (ad + (1 — «) 0)] F%, andx s>, is an indica-

tor function. [}

Proof of Proposition 1: By (2), bidderi solves

si(Vi,r) € argmax u (V; — b;) F, [sj_l(b,-, )] Xz}

b;€[0,00)
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If V; < r, bidderi can always obtain zero utility by bidding below On the other hand,
bidding at or above can only generate negative or zero utility. As a resylfy;,r) < r
whenV; < r. If V; > r, bidding at or below- or at or abové/; leads to zero or negative
utility. On the other hand, bidding betweerandV; can only generate positive or zero
utility. As a result, the range of undominated bids, whén> r, is characterized by
r < s;(Vi,r) < Vi If V; = r, bidding above- can only generate zero or negative utility.
As aresults;(V;,r) < rwhenV; < r. Furthermore, whel; > r, the bidding function

of bidderi is characterized by the following first order condition:

wlV; — s;(Vi,r)| F., {s_l (Vi,r), 7]}

—u' [V; — si(Vi,r)] Fo {7 [si(Viyr), 7] b+ =0.
e T s R )
In a symmetric equilibriuns; = s; = s, and hence it follows that ¥ > r,
—u [V . S(V, 7’)] Fa(V) + u [V _as(‘/v T)] Fa(v) — 0,
Ws (V7 T)
which can be rewritten as
0 F! (V) u[V —s(V,r)]
—s(V.r) = 2=
v V) = ) W = (V)
|

Proof of Proposition 3: Fix r. First, for allV such that- < V < 1, Corollary 1 shows

that
Js gV —s(V,r,0)]
av <V7 79) V 9

and hence the functional form efV, r, §) is independent of.

Now consider allV such thaty < V' < 1, wherev = max {r, 1}. Corollary 1 shows
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that for this range of values

ds
5y (Vor.0) = g [V = s(V, )] h(V.6). (7)

Suppose, by contradiction, that there exXigte (v, 1] andé,,6, € [0.5,1.5], 6; < 65,
such thats(Vp, r, 01) < s(Vo, r, 02). Define the sel/ as

M=A{V € (v,Vg) : s(V,r,01) = s(V,r,60)} U{v}.

By the continuity ofs(-,r,0), M is a compact set, and henge = max(M) is well-
defined. This continuity property also implies thal/, r,0,) < s(V,r,0,) for all V €
(m, Vo). But because(-) is strictly increasingh(V, 0) is strictly decreasing ifl, and, by

constructions(m,r,6,) = s(m,r, 6,), it follows from (7) that

Vo
s(Vo,r,601) = s(m,r,01) + / gV —s(V,r,00)] h(V,0,)dV
Vo

> s(m,r,0) + / gV —s(V,r,05)] h(V,05)dV

m

= S(%vrv 02)a

which is a contradiction. Therefore it must be the casedfiatr, 6,) > s(V,r, 6,) for all
V € (v, 1] andby, 0, € [0.5,1.5], 6; < Os.

Now suppose by contradiction that there exigjsc (v, 1] and#,,6, € [0.5,1.5],
0, < 0s, such thats(Vp, r,0;) = s(Vy,r,0,). Sinceh(V,0) is continuous, positive, and

strictly decreasing i, there must exist > 0 and~ > 0 such that

1
forall Ve (Vo —~. V).
<1+€0ra e (Vo —7W)

In addition, sinces(V,r,6) is continuous inl/, g(-) is continuous, positive, and strictly

increasing, and(V,r,0,) > s(V,r,6,) forall V € (v, V5], there must exisi > 0 such
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that
g [V - S(‘/v T, 92)]
gV —s(V,r,00)]

<l+eforalV e (Vy -4, Vo).

But then it follows that
gV = s(V,r,02)| h(V,02) < g [V — s(V,r,00)] h(V, 6,) for all V € (Vy — min(6,7), Vp)

This result, combined with the fact thally, — min(0, ), r, 0;] > s [Vo — min(d, ), r, 0s],
implies that
Vo

s(Vo,r,61) = s[Vo — min(4, ), r, 01] +/ —s(V,r,00)]) h(V, 6,)dV

—min( 5'y

> s [Vo — min(6,7),r, 0] + / — s(V,r,02)] h(V, 6)dV

—min 5'\/

= S(%7T7 92)7

which is a contradiction. Therefore it must be the casedfidtr, 6,) > s(V, r, 6,) for all
V € (v,1] andfy, 0, € [0.5,1.5], 6, < 62, meaning that(V,r, 6,) is strictly decreasing
in @ whenV € (v, 1]. |

Proof of Corollary 2: Substituting Eq. (4) into Eq. (3) gives:

) GV =s(Vir)
WS(V r) = b

1 H 1
v if T<V§§

%[V—S(VJ‘)]% if max{r,i} <V <1

The solution to this differential equation is:

VB +— if r<V<li
s(V,r) = o 2

V(0—2)+5(6-1) 1 ) ’
T Teld-1+@2-0V]7 if max{r;}<V <1

wherec; andc, are determined using the boundary condiﬂi‘;mlms(v, r)=r.
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We first consider the case< % In this case

_1 r B s
2 = g
cLr + T+

@
—_
+
@

Then, by continuity at’ =

1
27

B ue 1‘%+ 1 A N 5
115  \2 21+ 5) 20+08) 1+po—2 “2\32

)

implying

Wl

B
1+ 73

Cy —

e (1IN0 0-1] (0 5
R gl \2) -
Next consider the case > % In this case, the boundary Conditid‘l;l?ls(‘/, r)y=r

gives:

r(0—2)+8(0-1) .
Topisg tel-1re-onTt=r

implying

_ s B _ oy
@“@—9M1+6ﬂ9 1+(2-0)r] 7 .

So we can write the bidding function as follows:

s(Vor) =

2+ VR ifr<v<l
JL+JLti+JLP%%%+&ﬂ(%%w—1+@—mvr% ifrelcve<i
1+ 1+5 6—-2 1+ 2—0 2 2 —
1% B_6—1 s 42 -3 1

Proof of Proposition 5: Conditional onV;, V5, andr, the auctioneer’s revenue is given
by:

0 if max{Vi,Vo} <r
RSPA(‘/'I"/Q’T): { 1 2} )
max {r, min{Vj, Vo}} if max{Vj,Va} >r
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Let EU4(r) denote the expected utility of the auctioneer when the reserve price is

Then, for allr € [0, 1],

1 1
BUAr) = [ [ e {ramin(V, Vo) Xasti o F (VIAF (V)
0 JO

wherexy; is an indicator function. By symmetry of the distributionsigfand V5, this

can be rewritten as:

1 1
EUA(r) =2 / / max {7, V) X2 X212 AP (Vo) AP (V3)
0 0
1 1
22// [TAX{Vlzr}X{erg}+‘/2>\X{V12V2}X{V2>r}] dF(Va)dF(Vh)
0 0
1 1
—2 P ) (1= F)+2 [ [ Ve dF(V)aF (1)
0 0

=2r'F(r)[1 — F(r)] + 2/1 VO [1 — (Vo) dF(V3).

T

Recall that the auctioneer always knows the true distribution of the valuations given
by FF = 6o F' + (1 — ) F?, whered, is the true weight placed ofi*. F' can equivalently

be expressed as

0,V if 0<V <3
Bo—1)+(2—6)V if L<Vv<i

wheret, = d, + 1/2. Then, since\ € (0,1}, forall r € (3,1)

Mg—:(r) =20 (B — 1) + (2 = 00)7] (2 — 00) (1 —7) +2r2(2 — 0p)* (1 — )
—2r (g — 1) + (2 — Oo)r] (2 — 6p) — 2™ (2 — 0p)*(1 — 1)
—QM1K%—1}+@—&Mﬂ2—%ﬂ1—m{A—lié
<0.
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Since EU4(r) is continuous at- = 1, it follows that EU4(r) < EU4 (3) for all » €
(,1]. Therefore, setting = 1/2 strictly dominates any abovel /2. Forr < 1/2,

OEUA(r)

5 = 2001 (1 — Oor) + 2r200(1 — Oor) — 2002 — 2r*05(1 — Oor)
-

= 27“>\9() [)\(1 — 90’/’) — 907‘]

=210y [N — (14 N)bor] .

BecauseF U (r) is continuous at = 1/2, this implies thatEU 4 (r) is single-peaked on

r € [0, 1], with the maximum at

TR . L

Becauser = 1/2 strictly dominates any abovel/2, it follows that the optimum

reserve price for an auctioneer with the risk parameterr*(\). [
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Bayesian Updating:

In this part, we outline the theoretical basis for our analysis of Bayesian updating =.et
prob {V is drawn fromF, } . In the beginning of the auction, each bidder has a single prior
belief distribution ofs. We denote this distribution b§, and its density (with respect to

the Lebesgue measure) by For eachy, the distribution ofi” can be written as:
FO(V)y=60F" (V) + (1 —6)F*(V).
Given this, the overall compounded prior ovélis given by

F(V) _/01F5 (V) dGy (9).

Recall that:
3V if o<V<i
FY (V) = ? -
B (- b<v<n
= ;V —max{V — %,0}.
1y if 0<zx<i
F?(V) = ? e
TRNUSHERLIERNES
1 1
= §V + max{V — 5,0}.
Thus,

1 1
I (V) = max{?/, ;V— 5} +min{V,1 -V},

and the corresponding density is given by

1
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whereX{VZ%} is the indicator function of the sét” > 1}. Using this, we can compute

F as:

! 1 1
:/ {max{—‘ﬂ%V——}%—min{V,l—V}é dGy (9)
0 2 2 2
1.3 1 .
:max{§V,§V—§}—|—m1n{V,1—V}ug, (8)

wherey is the mean of the distributiof.

However, given the availability of signals, each bidder successively updates 59 times
during the entire experiment (once each round after seeing his own valuation and once
each round except the last after seeing the outcome of that round’s auction - see the main
text for details). We denote the sequence of these posterior beliéfs.ag59. Also, for

eachk € {1,...,60} andt € {0, ..., 59}, let

M,(k) = /O 1 §FdG(9)

be thek-th noncentral moment af,.
The subsequent updating is based on two types of signals.
First type of signal: In this case, a bidder observes his own valuatioss a. This bidder

will then update his beliefr; overé to GG, ;. Application of the Bayes rule gives:

P@a®) 3t ¥ent (1720

gi+1 (5) = — — =
fOl f6 (a) th <5> % + X{QZ%} + (1 — 2X{a2%}> Mt(l)

¢ (9)

Using this formula, it follows that

S e P
My (k) = / 0"g1 (0) dd = 1 -
0 5+ Xaopy + (1 2%y ) M)
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Second type of signalin this case, a bidder observes that his opponent’s valu&tien

a. With the notation analogous to Case 1, we get:

Fo(a)g,(6) max{3a,3a— 3} +min{a,1—a}é

= J).
fong(a)th (g) max {3a,3a — 1} 4+ min{a,1 — a} M,(1 )9 ¢ (6)

Ji+1 (5) =

Using this formula, it follows that:

max {3a, 3a — 1} My(k) + min{a,1 — a} My (k + 1)
max {1a,2a — 1} + min{a,1 — a} M(1)

1
My (k) = / 6%y (8)ds =
0
(10)
In each case, parallel to (8), the overall updated prior over valuations associated with

G, is given by:

F, (V)= (%—l—,ut)V+(1—2,ut)max{V—%,0}, (11)

wherep, = M,(1). Consequently, a theoretical bidding function afteounds of updat-
ing can be obtained by replacirtg, by F; in Eq. (3), which gives the bidding function in
Corollary 2 withd replaced by, + 0.5. Therefore, the sequenge, ..., 159 derived from
updating based on the personal experience of a particular bidder is a sufficient statistic for
a theoretical prediction of that bidder’s sequence of bids. To derive this sequence of first
moments, (9) and (10) show that, working backwards, it is necessary to kfig\t ),
which in turn requires knowing/ss(1) and M;s(2), which in turn requires knowing
Ms7(1), M57(2) and Ms,(3), etc., all the way taVly(1),..., My(60). Therefore, to op-
erationalize this updating procedure, we must specify the first sixty mome6is of

In our application, we parameterizg by a two-parameter family of beta distributions

for which the densityy, is given by:
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where the two parametersandb are positive and” is the standard Gamma function
defined by:
I'(2) E/ w” e du, 2> 0,
0

and obeying
['(z4+1)=2I(z2), z>0. (12)

Note that, sincg, must integrate to unity, it follows that:

" e 1,5 P(9l(d)
O 51— 6)4 d5_r(c+d) (13)
for anyc, d > 0. Given the form ofy,, it follows that, for anyk € {1, ..., 60},
Mo(k) = 5((;)4-((;))/ gatk— 1(1 _5>b71d5
~ I'(a+0) I'(a+ E)I'(b)
 T(a)T(b) T(a+b+k)
ala+1)...(a+k—-1) (14)

T (et b)a+b+ 1) (a+btk—1)

where the second and third equality use (13) and (12), respectively.

In our estimation, we search for values ©fndb common across all bidders that
best approximate bidder behavior over all rounds, using the above updating procedure. In
addition, we introduce the possibility that bidders do not “fully" update their priors based
on observed signals. In particular, we allow bidder posteriors to be weighted averages
of their priors and their Bayesian posteriors. To separate the effect in updating based on
seeing one’s own valuation from the effect based on seeing the auction outcome, we allow
different weights on Bayesian posteriors based on these two types of signals. Letting
wy € [0, 1] be the weight on the Bayesian posterior based on seeing one’s own valuation

andw, € [0,1] be the weight on the Bayesian posterior based on seeing the auction
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outcome, (9) is now modified to:

1

Mt+1(k) = (1 — wl)Mt(k‘) + w; 5’“91 (6) do

T S—

% + X{@Z%}) Mt(k) ‘l‘ (1 - 2.)({(12%}) Mt(k? + 1)

Lt Xsy + (1 - 22({&2%}) M, (1)

(15)
wherei € {1, 2} as necessary, and (10) is now modified to:

Mt—l—l(k) = (1 — UJQ)Mt(/{?) + wo /01 (Skgl (6) do

max {1a, 3a — L} My (k) + min {a,1 — a} My, (k + 1)
max {3a,3a — 1} + min{a,1 — a} M,(1)

(16)

= (1 — wo) My(k) + wo

These two recursive equations, together with (14) and the theoretical bidding function
in Corollary 2 with# replaced byu; + 0.5, serve as a theoretical basis of our updating
estimation. It is parameterized lay(Parameter 1)) (Parameter 2)w; (Weight 1), and

wy (Weight 2), with the mean of the initial prior given By(1) = a/(a + b). |
Computation of the Optimal Reserve Price:
First price auction: Conditional onl;, V5, andr, the auctioneer’s revenue is given by:

0 if max{Vi,Vo} <r
RFPA(%,%,T): {1 2}

Y

max{s (Vi,r),s(Va,r)} if max{V},Va} >r

or equivalently, using the fact thatV, r) is strictly increasing i/,

0 if max{Vi,Vo} <r
RFPA(%’%’T): {1 2}

s[max{Vy,Vo},r] if max{V;,Va} >r.
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Recall that the auctioneer always knows the true distribution of valuations givéh-by

0.7F* + 0.3F2, or, equivalently,

1.2V if 0<V <3
F(V) =
12+ (V—-3)08 if 1<V <1
Therefore, the distribution afiax {1}, V2 } is given by:
1.2%a if 0<a<3
G (CL) = 3
(0.2+08a)* if L<a<1
with the associated density given by:
2.88a if 0<a<j
gla) =
1.6(02+08a) if 1<a<1

Let EU,4(r) denote the expected utility of the auctioneer when the reserve price is
Then,

[REPA (Vi Va, )] dF (V1) dF (V)

S [maX {‘/17 Vé} 7T])\ X{max{V17V2}Z7"}dF(v1)dF(‘/?>

After substituting fors (a, ), using the bidding function in Corollary 2, we search for
r that maximizesEU 4 (r), using the grid{0, 0.001, ...,,0.999, 1} for both the integrand

a and the reserve price The integration is performed by the trapezoid approximation.
We repeat this procedure for values of the risk aversion parametansl A on the grid
{1/6,2/6, ..., 1} and the ambiguity parametéon the grid{0.5,0.6, ..., 1.5}. The results

are presented in Table 6, which shows that the optimal reserve price is strictly increas-
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ing in all of 3, A\, and#. Therefore, the highest reserve price under risk aversion or risk
neutrality of the bidders and the auctioneers and under ambiguity of the bidders is approx-
imately 0.44, and it is achieved fop = A = 1 andf = 1.5. In treatments with known
distributions, equilibrium bidding is governed by the bidding function in Corollary 2 with

0 = 6, = 1.2. Hence the highest reserve price is approximabelyf67, which can be

shown to be exactly equal tg'2.4.

Second price auction: In this case the computation is straightforward by using the
closed-form solution in Proposition 5, withy = 1.2. We repeat the computation for
values of the risk parameteron the grid{1/6,2/6,...,1}. The results are presented in
the last column of Table 6. Sineé(\) is strictly increasing im\, the highest possible
theoretical prediction for the reserve price under risk aversion or risk neutrality of the

auctioneers i /2.4 = 0.4167, regardless of the presence of ambiguity. |
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APPENDIX B. INSTRUCTIONS

The complete instructions for the twelve-subject, first price auction with unknown distribution treatment
are shown here. Instructions for the twelve-subject, first price auction with known distribution treatment are
identical except that is replaced by 30 and that bidders are not asked to give an estimatdmgtructions
for the corresponding eight-subject treatments are identical to their twelve-subject counterpart except that
the parts concerning auctioneers are deleted.

Instructions for the second price auctions are identical to their first price counterpart except for “The
Rules of the Auction and Payoffs" section and the “Review Questions", hence only those two parts are

shown here.

Experiment Instructions — U1,

Name PCLAB __ Total Payoff
Introduction

e You are about to participate in a decision process in which an object will be auctioned off for each
group of participants in each of 30 rounds. This is part of a study intended to provide insight
into certain features of decision processes. If you follow the instructions carefully and make good
decisions you may earn a considerable amount of money. You will be paid in cash at the end of the

experiment.

e During the experiment, we ask that you please do not talk to each dfhgou have a question,

please raise your hand and an experimenter will assist you.
Procedure

e You each have drawn a laminated slip, which corresponds to your PC terminal number. If the number
on your slip is from PCLAB 2 to PCLAB 9, you will stay in this room and you will be a bidder for
the entire experiment. If the number on your slip is from PCLAB 10 to PCLAB 13, you will go to

Room 212 after the instruction, and you will be an auctioneer for the entire experiment.

e In each of 30 rounds, you will beandomlymatched with two other participants into a group. Each
group has an auctioneer and two bidders. You will not know the identities of the other participants
in your group. Your payoff each round depends ONLY on the decisions made by you and the other

two participants in your group.

e In each of 30 rounds, each biddevalue for the object will be randomly drawn from one of two

distributions:
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— High value distribution : If a bidder’s value is drawn from the high value distribution, then

* with 25% chance it is randomly drawn from the set of integers between 1 and 50, where

each integer is equally likely to be drawn.

* with 75% chance it is randomly drawn from the set of integers between 51 and 100,

where each integer is equally likely to be drawn.

For example, if you throw a four-sided die, and if it shows up 1, your value will be equally
likely to take on an integer value between 1 and 50. If it shows up 2, 3 or 4, your value will

be equally likely to take on an integer value between 51 and 100.
— Low value distribution : If a bidder’s value is drawn from the low value distribution, then

* with 75% chance it is randomly drawn from the set of integers between 1 and 50, where

each integer is equally likely to be drawn.

* with 25% chance it is randomly drawn from the set of integers between 51 and 100,

where each integer is equally likely to be drawn.

For example, if you throw a four-sided die, and if it shows up 1, 2 or 3, your value will be
equally likely to take on an integer value between 1 and 50. If it shows up 4, your value will

be equally likely to take on an integer value between 51 and 100.

— Therefore, if your value is drawn from the high value distribution, it can take on any integer
value between 1 and 100, but it is three times more likely to take on a higher value, i.e., a

value between 51 and 100.

Similarly, if your value is drawn from the low value distribution, it can take on any integer
value between 1 and 100, but it is three times more likely to take on a lower value, i.e., a value
between 1 and 50.

— In each of 30 rounds, each bidder’s value will be randomly and independently drawn from
the high value distribution with a predetermined chance%f and from the low value distri-
bution with (100 — x)% chance. You will not be told what is. You will not be told which
distribution your value is drawn from either. The other bidders’ values might be drawn from a
distribution different from your own. In any given round, the chance that your value is drawn

from either distribution does not affect how other bidders’ values are drawn.

Auctioneers will be informed of the value ofprivately on their screen.

e Each round consists of the following stages:

— Each auctioneer will set a minimum selling price, which can be any integer between 1 and

100, inclusive.
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— Meanwhile, each bidder will be asked to give an estimate of the chance that the value of the
otherbidder in the group is drawn from the high value distribution, i.e., an estimate\tdfe
then ask how confident you are about your estimate. You can choose one among the following
five categories: not confident at all, slightly confident, moderately confident, fairly confident,

and very confident.

— Bidders are informed of the minimum selling prices of their auctioneers, and then each bidder
will simultaneously and independently submit a bid, which can be any integer between 1 and
100, inclusive. If you do not want to buy, you can submit any positive integer below the

minimum selling price.

— The bids are collected in each group and the object is allocated according to the rules of the

auction explained in the next section.
— Bidders will get the following feedback on their screen: your value, your bid, the minimum
selling price, the winning bid, whether you got the object, and your payoff.

Auctioneers will get the following feedback: whether you sold the object, your minimum

selling price, the bids, and your payoff.

e The process continues.

Rules of the Auction and Payoffs

e Bidders: In each round,

— if your bid is less than the minimum selling price, you don'’t get the object:

Your Payoff =0
— if your bid is greater than or equal to the minimum selling price, and:
* if your bid is greater than the other bid, you get the object and pay your bid:
Your Payoff = Your Value - Your Bid ;

* if your bid is less than the other bid, you don't get the object:
Your Payoff = 0.
* if your bid is equal to the other bid, the computer will break the tie by flipping a fair
coin. Therefore,
- with 50% chance you get the object and pay your bid:
Your Payoff = Your Value - Your Bid ;

- with 50% chance you don't get the object:
Your Payoff = 0.
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e Auctioneers In each round, you will receive two bids from your group.

— If both bids are less than your minimum selling price, the object is not sold, and :

Your Payoff = 0;

— if at least one bid is greater than or equal to your minimum selling price, you sell the object
to the higher bidder and
Your Payoff = the Higher Bid.

For example, if the minimum selling price is 1, bidder A bids 25, and bidder B bids 55, Sinsel
andbs5 > 25, bidder B gets the object. Bidder A's payoff = 0; bidder B’s payoff = her value - 55; the

auctioneer’s payoff = 55.

There will be 30 rounds. There will be no practice rounds. From the first round, you will be paid for

each decision you make.

Your total payoff is the sum of your payoffs in all rounds.

Bidders: the exchange rate is $1 for points.

Auctioneers: the exchange rate is $1 for points.

We encourage you to earn as much cash as you can. Are there any questions?

Review Questions you will have ten minutes to finish the review questions. Please raise your hand if you
have any questions or if you finish the review questions. The experimenter will check each participant’s

answers individually. After ten minutes we will go through the answers together.

1. Suppose your value is 60 and you bid 62.
If you get the object, your payoff = .
If you don't get the object, your payoff = .

2. Suppose your value is 60 and you bid 60.
If you get the object, your payoff = .
If you don't get the object, your payoff = .

3. Suppose your value is 60 and you bid 58.
If you get the object, your payoff = .
If you don't get the object, your payoff = .

4. The minimum selling price is 30 and your bid is 25, your payoff =
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5. True or false:

(a) __If abidder’s value is 25, it must have been drawn from the low distribution.
(b) __If a bidder’s value is 60, it must have been drawn from the high distribution.
(c) __You will be playing with the same two participants for the entire experiment.
(d) __A bidder’s payoff depends only on his/her own bid.

(e) __If you are an auctioneer and your minimum selling price is higher than both bids, your

payoff will be zero.

Experiment Instructions — U2,

Rules of the Auction and Payoffs
e Bidders: In each round,

— if your bid is less than the minimum selling price, you don't get the object:

Your Payoff =0
— if your bid is greater than or equal to the minimum selling price, and:
* if your bid is greater than the other bid, you get the object. The price you pay depends
on the minimum selling price and the other bid:
- if the other bid is greater than or equal to the minimum selling price, you pay the

other bid:
Your Payoff = Your Value - the Other Bid;

- if the other bid is less than the minimum selling price, you pay the minimum selling
price:
Your Payoff = Your Value - the Minimum Selling Price;
* if your bid is less than the other bid, you don't get the object:
Your Payoff = 0.
* if your bid is equal to the other bid, the computer will break the tie by flipping a fair
coin. Therefore,
- with 50% chance you get the object and pay the other bid:
Your Payoff = Your Value - the Other Bid;
- with 50% chance you don't get the object:

Your Payoff = 0.
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e Auctioneers In each round, you will receive two bids from your group.

— If both bids are less than your minimum selling price, the object is not sold, and :
Your Payoff = 0;
— if both bids are greater than or equal to your minimum selling price, you sell the object to the

higher bidder and
Your Payoff = the Lower Bid.

— if one bid is greater than or equal to your minimum selling price and the other bid is less than
your minimum selling price, you sell the object to the higher bidder and

Your Payoff = the Minimum Selling Price.

For example, if the minimum selling price is 1, bidder A bids 25, and bidder B bids 55, Sinsel
andb5 > 25, bidder B gets the object.

Bidder A's payoff = 0;

bidder B’s payoff = bidder B’s value - bidder A's bid = bidder B’s value - 25;

the auctioneer’s payoff = 25.

There will be 30 rounds. There will be no practice rounds. From the first round, you will be paid for

each decision you make.

e Your total payoff is the sum of your payoffs in all rounds.
e Bidders: the exchange rate is $1 for points.
e Auctioneers: the exchange rate is $1 for points.

We encourage you to earn as much cash as you can. Are there any questions?

Review Questions you will have ten minutes to finish the review questions. Please raise your hand if you
have any questions or if you finish the review questions. The experimenter will check each participant’s

answers individually. After ten minutes we will go through the answers together.

1. Suppose the minimum selling price is 1, your value is 60, and you bid 62.
If the other bid is 59, you get the object. Your payoff =
If the other bid is 61, you get the object. Your payoff =
If the other bid is 70, you don'’t get the object. Your payoff =

2. Suppose the minimum selling price is 1, your value is 60, and you bid 60.
If the other bid is 55, you get the object. Your payoff =
If the other bid is 60,
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e with __ chance you get the object, your payoff =

e with __ chance you don't get the object, your payoff =

If the other bid is 70, you don'’t get the object. Your payoff =

3. Suppose the minimum selling price is 1, your value is 60, and you bid 57.
If the other bid is 55, you get the object. Your payoff =
If the other bid is 58, you don't get the object. Your payoff =
If the other bid is 70, you don't get the object. Your payoff =

4. The minimum selling price is 30 and your bid is 25, your payoff =
5. True or false:

(a) __If abidder’s value is 25, it must have been drawn from the low distribution.
(b) __If a bidder’s value is 60, it must have been drawn from the high distribution.
(c) __You will be playing with the same two participants for the entire experiment.
(d) __A bidder's payoff depends only on his/her own bid.

(e) __If you are an auctioneer and your minimum selling price is higher than both bids, your

payoff will be zero.

64



Table 1: Features of Experimental Sessions

Information No. Subjects Auction Treatment Exchange Rates Total No.
Conditions  Per Session Mechanisms Abbreviation Bidders Auctioneers Subjects
8 1st Price Klg 20 - 40
Known 8 2nd Price K2g 20 - 40
Distribution 12 1st Price K119 12 60 60
12 2nd Price K29 12 60 60
8 1st Price Ulg 20 - 40
Unknown 8 2nd Price U2g 20 - 40
Distribution 12 1st Price Ulqs 12 60 60
12 2nd Price U219 12 60 60
Table 2: Comparison of Bids with and without Ambiguity
Treatment Round Al 0<v<0.5 0.b<wv<1
1-1 0.504 (40,40) 0.204 (26,19) 0.022 (14,21)
2-30 0.133 (5,5) 0.133 (5,5) 0.183 (5,5)
1-3 0.006 (5,5) 0.062 (5,5) 0.540 (5,5)
8-subject 4-30 0.310 (5,9) 0.183 (5,5) 0.133 (5,5)
1-5 0.012 (5,5) 0.038 (5,5) 0.310 (5,5)
6-30 0.242 (5,5) 0.310 (5,5) 0.133 (5,5)
1-30 0.133 (5,5) 0.183 (5,5) 0.183 (5,5)
1-1 0.555 (29,21) 0.89 (10,9 0.680 (19,12)
2-30 0.012 (5,5) 0.012 (5,5) 0.038 (5,5)
1-3 0.062 (5,5) 0.460 (5,5) 0.075 (5,5)
12-subject 4-30 0.012 (5,5) 0.012 (5,5) 0.093 (5,5)
1-5 0.012 (5,5) 0.093 (5,5) 0.183 (5,5)
6-30 0.012 (5,5) 0.012 (5,5) 0.093 (5,5)
1-30 0.012 (5,5) 0.012 (5,5) 0.062 (5,5)

Notes:1. The table lists one-sided p-values for the Wilcoxon ranksum tests that bidders bid more under the
known distribution than under an unknown distribution of valuations.
2. To assure the independence of individual observations, first-period only tests use all the observations
individually, while all the other tests use session means. The number of independent observations under the
known and unknown distribution is listed in parentheses for each test.

65



‘|lons| uolssas ay 1e Buuaisn|d 1o Juswnsnipe yum paddes1siooq ase sjeAlaiul 99UapIILOI PUR SI0LS plepuels || ;810N

66

T60S'T v/¥6'0 LTYTO 1611 = 6)
L¥61°0 /2.€0 T20T0 GS8Y'0 €9 A >4 pajoLisalun 9’
92190 826£'0 T¥90°0 85510 19 "A>u4>60 ¢I=9 ey
6T69°0 T.67'0 €£TIS0°0 0850 ¥8e A >C0>4 TI=0 ey
€8/G°0 06TE'0  9990°0 0L0%°0 26T S0>"A>4 VN 9’
12990 €G67°0 22v0°0 1G9S0 €9 A >4 z1=90 9’
vyf6e'T 608T'T 6¥S0°0 88¢'T = 0)

GZ9E'0 £€982°0 £020°0 ETEE0 00ZT S8neA |IvY paloLIsalun 8Ty
4XAAY G8TE'0 29200 €€9€°0 8sr S 0<™ z1=90 8T
006£°0 69TE'0 T6TI00 €/SE°0 vL 0> V/N 8Ty
0910 66TE'0 2200 229€°0 00ZT SaneA |Iv z1=0 81y
[eAlslu] @J3uapluo)d 966 10T "PIS  JUSIOIPS0D Q 'SJO m_QEmw Yo UOIlolISeyY Juswileal]

) {p1owered ysiy siappig Jo uolrewns3 ¢ ajqel



‘Alonnoadsal
‘SBLW09IN0 UOIINE JO pue SuUoleNeA UMO SIY JO SUOITBAISS(O S,Jappiq e uo paseq siouaisod ueisakeg ayr uo siybiam ay ale g pue T siybiapn 'z

‘AjaAioadsal ‘uonnguisip vlaq ayj Jo sis1awered om) syl 01 Jajal g “Jed pue T Jed ‘T

:S9I0N
TE0L'0 TEOL'0 9060 SZIE0 T 0 ¥609°0 ST S6T 0/¥6'9 990
8E¥8'0 6SE8'0 GZ95'0 00050 T 0 00S.0 8 ve 9€68'9 TS9G'0 198lgns-ZT
0666'0 08660 9068'0 91580 T T T966'0 T000'0 6T00°0 PES6'9  OF0
6T26'0 28060 T8/0°0 €000 T T 00050 Z2IES0 ZCIESO0 S6¥8'6 2P0
8896'0 0.S6'0 TE0Z'0 0SZTO T 0 8E¥8'0 £000°0 9TO0'0 99/6'6 2290 1dalgns-g
2266'0 S086'0 9STS'0 8EVED T 0 2906'0 20000 8T00'0 €.20°0T ZE0
S'.6  S6 S S'Z
[eA181U] 82USPLUOD Zwblom TIyblom uesy  zued T led SSUIN ¢ sjuawiyeal)

Bunepdn Buisn uonnquisiq Jolid [eniu] Jo suolewnsd i s|qeL

67



Table 5: Effects of Ambiguity on Bids in Second Price Auctions

Dependent Variable: Bid in Second Price Auction
Rounds 1-5 Rounds 1-10 Rounds 11-30

Value (Known Case) 1.0199 1.0371 1.0627
(0.0140)*  (0.0141)** (0.0206)***

Value (Unknown Case) 1.0079 1.0127 1.0350
(0.0167) (0.0184) (0.0160)**

Observations 644 1249 2342

Test of Known=Unknonwn:

P-value ofy?(1) 0.5786 0.2826 0.2876

Notes:

1. Standard errors in parentheses are adjusted for clustering at the session level.

2. The asterisks next to the standard errors display significance in one-sided tests of the null hypothesis of
the coefficient being unity against the alternative hypothesis of the coefficient being more than unity.

3. Significant at: * 10% level; ** 5% level; *** 1% level.
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Table 6: Computed Optimal Reserve Price in First and Second Price Auctions

FPA: 6 SPA

8 A 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5
/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0.1192
2/6 0 0 0 0 0 0 0 0 0 0 0 0.2082
3/6 0 0 0 0 0 0 0 0 0 0 0 0.2778
4/6 0 0 0 0 0 0 0 0 0 0 0 0.3334
5/6 0 0 0 0 0 0 0 0 0 0 0 0.3787
1 0 0 0 0 0 0 0 0 0 0 0 0.4167
2/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0.1192
2/6 0 0 0 0 0 0 0 0 0 0 0 0.2082
3/6 0 0 0 0 0 0 0 0 0 0 0 0.2778
4/6 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.002M0020 0.0020 0.0020 0.0020 0.3334
5/6 0.0030 0.0030 0.0030 0.0030 0.0030 0.0030 0.003MO030 0.0030 0.0030 0.0030 0.3787
1 0.0240 0.0240 0.0250 0.0250 0.0260 0.0270 0.0280.0290 0.0300 0.0320 0.0340 0.4167
36 1/6 0 0 0 0 0 0 0 0 0 0 0 0.1192
2/6 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.002m0020 0.0020 0.0020 0.0020 0.2082
3/6 0.0200 0.0210 0.0210 0.0220 0.0230 0.0240 0.025m0260 0.0270 0.0290 0.0300 0.2778
4/6 0.1010 0.1050 0.1100 0.1140 0.1200 0.1260 0.132W1390 0.1470 0.1550 0.1650 0.3334
5/6 0.1710 0.1780 0.1860 0.1940 0.2030 0.2130 0.223W2350 0.2470 0.2600 0.2740 0.3787
1 02250 0.2350 0.2460 0.2570 0.2680 0.2810 0.294D3080 0.3220 0.3370 0.3540 0.4167
4/6 1/6 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.00200020 0.0020 0.0020 0.0020 0.1192
2/6 0.0380 0.0390 0.0410 0.0420 0.0440 0.0460 0.048m0500 0.0520 0.0550 0.0580 0.2082
3/6 0.1200 0.1250 0.1300 0.1350 0.1410 0.1460 0.153m1590 0.1660 0.1730 0.1810 0.2778
4/6 0.1890 0.1970 0.2050 0.2130 0.2220 0.2300 0.239M2480 0.2580 0.2670 0.2780 0.3334
5/6 0.2430 0.2540 0.2640 0.2740 0.2850 0.2960 0.306m3170 0.3280 0.3390 0.3500 0.3787
1 0.2870 0.3000 0.3120 0.3240 0.3360 0.3470 0.3590.3710 0.3830 0.3940 0.4060 0.4167
5/6 1/6 0.0120 0.0130 0.0130 0.0140 0.0140 0.0150 0.01%00160 0.0160 0.0170 0.0170 0.1192
2/6 0.0930 0.0970 0.1000 0.1040 0.1080 0.1120 0.116m1200 0.1250 0.1300 0.1350 0.2082
3/6 01720 0.1780 0.1850 0.1920 0.1990 0.2060 0.213W2200 0.2270 0.2340 0.2410 0.2778
4/6 0.2340 0.2430 0.2520 0.2610 0.2690 0.2780 0.287M2950 0.3040 0.3120 0.3200 0.3334
5/6 0.2830 0.2940 0.3050 0.3150 0.3250 0.3350 0.344m3540 0.3630 0.3720 0.3800 0.3787
1 03230 0.3360 0.3480 0.3590 0.3700 0.3800 0.39004000 0.4100 0.4190 0.4280 0.4167
1 1/6 0.0370 0.0390 0.0400 0.0410 0.0430 0.0440 0.046D0480 0.0490 0.0510 0.0530 0.1192
2/6 01290 0.1340 0.1380 0.1430 0.1480 0.1530 0.158m1630 0.1680 0.1730 0.1780 0.2081
3/6 0.2040 0.2110 0.2190 0.2260 0.2330 0.2400 0.247W2530 0.2600 0.2670 0.2730 0.2778
4/6 0.2620 0.2720 0.2810 0.2900 0.2980 0.3060 0.314m3210 0.3290 0.3360 0.3430 0.3334
5/6 0.3090 0.3200 0.3300 0.3400 0.3490 0.3580 0.367@3750 0.3820 0.3900 0.3970 0.3787
1 03470 0.3600 0.3710 0.3810 0.3910 0.4000 0.409D4167 0.4250 0.4330 0.4400 0.4167
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Table 7: Average Reserve Price and Results of Permutation Tests (one-tailed)

Rounds 1-5 Session1l Session2 Session3 Session 4

U112
U212
Rounds 1-30
K112
K212

0.4905
0.2310
0.2630
0.4990

0.4571
0.2535
0.4964
0.4448

0.2285
0.2075
0.2700
0.3590

0.2938
0.1707
0.4651
0.5276

0.4205
0.3160
0.3290
0.2360

0.4493
0.3295
0.3163
0.4222

0.3870
0.4005
0.3155
0.3790

0.3547
0.3741
0.4763
0.4152

Session 54,

0.413%1 > K2
0.250W'1 < U2
0.215K1 > U1
0.5690K2 < U2

0.434K1 < K2
0.252271 < U2
0.29781 > U1
0.5164¢2 < U2

p-value
0.0278**
0.0476**
0.0516*
0.0278**

0.3611
0.0000***
0.0198**
0.1548

Notes:

1. The null hypothesis is that the average reserve price is equal in the two treatments.
2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 8: Average Revenue and Results of Permutation Tests (one-tailed)

Rounds 1-5 Session1l Session 2 Session3  Session 4 Session 5 H, p-value
Klg 0.4665 0.4685 0.4235 0.5170 0.5485 K1 > K2  0.0040%**
Ulg 0.3705 0.4795 0.4280 0.4420 0.3905 Ul1>U2  0.0556*
K2g 0.2815 0.2665 0.2600 0.3825 0.3795 K1>Ul  0.0397*
U2g 0.2935 0.3870 0.4175 0.3130 0.3990 K2< U2 0.0992*
Rounds 1-30
Klg 0.4459 0.3869 0.4443 0.4648 0.4559 K1> K2  0.0079**
Ulg 0.3638 0.4419 0.4255 0.4277 0.4499 Ul1>U2  0.0159**
K2g 0.3335 0.3265 0.3423 0.3948 0.3506 K1>Ul 0.2341
U2s 0.2953 0.3653 0.3628 0.3131 0.3588 K2>U2 0.3730
Rounds 1-5
K15 0.4430 0.4100 0.4625 0.3900 0.3485 K1> K2  0.0238*
Uly, 0.3540 0.4840 0.4015 0.3085 0.3925 Ul<U2 0.2540
K25 0.2760 0.3405 0.3750 0.3925 0.3080 K1>U1l 0.2659
U2, 0.4120 0.4840 0.3730 0.4550 0.3445 K2<U2  0.0278*
Rounds 1-30
K12 0.3579 0.3918 0.3833 0.4053 0.3523 K1> K2  0.0317*
Uly, 0.3740 0.3968 0.3927 0.3837 0.3844 U1>U2 0.1190
K25 0.3554 0.3405 0.3786 0.3445 0.3434 Kl1<Ul 0.2063
U225 0.3540 0.3821 0.4146 0.3531 0.3455 K2<U2 01111
Comparison of 8- and 12-subject treatments
Klg > K15 0.0119** Ulg > Ulys 0.0278* K25 < K25, 0.4008 U2 < U2y, 0.0873*
Notes:

1. The null hypothesis is that the average revenue is equal in the two treatments.
2. Significant at: * 10% level; ** 5% level; *** 1% level.
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Table 9: Bidder Earnings in Early Rounds and Over All Rounds

Rounds 1-5 Session1l Session 2 Session3  Session 4 Session 5 H; p-value
Klg 0.0703 0.0653 0.0793 0.0635 0.0175 K1< K2  0.0000***
Ulg 0.0550 0.0968 0.0555 0.0675 0.0518 Ul<U2  0.0159**
K2g 0.1178 0.1530 0.1940 0.1500 0.1393 K1<Ul 0.3333
U2g 0.0953 0.0690 0.0838 0.1860 0.1448 K2 >U2  0.0952*
Rounds 1-30
Klg 0.0912 0.0914 0.0883 0.0788 0.0623 K1< K2  0.0000***
Ulg 0.1194 0.0869 0.0785 0.0912 0.0785 Ul<U2  0.0079**
K2g 0.1230 0.1426 0.1252 0.1152 0.1299 Kl<Ul 0.2421
U2g 0.1505 0.1115 0.1045 0.1540 0.1366 K2<U2 0.3532
Rounds 1-5
K1, 0.0405 0.0630 0.0723 0.0728 0.0635 K1< K2  0.0079**
Ul;2 0.0800 0.0543 0.0830 0.0343 0.0643 Ul1>U2 0.3135
K25 0.0718 0.1165 0.1265 0.0853 0.1165 Kl1<Ul 0.2421
U2, 0.0088 -0.0028 0.0705 0.1198 0.0600 K2>U2  0.0357*
Rounds 1-30
K1, 0.0601 0.0774 0.0670 0.0773 0.0663 K1< K2 0.1230
Ul;, 0.0882 0.0730 0.0831 0.0740 0.0777 Ul<U2 0.3492
K25 0.0665 0.0739 0.1091 0.0692 0.0943 K1<Ul  0.0397*
U2, 0.0800 0.0223 0.0780 0.0899 0.0768 K2>U2 0.2262

Comparison of 8- and 12-subject treatments
Klg > K15 0.0516* Ulg >Ul;5 0.0873* K2g > K215 0.004*** U2g > U215 0.004***

Notes:
1. The null hypothesis is that average earning is equal in the two treatments.
2. Significant at: * 10% level; ** 5% level; *** 1% level.

Table 10: Efficiency in 8-subject and 12-subject Treatments and Results of Permutation
Tests (one-tailed)

Treatment Sessionl Session2 Session3 Session4 Session 5H; p-value
Klg 0.8667 0.9083 0.9167 0.9083 0.875(1 > K2 0.3373
Ulg 0.8833 0.8750 0.9000 0.8917 0.9083%3/1 > U2 0.3214
K24 0.8583 0.9167 0.8917 0.8833 0.9001 > U1 0.3810
U2g 0.9333 0.7833 0.8250 0.9000 0.941%K2 > U2 0.3413
K19 0.6500 0.7000 0.6583 0.7583 0.641K1 < K2 0.1429
Ul 0.7583 0.8833 0.7417 0.7583 0.7833/1 > U2 0.0159**
K21 0.6583 0.6917 0.8083 0.6500 0.791K1 < U1 0.0040***
U219 0.6333 0.5750 0.7667 0.7083 0.60832 > U2 0.1190
Notes:

1. The null hypothesis is that efficiency is equal in the two treatments.
2. Significant at: * 10% level; ** 5% level; *** 1% level.
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