Classification of the spaces of continuous functions within the Borel-Wadge hierarchy

M. Doležal joint work with B. Vejnar

Institute of Mathematics AS CR

Winter School in Abstract Analysis 2015

Introduction

```
egin{array}{llll} X & & & & & & & & & \\ C_p(X) & & & & & & & & \\ C_p^*(X) & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &
```

What is the complexity of the measurable spaces $C_p(X)$ and $C_p^*(X)$?

Introduction

Χ	 a separable metrizable space
$C_p(X)$	 continuous real functions on X
$C_p^*(X)$	 bounded continuous real functions on X

What is the complexity of the measurable spaces $C_p(X)$ and $C_p^*(X)$?

The Wadge Hierarchy

 $X, Y \dots$ topological spaces

 $A \subseteq X$, $B \subseteq Y$

Then $A \leq_W B$ (A is Wadge reducible to B) if there exists a continuous map $f: X \to Y$ such that $A = f^{-1}(B)$.

Γ a class of sets in Polish spaces

X a Polish space

 $A \subseteq X$

Then A is Γ -hard if for any zero-dimensional Polish space Y and any $B \in \Gamma(Y)$, we have $B \leq_W A$.

If, moreover, $A \in \Gamma(X)$, we say that A is Γ -complete

The Wadge Hierarchy

X, Y topological spaces

 $A \subseteq X$, $B \subseteq Y$

Then $A \leq_W B$ (A is Wadge reducible to B) if there exists a continuous map $f: X \to Y$ such that $A = f^{-1}(B)$.

Γ a class of sets in Polish spaces

X a Polish space

 $A \subseteq X$

Then A is Γ -hard if for any zero-dimensional Polish space Y and any $B \in \Gamma(Y)$, we have $B \leq_W A$.

If, moreover, $A \in \Gamma(X)$, we say that A is Γ -complete.

The Borel-Wadge Hierarchy

X, Y measurable spaces

$$A \subseteq X$$
, $B \subseteq Y$

Then $A \leq_B B$ (A is Borel-Wadge reducible to B) if there exists a measurable map $f: X \to Y$ such that $A = f^{-1}(B)$.

Γ a class of sets in standard Borel spaces

X a standard Borel space

 $A \subseteq X$

Then A is Borel- Γ -hard if for any standard Borel space space Y and any $B \in \Gamma(Y)$, we have $B \leq_B A$.

If, moreover, $A \in \Gamma(X)$, we say that A is Borel- Γ -complete.

SBS = a measurable space which has a 'compatible' Polish topology

The Borel-Wadge Hierarchy

X, Y measurable spaces

$$A \subseteq X$$
, $B \subseteq Y$

Then $A \leq_B B$ (A is Borel-Wadge reducible to B) if there exists a measurable map $f: X \to Y$ such that $A = f^{-1}(B)$.

Γ a class of sets in standard Borel spaces

X a standard Borel space

 $A \subseteq X$

Then A is Borel- Γ -hard if for any standard Borel space space Y and any $B \in \Gamma(Y)$, we have $B \leq_B A$.

If, moreover, $A \in \Gamma(X)$, we say that A is Borel- Γ -complete.

SBS = a measurable space which has a 'compatible' Polish topology

Known Results

O. Okunev, 1993

T Dobrowolski and W. Marciszewski, 1995

X is σ -compact $\Rightarrow C_p(X)$ and $C_p^*(X)$ are standard Borel spaces

A. Andretta and A. Marcone, 2001

X is Σ_1^1 but not σ -compact $\Rightarrow C_p(X)$ and $C_p^*(X)$ are Borel- Π_1^1 -complete

A. Andretta and A. Marcone, 2001

Assume PD

X is Σ_n^1 but not Σ_{n-1}^1 $(n \ge 2) \Rightarrow C_p(X)$ is Borel- Π_n^1 -complete

Known Results

O. Okunev, 1993

T Dobrowolski and W. Marciszewski, 1995

X is σ -compact $\Rightarrow C_p(X)$ and $C_p^*(X)$ are standard Borel spaces

A. Andretta and A. Marcone, 2001

X is Σ_1^1 but not σ -compact $\Rightarrow C_p(X)$ and $C_p^*(X)$ are Borel- Π_1^1 -complete

A. Andretta and A. Marcone, 2001

Assume PD.

X is Σ^1_n but not Σ^1_{n-1} $(n\geq 2)\Rightarrow C_p(X)$ is Borel- Π^1_n -complete

Known Results

O. Okunev, 1993

T Dobrowolski and W. Marciszewski, 1995

X is σ -compact $\Rightarrow C_p(X)$ and $C_p^*(X)$ are standard Borel spaces

A. Andretta and A. Marcone, 2001

X is Σ_1^1 but not σ -compact $\Rightarrow C_p(X)$ and $C_p^*(X)$ are Borel- Π_1^1 -complete

A. Andretta and A. Marcone, 2001

Assume PD.

X is Σ_n^1 but not Σ_{n-1}^1 $(n \ge 2) \Rightarrow C_p(X)$ is Borel- Π_n^1 -complete

Main Result

Question (A. Andretta and A. Marcone, 2001)

Asuume PD.

X is Σ_n^1 but not Σ_{n-1}^1 $(n \ge 2) \stackrel{???}{\Rightarrow} C_p^*(X)$ is Borel- Π_n^1 -complete

Answer: YES!

Main Result

Question (A. Andretta and A. Marcone, 2001)

Asuume PD.

X is Σ_n^1 but not Σ_{n-1}^1 $(n \ge 2) \stackrel{???}{\Rightarrow} C_p^*(X)$ is Borel- Π_n^1 -complete

Answer: YES!

A. Andretta and A. Marcone, 2001: $C_p^*(X)$ is in Π_n^1 .

So we have to show that $C_p^*(X)$ is Borel- Π_n^1 -hard.

Let D be a countable dense subset of X. Then we can consider $C_{\mathcal{D}}^*(X)$ as a subspace of \mathbb{R}^D .

Now it remains to prove that $C_p^*(X)$ is Π_n^1 -hard.

- (A) X is nowhere locally compact
- (B) X is arbitrary

A. Andretta and A. Marcone, 2001: $C_p^*(X)$ is in Π_n^1 . So we have to show that $C_p^*(X)$ is Borel- Π_n^1 -hard.

Let D be a countable dense subset of X. Then we can consider $C_p^*(X)$ as a subspace of \mathbb{R}^D .

Now it remains to prove that $C_p^*(X)$ is Π_n^1 -hard.

- (A) X is nowhere locally compact
- (B) X is arbitrary

A. Andretta and A. Marcone, 2001: $C_p^*(X)$ is in Π_n^1 . So we have to show that $C_p^*(X)$ is Borel- Π_n^1 -hard. Let D be a countable dense subset of X. Then we can consider $C_p^*(X)$ as a subspace of \mathbb{R}^D .

Now it remains to prove that $C_p^*(X)$ is Π_n^1 -hard.

- (A) X is nowhere locally compact
- (B) X is arbitrary

A. Andretta and A. Marcone, 2001: $C_p^*(X)$ is in Π_n^1 . So we have to show that $C_p^*(X)$ is Borel- Π_n^1 -hard. Let D be a countable dense subset of X. Then we can consider $C_p^*(X)$ as a subspace of \mathbb{R}^D . Now it remains to prove that $C_p^*(X)$ is Π_n^1 -hard.

- (A) X is nowhere locally compact
- (B) X is arbitrary

A. Andretta and A. Marcone, 2001: $C_p^*(X)$ is in Π_n^1 .

So we have to show that $C_p^*(X)$ is Borel- Π_n^1 -hard.

Let D be a countable dense subset of X. Then we can consider $C_p^*(X)$ as a subspace of \mathbb{R}^D .

Now it remains to prove that $C_p^*(X)$ is Π_n^1 -hard.

- (A) X is nowhere locally compact
- (B) X is arbitrary

(A) X is nowhere locally compact

- (i) J. J. Dijkstra, 2008: *X* has a compactification which is a Peano continuum (= compact, metrizable, connected and locally connected space).
- (ii) The rest is very similar to the proof of A. Andretta and A. Marcone but uses the local connectedness.

(A) X is nowhere locally compact

- (i) J. J. Dijkstra, 2008: *X* has a compactification which is a Peano continuum (= compact, metrizable, connected and locally connected space).
- (ii) The rest is very similar to the proof of A. Andretta and A. Marcone but uses the local connectedness.

(B) X is arbitrary

- (i) By transfinite induction, we find a nonempty closed and nowhere locally compact subspace F of X.
 - Then $C_n^*(F)$ is Borel- Π_n^1 -hard.
- (ii) Since F is closed in X, we have $C_p^*(F) \leq_B C_p^*(X)$.

(B) X is arbitrary

- (i) By transfinite induction, we find a nonempty closed and nowhere locally compact subspace F of X. Then $C_p^*(F)$ is Borel- Π_n^1 -hard.
- (ii) Since *F* is closed in *X*, we have $C_n^*(F) \leq_B C_n^*(X)$.

(B) X is arbitrary

- (i) By transfinite induction, we find a nonempty closed and nowhere locally compact subspace F of X. Then $C_n^*(F)$ is Borel- Π_n^1 -hard.
- (ii) Since F is closed in X, we have $C_p^*(F) \leq_B C_p^*(X)$.

Introduction Known Results Main Result

Thank you!