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Introduction

X ............... a separable metrizable space
Cp(X ) ............... continuous real functions on X
C∗

p(X ) ............... bounded continuous real functions on X

What is the complexity of the measurable spaces Cp(X ) and
C∗

p(X )?
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The Wadge Hierarchy

X ,Y ..... topological spaces
A ⊆ X , B ⊆ Y
Then A ≤W B (A is Wadge reducible to B) if there exists a
continuous map f : X → Y such that A = f−1(B).

Γ ..... a class of sets in Polish spaces
X ..... a Polish space
A ⊆ X
Then A is Γ-hard if for any zero-dimensional Polish space Y
and any B ∈ Γ(Y ), we have B ≤W A.

If, moreover, A ∈ Γ(X ), we say that A is Γ-complete.
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The Borel-Wadge Hierarchy

X ,Y ..... measurable spaces
A ⊆ X , B ⊆ Y
Then A ≤B B (A is Borel-Wadge reducible to B) if there exists a
measurable map f : X → Y such that A = f−1(B).

Γ ..... a class of sets in standard Borel spaces
X ..... a standard Borel space
A ⊆ X
Then A is Borel-Γ-hard if for any standard Borel space space Y
and any B ∈ Γ(Y ), we have B ≤B A.

If, moreover, A ∈ Γ(X ), we say that A is Borel-Γ-complete.

SBS = a measurable space which has a ’compatible’ Polish topology
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Known Results

O. Okunev, 1993
T Dobrowolski and W. Marciszewski, 1995
X is σ-compact ⇒ Cp(X ) and C∗

p(X ) are standard Borel spaces

A. Andretta and A. Marcone, 2001

X is Σ1
1 but not σ-compact ⇒ Cp(X ) and C∗

p(X ) are
Borel-Π1

1-complete

A. Andretta and A. Marcone, 2001
Assume PD.
X is Σ1

n but not Σ1
n−1 (n ≥ 2) ⇒ Cp(X ) is Borel-Π1

n-complete
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Question (A. Andretta and A. Marcone, 2001)
Asuume PD.
X is Σ1

n but not Σ1
n−1 (n ≥ 2) ???⇒ C∗

p(X ) is Borel-Π1
n-complete

Answer: YES!

M. Doležal Classification of the spaces C∗
p (X)



Introduction
Known Results

Main Result

Main Result

Question (A. Andretta and A. Marcone, 2001)
Asuume PD.
X is Σ1

n but not Σ1
n−1 (n ≥ 2) ???⇒ C∗

p(X ) is Borel-Π1
n-complete

Answer: YES!

M. Doležal Classification of the spaces C∗
p (X)



Introduction
Known Results

Main Result

Sketch of the proof

A. Andretta and A. Marcone, 2001: C∗
p(X ) is in Π1

n.
So we have to show that C∗

p(X ) is Borel-Π1
n-hard.

Let D be a countable dense subset of X . Then we can consider
C∗

p(X ) as a subspace of RD.
Now it remains to prove that C∗

p(X ) is Π1
n-hard.

We proceed in two steps:
(A) X is nowhere locally compact
(B) X is arbitrary

M. Doležal Classification of the spaces C∗
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(A) X is nowhere locally compact

(i) J. J. Dijkstra, 2008: X has a compactification which is a
Peano continuum (= compact, metrizable, connected and
locally connected space).

(ii) The rest is very similar to the proof of A. Andretta and A.
Marcone but uses the local connectedness.
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(B) X is arbitrary

(i) By transfinite induction, we find a nonempty closed and
nowhere locally compact subspace F of X .
Then C∗

p(F ) is Borel-Π1
n-hard.

(ii) Since F is closed in X , we have C∗
p(F ) ≤B C∗

p(X ).
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Thank you!
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