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Abstract Classical solutions of the Oseen problem are studied on an exterior domain Ω
with Ljapunov boundary in R3. It is proved a maximum modulus estimate of the following
form: If u ∈ C2(Ω)3 ∩ C0(Ω)3 and p ∈ C1(Ω),−�u + 2λ∂1u + ∇ p = 0,∇ · u = 0 inΩ ,
and if |u| ≤ M on ∂Ω, lim sup |u(x)| ≤ M as |x| → ∞, then |u(x)| ≤ cM in Ω . Here the
constant c depends only on Ω and λ.
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1060 S. Kračmar et al.

1 Introduction

In the theory of partial differential equations, the classical maximum principle is well-known.
It states that each harmonic function u takes its maximum and minimum values always at
the boundary ∂Ω of the corresponding bounded domain Ω . This result remains true also
for solutions of more general elliptic equations of second order with regular coefficients.
However, for solutions of higher-order equations or for solutions of elliptic systems, it is not
true in general (see e.g., [38]). In these cases, a so-called maximum modulus estimate of the
form

max
x∈Ω

|u(x)| ≤ cΩ max
x∈∂Ω |u(x)|

might be valid, with some constant c = cΩ depending only on Ω .
Concerning the linearized steady Stokes system

−�u + ∇ p = 0 in Ω, ∇ · u = 0 in Ω, (1)

a maximum modulus estimate has been proved, recently (see [30,31,33]): Let Ω ⊂ R3 be
a bounded or an unbounded domain with a compact boundary ∂Ω ∈ C1,α, 0 < α < 1. Let
u ∈ C2(Ω)3 ∩ C0(Ω)3 and p ∈ C1(Ω) satisfy the Stokes system (1), where in case of
unboundedΩ , we require |u(x)| = O(|x|−1), |∇u(x)| + |p(x)| = O(|x|−2) as |x| → ∞, in
addition. Then

sup
x∈Ω

|u(x)| ≤ cΩ max
x∈∂Ω |u(x)|

with a constant cΩ depending only on Ω . Moreover, if Ω is a ball, special statements about
the size of cΩ are possible (see Kratz [26–28]).

It is the aim of the present paper to prove a maximum modulus estimate for the Oseen equa-
tions. These equations represent a mathematical model describing the motion of a viscous
incompressible fluid flow around an obstacle. They are obtained by linearizing the steady
Navier–Stokes equations at a nonzero constant vector u = u∞, where u∞ represents the
velocity at infinity, and have the form

− ν�u + u∞ · ∇u + ∇ p = 0 in Ω, ∇ · u = 0 in Ω. (2)

HereΩ ⊂ R3 denotes an exterior domain, that is, a domain having a compact complement
R3 \Ω . The velocity field u and the pressure function p are unknown, while the kinematic
viscosity ν > 0 and the nonzero constant velocity u∞ are given data.

The system (2) is well-known in hydrodynamics. It has been introduced in 1910 by Oseen
[36] as a linearization at t = ∞ of the nonstationary Navier–Stokes equations describing the
motion of a viscous incompressible fluid. In contrast to the simpler Stokes approximation
(1), the Oseen system (2) avoids certain paradoxes related to the flow behavior at infinity
and shows, in particular, a paraboloidal wake region behind the obstacle, extending with
axis directed to u∞. The Oseen equations have mostly been studied in exterior domains
with Dirichlet boundary conditions. Early fundamental works are due to Finn [17–19] and
Babenko [4] who considered these equations in two- and three-dimensional exterior domains
using a weighted L2-approach. Further important contributions are due to Farwig [14,15]
introducing anisotropically weighted spaces in an L2-framework, and Farwig and Sohr [16],
Kračmar et al. [25] using weighted Sobolev spaces. Galdi considered the system in W m,p

loc
spaces and, moreover, investigated a generalized Oseen system recently (see [20]). Enomoto
and Shibata [12] and Kobayashi and Shibata [23] studied the corresponding Oseen semi-
group. Concerning the scalar Oseen equation, important results in weighted Sobolev spaces

123

Author's personal copy



A maximum modulus theorem 1061

are given by Amrouche and Bouzit [1,2] and Amrouche and Razafison [3]. The stationary
Oseen system has been studied using a potential approach by Deuring, Kračmar [9,10], the
corresponding nonstationary Oseen system has been considered recently by Deuring [6–8].

Choosing ν = 1 and u∞ = (2λ, 0, 0), without loss of generality from (2), we obtain the
Oseen system in the form

−�u + 2λ∂1u + ∇ p = 0 in Ω, ∇ · u = 0 in Ω (3)

in an exterior domain Ω . Here 0 	= λ ∈ R is fixed (for λ = 0 the system (3) reduces to (1)).
Without loss of generality, the Oseen equations are usually studied for λ > 0: If (3) holds
true for u and p, then for ũ(x) = u(−x) and p̃(x) = −p(−x)we find −�ũ−2λ∂1ũ+∇ p̃ =
0,∇ · ũ = 0 in Ω̃ = {x;−x ∈ Ω}.

We study the Dirichlet problem for the Oseen equations (3) in an exterior domainΩ ⊂ R3

with a compact Ljapunov boundary ∂Ω (i.e., of class C1,α, 0 < α < 1) by the method of inte-
gral equations. We look for a solution in form of a linear combination of an Oseen single layer
potential and an Oseen double layer potential both with the same density �. This leads to a
system of boundary integral equations of the form S� = g in C0(∂Ω)3, where g ∈ C0(∂Ω)3

is the prescribed Dirichlet boundary value. The operator S − (1/2)I is a compact operator in
C0(∂Ω)3, where I means the identity. To study the properties of the operator S, we can use
Fredholm’s alternative theorem. For this reason, we investigate the Robin problem for the
adjoint equations −�u − 2λ∂1u + ∇ p = 0,∇ · u = 0 in the complementary bounded open
set G = R3 \ Ω . We look for a solution of the Robin problem in form of an Oseen single
layer potential with an unknown density �. This leads to the boundary integral equations’
system S′� = f , where f is the Robin boundary value. We prove the unique solvability of the
Robin problem and the corresponding integral equations S′� = f . Since S′ is the operator
adjoint to S, we conclude that the operator S is continuously invertible, too. Thus, we have
proved that for each g ∈ C0(∂Ω)3, there exists a solution of the Dirichlet problem for the
Oseen equations (3) with boundary value g such that u(x) → 0, p(x) → 0 as |x| → ∞.

To prove a maximum modulus estimate for all classical solutions u, p of the Oseen equa-
tions we start with a Liouville-type theorem as follows: If u and p are tempered distributions
satisfying the Oseen equations (in a distributional sense) in the whole space R3, then u and
p are polynomials. In particular, if u is bounded, then u and p are constant. Similar results
have been proved recently for the scalar Oseen equation (see [1,3]). Using this result, we
prove that if u, p are solving the Oseen equations in an exterior domain and if u is bounded,
then there are constants u∞, p∞ with u(x) → u∞, p(x) → p∞ as |x| → ∞. This implies
that for g ∈ C0(∂Ω)3,u∞ ∈ R3, p∞ ∈ R, there exists a unique solution of the Dirichlet
problem for the Oseen equations (3) with the boundary condition u = g on ∂Ω such that
u(x) → u∞, p(x) → p∞ as |x| → ∞. Moreover, we also know the integral representation
of this solution.

Now, using the integral representation just mentioned and the closed graph theorem, we
can prove a maximum modulus estimate of the following form: Let Ω ⊂ R3 be an exterior
domain with ∂Ω of class C1,α, 0 < α < 1, λ ∈ R \ {0}. Then there exists a constant c = cΩ
with the following property: If u ∈ C2(Ω)3 ∩ C0(Ω)3 and p ∈ C1(Ω) solve the Oseen
equations (3) in Ω , and if

|u| ≤ M on ∂Ω, lim sup
|x|→∞

|u(x)| ≤ M,

then

|u(x)| ≤ cΩ M in Ω.
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1062 S. Kračmar et al.

2 Stokes potentials

Let x = [x1, x2, x3] ∈ R3 and |x| =
√

x2
1 + x2

2 + x2
3 . Then for 0 	= x ∈ R3 and j, k ∈

{1, 2, 3}, we define the Stokes fundamental solution by

E jk(x) = 1

8π

{
δ jk

1

|x| + x j xk

|x|3
}
, (4)

Qk(x) = xk

4π |x|3 . (5)

If f ∈ C0(R3)3 has a compact support, then the convolution integrals (Stokes volume
potentials)

E ∗ f(x) =
∫

R3

E(x − y)f(y) dy, Q ∗ f(x) =
∫

R3

Q(x − y)f(y) dy

are well defined, and it holds E ∗ f ∈ C0(R3)3, Q ∗ f ∈ C0(R3), ∂ j (E ∗ f) = (∂ j E) ∗ f ∈
C0(R3)3 (see e.g., [40], II.2.3) and −�E ∗ f +∇Q ∗ f = f,∇ · E ∗ f = 0 inΩ in the sense of
distributions. If f ∈ W m,q(R3)3 with 1 < q < ∞,m ≥ 0, then E∗f ∈ W m+2,q

loc (R3)3, Q∗f ∈
W m+1,q

loc (R3) (see e.g., [20], Chapter IV, Theorem 4.1).
Let Ω ⊂ R3 be an open set with compact boundary of class C1,α, 0 < α < 1, and

� ∈ C0(∂Ω)3. Define the hydrodynamical single layer potential with density � by

(EΩ�)(x) =
∫

∂Ω

E(x − y)�(y) dσy

and the corresponding pressure by

(QΩ�)(x) =
∫

∂Ω

Q(x − y)�(y) dσy

whenever it makes sense. Then the pair (EΩ�, QΩ�) ∈ C∞(R3 \ ∂Ω)4 solves the Stokes
system in R3 \ ∂Ω . Moreover, EΩ� ∈ C0(R3)3 and EΩ� ∈ Cα(∂Ω)3 (see [35]).

For u, p we define the stress tensor

T (u, p) = 2∇̂u − pI, (6)

where I denotes the identity matrix and

∇̂u = 1

2
[∇u + (∇u)T ]

is the deformation tensor, with (∇u)T as the matrix transposed to ∇u = (∂ j uk), j, k =
1, 2, 3.

For y ∈ ∂Ω we define KΩ(·, y) = T (E(· − y), Q(· − y))nΩ(y) on R3 \ {y}. Here and
in the following, nΩ(y) is the outward unit normal of Ω at y ∈ ∂Ω . We set

KΩ
k, j (x, y) = 3

4π

(yk − xk)(y j − x j )(y − x) · nΩ(y)
|y − y|5

for j, k = 1, 2, 3, and
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A maximum modulus theorem 1063

Π j (x, y) = 1

2π

{
−3
(y j − x j )(y − x) · nΩ(y)

|x − y|5 + nΩj (y)

|x − y|3
}

for j = 1, 2, 3.
For � ∈ C0(∂Ω)3 we define the hydrodynamical double layer potential with density �

by

(DΩ�)(x) =
∫

∂Ω

KΩ(x, y)�(y) dσy, x ∈ R3 \ ∂Ω

and the corresponding pressure by

(ΠΩ�)(x) =
∫

∂Ω

ΠΩ(x − y)�(y) dσy, x ∈ R3 \ ∂Ω.

Then the pair (DΩ�,ΠΩ�) ∈ C∞(R3 \ ∂Ω)4 solves the Stokes system in R3 \ ∂Ω . For
x ∈ ∂Ω we denote the so-called directed values of the above potentials by

(KΩ�)(x) =
∫

∂Ω

KΩ(x, y)�(y) dσy,

(K ′
Ω�)(x) =

∫

∂Ω

KΩ(y, x)�(y) dσy.

Then we find

lim
x → z
x ∈ Ω

DΩ�(x) = 1

2
�(z)+ KΩ�(z) (7)

for z ∈ ∂Ω (see [35,29], Chapter III, §2).
For x ∈ ∂Ω, β > 0 denote the non-tangential approach region of opening β at the point

x by

Γβ(x) := {y ∈ Ω; |x − y| < (1 + β) dist(y, ∂Ω)}.
Suppose that β is large enough. If

c = lim
y → x
y ∈ Γβ(x)

u(y),

we call c the non-tangential limit of u at x ∈ ∂Ω . Note that x ∈ Γβ(x) for every x ∈ ∂Ω .
If now u is a function defined in Ω , we denote the non-tangential maximal function of u on
∂Ω by

u∗(x) = sup{|u(y)|; y ∈ Γβ(x)}.
If � ∈ C0(∂Ω)3, then we obtain

‖|EΩ�|∗ + |∇EΩ�|∗ + |QΩ�|∗‖L2(∂Ω) ≤ C‖�‖L2(∂Ω)3

with some constant C depending only onΩ (see [5], Lemma 6.1). If z ∈ ∂Ω , then �(z)/2 −
K ′
Ω�(z) is the non-tangential limit of T (EΩ�, QΩ�)nΩ(z) (see [13] or [22]).
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1064 S. Kračmar et al.

3 Oseen fundamental solution and potentials

In this section, we recall some basic facts about the fundamental solution to the Oseen prob-
lem. Denote by O(· ; 2λ) = (

Oi j (· ; 2λ)
)
, Q = (Qi ) its fundamental solution; it satisfies the

identities

−�Oi j + 2λ∂1 Oi j + ∂ j Qi = δi jδ, ∂ j Oi j = 0 (8)

in the sense of distributions, where δi j denotes the Kronecker delta, while δ denotes the Dirac
delta distribution.

We can easily verify (see e.g., [20], Chapter VII, §VII.3) that for λ > 0, the fundamental
solution can be written as

Qi (x) = 1

4π

xi

|x|3 (9)

Oi j (x; 2λ) = (δi j�− ∂i∂ j )φO (x; 2λ), (10)

where

φO(x; 2λ) = −1

8πλ
ψ
(
λs(x)

)
(11)

with

ψ(z) =
z∫

0

1 − e−t

t
dt =

∞∑

k=1

(−1)k+1

k! k
zk (12)

and

s(x) = |x| − x1. (13)

The formulas (11)–(13) yield useful rescaling property

|2λ| O(2λx; 1) = O(x; 2λ), λ ∈ R. (14)

Since O(x,−2λ) = O(−x, 2λ), an easy calculation yields that (O(x, 2λ), Q(x)) is the
fundamental solution of the Oseen equation (3) for arbitrary λ 	= 0.

Proposition 3.1 ([20, VII.3]). If β is a multi-index, then we have

∂βO(x, 2λ)| = O(|x|−1−|β|/2) as |x| → ∞. (15)

If r > 0 and q > 4/3, then we have

|∇O(·, 2λ)| ∈ Lq(R3 \ B(0; r)). (16)

Here B(z; r) = {y ∈ R3; |x − y| < r} denotes the open ball with center z and radius r > 0.

The integral representation (12) implies

ψ ′(t) = 1−e−t

t , ψ ′′(t) = −1+e−t +te−t

t2 , ψ ′′′(t) = 2−2e−t −2te−t −t2e−t

t3 .

The representation by the sum in (12) yields,

ψ(k)(t) = (−1)k+1

k
+ O(t) as t → 0 , k = 1, 2, . . . . (17)
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A maximum modulus theorem 1065

When differentiating (13), we obtain

∂s(x)
∂xi

= xi

|x| − δ1i . (18)

From here we get the estimates

∣∣∣∣
∂s(x)
∂xk

∣∣∣∣ ≤

⎧
⎪⎨
⎪⎩

s(x)
|x| (k = 1)

√
2
√

s(x)
|x| (k 	= 1)

∣∣Dαs(x)
∣∣ ≤ c(α)

|x||α|−1 . (19)

From (11)–(13) and (19) it is seen that O(· ; ·) ∈ C∞(
(R3 \ {0}) × R

)
and for fixed

x 	= 0, O(x; ·) is an analytic function.
Now we calculate the derivatives of φO(· ; λ) in order to establish the asymptotic behav-

ior of the difference R(x, 2λ) = O(· ; 2λ)− E(x) and of its first derivatives near zero. The
behavior of this difference gives us the possibility to prove (24) analogous to (7), that is,
the jump relation property of the double layer potential of the Oseen problem, see proofs of
Propositions 3.3 and 3.4. The asymptotic of this difference near zero implies also compact-
ness of operator L2λ

Ω − KΩ and its dual operator, see proofs of Lemma 5.2 and Theorem 5.3.
We follow here the approach used in [24, §2], for another approach based on the explicit
expressions of the Oseen fundamental solution see [37, § II.1.2]. The both approaches are
applicable for the asymptotic of the second-order derivatives.

−∂iφO(x; 2λ) = 1

8π
ψ ′(λs(x)) ∂i s(x)

−∂r∂iφO(x; 2λ) = λ

8π
ψ ′′(λs(x)) ∂r s(x) ∂i s(x)+ 1

8π
ψ ′(λs(x)) ∂r∂i s(x)

−∂k∂r∂iφO(x; 2λ) = λ2

8π
ψ ′′′(λs(x)) ∂ks(x)∂r s(x)∂i s(x)

+ λ

8π
ψ ′′(λs(x))

[
∂k∂r s(x) ∂i s(x)+ ∂k∂i s(x) ∂r s(x)

+∂r∂i s(x) ∂ks(x)
] + 1

8π
ψ ′(λs(x)) ∂k∂r∂i s(x)

These formulas together with (17), (19), and (10) yield

|R(x; 2λ)| = |O(x; 2λ)− E(x)| = λO(1) as λ|x| → 0,

|∇ R(x; 2λ)| = |∇O(x; 2λ)− ∇E(x)| = λ2 O

(
1

λ|x|
)

as λ|x| → 0,
(20)

where (E, Q) is the Stokes fundamental solution. In particular, for λ ∈ (0; λ0), R > 0, k =
0, 1 and |λx| ≤ R

∣∣∣∇k O(x; 2λ)
∣∣∣ ≤ c(R; λ0, k)

|x|k+1 . (21)

Since E(x) = |2λ|E(2x) we obtain this relation also for λ < 0. Formulas (20), (21) and
Proposition 3.1 give us in particular that O(· ; 2λ), R(· ; 2λ), and ∇ R(· ; 2λ) are weakly
singular kernels of integral operators in R3 and in R2.

Remark that

O11(x, 1) = 1

4π |x|
{

e−(|x|−x1)/2 + x1(1 − e−(|x|−x1)/2)

|x|2 − (|x| − x1)e−(|x|−x1)/2

2|x|
}
,

123

Author's personal copy



1066 S. Kračmar et al.

O22(x, 1) = e−(|x|−x1)/2

4π |x| − (x2
1 + x2

3 )(1 − e(|x|−x1)/2)

4π(|x| − x1)|x|3

− x2
2 e−(|x|−x1)/2

8π(|x| − x1)|x|2 + [1 − e−(|x|−x1)/2]x2
2

4π(|x| − x1)2|x|2 ,

O33(x, 1) = e−(|x|−x1)/2

4π |x| − (x2
1 + x2

2 )(1 − e−(|x|−x1)/2)

4π(|x| − x1)|x|3

− x2
3 e−(|x|−x1)/2

8π(|x| − x1)|x|2 + [1 − e−(|x|−x1)/2]x2
3

4π(|x| − x1)2|x|2 ,

O12(x, 1) = O21(x, 1) = x2

4π |x|2
[

e−(|x|−x1)/2

2
− 1 − e−(|x|−x1)/2

|x|
]
,

O13(x, 1) = O31(x, 1) = x3

4π |x|2
[

e−(|x|−x1)/2

2
− 1 − e−(|x|−x1)/2

|x|
]
,

O23(x, 1) = O32(x, 1) = x2x3

4π |x|3
{

1 − e−(|x|−x1)/2

(|x| − x1)
− |x|e−(|x|−x1)/2

2(|x| − x1)

+ |x|[1 − e−(|x|−x1)/2]
(|x| − x1)2

}
.

(See [20]), Chapter VII, §VII.3).
Let Ω ⊂ R3 be an open set with compact boundary ∂Ω ∈ C1,α, 0 < α < 1, and

� ∈ C0(∂Ω)3. Define the Oseen single layer potential with density � by

(O2λ
Ω �)(x) =

∫

∂Ω

O(x − y, 2λ)�(y) dσy,

whenever it makes sense. Then the pair (O2λ
Ω �, QΩ�) ∈ C∞(R3 \ ∂Ω)4 solves the Oseen

system (3) in R3 \ ∂Ω . Let R2λ
Ω � = O2λ

Ω � − EΩ� denote the difference of the Oseen and
the Stokes single layer potentials. If β is a multi-index, then we have

|∂βO2λ
Ω �(x)| = O(|x|−1−|β|/2) as |x| → ∞.

Moreover, if r > 0, ∂Ω ⊂ B(0; r) and q > 4/3, then |∇O2λ
Ω �| ∈ Lq(R3 \ B(0; r)).

For y ∈ ∂Ω define LΩ(·, y; 2λ) = T (O(· − y; 2λ), Q(· − y))nΩ(y) in R3 \ {y}. If
G = R3 \Ω , then LΩ(x, y; 2λ) = −LG(x, y; 2λ).

For � ∈ C0(∂Ω)3 and x ∈ ∂Ω denote

(L2λ
Ω �)(x) =

∫

∂Ω

LΩ(x, y; 2λ)�(y) dσy, (22)

(L̃2λ
Ω �)(x) =

∫

∂Ω

LΩ(y, x; 2λ)�(y) dσy. (23)

Although the following statement is needed for the case m = 3 only, we give the proof
for general m.

Lemma 3.2 Let Ω ⊂ Rm be an open set with bounded Lipschitz boundary. Let k(x, y) be
defined for [x, y] ∈ Rm ×∂Ω; x 	= y and |k(x, y)| ≤ C |x −y|1−m+β with positive constants
C, β. Suppose that k(x, ·) is measurable and k(·, y) is continuous. Let f ∈ L∞(∂Ω). Then
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A maximum modulus theorem 1067

k f (x) =
∫

∂Ω

k(x, y) f (y) dσy

is a continuous function in Rm.

Proof The function k f is continuous in Rm \∂Ω . Fix z ∈ ∂Ω, ε > 0 and choose M > 0 such
that | f | ≤ M . Since ∂Ω is Lipschitz, there exists a constant c such that σ(B(x; r) ∩ ∂Ω) ≤
crm−1 for each x ∈ Rm and r > 0. Here σ denotes the surface measure.

Now fix x ∈ Rm, r > 0, and set B( j) = ∂Ω ∩ B(x; 2− j+1r) \ B(x; 2− j r) for j ∈ N .
Then

∫

∂Ω∩B(x;r)
|k(x, y) f (y| dσy ≤ C M

∞∑

j=1

∫

B( j)

|x − y|β+1−m dσy

≤ C M
∞∑

j=1

(2− j r)β+1−mc(2− j+1r)m−1 = CcM2m−1−β

1 − 2−β rβ .

Fix r > 0 such that (2r)βCcM2m−1−β/(1 − 2−β) < ε/2. If |x − z| < r then
∫

∂Ω∩B(z;r)
|k(z, y) f (y)| dσy +

∫

∂Ω∩B(z;r)
|k(x, y) f (y)| dσy ≤ ε.

Since ∫

∂Ω\B(z;r)
k(x, y) f (y dσy →

∫

∂Ω\B(z;r)
k(z, y) f (y dσy

as x → z, we infer that k f is continuous. ��
Proposition 3.3 LetΩ ⊂ R3 be an open set with bounded boundary of class C1,α, 0 < α <

1. If � ∈ C0(∂Ω)3, then O2λ
Ω � ∈ C0(R3)3 and |∇O2λ

Ω �|∗ ∈ L2(∂Ω). If z ∈ ∂Ω , then
�(z)/2 − L̃−2λ

Ω �(z) is the non-tangential limit of T (OΩ�(x), QΩ�(x))nΩ(z) at z.

Proof It holds |R(x, 2λ)| = O(1), |∇ R(x, 2λ)| = O(|x|−1) as x → 0. Thus R2λ
Ω �,∇ R2λ

Ω �

are continuous in R3 by Lemma 3.2. The properties of EΩ� imply O2λ
Ω � ∈ C0(R3)3 and

|∇O2λ
Ω �|∗ ∈ L2(∂Ω). If z ∈ ∂Ω then

lim
x → z
x ∈ Γβ

T (OΩ�(x), QΩ�(x))nΩ(z) = lim
x → z
x ∈ Γβ

T (EΩ�(x), QΩ�(x)nΩ(z)

+ lim
x → z
x ∈ Γβ

T (RΩ�(x), 0)nΩ(z) = �(z)
2

− K ′
Ω�(z)

+
∫

∂Ω

2∇̂z R(z − y, 2λ)nΩ(z)�(y) dσy = �(z)
2

− L̃−2λ
Ω �(z).

��
Proposition 3.4 LetΩ ⊂ R3 be an open set with compact boundary of class C1,α, 0 < α <

1. For � ∈ C0(∂Ω)3, x ∈ R3 \ ∂Ω define
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W 2λ
Ω �(x) =

∫

∂Ω

LΩ(x, y; 2λ)�(y) dσy,

w2λ
Ω �(x) =

∫

∂Ω

[2nΩ(y) · ∇y Q(x − y)+ 2λQ1(x − y)nΩ(y)]�(y) dσy.

Then (W 2λ
Ω �, w2λ

Ω �) ∈ C∞(R3 \ ∂Ω)4 solves the Oseen system (3) in R3 \ ∂Ω . If z ∈ ∂Ω ,
then

lim
x → z
x ∈ Ω

W 2λ
Ω �(x) = 1

2
�(z)+ L2λ

Ω �(z). (24)

If β is a multi-index, then

|∂βW 2λ
Ω �(x)| = O(|x|−3/2−|β|/2) as |x| → ∞.

Proof An easy calculation yields that (W 2λ
Ω �, w2λ

Ω �) ∈ C∞(R3 \ ∂Ω)4 solves the Oseen
system (3) in R3 \ ∂Ω . Since |∇ R(x, 2λ)| = O(|x|−1) as x → 0, we infer that |KΩ(x, y)−
LΩ(x, y; 2λ)| ≤ M |x−y|−1. Hence, the relation (24) is a consequence of (7) and Lemma 3.2.

��
Remark 3.5 If u ∈ C1(Ω)3, p ∈ C0(Ω) solve the homogeneous Oseen system (3), then

u = O2λ
Ω [T (u, p)nΩ ] + W 2λ

Ω u − 2λO2λ
Ω (n1u)

p = QΩ [T (u, p)nΩ ] + w2λ
Ω u − 2λQΩ(n1u)

inΩ (compare [20], Chapter VII, Lemma 6.2 or [37], Chapter II, Lemma 2.5). The fact that
W 2λ
Ω �, w2λ

Ω � solve the Oseen system (3) in R3 \ ∂Ω can be deduced from these relations.

4 Unique solvability of the Oseen problem

Concerning the Stokes system, we have the following result (see [33], Theorem 5.5):

Lemma 4.1 . Let Ω ⊂ R3 be a bounded domain with boundary of class C1,α with 0 < α <

1, g ∈ C0(∂Ω)3,u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω),u, p solve the Stokes system (1), u = g
on ∂Ω . Then

sup
x∈Ω

|u(x)| ≤ K sup
x∈∂Ω

|g(x)|,

where the constant K depends only on Ω .

We say that u ∈ C2(Ω)3, p ∈ C1(Ω) are an L2-solution of the Dirichlet problem for the
Stokes system in Ω with the boundary condition g if (1) holds true, u∗ ∈ L2(∂Ω) and g(x)
is the non-tangential limit of u at almost all x ∈ ∂Ω .

Lemma 4.2 Let Ω ⊂ R3 be a bounded domain with boundary of class C1,α with 0 < α <

1, g ∈ L2(∂Ω)3. Then there exist an L2-solution u ∈ C2(Ω)3, p ∈ C1(Ω) of the Dirichlet
problem of the Stokes system in Ω with the boundary condition g if and only if

∫

∂Ω

g · nΩ dσ = 0.
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The function u is unique, and p is unique up to an additive constant. If g ∈ C0(∂Ω)3, then
u ∈ C0(Ω)3. If g ∈ W 1,2(∂Ω)3, then (∇u)∗, p∗ ∈ L2(∂Ω).

For the proof of this Lemma, see [33], Proposition 3.3 and [33], and Theorem 5.3.

Lemma 4.3 Let Ω ⊂ R3 be a bounded domain with boundary of class C1,α, 0 < α < 1,
and let v ∈ C0(Ω). If v∗ ∈ Ls(∂Ω), 1 < s < ∞, then v ∈ Ls(Ω).

For the proof of this Lemma see [32], Lemma 2 or [34], and Lemma 4.1.

Lemma 4.4 Let Ω ⊂ R3 be a bounded open set with boundary of class C1,α with 0 < α <

1, g ∈ C0(∂Ω)3,u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω),u, p solve the Stokes system (1), u = g
on ∂Ω . If g ∈ H1/2(∂Ω)3, then u ∈ W 1,2(Ω)3, p ∈ L2(Ω).

Proof Lemma 4.2 gives that g is orthogonal to the unit normal nΩ . Choose a sequence
gk ∈ [W 1,2(∂Ω)]3 ∩C0(∂Ω)3 orthogonal to the normal nΩ such that gk → g in H1/2(∂Ω)3

and in C0(∂Ω)3. Then there exist uk ∈ C2(Ω)3∩C0(Ω)3∩W 1,2(Ω)3, pk ∈ C1(Ω)∩L2(Ω)

such that uk, pk solve (1) and uk = gk on ∂Ω (see Lemma 4.2 and Lemma 4.3). According
to Lemma 4.1, we have uk → u. By virtue of [20], Chapter IV, Theorem 1.1, there exist
w ∈ W 1,2(Ω)3 and q ∈ L2(Ω) such that w, q solve (1) and g is the trace of w. Moreover,
uk → w in W 1,2(Ω)3. Thus u = w ∈ W 1,2(Ω)3. Since ∇ p − ∇q = �u − �w = 0, the
function p − q is constant. ��

Now we are ready to state the uniqueness result for the Oseen equations:

Theorem 4.5 Let Ω ⊂ R3 be an exterior domain with boundary of class C1,α, 0 < α < 1.
Let λ ∈ R \ {0} and u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω) solve the Oseen equations (3) in
Ω . Fix r > 0 such that ∂Ω ⊂ B(0; r). If u = 0 on ∂Ω , then u ∈ [W 1,2(Ω ∩ B(0; r))]3, p ∈
L2(B(0; r)). If, moreover, |u(x)| → 0 as |x| → ∞, |∇u| ∈ L2(Ω), then u ≡ 0, p is
constant.

Proof Without loss of generality, we can suppose λ > 0. Set u = 0 on R3 \ Ω . Then
u ∈ C0(R3)3. Moreover, u ∈ C∞(Ω)3, p ∈ C∞(Ω) due to [20], Chapter VII, Theorem 1.1.
Choose a cutoff function ϕ ∈ C∞(R3) such that ϕ = 1 in B(0; 2r), ϕ = 0 in R3 \ B(0; 3r).
Set v = E ∗ (uϕ), q = Q ∗ (uϕ). Then v ∈ C1(R3)3 ∩ [W 2,2(B(0; 3r))]3, q ∈ C0(R3) ∩
W 1,2(B(0; 3r)). Since ϕu ∈ C∞(R3 \∂Ω)3, we have v ∈ C∞(R3\∂Ω)3, q ∈ C∞(R3 \∂Ω).
Moreover, −�v + ∇q = ϕu in R3 \ ∂Ω . Define w = u + 2λ∂1v, ρ = p + 2λ∂1q . Then
w ∈ C0(R3)3 ∩ C∞(Ω)3, ρ ∈ C∞(Ω) and

−�w + ∇ρ = −�u + ∇ p + 2λ∂1(ϕu) = −2λ∂1u + 2λ∂1(ϕu).

Therefore, −�w+∇ρ = 0 inΩ∩ B(0; 2r). Similarly, ∇ ·w = 0 inΩ∩ B(0; 2r). Moreover,
w ∈ H1/2(∂(Ω ∩ B(0; 2r)))3. Thus, w ∈ [W 1,2(Ω ∩ B(0; 2r))]3, ρ ∈ L2(Ω ∩ B(0; 2r))
by Lemma 4.4. Since ∂1v ∈ [W 1,2

loc (R
3)]3, ∂1q ∈ L2

loc(R
3), we conclude that u ∈ W 1,2(Ω ∩

B(0; 2r))3, p ∈ L2(Ω ∩ B(0; 2r)). If |u(x)| → 0 as |x| → ∞, |∇u| ∈ L2(Ω), then u ≡ 0
(see [20], Chapter VII, Theorem 2.1). Since ∇ p = �u − 2λ∂1u = 0, we infer that p is
constant.

5 Solution of the Oseen problem

Lemma 5.1 Let G ⊂ R3 be a bounded open set with boundary of class C1,α, 0 < α < 1.
Let c, λ ∈ R, 0 < c. If u ∈ C2(G)3 ∩C0(G)3, p ∈ C1(G), |∇u|∗ + p∗ ∈ L2(∂G),u, p solve
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the homogeneous Oseen system (3), T (u, p)nG − λn1u + cu = 0 on ∂G in the sense of the
non-tangential limit, then u ≡ 0, p ≡ 0 in G.

Proof Without loss of generality, we can suppose that G is connected. According to [42],
Theorem 1.12, there exists a sequence of open sets G( j) with C∞-boundary with the fol-
lowing properties:

1. G( j) ⊂ G.
2. There exist homeomorphisms Λ j : ∂G → ∂G( j) and β > 0 such that Λ j (y) ∈ Γβ(y)

for every j and every y ∈ ∂G, and

sup{|y −Λ j (y)|; y ∈ ∂G} → 0, as j → ∞.

3. There are positive functions σ j on ∂G bounded away from zero and infinity uniformly
in j such that for any measurable set E ⊂ ∂G, we have

∫

E

σ j dσ =
∫

Λ j (E)

dσ,

and such that σ j → 1 pointwise a.e..
4. The normal vectors n j (Λ j (y)) to G( j) converge point-wise almost everywhere to nG(y).

Using Green’s formula and Lebesque’s lemma, we obtain

0 =
∫

∂G

u · [T (u, p)nG − λn1u + cu] dσ = lim
j→∞

∫

∂G( j)

u · [T (u, p)nG − λn1u + cu] dσ

= lim
j→∞

{ ∫

G( j)

[u ·�u + |∇̂u|2 − u∇ p − 2λu · ∂1u] dy +
∫

∂G( j)

|u|2c dσ

}

= lim
j→∞

⎡
⎢⎣

∫

G( j)

|∇̂u|2 dy +
∫

∂G( j)

|u|2c dσ

⎤
⎥⎦ =

∫

G

|∇̂u|2 dy +
∫

∂G

|u|2c dσ.

Therefore, ∇̂u ≡ 0 in G,u = 0 on ∂Ω . Since ∇̂u ≡ 0 there exists a skew symmetric
matrix A and a vector b such that u = Ax + b (see [32], Lemma 6). Hence, u1, u2, u3

are harmonic functions vanishing on ∂G. The maximum principle gives u ≡ 0. There-
fore, ∇ p = �u − 2λ∂1u ≡ 0. Hence, there is a constant a such that p ≡ a. But 0 =
T (u, p)nG − λn1u + cu = −anG on ∂G yields p ≡ a = 0. ��
Lemma 5.2 Let G ⊂ R3 be a bounded open set with boundary of class C1,α with 0 <

α < 1, λ ∈ R \ {0}, c ∈ R, c > 0. Suppose, moreover, that R3 \ G is connected. Denote
by I the identity operator. Then the operator 1

2 I − L̃−2λ
G + (c − λnG

1 )O
2λ
G is continuously

invertible on C0(∂G)3. If f ∈ C0(∂G)3, then there exist unique u ∈ C2(G)3 ∩ C0(G)3, p ∈
C1(G) such that |∇u|∗ + p∗ ∈ L2(∂G),u, p solve the homogeneous Oseen system (3), and
T (u, p)nG − λn1u + cu = f on ∂G in the sense of the non-tangential limit. This solution is

given by u = O2λ
G �, p = QG�, where � =

[
1
2 I − L̃−2λ

G + (c − λnG
1 )O

2λ
G

]−1
f .

Proof Proposition 3.3 gives that u = O2λ
G �, p = QG� with � ∈ C0(∂G)3 is a solution of

the Robin problem for the Oseen system with the boundary condition f if and only if

1

2
� − L̃−2λ

G � + (c − λnG
1 )O

2λ
G � = f .
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If f ≡ 0, then the uniqueness of a solution of the Robin problem (see Lemma 5.1) implies
O2λ

G � = 0, QG� = 0 in G. Since O2λ
G � is continuous in R3, the functions O2λ

G �, QG�

solve the Oseen problem with zero boundary condition in Ω = R3 \ G. From Theorem 4.5,
we find that O2λ

G � ≡ 0 and QG� is constant inΩ . The behavior at infinity implies QG� = 0
inΩ . The jump of the normal stresses of the single layer potential (Proposition 3.3) leads to

� =
[

�

2
− L̃−2λ

G �

]
+

[
�

2
− L̃−2λ

Ω �

]
= 0.

Hence, the operator 1
2 I − L̃−2λ

G + (c − λnG
1 )O

2λ
G is one to one. The integral operators

K ′
G , O2λ

G , L̃−2λ
G − K ′

G have weakly singular kernels, hence compact on C0(∂G)3 (compare
[41] or [43]). By the Riesz-Schauder theory, we obtain that the operator 1

2 I − L̃−2λ
G + (c −

λnG
1 )O

2λ
G is continuously invertible in C0(∂G)3. So, if � = [ 1

2 I − L̃−2λ
G +(c−λnG

1 )O
2λ
G ]−1f ,

then u = O2λ
G �, p = QG� solve the Robin problem for the Oseen system with the boundary

value f . ��

Theorem 5.3 LetΩ ⊂ R3 be an exterior domain with compact boundary of class C1,α with
0 < α < 1, λ ∈ R \ {0}, c ∈ R, c > 0. For � ∈ C0(∂Ω)3 set S� = 1

2� + L2λ
Ω � + O2λ

Ω (c +
λnΩ1 )�. Then S is a continuously invertible operator on C0(∂Ω)3. For a fixed f ∈ C0(∂Ω)3

put � = S−1f . Then

u = W 2λ
Ω � + O2λ

Ω (c + λnΩ1 )�, (25)

p = w2λ
Ω � + QΩ(c + λnΩ1 )� (26)

are the unique solution of the problem u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω),

−�u + 2λ∂1u + ∇ p = 0, ∇ · u = 0 in Ω, u = f on ∂Ω,

|u(x)| + |p(x)|] = o(1) as |x| → ∞,

|∇u| ∈ L2(R3 \ B(0; r)) for some r > 0.

Proof Let G = R3 \ Ω . The operator S̃ = 1
2 I − L̃2λ

G + (c − λnG
1 )O

−2λ
G = 1

2 I + L̃2λ
Ω +

(c + λnΩ1 )O
−2λ
Ω is continuously invertible on C0(∂Ω)3 (see Lemma 5.2). So, S̃′, the adjoint

operator of S̃, is also continuously invertible (on the space of vector measures on ∂Ω). If
�,� ∈ C0(∂Ω)3, then Fubini’s theorem gives

∫

∂Ω

�(S̃�) dσ =
∫

∂Ω

(S�)� dσ.

If we denote by σ the surface measure on ∂Ω , then S̃′(�σ) = (S�)σ . Since S̃′ is injective,
the operator S is also one to one. The integral operators KΩ, O2λ

Ω , L2λ
Ω − KΩ have weakly

singular kernels. Hence, they are compact on C0(∂Ω)3 (see [41] or [43]). The Riesz-Schauder
theory implies that the operator S is continuously invertible in C0(∂Ω)3.

If � = S−1f , then u, p given by (25), (26) are a solution of the Oseen problem with
boundary value f (see Propositions 3.3 and 3.4). The uniqueness follows from Theorem 4.5.

��
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6 Theorems of Liouville type

Proposition 6.1 Denote by S ′(R3) the space of complex tempered distributions on R3. Sup-
pose that u1, u2, u3,∈ S ′(R3) and p satisfy (3) in R3 in the sense of distributions. Then
u1, u2, u3, p are polynomials.

Proof Suppose first that p ∈ S ′(R3). Denote by Fh the Fourier transformation of h. Then

0 = F(∇ · u)(x) = ix · Fu(x),

0 = F[−�u + 2λ∂1u − ∇ p](x) = [|x|2 + 2λi x1]Fu(x)− ixF p(x).

Thus

i |x|2F p(x) = [|x|2 + 2λi x1]x · Fu(x) = 0.

Therefore, F p(x) = 0 in R3 \ {0}. Hence, [|x|2 + 2λi x1]Fu(x) = ixF p(x) = 0 in R3 \ {0}.
Fix j ∈ {1, 2, 3}. Denote by v the real part of Fu j and by w the imaginary part of Fu j .

Then |x |2v(x) − 2λx1w(x) = 0, |x |2w + 2λx1v = 0. Hence v(x) = 2λx1w(x)/|x |2 =
−(2λx1)

2v(x)/|x |4 and w(x) = −2λx1v(x)/|x |2 = −(2λx1)
2w(x)/|x |4 in {x ∈ R3; |x | 	=

0}. Since [|x |4 + (2λx1)
2]v(x) = 0, [|x |4 + (2λx1)

2]w(x) = 0 in {x ∈ R3; |x | 	= 0}, we
infer that Fu is supported in {0}. According to [39], Chapter II, §10, there exist k ∈ N0 and
constants aα such that

Fu j =
∑

|α|≤k

aα∂
αδ0.

Set

Pj (x) =
∑

|α|≤k

aα(−i x)α.

Then

F Pj =
∑

|α|≤k

aαF[(−i x)α1] =
∑

|α|≤k

aα∂
αδ0 = Fu j .

Since the Fourier transform is an isomorphism on S ′(R3), we infer that u j = Pj .
Let p be general. Then ∂ku j ∈ S ′(R3), ∂k p = �uk −2λ∂1uk ∈ S ′(R3) by [11], Theorem

14.21. Moreover, ∂ku, ∂k p satisfy (3) in R3. Thus, we have proved that ∂ku j are polynomials.
Hence, u j are polynomials. Since ∂k p = �u j − 2λ∂1u j are polynomials, we infer that p is
a polynomial, too. ��

Corollary 6.2 Let u1, u2, u3, p be distributions in R3. Suppose, moreover, that there exists
a compact set F ⊂ R3 such that u = (u1, u2, u3) ∈ L∞(R3 \ F)3. If u, p satisfy in R3 the
homogeneous Oseen equations (3) in the sense of distributions, then u, p are constant.

Proof Consider ϕ ∈ C∞(R3) with compact support such that ϕ ≡ 1 in a neighborhood
of F . The distribution ϕu j has a compact support, hence it is a tempered distribution. The
function (1 − ϕ)u j ∈ L∞(R3) is also a tempered distribution. Proposition 6.1 implies that
u1, u2, u3, p are polynomials. The behavior at infinity yields that u j is constant ( j = 1, 2, 3).
Thus, ∇ p = �u − 2λ∂1u = 0, and it follows immediately that p is constant.

123

Author's personal copy



A maximum modulus theorem 1073

7 Maximum modulus estimate

Proposition 7.1 Let F ⊂ R3 be a compact set. Let u, p solve the Oseen equations (3) in R3\
F, and let u be bounded. Then there exist constants u∞, p∞ such that u(x) → u∞, p(x) →
p∞ as |x| → ∞. If β is a multi-index, then |∂β [u(x)− u∞]| = O(|x|−1−|β|/2), |∂β [p(x)−
p∞]| = O(|x|−2−|β|) as |x| → ∞. If F ⊂ B(0; r) then |∇u| ∈ L2(R3 \ B(0; r)). ��

Proof Fix r > 0 such that F ⊂ B(0; r) and letΩ = R3\B(0; r). According to Theorem 5.3,
there exists � ∈ C0(∂Ω)3 such that v = W 2λ

Ω � + O2λ
Ω (c + λnΩ1 )�, q = w2λ

Ω � + QΩ(c +
λnΩ1 )� are a classical solution of the Oseen problem inΩ with the boundary value u. We have
v(x) → 0, q(x) → 0 as |x| → 0, and |∂βv(x)| = O(|x|−1−|β|/2), |∂βq(x)| = O(|x|−2−|β|)
as |x| → ∞. Moreover, |∇v| ∈ L2(R3 \ B(0; r)).

Set ũ = u − v, p̃ = p − q in R3 \ B(0; r) and ũ = 0, p̃ = 0 in B(0; r). Then ũ ∈
C0(R3)3 ∩ L∞(R3)3. Moreover, ũ, p̃ solve the Oseen equations (3) in R3 \ ∂B(0; r). We
have ũ ∈ W 1,2(B(0; 2r) \ B(0; r))3, p̃ ∈ L2(B(0; 2r)) by Theorem 4.5, which implies
ũ ∈ W 1,2(B(0; 2r))3. Therefore, ∇ · ũ ∈ L2(B(0; 2r)). Since ∇ · ũ = 0 in R3 \ ∂B(0; r),
we infer ∇ · ũ = 0 in R3.

Define f = −�ũ + 2λ∂1ũ + ∇ p̃. Since ũ, p̃ satisfy (3) in R3 \ ∂B(0; r), the functions
f1, f2, f3 are distributions supported on ∂B(0; r). Fix ϕ ∈ C∞(R3) supported in B(0; 2r)
such thatϕ = 1 in a neighborhood of ∂B(0; r). If x ∈ R3\B(0; 2r), then for each multi-index
β we have

|∂βO2λ ∗ f(x)| = |〈f, ϕ∂βx O2λ(x − ·)〉| =
∫

R3

{�y[ϕ(y)∂βx O2λ(x − y)]}ũ(y) dy

+
∫

R3

{
2λ

∂

∂y1
[ϕ(y)∂βx O2λ(x − y)]

}
ũ(y) dy

+
∫

R3

{∇y · [ϕ(y)∂βx O2λ(x − y)]} p̃(y) dy = O(|x|−1−|β|/2), |x| → ∞,

|∂βQ ∗ f(x)| = |〈f(y), ϕ(y)∂βx Q(x − y)〉| =
∫

R3

{�y[ϕ(y)∂βx Q(x − y)]}ũ(y) dy

+
∫

R3

{
2λ

∂

∂y1
[ϕ(y)∂βx Q(x − y)]

}
ũ(y) dy

+
∫

R3

{∇y · [ϕ(y)∂βx Q(x − y)]} p̃(y) dy = O(|x|−2−|β|), |x| → ∞.

Moreover, |∇O2λ ∗ f| ∈ L2(R3 \ B(0; r)).
Set ṽ = ũ + O2λ ∗ f, q̃ = p̃ + Q ∗ f . Since (O2λ, Q) is the fundamental tensor of

the Oseen equations (3), ṽ, q̃ solve the Oseen system (3) in R3. Thus, we have proved
O2λ ∗ f(x) = O(|x|−1) as |x| → ∞. Since ṽ is bounded, ṽ, q̃ are constant by Corollary 6.2.

��

Corollary 7.2 Let Ω ⊂ R3 be an exterior domain with boundary of class C1,α with 0 <
α < 1, λ ∈ R \ {0}. If f ∈ C0(∂Ω)3,u∞ ∈ R3, p∞ ∈ R, then there exists a unique solution
of the problem u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω) satisfying
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−�u + 2λ∂1u + ∇ p = 0, ∇ · u = 0 in Ω, u = f on ∂Ω,

p(x) → p∞, u(x) → u∞ as |x| → ∞.

Proof The Corollary is an easy consequence of Theorem 5.3 and Proposition 7.1. ��
Theorem 7.3 Let Ω ⊂ R3 be an exterior domain with boundary of class C1,α with 0 <
α < 1, and λ ∈ R \ {0}. Then there exists a constant C such that the following statement
holds true: If u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω) solve the Oseen equations (3) in Ω , and
if |u| ≤ M on ∂Ω ,

lim sup
|x|→∞

|u(x)| ≤ M, (27)

then |u| ≤ C M in Ω .

Proof For � ∈ C0(∂Ω)3 set S� = 1
2� + L2λ

Ω � + O2λ
Ω (c +λnΩ1 )� on ∂Ω, τ� = W 2λ

Ω � +
O2λ
Ω (c + λnΩ1 )� in Ω, τ� = S� on ∂Ω . Then τ is a linear mapping from C0(∂Ω)3

to C0(Ω)3 ∩ L∞(Ω)3 equipped with the supremum norm (see Proposition 3.3 and Prop-
osition 3.4). If �k → � in C0(∂Ω)3, τ�k → g in C0(Ω)3 ∩ L∞(Ω)3, then g(x) =
lim τ�k(x) = τ�(x) for each x ∈ Ω . Thus, g = τ� and τ is a closed operator. By the
Closed Graph Theorem ([21], Theorem II.1.9), there is a constant C1 such that

sup
x∈Ω

|τ�(x)| ≤ C1 sup
y∈∂Ω

|�(y)|.

Now let u ∈ C2(Ω)3 ∩ C0(Ω)3, p ∈ C1(Ω) solve the Oseen equations (3) in Ω satisfy-
ing |u| ≤ M on ∂Ω and (27). According to Proposition 7.1, there exist u∞ ∈ R3, p∞ ∈ R
such that u(x) → u∞, p(x) → p∞ as |x| → ∞ and |∇(u − u∞)(x)| = O(|x|−2) as
|x| → ∞. Clearly, |u∞| ≤ M . According to Theorem 5.3 and Corollary 7.2, the operator S
is continuously invertible and u − u∞ = τ S−1(u − u∞) in Ω . If x ∈ Ω , then

|u(x)| ≤ |u∞| + |τ S−1(u − u∞)(x)| ≤ M + C1‖S−1‖2M.

This proves the theorem. ��
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25. Kračmar, S., Novotný, A., Pokorný, M.: Estimates of Oseen kernels in weighted L p spaces. J. Math. Soc.
Jpn. 53, 59–111 (2001)

26. Kratz, W.: On the maximum modulus theorem for Stokes functions. Appl. Anal. 58, 293–302 (1995)
27. Kratz, W.: The maximum modulus theorem for the Stokes system in a ball. Math. Z. 226, 389–403 (1997)
28. Kratz, W.: An extremal problem related to the maximum modulus theorem for Stokes functions. Z. Anal.

Anwend. 17, 599–613 (1998)
29. Ladyzenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and

Breach, New York (1969)
30. Maremonti, P.: On the Stokes equations: the maximum modulus theorem. Math. Models Meth. Appl.

Sci. 10, 1047–1072 (2000)
31. Maremonti, P., Russo, R.: On the maximum modulus theorem for the Stokes system. Ann. Sc. Norm.

Super. Pisa XXI, 629–643 (1994)
32. Medková, D.: Integral representation of a solution of the Neumann problem for the Stokes system. Numer.

Algorithm. 54, 459–484 (2010)
33. Medková, D., Varnhorn, W.: Boundary value problems for the Stokes equations with jumps in open

sets. Appl. Anal. 87, 829–849 (2008)
34. Mitrea, D.: A generalization of Dahlberg’s theorem concerning the regularity of harmonic Green poten-

tials. Trans. Am. Math. Soc. 360, 3771–3793 (2008)
35. Odquist, F.K.G.: Über die Randwertaufgaben in der Hydrodynamik zäher Flüssigkeiten. Math. Z. 32, 329–

375 (1930)
36. Oseen, C.W.: Über die Stokesche Formel und Über eine Verwandte Aufgabe in der Hydrodynamik. Ark.

Mat. Astron. Fys. 29, 1–20 (1910)
37. Pokorný, M.: Comportement Asymptotique des Solutions de Quelques Equations aux Derivees Partielles

Decrivant l’ecoulement de Fluides dans les Domaines Non-bornes. These de Doctorat. Universite de
Toulon et Du Var, Universite Charles de Prague, Prague (1999)

38. Pólya, G.: Liegt die Stelle der gröbsten Beanspruchung an der Oberfläche? Zeitschr. Ang. Math.
Mech. 10, 353–360 (1930)

39. Shilov, G.E.: Mathematical Analysis. Second special course. Nauka, Moskva (1965) (Russian)
40. Schulze, B.W., Wildenhein, G.: Methoden der Potentialtheorie für elliptisch Differentialgleichungen bel-

iebiger Ordnung. Akademie, Berlin (1977)

123

Author's personal copy



1076 S. Kračmar et al.
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