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Abstract  Classical solutions of the Oseen problem are studied on an exterior domain £2
with Ljapunov boundary in R3. It is proved a maximum modulus estimate of the following
form: Ifu € C2(2)>’NC%(2)3 and p € C1H(2), —Au+2191u+Vp=0,V-u=0in £,
and if l[u| < M on 082, limsup |u(x)| < M as |x| — oo, then |u(x)| < cM in §2. Here the
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1060 S. Kra¢mar et al.

1 Introduction

In the theory of partial differential equations, the classical maximum principle is well-known.
It states that each harmonic function u takes its maximum and minimum values always at
the boundary 952 of the corresponding bounded domain §2. This result remains true also
for solutions of more general elliptic equations of second order with regular coefficients.
However, for solutions of higher-order equations or for solutions of elliptic systems, it is not
true in general (see e.g., [38]). In these cases, a so-called maximum modulus estimate of the
form

max [u(x)| < cp max |u(x)|

xe2 Xedf2
might be valid, with some constant ¢ = cg; depending only on £2.

Concerning the linearized steady Stokes system

—Au+Vp=0 inf2, V-u=0 in$2, 1

a maximum modulus estimate has been proved, recently (see [30,31,33]): Let 2 C R3 be
a bounded or an unbounded domain with a compact boundary 32 € C'%, 0 < « < 1. Let
u e C2(£2)° N %) and p e Cl(R) satisfy the Stokes system (1), where in case of
unbounded 2, we require [u(x)| = o(x|™H, [Vax)| + Ip(X)| = 0(]x|72) as |x| — oo, in
addition. Then

sup [u(x)| < ¢ max |u(x)]

xe X€082
with a constant ¢, depending only on £2. Moreover, if £2 is a ball, special statements about
the size of ¢y, are possible (see Kratz [26-28]).

Itis the aim of the present paper to prove a maximum modulus estimate for the Oseen equa-
tions. These equations represent a mathematical model describing the motion of a viscous
incompressible fluid flow around an obstacle. They are obtained by linearizing the steady
Navier-Stokes equations at a nonzero constant vector u = U, Where uy, represents the
velocity at infinity, and have the form

—VAu+ Uy -Vu+Vp=0 in2, V.-u=0 inf2. 2)

Here 2 C R? denotes an exterior domain, that is, a domain having a compact complement
R3\ £2. The velocity field u and the pressure function p are unknown, while the kinematic
viscosity v > 0 and the nonzero constant velocity u., are given data.

The system (2) is well-known in hydrodynamics. It has been introduced in 1910 by Oseen
[36] as a linearization at t = oo of the nonstationary Navier—Stokes equations describing the
motion of a viscous incompressible fluid. In contrast to the simpler Stokes approximation
(1), the Oseen system (2) avoids certain paradoxes related to the flow behavior at infinity
and shows, in particular, a paraboloidal wake region behind the obstacle, extending with
axis directed to us. The Oseen equations have mostly been studied in exterior domains
with Dirichlet boundary conditions. Early fundamental works are due to Finn [17-19] and
Babenko [4] who considered these equations in two- and three-dimensional exterior domains
using a weighted LZ-approach. Further important contributions are due to Farwig [14,15]
introducing anisotropically weighted spaces in an L2-framework, and Farwig and Sohr [16],
Kra¢mar et al. [25] using weighted Sobolev spaces. Galdi considered the system in W;,"”
spaces and, moreover, investigated a generalized Oseen system recently (see [20]). Enomoto
and Shibata [12] and Kobayashi and Shibata [23] studied the corresponding Oseen semi-
group. Concerning the scalar Oseen equation, important results in weighted Sobolev spaces
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A maximum modulus theorem 1061

are given by Amrouche and Bouzit [1,2] and Amrouche and Razafison [3]. The stationary
Oseen system has been studied using a potential approach by Deuring, Kra¢mar [9,10], the
corresponding nonstationary Oseen system has been considered recently by Deuring [6-8].

Choosing v = 1 and us, = (22, 0, 0), without loss of generality from (2), we obtain the
Oseen system in the form

—Au+200u+Vp=0 in2, V-u=0 inf 3)

in an exterior domain §2. Here 0 # A € R is fixed (for A = 0 the system (3) reduces to (1)).
Without loss of generality, the Oseen equations are usually studied for A > 0: If (3) holds
true foru and p, then for t(x) = u(—x) and p(x) = —p(—x) we find —Au—219u+Vp =
0,V-a=0in£2 = {x; —x € 2}.

We study the Dirichlet problem for the Oseen equations (3) in an exterior domain £2 C R>
with a compact Ljapunov boundary 952 (i.e., of class C1'%, 0 < & < 1) by the method of inte-
gral equations. We look for a solution in form of a linear combination of an Oseen single layer
potential and an Oseen double layer potential both with the same density W. This leads to a
system of boundary integral equations of the form SW = g in C*(9£2)3, where g € C°(352)°
is the prescribed Dirichlet boundary value. The operator S — (1/2)1 is a compact operator in
C%(8£2)3, where I means the identity. To study the properties of the operator S, we can use
Fredholm’s alternative theorem. For this reason, we investigate the Robin problem for the
adjoint equations —Au — 2Xdju+ Vp =0, V - u = 0 in the complementary bounded open
set G = R3\ £2. We look for a solution of the Robin problem in form of an Oseen single
layer potential with an unknown density ®. This leads to the boundary integral equations’
system S'® = f, where f is the Robin boundary value. We prove the unique solvability of the
Robin problem and the corresponding integral equations §’® = f. Since $’ is the operator
adjoint to S, we conclude that the operator S is continuously invertible, too. Thus, we have
proved that for each g € C%(9£2)3, there exists a solution of the Dirichlet problem for the
Oseen equations (3) with boundary value g such that u(x) — 0, p(x) — 0 as [x| — oo.

To prove a maximum modulus estimate for all classical solutions u, p of the Oseen equa-
tions we start with a Liouville-type theorem as follows: If u and p are tempered distributions
satisfying the Oseen equations (in a distributional sense) in the whole space R>, then u and
p are polynomials. In particular, if u is bounded, then u and p are constant. Similar results
have been proved recently for the scalar Oseen equation (see [1,3]). Using this result, we
prove that if u, p are solving the Oseen equations in an exterior domain and if u is bounded,
then there are constants U, Poo With U(X) — s, p(X) = poo as [x| — oo. This implies
that for g € CO(B.Q)S, Uy € R3, Poo € R, there exists a unique solution of the Dirichlet
problem for the Oseen equations (3) with the boundary condition u = g on 942 such that
u(xX) = Ueo, p(X) = po as |x| = oo. Moreover, we also know the integral representation
of this solution.

Now, using the integral representation just mentioned and the closed graph theorem, we
can prove a maximum modulus estimate of the following form: Let 2 C R3 be an exterior
domain with 862 of class C1*, 0 < a < 1, A € R\ {0}. Then there exists a constant ¢ = cg
with the following property: If u € C 22 N C%($2)? and p € C1(£2) solve the Oseen
equations (3) in §2, and if

[ul <M ondf2, limsuplu(x)| <M,

|x|—00
then

lux)| <ceM in £2.
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1062 S. Kra¢mar et al.

2 Stokes potentials

Let x = [x1,x2, x3] € R3 and x| = ‘/xlz—i—x% +x§. Then for 0 # x € R? and j. k€
{1, 2, 3}, we define the Stokes fundamental solution by

B 1 ' 1 XjXk
B0 = g (o + | @
0k = 3 s)

If f € CO(R?)3 has a compact support, then the convolution integrals (Stokes volume
potentials)

E () = / Ex—yfy) dy, Q#f(x) = / Qx — V() dy
R3 R3

are well defined, and it holds E x f € CO(R*)3, Q xf € CO(R?), 8;(E xf) = (3;E) f €

CO(R?)3 (seee.g., [40],11.2.3) and —AE «f+ VQ «f =f, V. Exf = 0in £2 in the sense of

distributions. Tff € W4 (R3)3 with 1 < g < 00, m > 0,then Ext € W7 2R3, 0xf ¢

w14 (R3) (see e.g., [20], Chapter IV, Theorem 4.1).

loc
Let 2 C R? be an open set with compact boundary of class C'"*,0 < a < 1, and

V¥ € C%(3£2)3. Define the hydrodynamical single layer potential with density ¥ by

(EqW¥)(x) = / E(x — y)¥(y) doy
982

and the corresponding pressure by

(QQ‘I’)(X):/Q(X—Y)‘I’(y) doy
92

whenever it makes sense. Then the pair (EqW¥, QW) € C®(R3\ 3£2)* solves the Stokes
system in R3 \ 352. Moreover, EoW € C°(R?)3 and EqW € C¥(352)° (see [35]).
For u, p we define the stress tensor

T(u, p) =2Vu — pl, (©6)

where I denotes the identity matrix and
A 1 T
Vu = E[Vu + (Vu)' ]

is the deformation tensor, with (Vu)? as the matrix transposed to Vu = (djuy), j,k =
1,2,3.

Fory € 852 we define K (-,y) = T(E(- —y), Q(- — y)) n(y) on R3 \ {y}. Here and
in the following, n* (y) is the outward unit normal of £2 aty € 3£2. We set

3 k=0 — XNy =% -0 (y)
4 ly =y’

KZi(x,y) =
for j,k=1,2,3,and
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A maximum modulus theorem 1063

1
j(x,y) = -— [—3

(yj —x)y —x)-ne(y)  nFy
27

Ix —yl° x —yl?
forj=1,2,3.

For ¥ € C%(3£2)% we define the hydrodynamical double layer potential with density W
by

(Do W)(x) :/KQ(X, VY () doy, xe R\ 3R
082

and the corresponding pressure by
(MToW)(x) = / 9 (x —y)¥(y) doy, x¢€ R\ 02.
a2

Then the pair (Do W, [ToW) € C®(R? \ 9£2)* solves the Stokes system in R> \ 952. For
x € 052 we denote the so-called directed values of the above potentials by

(KoW)(x) = / K (x,y)¥(y) doy,

082
(KpW)(x) = / K (y,x)¥(y) doy.
982
Then we find
1
Iim DoV (x)=-V¥(z)+ KoW¥(z) (@)
X —>Z 2
X e

for z € 082 (see [35,29], Chapter III, §2).
For x € 92, B > 0 denote the non-tangential approach region of opening $ at the point
x by

Ig(x) :={y € £2; |x —y| < (1 + B)dist(y, 3£2)}.
Suppose that f is large enough. If

c= lim u(y),
y — X

y € I'p(x)

we call ¢ the non-tangential limit of u at x € 9§2. Note that x € I'g(x) for every x € 952.
If now u is a function defined in £2, we denote the non-tangential maximal function of u on
a52 by

u*(x) = sup{lu(y)l; y € Ig(x)}.
If W € C%(3£2)3, then we obtain
NEQW" + IVEQY]" +102¥ "l 250) < CI¥I200)
with some constant C depending only on £2 (see [5], Lemma 6.1). If z € 92, then ¥ (z) /2 —
K, W (z) is the non-tangential limit of T (EqW¥, Qg W)n¥ (z) (see [13] or [22]).
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1064 S. Kra¢mar et al.

3 Oseen fundamental solution and potentials

In this section, we recall some basic facts about the fundamental solution to the Oseen prob-
lem. Denote by O(-; 21) = (0;;(-; 21)), O = (Q;) its fundamental solution; it satisfies the
identities

—AO,-j+2/\810ij+3jQ,»=8ij5, 3j0,'j=0 (8)

in the sense of distributions, where §;; denotes the Kronecker delta, while § denotes the Dirac
delta distribution.

We can easily verify (see e.g., [20], Chapter VII, §VIL.3) that for A > 0, the fundamental
solution can be written as

0i(x) = ©
i(X) = ——=
47 |x3
0ij(x; 21) = (8;j A — 9;9j)do (x; 22), (10)
where
po(x:20) = v (sx) (11)
8T A
with
Z
1—e — (—DF
I/f(z)z/ , de=>" I (12)
0 k=1
and
s(x) = x| — x1. (13)
The formulas (11)—(13) yield useful rescaling property
21 02 x; 1) = O(x;2)), A€ R. (14)

Since O(x, —21) = O(—X,2X), an easy calculation yields that (O (x, 21), Q(x)) is the
fundamental solution of the Oseen equation (3) for arbitrary A # 0.

Proposition 3.1 ([20, VIL3)). If B is a multi-index, then we have
P ox, 20| = o(x|"1P12) as x| > . (15)
Ifr > 0and q > 4/3, then we have
IVO(-, 20| € L4(R3\ B(0; r)). (16)
Here B(z;r) = {y € R3; |x — y| < r} denotes the open ball with center z and radius r > 0.

The integral representation (12) implies

1

—t —t — —t —t_ 42—t
W(f) — 17;) , 1////([) — 7l+et2+te , w///(t) — 2-2e 72tt3@ i

The representation by the sum in (12) yields,

(_])k+1
wk)(z):TJFO(z) ast — 0, k=1,2,.... (17)
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A maximum modulus theorem 1065

When differentiating (13), we obtain

8 .
SO _ N (18)
9x; x|
From here we get the estimates
w|_[H €D (@
N o clo
™ = |D S(X)| = W. (19)

V25 k£

From (11)—(13) and (19) it is seen that O(-;-) € C"O((R3 \ {0}) x R) and for fixed
x # 0, O(x; -) is an analytic function.

Now we calculate the derivatives of ¢ (- ; A) in order to establish the asymptotic behav-
ior of the difference R(x,2X) = O(-;2X) — E(x) and of its first derivatives near zero. The
behavior of this difference gives us the possibility to prove (24) analogous to (7), that is,
the jump relation property of the double layer potential of the Oseen problem, see proofs of
Propositions 3.3 and 3.4. The asymptotic of this difference near zero implies also compact-
ness of operator Lg‘ — K and its dual operator, see proofs of Lemma 5.2 and Theorem 5.3.
We follow here the approach used in [24, §2], for another approach based on the explicit
expressions of the Oseen fundamental solution see [37, §11.1.2]. The both approaches are
applicable for the asymptotic of the second-order derivatives.

1
—0ipo(x;21) = gw’(ks(x)) 9;5(x)

0,010 (% 20) = —— P (s (X)) 35 (X) A5 (X) + P (h5 () By i (%)
87; 8
A
U310 (55 22) = -y (h5 ) s (s (5 3)

A
+§1///(xs (%)) [0y s (%) 9:5(xX) + Fd;.5(X) By 5(X)
1
+0,0;5(x) s (x) ] + QW’(AS(X)) 0 9, 9 5 (X)
These formulas together with (17), (19), and (10) yield

[R(x;21)] =10(x;2)) — E(x)| =10(1) as Alx| — 0,

1
IVR(x; 2)0)| = |[VO(x; 21) — VE(x)| = 220 (m) as Alx| — 0, (20)
X
where (E, Q) is the Stokes fundamental solution. In particular, for A € (0; A¢), R > 0,k =
0,1 and [Ax| < R

c(R; X, k)

k .
VFox: 2| = o

21

Since E(x) = |2A|E(2x) we obtain this relation also for A < 0. Formulas (20), (21) and
Proposition 3.1 give us in particular that O(-; 2X), R(-; 2X), and VR(-; 21) are weakly
singular kernels of integral operators in R* and in R>.

Remark that

1
47 |x|

Oonix, 1) =

‘,uxm/z T N e xoe—“—mﬂ]

Ix|2 2x|
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1066 S. Kra¢mar et al.

e~ (X|=x1)/2 - (x]2 —|—x32)(1 — e(Xl=x1)/2)

Oxn(x,1) =

4 (x| 4 (Ix] — x1)[x[?
Wem(KI=/2 g g (xl=a/2),2
8 (x| —x)Ix|> 4w (x| —x)?x|>
O33(x, 1) = e MTD2 T (xf +a3) (1 —em M)
’ 4 |x| 4 (x| — x1)[x[?
e (K=0/2 g e (xl=)/2)2

CBr (x| —xplx2 T Am(Ix| = x)?x?

X2 e—(xXI—=x1)/2 1 — e~ (xI=x1)/2
Opx, 1) = 02(x,1) = ,

47 |x2 2 B Ix]|
x3 [e-(X=/2 | _ o=(xl-x)/2
o ,1)=0 1) = - — s
13(x, 1) 31(x, 1) 4n|X|2|: 5 x] }

xoxs [1—e—(K=x)/2 |x|e=(xl—x/2
Ox3n(kx,1) = On(x,1) = ‘ -

4 |x|3 (x| = x1) 2(|x| = x1)

Ix|[1 — e~ (xlI=x1)/2]
(x| — x1)2 ]

(See [20]), Chapter VII, §VIL.3).
Let £ C R? be an open set with compact boundary 32 € €%, 0 < « < 1, and
¥ e C%(302)3. Define the Oseen single layer potential with density W by

O30 = [ 06x—y. 20%() doy,
982

whenever it makes sense. Then the pair ( O_%Z’\\II, QoW) e C™® (R3 \ 9£2)* solves the Oseen
system (3) in R3\ 082. Let R?Z’\\Il = 0_%2’\‘1' — E oW denote the difference of the Oseen and
the Stokes single layer potentials. If B is a multi-index, then we have

10203 wx)| = o(x|"! 1Py as  |x| - oc.

Moreover, if r > 0,92 C B(0;r) and ¢ > 4/3, then [VOZW| € LI (R>\ B(0; r)).

Fory € 982 define L2(-,y;21) = T(O(- — y:21), O(- — y)n“(y) in R3 \ {y}. If
G = R3\ 2, then L (x,y: 21) = —LC(x, y; 21).

For ¥ € C°(8£2)3 and x € 952 denote

(LEW)(x) = / L2 (x, y: 20)¥(y) doy, 22)
982

(L2W)(x) = / L% (y, x; 20)¥(y) doy. (23)
982

Although the following statement is needed for the case m = 3 only, we give the proof
for general m.

Lemma 3.2 Let 2 C R™ be an open set with bounded Lipschitz boundary. Let k(X,y) be

defined for [X,y] € R™ x 882; X # y and |k(x,y)| < C|x —y|' 7P with positive constants
C, B. Suppose that k(X, -) is measurable and k(-,y) is continuous. Let f € L°°(952). Then
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A maximum modulus theorem 1067

kf(x) = /k(x, y) f(y) doy
02

is a continuous function in R™.

Proof The function kf is continuous in R\ 9$2.Fixz € 9§2, € > 0 and choose M > 0 such
that | f| < M. Since 952 is Lipschitz, there exists a constant ¢ such that o (B(x; r) N 9£2) <
cr™ 1 for each x € R™ and r > 0. Here o denotes the surface measure.

Now fix x € R™,r > 0, and set B(j) = 952 N B(x; 2ty \ B(x; 277r) for j € N.
Then

o0
/ lk(x,y) f(yl doy < CMZ / x — y|f+1-m doy
A2NB(x;r) j=]B(j)
CceM2m—1-P

B
T— -7 rP.

o0
<CM Y @ pftme ity =
j=1

Fix r > 0 such that 2r)#CeM2™ 1B /(1 —27P) < €/2.If |x — z| < r then

/ k(2. y) £ )] doy + / k(x, )./ )] doy < e.

I2NB(z;r) 02NB(z;r)
Since
k(x,y) f(y doy — / k(z,y) f(y doy
082\ B(z;r) 092\ B(z;r)
as X — z, we infer that kf is continuous. O

Proposition 3.3 Let 2 C R be an open set with bounded boundary of class CH%,0 < a <
LIfW e CO3R2)3, then OFW e CO(R?) and [VOEW|* € L2(3R2). If z € 382, then
V(z)/2 — I:QZA\II(Z) is the non-tangential limit of T (O W (X), QoY (x))n*(z) ar z.

Proof Ttholds |R(x,21)| = O(1), [VR(x,21)| = O(]x| ') asx — 0. Thus RZ'W¥, VR ¥
are continuous in R® by Lemma 3.2. The properties of EoW imply O3'W € C°(R?) and
IVOZW|* € L2(32). If z € 3S2 then

lim T(0o¥(x), 0o¥x)n?(z) = lim T(EoW¥(x), QoW (x)n*(z)

X —>Z X —> Z
xely xely
. Q W¥(z) /
+ lim T(RoV¥(x),0)n(z) = —Ko¥(z)
X —> Z 2
X € F/j
~ '} ~
+ / 2V,R(z —y, 20)n? (z)¥(y) doy = % — L7 (z).

982
]

Proposition 3.4 Let 2 C R3 be an open set with compact boundary of class 1%, 0 < a <
1. For ¥ € C°(3£2)%,x € R\ 812 define
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1068 S. Kra¢mar et al.

W2 (x) = / L2 (x,y; 20)¥(y) doy,
082
wg W (x) = /[2nQ ¥) - VyQ(x —y) + 2001 (x — y)n® () |¥(y) doy.
a2
Then (W2, w3 W) € C®(R?\ 32)* solves the Oseen system (3) in R3\ 382. Ifz € 382,
then

1
lim W@\I:(x):E\I:(z)Jrqu:(z). (24)

X —>Z

X e 2

If B is a multi-index, then

10PWEw(x)| = 0(x|7¥271P12) as |x] — oo.
Proof An easy calculation yields that (Wg‘\ll, wé’\\ll) € C®(R?\ 3£2)* solves the Oseen
system (3) in R3\ 8£2. Since |[VR(x, 21)| = O(|x|~!) as x — 0, we infer that |K o (X, y) —

Lo(X,y; 21)| < M|x—y|~'. Hence, the relation (24) is a consequence of (7) and Lemma 3.2.
O

Remark 3.5 Ifu € C'(2)3, p € Co(ﬁ) solve the homogeneous Oseen system (3), then
u= O0Z[T(u, p)n?] + WZu—210%(nu)
p = 0alT (. p)n®] + wgu —210¢ (n1u)

in £2 (compare [20], Chapter VII, Lemma 6.2 or [37], Chapter II, Lemma 2.5). The fact that
W_é)‘\ll, wé)‘\ll solve the Oseen system (3) in R3 \ 0§2 can be deduced from these relations.

4 Unique solvability of the Oseen problem

Concerning the Stokes system, we have the following result (see [33], Theorem 5.5):

Lemma 4.1 . Let 2 C R? be a bounded domain with boundary of class C'* with 0 < a <
1,g € C202)%, uec?(2)’Nc’(2)3, p e C'(2), u, p solve the Stokes system (1), u = g
on 052. Then

sup [u(x)| < K sup |g(x)],
xXeNR X€082

where the constant K depends only on S2.
We say thatu € C(2)3, pecC 1(2) are an L2-solution of the Dirichlet problem for the

Stokes system in £2 with the boundary condition g if (1) holds true, u* € L*(3£2) and g(x)
is the non-tangential limit of u at almost all x € 952.

Lemma 4.2 Let 2 C R? be a bounded domain with boundary of class C1* with 0 < a <
1,8 € L2(382)3. Then there exist an L?-solution u € C*(2)3, p € C'(§2) of the Dirichlet
problem of the Stokes system in §2 with the boundary condition g if and only if

/g~n9da=0.

02
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The function w is unique, and p is unique up to an additive constant. If g € C%(382)3, then
ueCO2)3. Ifg € WH2(882)3, then (Vu)*, p* € L2(352).

For the proof of this Lemma, see [33], Proposition 3.3 and [33], and Theorem 5.3.

Lemma 4.3 Let 2 C R? be a bounded domain with boundary of class C'*,0 < a < 1,
and let v € CO(2). Ifv* € L5(082),1 <5 < 00, thenv € L°(£2).

For the proof of this Lemma see [32], Lemma 2 or [34], and Lemma 4.1.

Lemma 4.4 Let 2 C R? be a bounded open set with boundary of class Ch* with 0 < a <
l,ge C%982)3,u e C2(£2)° N (2)3, pE cl(2),u, p solve the Stokes system (1), u = g
ond2.Ifg € H'2(382)3, thenu e WH2(2)3, p € L>(2).

Proof Lemma 4.2 gives that g is orthogonal to the unit normal n®. Choose a sequence
g € [Wh2(352)1 NP (852)3 orthogonal to the normal n* such that g — gin H'/?(382)3
and in C°(3£2)3. Then there existug € C2(2)3NCO(2)3NW12(2)3, pr € C1(2)NL2A(R2)
such that ug, px solve (1) and u; = g on 92 (see Lemma 4.2 and Lemma 4.3). According
to Lemma 4.1, we have uy — u. By virtue of [20], Chapter IV, Theorem 1.1, there exist
w e W2(2)3 and q € L2(£2) such that w, q solve (1) and g is the trace of w. Moreover,
w, — win WH2(2)3. Thusu = w € Wh2(£2)3. Since Vp — Vg = Au — Aw = 0, the
function p — ¢ is constant. O

Now we are ready to state the uniqueness result for the Oseen equations:

Theorem 4.5 Let 2 C R be an exterior domain with boundary of class C'"*,0 < a < 1.
Let € R\ {0} andu € C%2(£2)3 N CO(2)3, p € C'(£2) solve the Oseen equations (3) in
Q. Fixr > 0 such that 32 C B(0; r). Ifu=00n 382, thenu € [W-2(2 N BO; r)]3, p €
L2(B(0; r)). If, moreover, lu(x)| — 0 as |x| — oo, |Vu| € L2(82), then u = 0, pis
constant.

Proof Without loss of generality, we can suppose A > 0. Setu = 0 on R?\ £2. Then
u € CO(R3)3. Moreover, u € C®(£2)3, p € C*®(£2) due to [20], Chapter VII, Theorem 1.1.
Choose a cutoff function ¢ € C*(R3) such that ¢ = 1 in B(0; 2r), ¢ = 0 in R3 \ B(0; 3r).
Setv = E % (ug),q = O * (ug). Then v € CH(R?)? N [W22(B(0;3r)1%, ¢ € CO(R® N
WL2(B(0; 3r)). Since pu € C®(R3\962)3, wehave v e C®(R3\92)3, ¢ € C®(R3\3£2).
Moreover, —AV + Vg = guin R3 \ 9£2. Define w = u + 219;v, p = p + 2A9;q. Then
w e CUR3)3NC®(02)3, p € C®(£2) and

—AW+ Vp = —Au+ Vp + 2101 (pu) = —2A01u + 2101 (pu).

Therefore, —Aw+Vp = 0in 2N B(0; 2r). Similarly, V-w = 0in 2N B(0; 2r). Moreover,
w e H'2(3($2 N B(0; 2r)))3. Thus, w € [Wh2(2 N B(0; 2r) 3, p € L2(§2 N B(0; 2r))
by Lemma 4.4. Since 9;v € [V[’llu’c_z(R3)]3, d1q € LZZOC(R3), we conclude thatu € W2(£2 N
B(0; 2r))3, p € L%*(£2 N B(0; 2r)). If [u(x)| — 0 as |x| — oo, [Vu| € L2(£2), thenu = 0
(see [20], Chapter VII, Theorem 2.1). Since Vp = Au — 2Ad1u = 0, we infer that p is
constant.

5 Solution of the Oseen problem

Lemma 5.1 Let G C R3 be a bounded open set with boundary of class ch0<a <1
Letc,h € R,0 < c.Ifu € C2(G)’NC%G)3, p € CHG), |Vu|*+ p* € L2(3G), u, p solve
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the homogeneous Oseen system (3), T (u, p)n® — Anju+ cu = 0 on 3G in the sense of the
non-tangential limit, thenu =0, p =0in G.

Proof Without loss of generality, we can suppose that G is connected. According to [42],
Theorem 1.12, there exists a sequence of open sets G(j) with C°°-boundary with the fol-
lowing properties:

1. G(j)CG.
2. There exist homeomorphisms A; : 3G — dG(j) and B > 0 such that A;(y) € I'g(y)
for every j and every y € 9G, and

sup{ly — A;(Y);y € 0G} = 0, as j — oo.

3. There are positive functions o; on dG bounded away from zero and infinity uniformly
in j such that for any measurable set E C dG, we have

/Uj do = / do,
E A(E)

and such that 0; — 1 pointwise a.e..
4. Thenormal vectorsn’/ (A ;(y)) to G(j) converge point-wise almost everywhere to n%(y).

Using Green’s formula and Lebesque’s lemma, we obtain

0= /u- [T(u, p)n® — Anju+ culdo = lim u-[T(u, p)n® — Anju + cul do

Jj—>00
3G G (j)
= _1im{/[u.Au+|©u|2—uvp—2xu~alu]dy+ / |u|2cda]
/—)OO
G 3G ())
= lim / |Vu|? dy + / lul’c do :/|@u|2 dy+/|u|2cda.
J—>00
G(j) 3G (j) G 3G

Therefore, Vu = 0in G,u = 0 on 0£2. Since Vu = 0 there exists a skew symmetric
matrix A and a vector b such that u = Ax + b (see [32], Lemma 6). Hence, up, us, u3
are harmonic functions vanishing on dG. The maximum principle gives u = 0. There-
fore, Vp = Au — 2A01u = 0. Hence, there is a constant a such that p = a. But 0 =
T(u, p)n° — Anju+ cu = —an® on 4G yields p = a = 0. O

Lemma 5.2 Let G C R? be a bounded open set with boundary of class CH% with 0 <
oa < 1,A € R\ {0},c € R,c > 0. Suppose, moreover, that R3 \6 is connected. Denote
by I the identity operator. Then the operator %1 - 1:52’\ + (c — anG)Oé}‘ is continuously
invertible on C°(3G)3. Iff € CO(8G)3, then there exist unique u € C2(G)} N CY(G)3, pE
CY(G) such that |Vul|* + p*e L%(3G), u, p solve the homogeneous Oseen system (3), and
T (u, p)n% — Anju+ cu = f on 9G in the sense of the non-tangential limit. This solution is

~ -1
given by w = OFW. p = QG ¥, where W = [} = Lg¥ + (¢~ mnf) 0% | 1.

Proof Proposition 3.3 gives thatu = 0(2;)‘\11, p=Q0cgV¥ with ¥ ¢ C%(3G)3 is a solution of
the Robin problem for the Oseen system with the boundary condition f if and only if

1 ~
J¥ - LW + (c — mn§) 0P w = 1.

@ Springer



A maximum modulus theorem 1071

If £ = 0, then the uniqueness of a solution of the Robin problem (see Lemma 5.1) implies
Oé}‘\ll =0,Q0s6¥ =0in G. Since Oéx\ll is continuous in R3, the functions 0(2;)“\11, QcV¥
solve the Oseen problem with zero boundary condition in 2 = R\ G. From Theorem 4.5,
we find that Og‘\ll = Oand Qg V is constantin §2. The behavior at infinity implies Qg W = 0
in £2. The jump of the normal stresses of the single layer potential (Proposition 3.3) leads to

v 7 —2x v 7 —2x
\Il:[E—LG \It]+[?—LQ v |=0.

Hence, the operator %I - ZE”‘ + (¢ — )Lan)Og‘ is one to one. The integral operators
K¢, Oék, Zaz)‘ — K, have weakly singular kernels, hence compact on C%(3G)? (compare
[41] or [43]). By the Riesz-Schauder theory, we obtain that the operator %1 - 1:52)\ + (¢ —
an{) 0% is continuously invertible in C*(3G)3. So, if ¥ = [17— I:E;Z)‘ +(c—an$)0F17E,
thenu = Oé)“\ll, p = Q¢ V¥ solve the Robin problem for the Oseen system with the boundary
value f. O

Theorem 5.3 Let 2 C R3 be an exterior domain with compact boundary of class C1® with
0<a<1,heR\{0}ceR,c>0. For¥ eCOd2)3 set SW = 1W + LEW + 0% (c +
)\."{2)‘1’. Then S is a continuously invertible operator on c2(882)3. For afixed f € c232)3
put W = S~ Then

u= W3+ 0F(c+ i)W, (25)
p=wEW¥+ Qalc+ rn)¥ (26)

are the unique solution of the problem u € C2(2)} N CO2)3, pE€ cl(),

—Au+220u+Vp=0, V.-u=0 in2, u==f onads,
[ux)| + |px)I] = o(1) as x| - oo,

[Vu| € L*(R3 \ B(0; r)) for some r > 0.

Proof Let G = R3\ $2. The operator S = %I - i%})‘ + (c — }»n?)Oaz)‘ =~%I + i??)‘ +
(c+ }\n]Q)O;zz}‘ is continuously invertible on C%(82)3 (see Lemma 5.2). So, ', the adjoint

operator of S, is also continuously invertible (on the space of vector measures on 9£2). If
W, & c C0(9£2)3, then Fubini’s theorem gives

/\1:(§<I>) do = /(S\II)<I> do.

FYo) a0

If we denote by o the surface measure on 952, then S'(Wo) = (S¥)o. Since S is injective,
the operator S is also one to one. The integral operators K¢, O_é’\, L%ZA — K have weakly
singular kernels. Hence, they are compact on (','0(8.(2)3 (see[41] or[43]). The Riesz-Schauder

theory implies that the operator S is continuously invertible in C°(3£2)3.
If ¥ = S™If, then u, p given by (25), (26) are a solution of the Oseen problem with
boundary value f (see Propositions 3.3 and 3.4). The uniqueness follows from Theorem 4.5.
O
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6 Theorems of Liouville type

Proposition 6.1 Denote by S'(R?) the space of complex tempered distributions on R3. Sup-
pose that uy, us, usz, € S (R3) and p satisfy (3) in R3 in the sense of distributions. Then
uy, up, us, p are polynomials.

Proof Suppose first that p € S’(R?). Denote by Fh the Fourier transformation of 4. Then

0=F(V- -u)X) =ix- Fu(x),
0 = Fl—Au+21d1u — Vpl(x) = [IXI° + 24ix11Fu(x) — ixFp(x).

Thus
iIX[>Fpx) = [|x|? + 2Xix; X - Fu(x) = 0.

Therefore, Fp(x) = 0in R3\ {0}. Hence, [|x|? + 2Aix{|Fu(x) = ixFp(x) = 0in R\ {0}.

Fix j € {1, 2, 3}. Denote by v the real part of Fu; and by w the imaginary part of Fu ;.
Then |x|?v(x) — 2Axjw(x) = 0, |x|?w + 2Axjv = 0. Hence v(x) = 2Axjw(x)/|x|? =
—@xx)?v(x)/|x|* and w(x) = —2Ax1v(x)/|x|* = —QAx)*w(x)/|x[* in {x € R?; |x| #
0}. Since [|x|* + @ax)2v(x) = 0, [|x|* + 2Aix)?w(x) = 0in {x € R3; |x| # 0}, we
infer that Fu is supported in {0}. According to [39], Chapter II, §10, there exist k € Ny and
constants a, such that

Fuj = Z ay0%8o.

o] <k
Set
Pi(x) = D ay(—ix)".
ol <k
Then

FPj= D auFl(—ix)*11 = D agd*8 = Fuj.

o] <k o] <k

Since the Fourier transform is an isomorphism on S’ (R3), we infer that uj=Pj.

Let p be general. Then dxu; € S'(R?), dp = Aug —2291ux € S'(R*) by [11], Theorem
14.21. Moreover, dxu, d p satisfy (3) in R3. Thus, we have proved that 9y j are polynomials.
Hence, u; are polynomials. Since d; p = Au; — 2A0 u; are polynomials, we infer that p is
a polynomial, too. O

Corollary 6.2 Let uy, u>, us, p be distributions in R3. Suppose, moreover, that there exists
a compact set F C R3 such that w = (u1, uz, u3) € L°(R3\ F)3. Ifu, p satisfy in R the
homogeneous Oseen equations (3) in the sense of distributions, then u, p are constant.

Proof Consider ¢ € C®(R?) with compact support such that ¢ = 1 in a neighborhood
of F. The distribution gu ; has a compact support, hence it is a tempered distribution. The
function (1 — @)u; € L*®(R3) is also a tempered distribution. Proposition 6.1 implies that
uy, uz, u3, p are polynomials. The behavior at infinity yields that u ; is constant (j = 1, 2, 3).
Thus, Vp = Au — 2101u = 0, and it follows immediately that p is constant.
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7 Maximum modulus estimate

Proposition 7.1 Let F C R3 be a compact set. Leta, p solve the Oseen equations (3) in R\
F, and let u be bounded. Then there exist constants Uso, Poo SUCh that u(X) — U, p(X) —
Poo as |X| = o0. If B is a multi-index, then 0P [u(x) — ug]| = O (x|~ =182, 138 p(x) —
Pooll = O(x|727181) as |x| — oo. If F C B(0; r) then |Vu| € L2(R3\ B(0; r)). |

Proof Fixr > Osuchthat F C B(0; r) andlet 2 = R3\ B(0; r). According to Theorem 5.3,
there exists ¥ € C°(3£2)3 such that v = Wé)‘\ll + Og(c + An{z)\lﬂ, q = w%}‘l’ + Qp(c+
An{? )W are a classical solution of the Oseen problem in §2 with the boundary value u. We have
v(x) > 0,¢(x) — Oas [x| - 0, and |3 v(x)| = O(|x|7'71P/2) [P q(x)| = O(|x|~>~1F1)
as x| — oo. Moreover, |Vv| € L2(R3 \ B(0;r)).

Seti=u—v,p=p—qginR3\ BO;r)and@a = 0, 5 = 0 in B(0; r). Then @ €
CO(R?)3 N L®(R?)3. Moreover, ii, j solve the Oseen equations (3) in R3 \ dB(0; r). We
have it € WH2(B(0; 2r) \ B(0;r))3, p € L*(B(0;2r)) by Theorem 4.5, which implies
i € WH2(B(0; 2r))3. Therefore, V - it € L%(B(0; 2r)). Since V - it = 0 in R3 \ 9B(0; r),
we infer V - it = 0 in R3.

Define f = — Al + 24911 + V p. Since &, p satisfy (3) in R? \ 9 B(0; r), the functions
f1, f2, f3 are distributions supported on dB(0; r). Fix ¢ € C®(R?) supported in B(0; 2r)
suchthat ¢ = 1inaneighborhood of 9 B(0; r).If x € R3\ B(0; 2r), then for each multi-index
B we have

198 0% % £(x)| = (£, 93f 0% (x — )| = / {Ay[p(y)3P 0% (x — y)lya(y) dy

R3
d
+ / [ma—[w(y)af 0% (x — y)]]ﬁ(y) dy
R3 7!
+ / {Vy - [p()dk 0% (x — )} p(y) dy = 0(x|~'71P172), x| - oo,
R3
1070 % t(x)| = |(E(y), 9(y)3E O(x — y))| = / {Ayle(y)of 0(x — y)}a(y) dy
R3
d
+ / [zxa—ylw)af 0%x— y)]]ﬁ(y) dy
R3

+/{vy TedL 0x — Yy dy = O(x|7>7Ph, x| — oo.
R?

Moreover, |[VO?* «f| € L2(R?\ B(0; r)).

Setv =i+ 0% xf,§ = p+ Q «f. Since (0%, Q) is the fundamental tensor of
the Oseen equations (3), ¥, § solve the Oseen system (3) in R>. Thus, we have proved
0% xf(x) = O(|x|™!) as |x| — oo. Since ¥ is bounded, ¥, § are constant by Corollary 6.2.

O

Corollary 7.2 Let 2 C R3 be an exterior domain with boundary of class Cb% with 0 <

a<1,re R\{0}). Iff (30(3.(2)37,uOo € R3, poo € R, then there exists a unique solution
of the problem u € C2(2)° N CO(2)3, pE cl() satisfying
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—Au+2201u+Vp=0, V-u=0 in2, u==f onads2,

P(X) = Poo, W(X) = Uy as |X| — o0.
Proof The Corollary is an easy consequence of Theorem 5.3 and Proposition 7.1. O

Theorem 7.3 Let 2 C R> be an exterior domain with boundary of class CH* with 0 <
a < 1, and A € R\ {0}. Then there exists a constant C such that the following statement
holds true: If u € CX(2)° N CO(2)3, p € CL(£2) solve the Oseen equations (3) in $2, and
iflul < Monas2,

lim sup [u(x)| < M, 27)

|x|—00

then lu| < CM in £2.

Proof For W e C0(352)3 set SW = LW + L2 W + 0% (c+anf)W on 382, T = W2 +
0%-(c + mf)W¥ in 2,7¥ = SW¥ on 3. Then  is a linear mapping from C°(32)*
to CO(2)3 N L>(£2)3 equipped with the supremum norm (see Proposition 3.3 and Prop-
osition 3.4). If ¥, — W in C%(382)3, t¥; — g in CO(2)3 N L*®°(2)3, then g(x) =
limtWi(x) = t¥(x) for each x € £2. Thus, g = ¥ and 7 is a closed operator. By the
Closed Graph Theorem ([21], Theorem II.1.9), there is a constant C; such that

sup [T¥(x)| < Cy sup [¥(y)l.
xe? yeoR

Now letu € C2(£2)3 N C2(2)3, p € C'(£2) solve the Oseen equations (3) in £2 satisfy-
ing lu| < M on 852 and (27). According to Proposition 7.1, there exist s, € R>, pso € R
such that u(x) — Us, p(X) = poo as [X| — o0 and [V(u — us)(X)| = 0(|X|’2) as
|x| = oo. Clearly, |us| < M. According to Theorem 5.3 and Corollary 7.2, the operator S
is continuously invertible and u — ugs = tS~1(u — uy,) in £2. If x € £2, then

[uX)| < [eo] + 787 (@ — us)®)| < M + C1|IS712M.

This proves the theorem. O
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