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Abstract. L2?-solutions of the transmission problem, the Robin-transmission
problem and the Dirichlet—transmission problem for the Brinkman system are
studied by the integral equation method. The necessary and sufficient conditions
for the solvability are given. The uniqueness of a solution is also studied.
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1 Introduction

The integral equation method is one of traditional methods in hydrodynamics
([3], [10],[11], [14], [15],[17]). This method is especially fruitful for transmission
problems ([1], [5], [6], [7],[8], [9],[14] ). In this paper we study the following
transmission problem: Let Q = O, C R™, m > 2, be a bounded open set with
Lipschitz boundary. Denote Q_ = R™\ Q) , where 1 is the closure of {2, . Let
A4+, A_, ¢4+ be non-negative constants and a,, a_, by, b_ positive constants.
We study the transmission problem for the Brinkman system

—Auy +Apuyr +Vpyr =0, V-ur=0 in Qi,

aruy —a_u_ =g, biT(ug,py)ng —b_T(u_,p_)n; +cyup =f on I

Here g € W12(0Q, R™), f € L?(0Q, R™). We look for an L2-solution of the
problem, i.e. the nontangential maximal functions of uy, Vuy and pi are in
L?(09) and the boundary conditions are fulfilled in the sense of the nontangen-
tial limit. This problem was studied in [14] for ¢4 = 0, Ax = 0, and in [6] for
atr =by =1, c; =0. We study the transmission problem for arbitrary Ay, a4,
bt and cy.

In all preceding papers the transmission problem is studied under additional
condition concerning behaviour of u_ and p_ at infinity. To remove this ad-
ditional condition we study behaviour of a solution of the Brinkman system at
infinity and we prove the theorem of Liouville’s type. From this we deduce that
if the nontangential maximal function corresponding to u_ and p_ is in L?(99),
then there exist Uy, € R™, ps € R' such that u_(x) — Uu, p—(X) — poo as
x| — o0, and [u (%) —ta ()] = O(x[2™), [Va_ | +]p_ (x) —pac| = O(x]|:-™).

At the end we study the Robin—transmission and the Dirichlet—transmission
problems. Let G C R™ be a bounded domain with connected Lipschitz bound-
ary, Q = Q, be a bounded open set with Lipschitz boundary such that Q C G.
Denote Q_ = G\ Q, and by n. the outward unit normal of Q.. Let Ay, cy
be non-negative constants and a4, b1 be positive constants. We study by the
integral equation method the Robin—transmission problem for the Brinkman
system

—Auy +Atur +Vpyr =0, V-ur=0 in Qi



aruy —a_u_ =g, b T(uy,py)ng —b_T(u_,p_)ng +cyup =f on 90,
T(u_,p_)n_+c_u_=h ondG.

Here g € W12(0Q, R™), f € L*(99, R™), h € L?(0G). We look for an L>-
solution of the problem, i.e. the nontangential maximal functions of uy, Vuy
and py are in L?(9Q_) and the boundary conditions are fulfilled in the sense
of the nontangential limit. This problem was studied in ([5]) for cx =0, ay =
b =1, =0.

Then the regular Dirichlet—transmission problem is studied by the integral
equation method:

—Auy +Atuyr +Vpyr =0, V-ur =0 in Q,
aruy —a_u_ =g, b T(uy,py)ny —b_T(u_,p_)ng +cyup =f on 90,
u_=h ondG.

Here g € W12(0Q, R™), f € L*(0Q, R™), h € W12(9G). We look for an L>-
solution of the problem, i.e. the nontangential maximal functions of uy, Vuy
and py are in L?(9Q_) and the boundary conditions are fulfilled in the sense
of the nontangential limit. This problem was studied in [8] for a1 = by = 1,
Cy = 0.

2 Formulation of the transmission problem

Let 2 = Q4 C R™, m > 2, be a bounded open set with Lipschitz boundary.
Denote Q_ = R™\ Q. , where Q is the closure of Q. Denote by n = n;, = n®
the outward unit normal of Q4. Let Ay, A_, c; be non-negative constants and
a4, a_, by, b_ positive constants. We shall study the transmission problem for
the Brinkman system

—Auy +Apuyr +Vpyr =0, V-ur=0 in Q, (1)

atup—a_u- =g, byT(uy,py)ng—b-T(u_,p_)ny+ciup =f on o (2)

If u=(u1,...,un) is a velocity field, p is a pressure, denote
T(u,p) = 2Vu — pI
the corresponding stress tensor. Here I denotes the identity matrix and

Vu = %[Vu + (Vu)T]

is the strain tensor, with (Vu)? as the matrix transposed to Vu = (9;uy),
(k,j=1,...,m). Denote V -u = 01u; + ...+ Opnu, the divergence of u.



Now we define an L2-solution of the transmission problem. Let G be an
open set with Lipschitz boundary. If x € G, a > 0 denote the non-tangential
approach region of opening a at the point x by

I x) :={y € G;|x —y| < (1 +a)dist(y,dG)}.

If now v is a vector function defined in G we denote the non-tangential maximal
function of v on 0G by

vi(x) = sup{|v(y)l;y € TG (%)}
If x € G, T'(x) = I'Y(x) then

v(x) = lim  v(y)
y —x
y €I'(x)

is the non-tangential limit of v with respect to G at x.

Let g € W12(0Q, R™), f € L?(09, R™). We say that uy, p+ defined on
Q4 is an L?-solution of the transmission problem (1), (2) if uy, p+ satisfy (1);
ui, pi, (Vu)i are from L2(9S, RY); for almost all x € O there exist the non-
tangential limits of uy, Vuy, py at x and the condition (2) is fulfilled in the
sense of the nontangential limit a.e. on OS2.

3 The surface potentials

We shall look for a solution of the transmission problem by the integral equation
method. The aim of this section is to assemble some basic facts on surface
potentials for the Brinkman system.

.....

the fundamental matrix for the Brinkman system
—Au+Au+Vp=0, V-u=0 (3)

such that E*(x) — 0, Q*(x) — 0 as |x| — oco. If j is fixed, u = (E1j, ..., Em;),
p = @, then u, p is a solution of the Brinkman system (3) in R™\ {0}. If A =0
then the fundamental matrix for the Stokes system is given by

B (x) =

1 |x[>~™ oz z;
T 2w

0 —
g m — 2 |X|m] ) Q] (X) - wm|x|m7

where w,, denotes the surface of the unit sphere in R™. (See [17] or [14].) The
fundamental matrix for A > 0 are studies in Chapter 2 of [17]:

QM (x) = Q°(x),



EA(x) = — Ay (VX)) +

wm||m2

A2(\F/\|X\) 7

A(t) = 2K e (1) N tm/2—2Km/2(t) 1
BT Tom2-1D(my2) T 2m/2-1T(mj2) 12

@ B tm/2_1Km/2+l(t)

2 2m/2-1T(;m)2)

where K, is the modified Bessel function of order v. If A > 0 then

As(t) =

[EAx)| = O(Ix|™™),  [VE*x)| = O(|x['™™) s [x| — co.

Since E* € C®(R™ \ {0}; R™*™), Q* € C=(R™ \ {0}; R™), we can define
for ¥ € L?(052, R™) the single layer potential with density ¥ by

(Ey®)(x / FEMNx —y)®(y) dHpm_1(y) (4)

and the corresponding pressure by

(QAw /QA (x — y)B(y) dHm_1(y). (5)

Then EJW € C°(R™\ 092, R™), Q¥ € C®(R™\ 0Q, R'), VQA¥ — AEJW +
AEQW =0, V- EJ® =0 in R™ \ 9.

EJW can be defined for almost all x € 9 and E)W¥(x) is the non-tangential
limit of ES‘II The nontangential maximal function of Eélll7 VE?‘)\II, Q?‘I\Il with
respect to 0y and Q_ is in L%(99) (see [4], Lemma 2.1.4). Moreover, E} is
a bounded linear operator from L?(9€, R™) to W12(9Q, R™). (For A = 0 see
[14], for A > 0 see for example [5].)

Denote

Ej(y,x) = ~Tx(ENx — y), @ (x — y))n® (x).
For ¥ € L?(0Q, R™) define

where B(x;€) = {y;|x —y| < €}. Then K, , is a bounded linear operator
on L?(0Q, R™). If ¥ € L?(0Q, R™) then there exist the non-tangential limits
[VEAP (x)]+, [Q3P)(x)]+ of VEJT, QAP with respect to Q4 at almost all
x € 09, and

1
T(EA%, Q)W))in® = S — K\, (6)



1
[T(ES‘I”Q?E‘I’)}*HQ == 5‘1’ - K&,A‘I’- (7)

(For A = 0 see [14], for A > 0 see for example [5]. See also [13].)
Now we define a double layer potential. For ¥ € L?(9Q, R™) define in
R™\ 092

(DA = [ KA B() dPoa () (8)
a0
and the corresponding pressure by
(M 9)() = [ M3 B() dHoa (1) )
a0
where
A 1 2my —x)- n®(y) = 2n°(y) L Ix- yR" g
HQ(Xa Y) - m (y X) |y _ X|m+2 ‘y _ X|m A m — 2 n (y) .

Then DA® € C®(R™ \ 00, R™), IA\® € C®(R™ \ 0, R') and VII}® —
ADA® + ADAN® =0, V- DA = 0 in R™\ 99.
Define
Koo =lim [ K3 y) )i, (y). xeon.
O\ B(x;€)

Then Kg » is a bounded linear operator on L?(9; R™) (adjoint to Kg ). There
exists the nontangential limit [DJW¥] (x) of DJW¥ with respect to Q4 and the
nontangential limit [DYW¥]_ (x) of D)W with respect to Q_ for almost all x € 9
and

1 1
(DG @)1 (x) = S ¥(2)+ Koy ®(2),  [D3®]-(x) = = S¥(2)+ Ko ¥(2). (10)
If @ € WH2(9Q, R™) then [|[Dy® (1, + [[VDy®(ls, € L?(9Q) and at almost
all points of 9 there exist the nontangential limits of V. D} ¥ with respect to 4

and with respect to Q2_. Moreover, [T(DAW, I} W)] 1 n® = [T(D)P, 1} ¥)]_n*.
(For A = 0 see [14], for A\ > 0 see for example [5].)

4 Behaviour at infinity

Proposition 4.1. Let A > 0, uy,...,ur and p be tempered distributions in
RF k>2 u=(up,...,up). If ~Au+ A u+Vp=0,V-u=0 in the sense of
distributions in R¥, then ui, ..., u; and p are polynomials.

Proof. Denote by Ff the Fourier transformation of f. Since —Au + Au +
Vp =0, V-u =0, the Fourier transformation gives

x| Fu(x) + A\Fu(x) + xFp(x) = 0, (11)



x - Fu(x) = 0. (12)
Using (11), (12)
0 =x- [(Ix]* + N)Fu + xFp(x)] = [x[*Fp(x).
Thus Fp = 0 on R*\ {0}. If x € R\ {0} then
0 = [x[*Fu(x) + AFu(x) + xFp(x) = (Ix|* + A) Fu.

Therefore Fu; = 0 in R* \ {0}. According to [16], Chapter II, §10, there exist
n € Ng and constants a, such that

Fuj =Y aad*s.

la|<n
Set
P](‘r) = Z o (—iz)®.
la|<n
Then

FP= Y auFl(=ia)*1] = Y aad”dy = Fu;.

le|<n loe|<n

Since the Fourier transform is an isomorphism on the space of tempered distri-
butions we infer that u; = P;. Similarly for p.

Proposition 4.2. Let u, p be a bounded solution of the Brinkman system
—Au+ A u+Vp=0,V-u=0inR™\F, where F is a compact subset
of R™, m > 2, A\ > 0. Then there exist ps € R', Use € R™ such that
P(X) — Doo, U(X) — oo as x| — o0, Moreover, [p(x) — po| = O(x[1"™),
[u(x) — us| = O(Jx[2™™), |Vu(x)| = O(|x|*"™) as |x| — oo. If A > 0 then

Uy = 0.

Proof. Fix ¢ € C*(R™) such that ¢ = 0 on a neighbourhood of F' and
¢ =1 on R™\ B(0;r) for some r > 0. Define t = pu, p = pp on R™ \ F;
=0, =on F. Denote (f1,..., fm)’ = —Au + A\t + Vp, fmpp=V-u, f=
(fl’ ce fm_tl)T. Define the (m+1) x (m~+ 1) matrix function E* by Ej} = Ef‘j,
ErAnH,j = EJ/‘\,mH = Qj)-‘ for i,j < m, Emi1mi1(x) = 0(x) + Ax[>~™/[(m —

2)wm]. Denote (vy,...,0m,q)T = E*f,v = (v1,...,0m)T, where * means the
convolution. Then —Av +Av+ Vg = (f1,..., fm)", V-V = frnq1 by [17], §2.1.
According to a behaviour of E* at infinity we see that |v(x)| = O(|x|>~™),

|Vv(x)| + |q(x)| = O(]x|'™™) as |x| — oo. Since the functions u; — v;, p — ¢
are bounded, they are tempered distributions (see [2], Example 14.22). Since
—A(Q—v)+AMa—-v)+V({H—¢) =0,V-(u—v)=0in R™, Proposition 4.1
gives that %; —v;, p— ¢ are polynomials. Since @; —v;, p — ¢ are bounded there
exist Poo € R, U € R™ such that p — ¢ = poo, U — V = Us. If A > 0 then
0=—-A@—v)+ANa—v)+ V(P —¢q) = Auy and thus u, =0.



5 Solution of the transmission problem

Put by = bi/ay, ¢+ = cy/ay. If 0x = aguy, pr = aspy then uy, py is
an L?-solution of the transmission problem (1), (2) if and only if @it, j+ is an
L2-solution of the transmission problem

—Auy + A0y +VpL =0, V-ur =0 in Q, (13)

i, —u_ =g, b T(uy,py)n—b T(a_,p_)n+éa, =f ondQ (14)
Let ® € W12(9Q, R™), ¥ € L2(8Q, R™). Put

Uy = DY@ + E* @, po=15"® + Q5" ¥ in O, (15)

7'1>\+’)\_ (@, ¥) =2+ Ko ®— Koy ®+ Eé+‘1’ B Eé_\k

AT (B, W) = by (@ — K, — b [~ — Kp |+ 6By
b, [T(DY ®, 115 ®)].n® — b_[T(D) @, 115, ®)]_n®.

T Ar A A4 A_,ba b G . .
The operator 7A+A=b+:b=Er = [pAHA= o2+ 7= is a bounded linear op-

erator on WhH2(9Q, R™) x L*(02, R™). The functions G4, p+ given by (15)
are an L?-solution of the transmission problem (13), (14) such a_(x) — 0,
p_(x) — 0 as [x| — oo if and only if 7A+A=0+:b—c+ (P W) = [g, f].

Lemma 5.1. Denote R,, = {v(x) = Ax+ b;b € R™, A = (a;;) an anti-
symmetric matrix, i.e. a;; = —a;;} the space of rigid motions. Let u € R,
M = {x;u(x) =0}. If Hp,—1(M) > 0 then u = 0.

Proof. There exist a matrix A = (a;;) with a;; = —aj; and b € R™ such
that u(x) = Ax + b. Suppose first a;; # 0 for some indices 4,j. Denote
Li = {X; ;11 —|— e —|— AimTm + bz = O}, Lj = {X; Cle.Il + e —|— ajmxm + bz = O}
Since Qi = G55 = O, Qj; = —Qgj 7£ 0 we have Hm—l(Li N LJ) = 0. This
contradicts to M C L; N L;. Hence A = 0 and u is constant. M # () forces
u=0.

Proposition 5.2. Let uy, p+ be an L?-solution for the transmission problem
(1), (2). If f =0,g =0 and u_(x) — 0, p_(x) — 0 as |x| — oo then uy =0,
p+ =0.

Proof. [p(x)| = O(|x['™™), [u(x)| = O(x|*"™), [Vu(x)| = O(|x['"™) as
|x| — oo (see Proposition 4.2). Using Green’s formula

0= /u+ 0T (g, pr)n —b-T(u_,p_)n+ciuy] dHm—
aQ



= by / uy - T(ug, py)n™ dHy, 1 + / crlug|? dHom

0 a0
+ lim b= / u_-T(u_,p_ ) =b, /[2|@u+|2 + Ay uy]?)
r—00 a
T o ABOm) o
b_a_ -
+ / C+|u+‘2 dHrrL—l + aa /[2‘Vu+|2 + >\_|u+‘2] dH»m
a0 T g,

Denote ©w = u4 on Q4. Then Vu=0in R™ \ 9. Denote by wg,wr,...,wy all
components of R™ \ 09, where wy is the unbounded component. According to
[12], Lemma 3.1 there exist antisymmetric matrices A7 and vectors B? such that
u(x) = A’x + B’ in w;. Since u(x) — 0 as |x| — oo, we deduce that u =0 in
wo. If dwyNOw; # O then the condition aju; = a_u_ gives that A7x+B7 =0
on dwy N Ow;. Lemma 5.1 gives that A7x + B = 0. We can continue by this
way and prove that u = 0.

Proposition 5.3. The operator 7+*~+2=:¢+ is an isomorphism on the space

W12(90, R™) x L*(0Q, R™).

Proof. The operator 7%:%0+:%=:0 is a Fredholm operator with index 0 on

Wh2(0Q, R™) x L?(0S2, R™) by [14]. If A > 0 then Kq » — Kq o is compact on
W12(99, R™), K{ , — K o is compact on L?(9Q, R™), Eg — EY is a compact
operator from L?(9Q, R™) to W12(9Q, R™) (see [5], Theorem 3.4). Since EQ
is a bounded operator from L2?(9$, R™) to W2(0Q, R™), it is a compact lin-
ear operator on L2(9Q, R™). Thus 7+ A=b+b=& _ 70.0.b4.6-0 g 5 compact
operator on W12(9Q, R™) x L?(0, R™). Hence 72+~ :0+:b=:¢+ is a Fredholm
operator with index 0. Therefore it is enough to prove that 7 +A=:0+:0-:¢+ g
injective. o

Let (®,%®) € W12(0Q, R™) x L2(0Q, R™), T +A=0+:0-¢+( W) = 0. Let
@4, p+ be given by (15). Then iy, p+ is an L2-solution of the problem (13),
(14) withg =0, f = 0 such u_(x) — 0, p_(x) — 0 as |x| — oo. Proposition 5.2
gives that Gy = 0, p+ = 0. Thus U4, ps is an L?-solution of the problem (13),

ay —u- =0, T(ay,py)n—T({@_,p-)n=0 on IN.
Denote 5\+ =X, A= Ay,
A A A A .
vi=Dg ®+E5VY, ¢ =15P+Qq ¥, inl,
V.= -Dy®—E)W®, ¢, =-T5®—Qy®, inQ_.
Using boundary behaviour of potentials we obtain on 02

vi=®+i_ =9,



vo=-[-®+u4] =9,
[T(V+7Q+)HQ]+ =9 =+ [T(ﬁ—aﬁ—)nﬂ}— = ‘Ila
[T(v,,q,)nﬂ], = _[_‘I’ + [T(ﬁJraﬁJr)nQ]vL =v.

Therefore v4, g+ is a solution of the transmission problem
—Avy + S\ivi 4+Vgr =0, V-vz=0 in O,

vi—v_=0, T(vi,¢x)n—T(v_,g-)n=0 on 99,
v_(x)—0, ¢_(x)—0 as|x|— occ.

Proposition 5.2 gives that v =0, g+ = 0. We have on 0f)
P = Vi = 0,

¥ = [T(vy,q4)n"; = 0.

Theorem 5.4. Let g € WH2(9Q, R™), f € L?(0Q, R™). Then there exists an
L2-solution of the transmission problem (1), (2). If uy, p+ is an L?-solution
of the problem then there exist p,, € R', us, € R™ such that u_ (X) = Ueo,
p_(X) — Poo as x| — co. If A\_ > 0 then uy = 0. Fix po, € R, uy, € R™. If
A_ > 0 suppose that us, = 0. Then there exists a unique L?-solution uy, p+
of the transmission problem (1), (2) such that u_(x) — U, P—(X) = Poo as
|x| — oc.

Proof. If uy, py is an L3-solution of the problem then there exist po € R!,
U € R™ such that u_(X) — Ueo, p—(X) — Poo as |x| — oco. If A > 0 then
Uy = 0. (See Proposition 4.2.)

Fix peo € R, use € R™. If A\_ > 0 suppose that u,, = 0. Put u_ =
V_ + Uso, Ut = V+, D = ¢— + Do, P+ = G¢+. Then ug, py is a solution of the
problem (1), (2), u_(X) — U, P—(X) — P if and only if vy, ¢4 is a solution
of the transmission problem (1),

A4 Vy—a_V_ =g+a_ U, byT(vy,qi)n—b_T(v_,q_)n+cyvy =f—b_poon,

v_(x) — 0, g_(x) — 0. According to Proposition 5.3 there exist ® € W12(9Q, R™),
W € L?(09Q, R™) such that

vi=a' (DY @+ EN W], qr =ai'[IN®+ QN ®] in Qi

is a solution of the problem. The uniqueness of a solution follows from Propo-
sition 5.2.



6 Robin—transmission problem

Let G C R™ be a bounded domain with connected Lipschitz boundary, {2 = Q4
be a bounded open set with Lipschitz boundary such that Q@ C G. Denote
Q_ =G\ Q, and by ny the outward unit normal of Q1. Let Ay, c+ be non-
negative constants and a+, b+ be positive constants. We shall study the Robin—
transmission problem for the Brinkman system (1), (2) accompanied with the
condition

T(u_,p_)n_+c_u_=h ondG. (16)

Let g € W12(9Q, R™), f € L?(09, R™), h € L?(0G, R™). We say that ux,
p+ defined on Q4 is an L?-solution of the Robin—transmission problem (1), (2),
(16) if uy, py satisfy (1); ui, pi, (Vu)i are from L*(904, RY); for almost
all x € 004 there exist the non-tangential limits of uy, Vug, p4 at x and the
conditions (2), (16) are fulfilled in the sense of the nontangential limit a.e. on
o0_.

Put Bi =by/ay, ¢y =cifagr. f Gy = agug, pr = axpy then ug, py is
an L?-solution of the Robin-transmission problem (1), (2), (16) if and only if
@4, P+ is an L2-solution of the Robin—transmission problem (13), (14),

T(G_,p_)n_+c_u_=a_h on0G. (17)

Let ® € Wh2(0Q, R™), ¥ € L?(0Q, R™), © € L?*(0G, R™). Let Uy, p4 be
given by (15),

U =Dy ®+Ey U+EN O, j_ =Ty ®+Qy ¥+Qy © inQ_. (18)

Then Uiy, Py is an L2-solution of the Robin-transmission problem (13), (14),
(17) if and only if

RMA- Db Che (@, 0, ©) = [g, f,a_h],
where
RAAbb e (W @) = [1) (8, W) — B O,
A (@, )~ boT(EY ©,Q% O)n.
%@ — K4\ O+ T(Ey ¥+ Dy &, Q5 ¥)n_ +c_(Ey ©+Ey ¥+ Dy @
Lemma 6.1. The operator RMA=bebosériee s g Fredholm operator with in-
dex 0 on W12(9Q, R™) x L*(08), R™) x L*(0G, R™).

Proof. R: (®,¥,0) w [r, (@, %), """ (2, ®),1© — K O]
is a Fredholm operator with index 0 on W12(99, R™)x L?(92, R™)x L?(0G, R™)
by [14] and Proposition 5.3. If A > 0 then K¢, , —K{, 4 is compact on L*(dG, R™),
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E)—EY is a compact operator from L2(9G, R™) to W12(9G, R™) (see [5], The-
orem 3.4). Since E2 is a bounded operator from L?(dG, R™) to W!2(0G, R™),
it is a compact linear operator on L?(0G, R™). Thus R M +A-0+0-8+¢— _ Riga
A_,bi,b

compact operator. Hence RM> —¢+:¢~ is a Fredholm operator with index

0.

Lemma 6.2. Let 0y, py be given by (15), and u_, p_ by (18). If uy = 0,
ﬁi:OiHQi then@:O,‘PzO,@zO.

Proof. Define
A A A A A A . o
v=Dg ®+E,;YH+E;0, ¢=II2+Q, ¥+QeO® inw=R"\G.

Continuity of a single layer potential gives that v. = u_ = 0 on 0G. Since
v(x) = O(|x]>™™), |[Vv(x)| + |¢(x)| = O(]x|'™™) as |x| — oo then Green’s
formula gives

0= /V ‘T(v,q)n” dHp,—1 = /[|2@V|2 + A |v[}] dH,p.
ow w
Since Vv = 0 we have v € Ry, by [12], Lemma 3.1. Behaviour of potentials
at infinity gives that v(x) — 0 as |x| — oo. This forces that v = 0. Since
Vg = Av — A_v = 0 we deduce that ¢ is constant. Behaviour of potentials at

infinity gives that ¢ = 0.
By virtue of (6) and (7)

®=T(u_,p_)n_ —T(v,qn_ =0.

Denote wy = Q4, w— = R™\wy. If 4y, py is given by (15) in wy then Gy, py
is an L%-solution of the transmission problem

—Aly + A4 +Vpe =0, V-ix =0 in wy,
ﬁ+ —ua_ = 0, E+T(ﬁ+,ﬁ+)n+ - BfT(ﬁf,];,)rLF + é+ﬁ+ =0 on 8w+.

In particular, 75+~ """ % (&, W) = 0. Proposition 5.3 gives that & = 0,

¥ =0.

Proposition 6.3. Let uy, p+ be an L?-solution of the Robin-transmission
problem (1), (2), (16) withg=0,f =0, h=0.

o If \{ +A_+cy+c_>0thenuyr =0, py =0.

o If \y + A_ 4+ c4 +c_ =0 then px = 0 and there exists a rigid motion
v € R, such that uy =v/ay.

11



Proof. Using Green’s formula

0=0b_" /u— b4 T(uy, pp)ny = b-T(u_, p-)ny + cpuy] dHpm
o9

—l—/u, T(u_,p_)n_ +c_u_] dHp—1 = /[2|@u,|2 + A |u_|?] dH,,
oG Q-

b A 2
+Z+b+ /[2|Vu+|2+)\+|u+|2] de+/c_|u_|2 de_ﬁ/Mde_l.

a_

Q4 oG a0

Thus @ui =0, Aqux = 01in Q, c;ur = 0 on 9N, ccu_ = 0 on IG.
Define v .= ayuy on Q4. Denote by wr,...,wy all components of G \ 9.
According to [12], Lemma 3.1 there exist antisymmetric matrices A7 and vectors
B’ such that v(x) = A7x + B in wj. If w; NOw; # 0, wj C Oy, w; C QO
then ajuy —a_u_ = 0 gives (47x + B/) — (A’x + B%) = 0 on dw; N dw;.
Lemma 5.1 gives that (47x + B7) — (A’x + B?) = 0 in R™. Thus v € R,,. If
A+ +A_ + ¢4 +c- >0 then Lemma 5.1 gives that v = 0.

Since Vp+ = Aug — Apuy = 0 there exist constant di,...,d; such that
p =d; on wj, where p = py on Qp. If dw; N Ow; # 0, w; C Oy, w; C Q_ then
0=0b,T(ug,py)ny —b_T(u_,p_)n; + cyuy = (byd; — byd;)ny. Therefore
there is a constant d such that py = d/by. On 0G we have 0 =T'(u_,p_)n_ =
—dn_/b_. This gives d = 0.

Theorem 6.4. Let Ay +\_+c,+c_ > 0. Then RM2-:b+b=+:¢~ js an isomor-
phism on WH2(9Q, R™) x L?(9Q, R™) x L*(0G, R™). Let g € WH2(9Q, R™),
f € L2(0Q,R™), h € L*(0G,R™). Then there exists a unique L2-solution
uy, pt of the Robin—transmission problem (1), (2), (16). Moreover, uy €
H32(Q4, R™), p+ € HY/?(Q4) and

lutllmsreny + la=llgsre@oy + o+l a2 + 1P= a2y

< Ollgllwr20,rm) + Ifllz200,rm) + (A2 (0a,7m), ]
where C' does not depend on g, f and h.

Proof. R’\ﬂ)‘— b4 b-.&1 e~ ig 4 Fredholm operator with index 0 by Lemma 6.1.
Let RAM+A—b+:b—Cric—($ W O) = 0. Let Gy, py be given by (15), and G_, p_
by (18). Then 1y = 0, P4 = 0 by Proposition 6.3. Lemma 6.2 gives ® = 0,
¥ =0, ® = 0. Since RM*—b+:2—¢+.¢~ ig 3 Fredholm operator with index 0,

we infer that RA+A—b+b-e+:e— js an isomorphism.
Let g € W12(0Q, R™), f € L?(09Q, R™), h € L*(0G, R™) be fixed. Put

(®,9,0) = (R} P bfoe) g fa b,

12



Define 1y, py by (15), and t_, p_ by (18). Then u, p+ is an L?-solution of
the Robin—transmission problem (13), (14), (17). Denoting uy = 04 /ax, py =
P+ /as we obtain an L? solution of the problem (1), (2), (16). The uniqueness
follows from Proposition 6.3. The rest is a consequence of the fact that Eg\zi :

L2094, R™) — H32(Qy,R™), Dt « Wh2(0Qx, R™) — H3*(Qy,R™),
of L L2094, R™) — HY2(Qu, R™), It - WH2(0Qy, R™) — HY?(Qy, R™)

are bounded linear operators (see [5] and [14]).

Theorem 6.5. Let A\, = A\_ = ¢, = c. =0, g € WH2(0Q,R™), f €

L?(0Q, R™), h € L?(0G,R™). Then there exists an L?-solution uy, p+ of
the Robin—transmission problem (1), (2), (16) if and only if

/v f dHom_1 + /b_v ‘hdH,_ 1 =0 YveER,,. (19)
o oG

The general from of an L?-solution of the problem (1), (2), (16) is

uy +v/ay, pt, v ERp. (20)

Proof. Let u, p+ be an L2-solution of the Robin—transmission problem (1),
(2), (16), v € Ry, Then

/ v - T(uy,pe)n® dH,,_1 =0
o004

(see [14]). Thus

0:b+/V-T(u+,p+)n++b, / v-T(u,7p,)n,:/v-f—i—/b,v-h.
a0y - o0 oG

Denote by X®- the space of [g,f,h] € X = W12(9Q, R™) x L?(09Q, R™) x

L?(0G, R™) satisfying (19). We have proved that R0’0’5+’B—’0*0(X) c Xb-.
Therefore codim R0*075+75—70’0(X) > codim X?~ = dimR,,.

Let [®, ¥, O] € Ker RO%+b-:0.0. Let @iy, p, be given by (15), and 0_,
p— by (18). According to Proposition 6.3 there exists v € R,, such that
uyr =v,pr =0. If v=0then ® =0, ¥ =0, ® = 0 by Lemma 6.2.
Thus dim Ker RO’O’EJr’E*’O’O < dimR,,. Since R0’0’5+’E*’0’0 is a Frqdhplm op-
erator with index 0 by Lemma 6.1, we deuce that dimKer R%-0:0+-0.0 —
codim R%0:b+:b=:0.0(X) = dim R,,,. Therefore RO:0:0+:0-:0.0(X) = X0~

Let now [g,f,h] € X. We have proved that there exist [®, ¥, ®] such that
RO-0:b+6-00[p W O] = [g,f,a_h]. Let iy, j; be given by (15), and @_, j_
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by (18), uy = 04 /ay, p+ = p+/ar. Then uy, py is an L%-solution of the
Robin-transmission problem (1), (2), (16). Easy calculation yields that (20)
gives another solution of the problem. Proposition 6.3 gives that each solution
of the problem is of the form (20).

7 Regular Dirichlet—transmission problem

Let G C R™ be a bounded domain with connected Lipschitz boundary, {2 = Q4
be a nonempty bounded open set with Lipschitz boundary such that Q C G.
Denote Q_ = G\ Q, and by ny the outward unit normal of Q4. Let Ay, cy
be non-negative constants and a4, by be positive constants. We shall study
the regular Dirichlet—transmission problem for the Brinkman system (1), (2)
accompanied with the condition

u_=h ondG. (21)

Let g € W12(0Q,R™), f € L?(0Q, R™), h € WY2(dG, R™). We say that
Uy, p+ defined on Q4 is an L%-solution of the regular Dirichlet-transmission
problem (1), (2), (21) if ux, p+ satisfy (1); ui, pi, (Vu)i are from L2(0Q4, RY);
for almost all x € 004 there exist the non-tangential limits of uy, Vuy, py
at x and the conditions (2), (21) are fulfilled in the sense of the nontangential
limit a.e. on ON)_.

Put by = by/ay, ¢y =cifar. If0y =ayuy, pr = agppy then uy, py is an
L?-solution of the regular Dirichlet—transmission problem (1), (2), (21) if and
only if iy, p+ is an L2-solution of the regular Dirichlet-transmission problem
(13), (14),

- =a_h onJG. (22)

Let ® € W12(0Q, R™), ¥ € L?(09Q, R™), © € L?(0G,R™). Let uy, py be
given by (15), and @_, p_ be given by (18). Then @iy, py is an L?-solution of
the regular Dirichlet—transmission problem (13), (14), (22) if and only if

Ap A by b @
R3Y PP (P, W, 0) = [g,f,a_h],
where
Ry (@, 0, 0) = [N (8, W) — By O, 7 Pt (@, W)
~b_T(Ey ©,Q5 ©)ny, Dy @+ Ey ¥ + E ).
Proposition 7.1. Let ui, p+ be an L2-solution of the regular Dirichlet—

transmission problem (1), (2), (21) with g = 0, £ = 0, h = 0. Then there
exists a constant ¢ such that uy =0, pL = ¢/bL.

Proof. Using Green’s formula

0=0b_" /u, b T(ag, pi)ny —b-T(u_,p-)ny + cruy] dHp—
a0
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N / u_ - T(u_,p)n dHp_s = / 2[Vu_? + A_|u_[?] dH,,
Flel Q_

b . 2
+Z+b+ 21Vur |2 + A fug 2] dHom +/”‘t¢ AHope .
oy 89 -

Thus Vus = 0. According to [12], Lemma 3.1 there exist an antisymmetric
matrix A and a vector B such that u_(x) = Ax + B. Since u_ = 0 on 9G,
Lemma 5.1 gives that u_ = 0. Since Vp_ = Au_ — A_u_ = 0 there exists a
constant ¢ such that p_ = ¢/b_. Let w be a component of Q. According to
[12], Lemma 3.1 there exist an antisymmetric matrix A and a vector B such
that uy (x) = Ax+ B in w. Since uy =a_u_/a; =0 on Jw, Lemma 5.1 gives
that uy = 0 inw. Since Vpy = Auy —Ajuy = 0 there exists a constant C' such
that py = C in w. We have 0 = b, T(uy,pr)ny —b_T(u_,p_)ng +cruy =
—b.Cny +b_(¢/b_)ny on dw. Hence py = C = ¢/by.

Theorem 7.2. Let g € W12(9Q, R™), f € L?(0Q, R™), h € WY2(0G, R™).
There there exists an L?-solution uy, p+ of the regular Dirichlet—transmission
problem (1), (2), (21) if and only if

/n+ g dHpo1+a_ /n_ -hdH,,_.1 =0 (23)
o0 oG

The general form of a solution of the problem is uy, p+ + ¢/by, where ¢ is a
constant.

Proof. Suppose that uy, p+ be an L2-solution uy, py of the regular
Dirichlet—transmission problem (1), (2), (21). Then

O:a+/n+-u++a_/n_~u_:/n+~gde_1+a_/n_~hde_1.
o0 le] oQ le]

R:(®,%,0)  [r " (&, @), i)+ 00 (& W), E%O)] is a Fredholm
operator with index 0 from X = WH2(9Q, R™) x L?(0Q, R™) x L?(0G, R™)
to the space Y = W12(9Q, R™) x L*(992, R™) x W12(dG, R™) by [14] and
Proposition 5.3. If A > 0 then E} — E2, is a compact operator from L?(9G, R™)
to W2(8G, R™) (sec [5], Theorem 3.4). Thus R);7* """~ — Ris a compact

operator. Hence Rg’)"’b*’b’ﬁ* is a Fredholm operator from X to Y with index

0. Denote by Z(a-) the set of all [g,f, h] € Y satisfying (23). We have proved
that R} (X) c Z(1). Thus codim R}y """~ (X) > 1.

Ay A by b ey

Let now R, (®,¥,0) = 0. Let g, py be given by (15), and
@_, p_ be given by (18). Then G4, p+ is an L2-solution of the regular Dirichlet—
transmission problem (13), (14), (22) with g =0, f = 0, h = 0. Proposition 7.1
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gives that there exists a constant ¢ such that uy = 0, p1 = C/Bi. Ife=0

then & =0, ¥ =0, ® = 0 by Lemma 6.2. Therefore dim Ker R?)+’A"5+’B"E+ <

1. Hence 1 < Coding%/\*’b*’b”E*(X) = dimKer]{i:‘,*’)"’b*’b”6+ < 1. This

forces R)[‘,*’)‘”B*’E”&* (X)=2(1).
Suppose now that (23) is fulfilled. We have proved that there exists [®, ¥, ©] €

Ao A—by b ey

X such that R} (®,9,0) = [g,f,a_h]. Let a;, p;s be given by
(15), and 6_, p_ be given by (18). Then 1y, p+ is an L%-solution of the regular
Dirichlet-transmission problem (13), (14), (22). So ux = U+ /ax, p+r =ps/as
is an L2-solution of (1), (2), (21). If ¢ is a constant, then easy calculation gives
that uy, p+ + ¢/by is a solution of the problem, too. Proposition 7.1 gives that
each solution of the problem has this form.
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