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Li-solution of the Robin problem for the Oseen system

Dagmar Medkova
Abstract: We define Oseen single layer and double layer potentials and
study their properties. Using the integral equation method we prove the ex-
istence and uniqueness of an L?-solution of the Robin problem for the Oseen
system.
Keywords: Oseen equations, Robin problem, single layer potential

1 Introduction

The Oseen system is one of the basic system of equations in hydrodynamics.
The most studied problem for the Oseen system is the Dirichlet problem (see
[6], [1], [2], [3], [4]). We shall study another problem - the Robin problem for
the Oseen system. (For the formulation of the problem see for example [14].)
Let Q C R™ be a domain with compact Lipschitz boundary, m = 2 or m = 3.
Denote by n?(x) (or shortly n) the outward unit normal of Q at x € 9Q. If
u = (ug,...,un,) is a velocity, and p is a pressure, we define by

T(u,p) = 2Vu — pI (1)

the corresponding stress tensor, where I denotes the identity matrix and
~ 1 T
Vu= i[Vu + (Vu)*]

is the deformation tensor, with (Vu)? as the matrix transposed to Vu. Let
A € R\ {0} be given, h € L>®°(99), h > 0. We shall study the Robin problem
for the Oseen system

—Au+2X\0u+Vp=0 inQ2, V-u=0 in Q, (2)

T(u,p)n— Anju+hu=g on 0f. (3)

(If h = 0 we say about the Neumann problem for the Oseen system.) We
shall study a so called L4-solution of the problem (2), (3) for g € L4(9€2, R™),
i.e. the non-tangential maximal functions of u, Vu and p are in L?(0Q2) and
the condition (3) is fulfilled in the sense of the non-tangential limit. We use
the integral equation method. We define Oseen single layer and double layer
potentials and prove that they have similar properties like corresponding Stokes
potentials. It is a tradition to look for a solution of the Neumann and Robin
problems in the form of a single layer potential. It fails for domains with holes
(similarly like for the Stokes system). So, we shall look for a solution in the
form of a modified single layer potential.

The integral equation method was used for the Neumann problem for the
Stokes system - i.e. for A = 0 and h = 0 (see [22]). If Q is bounded and ¢ is



close to 2 then the Neumann problem for the Stokes system is solvable if and
only if

/g~wdH2:0
o0

for all rigid body motions w (see [22]). For the Oseen system (i.e. A € R\ {0})
we prove a totally different result:

Let Q be bounded and 1 < q < oo, h € L*(9Q), h > 0. If ¢ # 0 suppose
moreover that Q has a boundary of class C*. If g € LI(92, R™) then the Robin
problem (2), (3) has a unique L7-solution.

For the exterior Robin problem for the Stokes system we prove the following
result:

Let © be an unbounded domain with compact Lipschitz boundary and 1 <
g < oo, he L*(0Q), h > 0. If ¢ # 0 suppose moreover that Q has a boundary
of class C*. Let g € L9(0Q, R™). If u, p is an Li-solution of the Robin problem
(2), (3) then there exists a constant poo and a vector Us such that p(X) — Poo,
u(x) — Us as [x| — co. On the other hand if ps € R, Uy, € R™ are given
then there exists a unique L1-solution u, p of the Robin problem (2), (3) such
that p(X) — Poo, U(X) = U as |X| — 0.

2 Definition of the problem

Let Q C R™ be a domain with compact Lipschitz boundary, m = 2 or m = 3.
Fix a > 0. If x € 99 denote the nontangential approach regions of opening a
at the point x by

I'x)=T.(x)={y € Q|x—y| < (1+a)dist(y,0Q)}.

If now v is a vector function defined in 2 we denote the nontangential maximal
function of v on 02 by

vi(z) = sup{|v(y)[;y € [(x)}.

It is well known that if v* € L2(9€) for one choice of a, where 1 < ¢ < oo, then
it holds for arbitrary choice of a. (See, e.g. [11] and [26], p. 62.) Next, define
the nontangential limit of v at x € Q)

v(ix)= lim v(y)
y — X
y € I'(x)

whenever the limit exists.

Fix A € R', 1 < ¢ < oo, g € LYON,R™), h € L>=(09). We say that
u € C®(Q,R™), p € C®(Q) is an Li-solution of the Robin problem for the
Oseen system (2), (3) if (2) holds true, |u|*,|Vu|*, p* € L1(09), there exist the



nontangential limits of u, Vu and p at almost all points of OQ and (3) holds in
the sense of the nontangential limits at almost all points of 0S).

Let u, p be defined on Q. Denote w = {Ax;x € Q}, 6(x) = (21)2u(x/(2))),
p(x) = 2Ap(x/(2X)). Easy calculation yields that u, p is an L?-solution of the
Robin problem for the Oseen system (2), (3) if and only if @, p is an L%-solution
of the Robin problem for the Oseen system

AR+ T+ VF=0, V-0=0 inw, (4)
T(q,p)n — %nlﬁ +ha=g on Ow, (5)

where
h(x) = 2X\h(x/(2))),  &(x) = 2Xg(x/(2))). (6)

So, we can restrict ourselves to the case 2\ = 1.

3 Stokes potentials

Let x = [z1,...,%m] € R™, where m = 2,3. Denote the ball B(x;r) = {y €
R™;|x —y| <r}. For 0#x¢€ R™ and j,k € {1,...,m} we define the Stokes
fundamental tensor by

1 1 ;T -
1 1 T;Ty
Ejnlx) = .- [0 In PR . m=2 8)
X
Qu(x) = : (9)

Him—1(0B(0; 1)) |x|™
Here 0;, = 1 for j = k, §;; = 0 otherwise and Hj, denotes the k-dimensional
Hausdorff measure normalized so that H, is the Lebesgue measure in RF.

Let © C R™ be an open set with compact Lipschitz boundary and ¥ €
L1092, R™), 1 < q¢ < oo. Define the Stokes single layer potential with density
¥ by

(Ba®)) = [ Ex=y)¥(y) dHons(3)
a0
and the corresponding pressure by

(Qa)(x) = / Qx — y)B(y) dHps(y)
o0

whenever it makes sense. Then the couple (Eq®, QqW¥) € C*®(R™\ 9Q, R™ 1)
solves the Stokes system

Au=Vp, V-u=0 (10)



in R™\ 09. Moreover, EqW®¥(x) is the nontangential limit of Eq® with respect
to Q and R™ \ Q at almost all x € 2. We have (Qqo¥)* € L(99), |[VEqQ¥|* €
L1(9€). If  is bounded or m = 2 or [ ¥ dH,,—; = 0 then |[Eq®¥|* € L1(9Q).
(See [22].) (If © C R? is unbounded and [ ¥ dH; # 0 then |Eq¥|* = co on
o0.)

For y € 00 we define K(-,y) = T(E(- —y),Q(- —y))n®(y) on R™\ {y}.
We have

_ m (y; — ;) (yr — o) (y — x) - n%(y)
Kko) = 37, B ) =y |
Denote
_ 2 (g —x)(y —x)-0(y) | niiy)
e Cy) = 37— @B ) {‘ s T y—xm } ‘

For @ € L1(09), R™) we define the Stokes double layer potential with density
¥ by

(Do ®)( /KQ %, ¥)¥(y) dHpm-1(y), x€ R™\0Q

and the corresponding pressure by

o)) = [ 12(x = y)W(y) dHoi(y), x € R\ 06
o

Then the pair (DoW®,Ho®) € C°(R™ \ 92)™ T solves the Stokes system (10)
in R™ \ 09Q. For x € 9Q we denote

(Ka®)) =lim [ KOxy)¥(y) Mo (),
OO\ B(x,5)

(Ko®)(x) = lim / Ky, x)®(y) dHm-1(y)-
A0\ B(x,5)

Then Kq, K{, are bounded linear operators on L7(9€, R™). Moreover, there
exist the non-tangential limits of VEqW, QoW and DoV at almost all points
of 09Q. If we denote by [f]+ the non-tangential limit of f with respect to  and
by [f]- the non-tangential limit of f with respect to R™ \ ©Q, then

[DaWli(x) = +,W(x) + Ka(a), (11)

[T(Eq®,Q0P)]sn® = %xp — KL, (12)

(See [22].)



4 Oseen fundamental tensor

If Ok (x), Z;(x) are tempered distributions then Oy, Z; is called a fundamental
tensor for the Oseen equation (4) in R™, m = 2,3, if

—AOji + 010, + 0; Z3(-) = 0ji,
MO0+ ...+ 0mOmi =0

for j,k =1,...,m. We are interested in fundamental tensors such that O, (x) —
0, Z;(x) — 0 as |x| — oo. The existence of such fundamental tensor was proved
in [10], §VIL.3. The explicit formula of the fundamental tensor of the Oseen sys-
tem is very complicated. We only gather properties of the fundamental tensor
(see [10] or [24]): We have Oji, = Oy; € C*(R™ \ {0}),

Zk(x) = Qr(x), (13)
If 8 is a multi-index, then we have
3P0, (x)] = O(|x|F=m=18D/2) a5 x| — . (14)
If |z| # |21]| then
lim |O(rz)|r™~Y/2 = 0. (15)
T—00
If r >0 and ¢ > 14 1/m then we have
|IVO,i| € LY(R™ \ B(0;r)). (16)
Denote
Rjr(x) = Oj(x) — Eji(x). (17)
If m = 3 then
0°R(x)| = O(|z|71*) s [x| — 0. (18)
If m = 2 then
[R(x)|=0(1) as x| =0, (19)
IVR(x)| = O(ln|x|) as x| — 0, (20)
10°R(x)| = O(|z|~1*1*1) as |x| = 0 for o > 2. (21)
Lemma 4.1. If\ # 0 and uy, . .., un, p are tempered distributions in R™ satis-
fying (2) in R™ in the sense of distributions, then ui, . .., Uy, p are polynomials.

Proof. For R3 [15], Proposition 6.1. The proof is literally the same for other
dimensions.
Corollary 4.2. Let m =2 or m = 3. Then there exists a unique fundamental
tensor Oji(x), Z;(x) for the Oseen equation (4) in R™ such that O;,(x) — 0,
Zj(x) — 0 as |x]| — oo.

Proof. If Ojx(x), Z;(x) is another such fundamental tensor then O, — Ojy,
Z;—Z; is a solution of the equation (4) in R™. Lemma 4.1 gives that O, —0, =
0, Zj — Zj =0.



5 Oseen potentials

Let 2 C R™ be an open set with Lipschitz boundary, m = 2 or m = 3. For
W e L91(992, R™) with 1 < ¢ < oo define the Oseen single layer potential with
density ¥

O0W (x /Ox— v) dHom 1 ().

Clearly Oq¥, QqW is a solution of the Oseen equation (4) in R™ \ 9€2. Denote

RQ‘I’ /R X — de 1( ) = OQ\I’(X) — EQ\I’(X)

Fory € 0Q and x € R™\{y} define K*9%(-y) = T(O(-—y, Q(-—y)n®(y)—
nO(- —y)/2, ie.

KO (y) = nf(y) - Vy0ux ) + i W) On(x =) (22)
Q- y) + 0 (x - y). (23)

Denote
M7 (xy) = no(y) VyQu(x—y) + én?ma‘;@(x —y) (24)
- y) + TG ) 29

For ¥ € L9(09, R™) we define the Oseen double layer potential with density
¥ by

(D)) = [ KOO (x3)¥(y) dHooaly), x € B\ 00
oQ
and the corresponding pressure by
MGW)(x) = [ 170 (x~ y)W(y) dHopr(v). x € R\ 09
o0

For x € 99 we denote

(Koo @) =tm [ KO (ey)¥(y) dHons(v).

80\ B(x,5)



(Kb, 00 %) (x) = lim / K29 (y, x)U(y) dHo1(3).

Lemma 5.1. Let m € N. Then there exists a constant C such that for all
Borel measurable function f, andx € R™,r >0,0<a<m, >0

/() a

where

9= | ity M0

B(x;r)

(See [28], Lemma 2.8.3.)

Proposition 5.2. Let Q) C R™ be an open set with compact Lipschitz bound-
ary. Let K be a function defined on Q x 0. Suppose that K(x,-) is Borel
measurable, K(-,y) is continuous on Q \ {y} for all y € 9Q and |K(x,y)| <
Cilx —y|*T=™ with 0 < « < m — 1. For f € L1(99), 1 < ¢ < oo define

/IC (x, ) f(y) dHm-1(y)- (26)

Then there exists a constant Co dependent on €2, ¢ and « such that

I(F) | Laon) < CollfllLaan),

K f is finite almost everywhere on 02, K f(x) is the nontangential limit of K f
for almost all x € 0Q and [|[Kf||Laaq) < Coll fllLa(an)-

Proof. There are z!,...,z" € 90 and § > 0 such that 9Q C B(z';0) U
B(z*;8) and for each j € {1,...,k} there is a coordinate system centered at
z’ and a Lipschitz continuous function ¢’ such that B(0;28) N Q = {[x/,x,,] €
B(0;26); 2 > @7 (x')}. Choose a constant L such that [Vy?| < L. Let z € 95.
Choose j such that z € B(z’;0). Let x € I'(z). If |x —z| > § then dist(x, 92) >
0/(1 4+ a) and

5 a+l—-m
K@< (1) Iflom < Callflusn,

where C3 = C1[6/(1 + a)]*T'"™H,,,_1(8Q)P~V/P. Let now |x — z| < §. For
0 <r <1put f, = fon 0N N B(z/,2rd), f, = 0 elsewhere, g, = f — f»,
fi(x') = fi(x',¢7(2")). Then

IKg1(x)| < Cro*T g1l Lroe) < CsllfllLaon)-



Ify e 9Qthen |z—y| <|z—x|+ |y —x| < (1+a)ly — x|+ |y — x|. According
to Lemma 5.1 there exists a constant C4 such that

—z a+l—m
wx(En@LAeD < [ (BEE) T 1wl ara

B(z3;r25)

/ at+l—-m B _
= / @ <2|y+|a> AY)V14 L2 dHpmoy < Cur®M f1(2').

{y’eR™~Li|y’|<r26}

Thus (Kf)*(z)| < Cs|fllLaa0) + C4M f1(z). Since there exists a constant Cj
such that || Mg||r« < Csl|g||Le (see [28], Theorem 2.8.2), we have ||(KCf)*||La(a0) <

C3|| fllaan) + CaCs| fillLa < (Cs+ CaCs) || fllLaa)-

Let z = [z, 2] be as above. We use the same notation. M f; is finite at
almost all points of x’ with |[x/| < . Suppose that M fi(z') < co. Fix € > 0.
We can choose 0 < r < 1 such that Cyr®M fi(2') < ¢/3. Then |Kf,(z)| < ¢/3.
If x € I'(z), |x —z| < 0 then |Kf.(z)| < ¢/3. Since Kg, is continuous in z by
the Theorem on continuity of parametrized integrals there exist p € (0,d) such
that [Kgr(x) — Kg-(z)| < €/3 for |x —z| < p. If x € T'(2), |x — 2| < p then
KF(x) — K@) < [Kgo(x) — Kgo ()] + ()| + 1K (2)] < e

By virtue of limit

1Kl zaan) < I(KF)*[|Laan) < Coll fllLa(any)-

Proposition 5.3. Let Q2 C R™ be an open set with compact Lipschitz bound-
ary, m=2orm =3, and 1 < q < oco. If ¥ € LI(0Q, R™) then Oq¥(z) it the
non-tangential limit of OqW at z for almost all z € JS). There exists a constant
C such that |[(Oq®)*||La90) < C|| ¥ Las0). The operator Oq is a compact
bounded linear operator in L1(0S, R™).

Proof. For x € 992 denote
M (£)(x) = sup{[f(y);y € I'(x) N B(x;1)}.

According to [22] there exists a constant C; such that |[M(Eq®)||Lqa0) <
C1[|¥]| La(aq) for ¥ € LI(02, R™). Moreover, if ¥ € LI(0€2, R™) then EqW¥(z)
it the non-tangential limit of FqW¥ at z for almost all z € 9€). Since there exists a
constant Cy such that |R(y)| < Cs for |y| < 1+ diam 09, Proposition 5.2 gives
that Oq®(z) it the non-tangential limit of Oq® at z for almost all z € 99,
and there exists a constant C'3 such that || M1 (OoW)| Lea0) < C3||¥ | La(ag) for
¥ e L9099, R™). Since O,i(y) — 0 as |y| — oo, there exists a constant Cy
such that H(OQ‘I’)*HLq(aQ) < C4||‘I’||Lq(ag) for ¥ € Lq(BQ,Rm).

The operator Eg, is a compact linear operator on L?(99, R™) by [22]. Since
R(x —y) is bounded on 9 x 99, the operator Rg is a compact linear operator
on L1(98, R™) by [9], §4.5.2, Satz 2.



Lemma 5.4. Let 2 C R™ be an open set with compact Lipschitz boundary,
m=2orm=3,and 1 < qg<oo. If ¥ e LIIN,R™) and j € {1,...,m} then

oRee)—lm [ ORx-yVE) ) (D)

OQ\ B(x;€)

for x € R™ \ 09Q. Define 0; R¥(x) by the limit (27) whenever this limit makes
sense. Then O;R is a compact linear operator on LI(0Q, R™). There exists a
constant C' such that if ¥ € LI(9€Q, R™) then

[1(0; R®)" |Laan) < ¥ Lacan);
and 0; R¥(x) is the non-tangential limit of 0;R¥ at almost all x € 0.

Proof. Since there exists a constant C; such that |9;R(x —y)| < Cy|x —
y|'~™~1/2 the lemma is an easy consequence of Proposition 5.2.

Proposition 5.5. Let 2 C R™ be an open set with compact Lipschitz bound-
ary,m =2 orm =3, and 1 < g < co. Then K, o is a bounded linear operator
on L(0Q, R™). If ¥ € L9(09) then [[(VOa®)* | Laon) < Cl® |1 with
C dependent only on Q) and q, VOqW¥ has a non-tangential limit at almost all
points of 052, and

1 1
[T(0a®,Qa®)lsn” — Sni'OeW = £o — K o, .

Proof. The proposition is an easy consequence of (12), Lemma 5.4 and
Lemma 5.3.

Lemma 5.6. V-Q =0, —AQ+ Q —VQ1 =0 in R™\ {0} in the sense of
distributions.
Proof. Denote hrqp(x) = —(27) " n |x| for m = 2, hpep(x) = (411)~!x] for
m = 3. Then hp4, is a fundamental solution for the Laplace equation. We have
Q = —Vhpep. Thus
V-Q=—-Ahpep =0,

7AQ]‘ -+ Gle = Aathap — alathap = 8j(AhLap — 81hLap) = 8jQ1.
Proposition 5.7. Let 2 C R™ be an open set with compact Lipschitz bound-
ary, m=2orm =3, and 1 < q < oo. If ¥ € LI(0Q, R™) then DS*¥, TI9*®¥
is a solution of the Oseen system (4) in R™ \ 0X).
Proof. Ify € 09, k € {1,...,m} then [K?}?S(x,y)7 . ,Kﬁ”gs(x, y), i (x,y)]

is a solution of the Oseen system (4) in R™ \ {y} by Lemma 5.6. So, D§*¥,
[I9*W is a solution of the Oseen system (4) in R™ \ 9.



Proposition 5.8. Let 2 C R™ be an open set with compact Lipschitz bound-
ary, m =2 orm =3, and 1 < ¢ < oo. Then Kq os is a bounded linear operator
on Lq(QQ,Rm) If‘I’ S Lq(aQ) then H(DSS‘P)*”L’Z(OQ) S C”‘I’HL‘?(dQ) Wlth
C' dependent only on 2 and ¢, DgS\Il has a non-tangential limit at almost all
points of 02, and

. 1
[D(O)él]:’)]inﬂ = :l:i'l’ + KQ,OS‘I’.

Proof. The proposition is an easy consequence of (11), Lemma 5.3 and
Lemma 5.4.

Proposition 5.9. Let w C R™ be a bounded domain with Lipschitz boundary,
h=0,ge LI, R™), 1< qg<oo,m=2orm=3. Ifu, p is an LI-solution
of the Neumann problem (4), (5) then

a=0,g+ D%*q, p=Q.g + 1% (28)

Proof. Let 2(j) be domains from Lemma 6.1. Green’s formula gives (28)
for Q(j) (see [10], §VIL.6). By virtue of Lebesgue lemma be obtain (28) for w.

6 Regular L’-solution of the Dirichlet problem

Let w C R™ be a domain with compact Lipschitz boundary, m = 2 or m = 3,
g € WhH2(dw). We say that t € C3(Q2, R™), p € C1(Q) is a reqular L?-solution
of the Dirichlet problem (4),

a=g onodw (29)

if 4, p is a solution of the Oseen system (4) in w, the non-tangential mazimal
functions (|a|)*, (|Val)*,p* € L*(0w), there exist the non-tangential limits of
a, Va, p at almost all points of w, and the Dirichlet condition (29) is fulfilled
in the sense of the non-tangential limit at almost all points of Ow.

If w is a bounded open set with connected boundary we shall look for a
solution in the form of an Oseen single layer potential u = O, ¥, p = Q,¥
with ¥ € L?(0w, R™). Let now G(1),...,G(k) be all bounded components of
R™\w. If k € N we cannot look for a solution of this problem in this form
because

/ (0, W) -1n* dHyp_y =0 (30)
9G(j)

by the Divergence theorem. But this is not a necessary condition for the solv-
ability of the problem. Fix open balls B(j) such that B(j) C G(j). We shall

10



look for a solution of the Dirichlet problem (4), (29) in the form of a modified
Oseen single layer potential

k
Z Dg(J)nB / U -0 dHm,_1, (31)
=1 aG(j)
k
p=Qu¥+ Y (IIg;n"0) / U0 dH,,_, (32)
=1 aG(j)

with ¥ € L?(dw, R™).
Lemma 6.1. If Q C R™ is a bounded domain with Lipschitz boundary then
there is a sequence of domains €); with boundaries of class C*° such that

° ﬁj c Q.

e There are a > 0 and homeomorphisms A; : 02 — 0%, such that A;(y) €
I',(y) for each j and each y € 092 and sup{ly — A;(y)|;y € 09} — 0 as

j — oo.

e There are positive functions w; on 052 bounded away from zero and infinity
uniformly in j such that for any measurable set E C 05, fE wj dHpm—1 =
Hm—1(Aj(E)), and so that w; — 1 point wise a.e. and in every L*(0Q),
1 <5< .

o The normal vectors to §;, n(A;(y)), converge point wise a.e. and in every
L#(09), 1 < s < o0, to n(y).

(See [27], Theorem 1.12)

Lemma 6.2. Let w C R™ be a domain with compact Lipschitz boundary, 1 <
q<o0,q =q/(g—1), h € L®Qw), g € LI(dQ, R™). Let &, p be an Li-solution
of the Robin problem (4), (5). If w is unbounded suppose moreover |a(x)| =
O(x|(=™)/2), [Zaa(x)| + [5()] = O(x|=™/) as [x| — oo; " 2i(rx) — 0
as r — oo for |x| # |x1|. Ifu* € LY (dw), then

/g adH, 1 = /h\u\Q dHm—1 +2/\Vu|2 dH,, (33)
Ow Ow

Proof. Suppose first that w is bounded. Let w(j) be domains from Lemma 6.1.
By virtue of Green’s formula and Lebesgue’s lemma

/g cadH, o = /ﬁ|a|2 dHpm_1 + lim / a- [T(@,p)n —nya/2] dH,y, 1
J—00

Ow Ow Ow(j)

11



_ /13|ﬁ|2 dHp g + lim / QI + - (Ad — Vp — dy)] dHon
j—o0
Ow w(j)
- /ﬁ|ﬁ|2 dHm1 +2/|©ﬁ|2 dH,p.-
Ow w

Let now w be unbounded. Define & = 0 on R™ \ dw.

/iL|ﬁ|2 AHo s +2/|@ﬁ|2 dH,, = lim [ / Rl dHo_y

Ow O(wNB(0;7)
12 / Va2 de] _ /g &AMy + lim - [T (i, p)n — n1it/2]
wNB(0;r) Ow OB(0;r)
= /g - dHpy—1 + lim ™ g a(rx)|?/2 dHop, -1 (x).
Ow OB(0;1)

There exists a constant C' such that [r™~1In;|a(rx)[?/2| < C for x € 9B(0;1).
Since r™~1n;|a(rx)[?/2 — 0, Lebesgue’s lemma yields (33).

Proposition 6.3. Let w C R™ be a domain with compact Lipschitz boundary,
m =2 orm = 3. Let Q, p be a regular L?-solution of the Dirichlet problem (4),
(29) with g = 0. If Q is unbounded suppose moreover |ii(x)| = O(|x|1=™)/2),
|Va(x)| + |p(x)| = O(|x|7™/?) as |x| — oo; r(m~V/2{(rx) — 0 as r — oo for
|x| # |x1|. Then @ =0 and p is constant. If w is unbounded then p = 0.

Proof. Put h = 0. By virtue of Lemma 6.2

2/|Vﬁ|2 =0.

Since Vi1 = 0 there exist an anti-symmetric matrix A and a vector b such that
u(x) = Ax + b (see [20], Lemma 3.1). Therefore %; is a harmonic function on
w, U; = 0 on Jw. If w is unbounded then @;(x) — 0 as x| — oo. Thus @; =0
by the maximum principle. Since Vp = 0 by (4), the function p is constant. If
w is unbounded then p = 0 because p(x) — 0 as |x| — oo.

Lemma 6.4. Let w C R™ be an open set with compact Lipschitz boundary,
m =2 orm = 3. Let G be a bounded component of R™ \ w. Fix an open ball
B such that B C G. Set u = D9*n® in R™\ B. Then

/u -n” de—l = Hm_l(ﬁG) 7é 0. (34)
oG
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If G is another bounded component of R™ \ @ then

/u -n* dH,—1 = 0. (35)
oG

Proof. Denote &t = D9*n? § = 1I9*n® in B. Then there are the non-
tangential limits of u and @ on OB and it hods 1—u = n? (see Proposition 5.8).
Since V-u =0, V-u =0, the divergence theorem gives

0= / u-n®\B de,1+/ﬁ-nB dH,m_1 :—/u-n“’ dHm_1
d(G\B) B aG

-l-/nB 0P dH,,_1 = —/u ‘0 dHpm—1 + Hin-1(9G).
OB te

If G is another bounded component of R™ \ @ then (35) is a consequence of the
divergence theorem.

Lemma 6.5. Let  C R™ be an open set with compact Lipschitz boundary,
m =2 or m = 3. Suppose that ¥ € L?(9Q, R™) and Oq® = 0 on 0. If S is
a component of O then there exists a constant c¢g such that ¥ = cgn®* on 0.

Proof. Let w be a component of R™\ Q. Then OqW¥, QqW is a regular L>-
solution of the Dirichlet problem for the Oseen equation with the zero boundary
condition (see Proposition 5.3 and Proposition 5.4). Taking in mind behavior
of OqW and QqW¥ at infinity, Proposition 6.3 gives that there exists a constant
b, such that OqW® =0, Qq¥ = b, in w. If S is a component of I we choose
two components w and G of R™ \ 99 such that S C dw N IG. According to
Proposition 5.5 we have on §

U =[0/2 - Kq 0,9] — [-¥/2 — Kq 0,9] = [T(00¥, Qo ¥)n®],

—[T(0q¥, Qa¥)n®]_ = (—b,n®) — (—ben®).

Proposition 6.6. Let w C R™ be a domain with compact Lipschitz boundary,
m=2orm =3. FixW¥ € L?(0w, R™). Ifw is a bounded domain with connected
boundary define U¥ = O, W. In other cases U¥ = 0, where 0 is given by (31).
Then U : L?(0w, R?) — W12(dw, R?) is a Fredholm operator with index 0.

e [fw is unbounded then U is an isomorphism.

e Ifw is bounded then U(L*(0w, R™)) = {u € W'2(dw); [, u-n“ = 0}.
If G is the unbounded component of R™ \ @ then the kernel of U is
{en*xag;c € R'}. (Here xac denotes the characteristic function of 0G.)
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Proof. Eq : L?(0w, R?) — W12(dw, R3) is a Fredholm operator with index
0 by [22], Theorem 5.4.1. Since U — Eg, is a compact operator by Proposition 5.3
and Lemma 5.4, the operator U : L?(0w, R?) — W2(dw, R3) is a Fredholm
operator with index 0.

Let now U® = 0. Let G(j) be a bounded component of R™ \ @. According
to (30) and Lemma 6.4 we have

0= / n“ -UW dH,,_1 = Hm_l(aG(j))/ ¥ .n* dH,,_1.
, 9G(4)
9G(j)

Therefore
/ W0 dHp s = 0. (36)
9G(j)

It means that 0 = U¥ = O, W. If V is a component of R™ \ & then there exists
a constant ¢y such that ¥ = ¢yn® on JV (see Lemma 6.5). If V is bounded
then ¢y = 0 by (36).

If w is unbounded then the kernel of U is trivial. Since U is of index 0, it
must be surjective. Thus U is an isomorphism.

Let now w be bounded. We have proved that the kernel of U is a subset
of {en*xsc;c € R}. So, the dimension of the kernel of U is at most 1. If
is given by (31) then the divergence theorem gives [, n“ -t dH,,—1 = 0. So,
the range of U is a subset of {u € W"?(dw); [, u-n* = 0}. Hence the co
dimension of the range of U is at least 1. Since U is a Fredholm operator of
index 0, the dimension of the kernel of U and the co dimension of the range of
U are equal to 1.

Theorem 6.7. Let w C R™ be a bounded domain with Lipschitz boundary,
m =2orm = 3. Fixg € WH%(dw, R™). Then there exists a regular L?-solution
of the Dirichlet problem (4), (29) if and only if

/g~nw dHpm—1 = 0. (37)

ow

If u, p and u, p are two solutions of the problem, then u = u and p — p is
constant.

Proof. If there exists a regular L?-solution of the problem (4), (29), then
the divergence theorem gives (37).

Let now (37) holds true. According to Proposition 6.6 there exists ¥ €
L?(0w, R™) such that @, p given by (31), (32) is a regular L2-solution of the
problem (4), (29). Let now u, p be another solution of the problem. Then
u—u=0, p—pis constant by Proposition 6.3.

Theorem 6.8. Let 0 C R™ be an open set, R™ \ Q@ be compact, m = 2 or
m = 3. Let u, p be a bounded solution of the Oseen system (4) in . Then
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there exist a number ps, and a vector Uy such that u(x) — Us, P(X) = Poo
as |x| — oo. If a is a multi index then |0%[u(x) — us]| = O(|x|(t—m=1eD)/2),
|0%[p(x) — poo]| = O(|x|* =™~ 121} as x| — co. Moreover, r(™=1/2u(rx) — 0 as
r — oo for |x| # |z1].

Proof. Fix r > 0 such that R™ \ Q C B(0;r) and denote w = R™ \ B(0;r),
g = u on Jw. According to Proposition 6.6 there exists ¥ € L%(99Q, R™) such
that @, p given by (31), (32) is a regular L2-solution of the problem (4), (29).
Remark that p € L2(wNB(0;2r)), & € WH2(wNB(0;2r)) (see [19], Lemma 2). If
« is a multi index then [9°1(x)| = O(|x|(1=™~12D/2) " |9°p5(x)| = O(|x[ —™~Ie])
as |x| — oo. Moreover, r(™~1/2q(rx) — 0 as r — oo for JX‘ # |x1|. Denote v =
u—1,qg=p—pinw,v =0, qg=0elsewhere. Thenv € WZO’CQ(R"L)7 q € L (R™),
V - v = 0. Moreover, v, ¢ is a solution of the Oseen equation (4) in R™ \ dw.
Denote f = —Av 4+ 0;v + Vq. Then f is a compactly supported distribution.
Denote w = Oxf, n = Q*f. Then v—w, g—n is a solution of the Oseen equation
(4) in the whole R™. If « is a multi index then |0%w(x)| = O(|x|1=m~1eD/2),
|0°n(x)| = O(|x|* =™~ 1) as [x| — co. Moreover, r(™~1/2w(rx) — 0 asr — oo
for |x| # |z1]. Since v — w, ¢ — ) are bounded solutions of the Oseen equation
(2) in R™, they are constant by Lemma 4.1.

Theorem 6.9. Let w C R™ be an unbounded domain with compact Lipschitz
boundary, m =2 or m = 3. Let g € W12(0w, R™) be fixed. If u, p is a regular
L?-solution of the Dirichlet problem (4), (29) then there exist a constant p..
and a vector Uy such that p(x) — peo, U(X) — Uy as |x| — oo. On the other
hand, if pso, Uso are given then there exists a unique regular L?-solution u, p of
the Dirichlet problem (4), (29) such that p(X) — peo, U(X) — Us as |x| — o0.
Moreover,

()" + (Vu)* + (p)*l|2290) < Clluse| + |poc| + ll&llwr2(60,mm]  (38)
where C' depends only on ).

Proof. If u, p is a regular L2-solution of the Dirichlet problem (4), (29) then
there exist a constant p,, and a vector us such that p(x) — ps, u(x) — U
as |x| — oo. (See Theorem 6.8.)

Let now us, pPoo be given. According to Proposition 6.6 the operator U is
an isomorphism from L%(dw, R™) onto W12(dw, R™). Put ¥ = U~ lg — u,,.
Then @, p given by (31), (32) satisfy @ = g — Uy on dw. Put u = @ + uy,
P = P+ Poo- Then u, p is a regular L2-solution of the Dirichlet problem (4),
(29) such that p(x) — peo, U(X) — U as x| — 00. According to properties of
Oseen potentials (38) holds true with C' depending only on 2.

If v, q is another solution of that problem then |u(x)—v(x)| = O(|x|(1=™)/2),
[Vu(x) — Vv(x)| + [p(x) — g(x)| = O(x|~™/2), 1" 1/ u(rx) — v{rx)| — 0 as
r — oo for |x| # |z1| (see Theorem 6.8). Proposition 6.3 gives that u — v = 0,
p—q=0.

15



7 L?-solutions of the Robin problem

Let w C R™ be a domain with compact Lipschitz boundary, m = 2 or m = 3.
Let now G(1),...,G(k) be all bounded components of R™\w. If g € LI(dw, R™)
we shall look for an L9%-solution of the Robin problem (4), (5) in the form
of a modified Oseen single layer potential (31), (32) with ¥ € L7(0w,R™).
According to Proposition 5.3 and Proposition 5.5 the vector functions u, p is
an L?-solution of the Robin problem (4), (5) if and only if

T;L\IJ Zg,

where

1
=0 K

5 L0s¥+h0, T + L; W,

L;® = Z / ¥.n [T(Dgfj)nB(j)7Hgfj)nB(j))n+(ﬁ—n1/2)Dgfj)nB(j) .
7= \oa)

Proposition 7.1. Let w C R™ be an open set with compact Lipschitz bound-

ary, 1 < q < oo, m=2orm = 3. Suppose that ¢ = 2 or 92 is of class ct. If

h € L>(0w) then T, is a Fredholm operator with index 0 in L?(0w, R™).

Proof. 3I — K/, is a Fredholm operator with index 0 in L?*(0w,R™) by
[22], Theorem 5.3.6. If Ow is of class C!, then K, is a compact operator on
L9 (Qw, R™) where ¢ = q/(q — 1) (see [17], p. 232). Therefore K, is a compact
operator in L?(0w, R™) and %I — K/ is a Fredholm operator with index 0 in
L9(dw, R™). Since 7;, — [3I — K/,] is a compact operator by Proposition 5.3
and Lemma 5.4, we deduce that 7; is a Fredholm operator with index 0 in
L%(Ow, R™).

Proposition 7.2. Let w C R™ be a bounded domain with Lipschitz boundary,
l1<g<oo,q¢ =¢q/(q—1), h € L*®(Ow), h > 0. Let u, p be an Li-solution of
the Robin problem (4), (5) with g =0. If (0)* € LY (0w) thenu =0, p = 0.

Proof. Lemma 6.2 gives that V| = 0 in w, hit = 0 on dw. Since Vi = 0
there exist an anti-symmetric matrix A and a vector b such that t(x) = Ax+b
(see [20], Lemma 3.1). If [; h dHy—1 > 0 then hi = 0 gives 1 = 0 (see
[21], Lemma 5.1. Since Vp = Aut — 914 = 0 we infer that p is constant. Since
0=1T(a,p)n* —n11/2 4+ hit = —pn* we deduce that p = 0.

Let now h =0. If j # 1 then

9;p(x) = Atj(x) — 011;(x) = —aj,
81]5()() = A’ﬁl(X) — 811]1()() =0.

Thus there exists a constant ¢ such that

m
Px) == anz;+c.
j=2
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‘We have
0=T(q,p)n” —ni0/2 = —pn* — ni0u/2. (39)

Thus n¢{ (p+1/2) = 0. The function p+4; /2 is a polynomial of the first order.
If p+11/2 # 0 then M = {x;p(x) + @1(x)/2 = 0} is a subset of a hyperplane.
So, n1 = 0 outside this hyperplane. It is not possible. Hence p + @;/2 = 0 and

m

Ui - U1<X) 14 bl —Qj1 bl
doanw—e=—px) === Jrujt o =) e+
Jj=2

Jj=2 Jj=2

This forces that a1; = a1 =0and p=c= —b1/2, 41 = by = —2c.

Suppose first that ¢ = 0. Then p = 43 = 0. If j # 1 then (39) gives
n1t; = 0. The function @; is a polynomial of the first order. If @; # 0 then
M; = {x;4;(x) = 0} is a subset of a hyperplane. So, n; = 0 outside this
hyperplane. It is not possible. Hence @; = 0.

Let now ¢ # 0. Fix z € Ow. We can choose a coordinate system in a
such way that z = 0. Denote p; = @; — b;. Then pj(x) - 0asx — 0 = z.
From (39) we get n% = n{(p; + b;)/b1. Since p;(x) — 0 as x — z we deduce
that n¥(x) — b/|b] or n¥(x) — —b/|b| as x — z. (Since Ow is Lipschitz,
it is not possible n“(x%) — b/|b| and n“(y*) — b/|b| for some sequences
y¥ — z, x¥ — 2z.) This gives that dw is of class C!. Now fix z € dw such
that zo = max{zs;x € Ow}. Then n*(z) = [0,1,0,...,0]. But (39) forces

1 =n$(z) = n{1,(z)/b; = 0, what is a contradiction.

Theorem 7.3. Let w C R™ be a bounded domain with Lipschitz bound-
ary, m =2 orm =3, h € L*>®(0w), h > 0. Then 75, Is an isomorphism on
L?(0w,R™). Fix g € L?(0w,R™). Denote ¥ = T{lg. Let u, p be given by
(31), (32). Then u, p is a unique L*-solution of the Robin problem (4), (5).
Moreover,

[(lal + [Val + )| 2wy < Cll8llL2(ow) (40)
where C' depends only on w and h.
Proof. Let ¥ € L?*(0w,R™) and 7; % = 0. Let @, p be given by (31),

(32). Then 1, p is an L?-solution of the Robin problem (4), (5) with g = 0.
Proposition 7.2 gives that @ =0, p = 0. According to (30) and Lemma 6.4

0= / i-0® dHo 1 = Hyn1 (0G()) / @ n® dH, ;.
0G(j) 0G(j)

So, (36) holds and u = O, ¥, p = Q,¥. Let G be an unbounded component of
R™ \ @. By virtue of Lemma 6.5 and (36) there exists a constant ¢ such that
¥ = cx¢. Therefore 0 = p = —c (see [20]). This forces that ¥ = 0. Since 7j, is
a Fredholm operator with index 0 by Proposition 7.1, it is an isomorphism.

Let now g € L?(0w, R™). If ¥ = T{lg and 4, p are given by (31), (32) then
@, p is an L2-solution of the Robin problem (4), (5). The uniqueness follows
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from Proposition 7.2. The estimate (40) is a consequence of Proposition 5.3 and
Proposition 5.5.

Proposition 7.4. Let w C R™ be an unbounded domain with compact Lip-
schitz boundary, m = 2 or m = 3, h € L>(0w), h>0,g=0. Ifa, pis an
L2-solution of the Robin problem (4), (5) such that u(x) — 0, p(x) — 0 as
|x| — oo, thena =0, p=0.

Proof. If a is a multi index then [0°t(x)| = O(|]x|(=m=2D/2) |9op(x)| =
O(|x|'=™=2l) as |x| — oo, and r(m~D/2u(rx) — 0 as r — oo for |x| # |z1| (see
Theorem 6.8). By virtue of Lemma 6.2

/ﬁ|ﬁ|2 dHp—y +2/ |Va|? dH,, = 0.
Ow w

Since Vi1 = 0 there exist an anti-symmetric matrix A and a vector b such that
u(x) = Ax+b (see [20], Lemma 3.1). The relation a(x) — 0 as |x| — oo forces
u = 0. Since Vp = 0 by (4), the function p is constant. Hence p = 0 because
p(x) — 0 as |x| — oo.

Proposition 7.5. Let w C R™ be an unbounded domain with compact Lip-
schitz boundary, 1 < ¢ < oo, m = 2 or m = 3. Suppose that ¢ = 2 or dw is of
class Ct. If h € L>(dw), h > 0 then 7, is an isomorphism on Li(dw, R™).

Proof. Let ¥ € Li(0w,R™), 7; ¥ = 0. Since 7, is a Fredholm operator
with index 0 in L4(0w, R™) and in L?(dw, R™) (see Proposition 7.1), we have
¥ € L?(Ow, R™) by [18], Lemma 9. If @, p are given by (31), (32), then u, p
is an L?-solution of the Robin problem (4), (5) with g = 0. Proposition 7.4
gives that 1 =0, p = 0. So, ¥ = 0 by Proposition 6.6. Since 75 is a Fredholm
operator with index 0 by Proposition 7.1, it is an isomorphism.

Theorem 7.6. Let w C R™ be an unbounded domain with compact Lipschitz
boundary, m = 2 or m = 3, h € L*(dw), h > 0. Fix g € L*(0w, R™). If u,
p is an L?-solution of the Robin problem (4), (5) then there exists a constant
Doo and a vector Uy, such that p(X) — peo, U(X) — U as x| — oco. Let now
Poo € R, usy € R™ be given. Denote ¥ = T{l[g—i—poon“’—i—(n‘f —h)us]. Let 1,
P be given by (31), (32). Then u = 0+ Us, P = P+ Poo is a unique L?-solution
of the Robin problem (4), (5) such that p(X) — Poo, U(X) — Us as x| — oo.
Moreover,

[(la] + [Vul + [p))*[[L2(0w) < CllI8llL2(0w) + [Poo] + [1s] (41)

where C' depends only on w and h.

Proof. If @, p is an L2-solution of the Robin problem (4), (5) then there
exists a constant p, and a vector us, such that p(x) — poo, U(X) — Uy as
|x| — oo. (See Theorem 6.8.)
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Let now po € R', us, € R™ be given. The operator 73, is invertible by
Proposition 7.5. Clearly, u, p is an L2-solution of the Robin problem such that
P(X) = Poo, U(X) — Us. The uniqueness follows from Proposition 7.4. The
estimate (41) is a consequence of Proposition 5.3 and Proposition 5.5.

8 Li-solution of the Robin problem

In this section we prove the existence of an L%-solution of the Robin problem
for w with boundary of class C!.

Theorem 8.1. Let w C R™ be a bounded domain with boundary of class C',
m=2orm=3,1<q<o0, he L*>®(0w), h > 0. Then 75, is an isomorphism
on L1(0w,R™). Fix g € LY(0w, R™). Denote ¥ = T{lg. Let u, p be given
by (31), (32). Then q, p is a unique Li-solution of the Robin problem (4), (5).
Moreover,

[(laf + [Val + [5))*[| e ow) < Cll8llLa(ow) (42)

where C' depends only on w, h and q.

Proof. 7 is a Fredholm operator with index 0 in L?(dw, R™) and in L?(dw, R™)
by Proposition 7.1. Since 7j, is injective in L?(dw, R™) it is injective in L (dw, R™)
(see [18], Lemma 9). Since 7j, is a Fredholm operator with index 0 in L9 (0w, R™)
it is an isomorphism.

Let ¥ = T{lg, Q, p be given by (31), (32). Clearly, @, p is an L?-solution
of the Robin problem (4), (5).

Now we show the uniqueness. Let g = 0, 0, p be an L?-solution of the
Robin problem (4), (5). Then T(Q,p)n* — ny2/2 = —hu. Proposition 5.9
gives 1 = D9°0 — O, ht1 in w. By virtue of Proposition 5.3 Proposition 5.8
we have 1 = 0/2 + K, 050 — O, h0 in w. Put ¢ = ¢/(¢ — 1). The operator
a— K, 0s0— O,hu is compact in LI(0w, R™) and in LY (Ow, R™) by Propo-
sition 5.3, Proposition 5.4 and [17], p. 232. Since u — K, osu+ O,hu = 0, [18],
Lemma 9 gives that & € LY’ (0w, R™). Since i = D9*a— O, hi1, Proposition 5.3
and Proposition 5.8 give (@1)* € LY (dw). So, & = 0 by Proposition 7.2.

The estimate (42) is a consequence of Proposition 5.3 and Proposition 5.5.

Theorem 8.2. Let w C R™ be an unbounded domain with compact Lipschitz
boundary, m = 2 orm = 3, h € L>(0w), h>01<gq¢g<oo Fixge
Li(Ow, R™). If u, p is an Li-solution of the Robin problem (4), (5) then there
exists a constant po, and a vector Ue such that p(x) — Peo, U(X) — U as
|x| — co. Let now ps € RY, use € R™ be given. Denote ¥ = T;L_l[g + poon® +
(ny — iz)uoo]. Let u, p be given by (31), (32). Then u = G+ U, P = P + Doo
is a unique L9-solution of the Robin problem (4), (5) such that p(x) — peo,
U(x) — ue as |x| — oco. Moreover,

[(haf + [Vl + [p[)*[[La(ow) < CllI8l La(ow) + [Poo| + 1] (43)
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where C depends only on w, p and h.

Proof. If @1, p is an L%-solution of the Robin problem (4), (5) then there
exists a constant p,, and a vector us such that p(x) — peo, U(X) — Uy as
|x| — co. (See Theorem 6.8.)

Let now pss € R', Uy € R™ be given. The operator 73, is invertible in
L%(0w, R™) by Proposition 7.5. Clearly, u, p is an L%-solution of the Robin
problem such that p(x) — peo, U(x) = Ux.

Let now g = 0 and @, p be an L9-solution of the Robin problem (4), (5) such
that p(x) — 0, a(x) — 0 as |x| — oo. If p > 2 then @, p is an L2-solution of
the problem (4), (5). Let now p < 2. Fix 7 > 0 such that dw C B(0;7) and set
Q =wnN B(0;7). Define h = 0 on dB(0;7), g = T(11,p)n®* —nf¥ia/2 on OB(0;7).
Then 4, p is an L%-solution of the Robin problem (4), (5) in Q. Theorem 8.1
gives that @, p is an L2-solution of this problem. Hence @, p is an L?-solution
of the problem (4), (5) in w. Proposition 7.4 gives that a =0, p = 0.

The estimate (43) is a consequence of Proposition 5.3 and Proposition 5.5.
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