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Weak solutions to abstract conservation laws

Abstract conservation law

0:U + div,[F(U) = 0 or “artificial” viscosity (¢AxU)

Linear field equation

oU+div,V=0

Nonlinear constitutive relation

V = F(U)

Entropy inequalities

0:E(U) + div,Fg(U) <0, E convex
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Compactness vs. oscillations

Family of bounded solutions (approximate, numerical)

{U.}es0, U. — U weakly-star in L™

=
/UE—>/UforanyB
B B

Weak convergence of non-linear composition

G(U.) = G(U), G(U) # G(U) in general
G convex = G(U) < G(U)
G strictly convex, G(U) = G(U) < U, —» U aa.
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Compensated compactness vs. convex integration

Compensated compactness

The constraints imposed on the derivatives by the field

equations combined with the constitutive relations

prevent oscillations. Successful in 1-D geometries

Oscillatory solutions

The oscillations are in fact in the families of solutions to
non-linear conservation laws in higher space dimensions

Lower semicontinuity of the energy

. . 2 2
||r6n_)|(r)1f|U€| [>]u]
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Basic ideas

Constructing oscillatory solutions

9:U + div,V = 0, V = F(U)

“Implicit” constitutive relation

U2 < GU,V)<e V=FU) < |U?=G(U,V)=e

Subsolutions

U +div,V=0, G(U,V)<le
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Oscillatory lemma

Subsolution

oU+div,V=0, [lU? < G(U,V) < e

Oscillatory perturbation

Ou. + div, V. =0, u., V. compactly supported
G(U+u,V+V.)<e, u.—0

liminf [ |u.]? > / A(e— G(U,V)), A(Z) >0for Z>0
e—0 B B

=
Iiminf/ |U+u5|22/|U\2+//\(e—G(U,V))
e—0 B B B
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Incompressible Euler [DeLellis, Székelyhidi]

Incompressible Euler system
o:U+div,(UU)+ V,N=0, div,U=0,N=2,3
Equivalent formulation
1
U +div, V=0, div,U=0, U U — g|u|2J1 =V

Convex integration

1 N
5|U\2 < dmax [UU-V]=G(U,V)<e, VERZ

2 0,sym

Pressure control

_ 1 2 L 2 _
n=—3UP, JJUP =
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Typical results

Good news

The problem possesses a global-in-time solution for any initial data

Bad news
The problem possesses infinitely many solutions for any initial data

What’s wrong? ... more bad news

“Many" solutions violate the energy conservation but there is a
“large” set of initial data for which the problem admits infinitely
many energy conserving (dissipating) solutions



Savage-Hutter model for avalanches

Unknowns
flow height ... ... ... h = h(t,x)
depth-averaged velocity ............. .. ... u=u(t,x)

deh + divy(hu) = 0

8:(hu) + div,(hu @ u) + V,(ah?) = h <—7|: + f>

Periodic boundary conditions

Q = ([0,1][(0.1)



Transformation - Step |

Helmholtz decomposition
hu =V + V + wa

where

divyv = 0, /\de=o, /vdsz, Ve R?
Q Q

Fixing h and the potential ¥

Oth+ AV =0
h(0,-) = hg, —0:h(0,-) = AW,



Problem 1

Equation
Opv + divy <(v +V+V.¥) (f (v+V+V.¥) + (ah® + 0, V) H)
+0:V
_ v+V+V, v ¢
TER SR ’

Constraints and initial conditions
div,v =0, / v(t,)dx=0
Q

V(O7 ) = Vo, V(O) = Vo
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Transformation - Step |l

Prescribing the kinetic energy

1\v+V+VX\|J|2

— = _ 2 —

Problem I

8tv + (9tV

. (V+V+V V)@ (V+V+V, V) 1v+V+ V072
+leX h —5 h ]I

h 1/2
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Transformation - Step IlI

Determining function V

1 b\ 12
— — d
Q] /Q” (25) )

B\ /2
5 (25) (v + VW) + hf

OV — \")

_L/
9] Ja

dx, V(0) =V



Problem 111

Equation

OV + divy ((V + V[v] + V. V) © (v + V[v] + VX\IJ)>

h

=—n (;L_) v (v + V[v] + V,¥)

1 b\ 2 1
) ) \2E) (VI ) o

1
V®W:v®w_§‘,_w]1



Transformation - Step IV

Solving elliptic problem

div,M = div, (me + Vf(m — divxmﬂ)
h o\ 1/2
= — <2E> (V+V[V] +VX\U)

1 h\ 2 1
+/7<> v+ V[v] + V, ¥ dx—&-hf——/hfdx,
ol Jo7\2E) (VMY 9 Ja

/ M(t,-) dx =0 for any t € [0, T].
Q



Abstract formulation

Variable coefficients “Euler system”

OV + divy ((v i H[v])/f[i](v +HIv]) + M[v]) =0
div,v =0,
Kinetic energy
1|v+ H[v]??
2 M

Data



Abstract operators

Boundedness

b maps bounded sets in L>°((0, T) x Q; R") on bounded sets in
Cb(Qa RM)

Continuity
blv,] — b[v] in Cp(Q; RM) (uniformly for (t,x) € Q)

whenever

Vo — v in Cueak([0, T]; L2(22; RN))
Causality

v(t,) =wl(t,-)for0 <t <7 < T implies blv] = b[w] in [(0,7] x Q]



Results

Result (A)

The set of subsolutions is non-empty = there exists infinitely many
weak solutions of the problem with the same initial data

Initial energy jump

1 |V0 + H[V()]l2
li f—
2" hjvo] [<Jlimin

1lv+H[v]]?
2 hlv]

Result (B)
The set of subsolutions is non-empty = there exists a dense set of
times such that the values v(t) give rise to non-empty subsolution

set with
1|V0+H[Vo]| 1|v+H[v]|2

2 Al T T
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Application to Savage-Hutter model

Theorem
(i) Let the initial data

ho € C*(Q), ug € C*(Q; R?),hy >0in Q

be given, and let f and a be smooth.
Then the Savage-Hutter system admits infinitely many weak
solutions in (0, T) x Q.

(ii) Let T > 0 and
ho € C%(Q), ho >0

be given.

Then there exists
up € L=(Q; R?)

such that the Savage-Hutter system admits infinitely many weak
solutions in (0, T) x Q satisfying the energy inequality.
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Example |l, Euler-Fourier system

Mass conservation

Oro + divy(ou) =0

Momentum balance

Ot(ou) + divy(ou @ u) + Vi (09) =0

Internal energy balance

g O¢(09) + dive(o¥u)| — AY = —pid¥divyu



Example |11, Euler-Korteweg-Poisson system

Mass conservation - equation of continuity

Oro + divy(ou) =0

Momentum equations - Newton’s second law

Ot(ou) 4 div(ou @ u) + V.p(0)

1
= va (K(Q)AXQ + 2K/(Q)VXQ|2> —Qou + vav

Poisson equation



Example IV, Euler-Cahn-Hilliard system

Model by Lowengrub and Truskinovsky

Mass conservation

Oro + divy(ou) =0
Momentum balance

Ot(ou)+divy(ou®u)+V,po(o, c) = divy (QVXC ® Vyc — §|VXC|2H)

Cahn-Hilliard equation

Ot(0c) + divy(ocu) = A (/to(g, c)— %divx (QVXC)>



