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Abstract

We consider a mixed finite-volume finite-element method applied to the Navier-Stokes system of
equations describing the motion of a compressible, barotropic, viscous fluid. We show convergence as
well as error estimates for the family numerical solutions on condition that:

• the underlying physical domain as well as the data are smooth;
• the time step ∆t and the parameter of the parameter h of the spatial discretization are propor-

tional, ∆t ≈ h;
• the family of numerical densities remains bounded for ∆t, h → 0.

No a priori smoothness is required for the limit (exact) solution.

Key words: Navier-Stokes system, mixed numerical method, convergence, error estimates

1 Introduction

We study a numerical approximation of the Navier-Stokes system in a space-time cylinder QT = (0, T )×
Ω, where T > 0 is arbitrary and Ω ⊂ R3 is a bounded domain, where the fluid density % = %(t, x) and
the velocity u = u(t, x) satisfy

∂t% + divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS(∇xu), (1.2)

with the viscous stress tensor S given by Newton’s rheological law

S(∇xu) = µ

(
∇xu +∇t

xu−
2
3
divxuI

)
, µ > 0. (1.3)

Equations (1.1–1.2) are supplemented with the no-slip boundary conditions

u|∂Ω = 0 (1.4)
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and initial conditions
%(0, ·) = %0, u(0, ·) = u0 in Ω. (1.5)

For the sake of simplicity, we have deliberately omitted the effect of external forces in (1.2). We
also adopted the so-called Stokes’ hypothesis taking the bulk viscosity to be zero in (1.3). As the shear
viscosity coefficient µ is constant, we may write

divxS(∇xu) = µ∆u +
µ

3
∇xdivxu. (1.6)

Finally, we suppose very mild and physically grounded hypotheses concerning the pressure, namely

p ∈ C3(0,∞) ∩ C1[0,∞), p(0) = 0, p′(%) > 0 for all % ≥ 0. (1.7)

Moreover, the assumption p′(0) > 0 can be relaxed at the expense of some additional technicalities in
the proofs.

We consider a family of approximate solutions {%h,uh}h>0 constructed via the numerical scheme
proposed by Karper [12] (see also Karlsen and Karper [9], [10], [11]), with the necessary modifications
introduced in [4] to accommodate smooth fluid domains. Our goal is to show convergence and qualitative
error estimates for the numerical solutions on condition that:

• the physical domain Ω as well as the initial data [%0,u0] are sufficiently smooth;

• the time step ∆t and the parameter of the parameter h of the spatial discretization are proportional,
∆t ≈ h;

• the family {%h}h>0 of approximate densities remains bounded for h → 0.

We point out that, in contrast with the standard a priori error estimates commonly studied in the
numerical literature, see e.g. Liu [14], [15], our result does not require any information about the
smoothness of the exact solution that will in fact follow as a byproduct of the proof. Our approach leans
on the following results:

• convergence of the underlying numerical scheme established by Karper [12], with the extension to
smooth domains studied in [4];

• regularity criterion for (exact) solutions of the compressible Navier-Stokes system shown by Sun,
Wang, and Zhang [16];

• a discrete version of the relative energy inequality for the Navier-Stokes system obtained by Gallouët
at al [7];

• a priori error estimates for the Navier-Stokes system derived in [2].

Before passing to rigorous and mostly very technical mathematical statements, we present some
heuristic arguments underlying our strategy:

• We consider the numerical solutions {%h,uh}h>0 constructed by Karper et al. [12], [4] on an unfitted
mesh Ωh ≈ Ω. By virtue of the convergence result established in [4], we obtain a subsequence such
that

%h → %, uh → u in a certain sense specified below, (1.8)

where [%,u] is a weak solution of problem (1.1–1.5).

• As the initial data as well as the physical domain Ω of the limit problem are smooth, there exists a
strong solution [%̃, ũ] emanating from the initial data [%0,u0] defined on a (maximal) time interval
[0, T̃ ), T̃ ≤ T . In view of the weak-strong uniqueness property shown in [3], the weak solution
[%,u] coincides with [%̃, ũ] on [0, T̃ ).
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• In accordance with our principal hypothesis, the density components %h of numerical solutions are
uniformly bounded for h → 0; whence

% ∈ L∞((0, T )× Ω).

Now, we can use the conditional regularity result of Sun, Wang, and Zhang [16] claiming that
the strong solution [%̃, ũ] of problem (1.1–1.5) remains smooth as long as its density component is
bounded, which yields, in particular, T̃ = T and % = %̃, u = ũ in (0, T )×Ω. In particular, the limit
solution is uniquely determined by the initial data and there is no need of subsequence in (1.8).

• Knowing that the limit solution is smooth, we can mimick step by step the estimates elaborated
in Gallouët et al. [6] to establish the desired error estimates. Note that some steps performed in
[6] must be modified in the spirit of [2] in order to control the approximation error for the unfitted
mesh used in the present paper.

The paper is organized as follows. In Section 2, we introduce the numerical method to construct the
approximate solutions. Our main result is formulated in Section 3. In Section 4, we study convergence
of the approximate solutions and establish regularity properties of the limit. In Section 5 we introduce
the main tool used in the proof - the relative energy inequality. The proof of the error estimates is
completed in Section 6.

2 Numerical method

Problem (1.1–1.5) will be solved by means of the numerical method proposed in [5] based on time
discretization, finite-volume discretization of the convective terms (upwind), and a finite-element dis-
cretization of the viscous stress in (1.2). We shall write

a
<∼ b if a ≤ cb, c > 0 a constant, a ≈ b if a

<∼ b and b
<∼ a.

Here, “constant” typically means a generic quantity independent of the size of the mesh and the time
step used in the numerical scheme as well as other parameters as the case may be.

2.1 Mesh, domain approximation

We consider a family of numerical domains Ωh,

Ωh = ∪E∈Eh
E,

where Eh denotes a tetrahedral mesh with individual (compact) elements E. Faces in the mesh are
denoted as Γ, whereas Γh is the set of all faces. Moreover, the set of faces Γ ⊂ ∂Ωh is denoted Γh,ext,
while Γh,int = Γh \ Γh,ext.

We require the mesh to be shape regular, specifically:

• The intersection E ∩ F of two elements E,F ∈ Eh is either empty, or their common face, or their
common edge, or their common vortex.

• The diameter diam[E] of each element is proportional to h > 0,

diam[E] ≈ h for any E ∈ Eh.

• The radius of the largest ball r[E] contained in E is also proportional to h,

r[E] ≈ h for any E ∈ Eh.
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Finally, we suppose that the family Ωh approaches the physical domain Ω in the sense that

inf
x∈∂Ω

|y − x| <∼ h uniformly for all y ∈ ∂Ωh. (2.1)

Remark 2.1. It is easy to see that the approximation property (2.1) is satisfied for the so-called unfitted
mesh Eh, obtained as

E ∈ Eh if E ∩ Ω 6= ∅,
where the elements E belong to a shape regular mesh Ẽh filling a large domain B containing Ω in its
interior. One can even take B = R3 - examples of shape regular meshes of elements enjoying further
specific geometric properties were constructed e.g. by Hošek [8], Vanderzee et al. [17].

2.2 Finite volumes, finite elements, upwind

Each face Γ ∈ Γh is associated with a (fixed) normal vector n. We write ΓE whenever a face ΓE ⊂ ∂E
is considered as a part of the boundary of the element E. In such a case, the normal vector to ΓE is
always the outer normal vector with respect to E. Keeping this convention in mind we introduce for
any function g, continuous on each element E,

gout|Γ = lim
δ→0+

g(·+ δn), gin|Γ = lim
δ→0+

g(· − δn), [[g]]Γ = gout − gin, {g}Γ =
1
2
(
gout + gin

)
. (2.2)

For ΓE ⊂ ∂E we simply write g for gin. Occasionally, we also omit the subscript Γ if no confusion arises.

2.2.1 Spaces of piecewise constant functions

We introduce the space of piecewise constant functions

Qh(Ωh) =
{

v ∈ L2(Ωh)
∣∣∣ v|E = aE ∈ R for any E ∈ Eh

}
,

with the associated projection

ΠQ
h : L1(Ωh) → Qh(Ωh), ΠQ

h [v]|E =
1
|E|

∫
E

v dx. (2.3)

To keep the notation concise, we will occasionally denote

ΠQ
h [v] ≡ v̂.

2.2.2 Crouzeix-Raviart finite elements

A discrete counterpart Dh of a differential operator D acting in the x−variable is

Dhv|E = D(v|E) for any v differentiable on each element E ∈ Eh.

The Crouzeix-Raviart finite element spaces (see e.g. Brezzi and Fortin [1]) are defined as

Vh(Ωh) =
{

v ∈ L2(Ωh)
∣∣∣ v|E = affine function, E ∈ Eh,

∫
Γ

[[v]] dSx = 0 for any Γ ∈ Γh,int

}
. (2.4)

In view of the no-slip boundary condition (1.4), we will also need the space

Vh,0(Ωh) =
{

v ∈ Vh

∣∣∣ ∫
Γ

v dSx = 0 for any Γ ∈ Γh,ext

}
. (2.5)

The associated projection is

ΠV
h : W 1,q(Ωh) → Vh(Ωh) requiring

∫
Γ

ΠV
h [v] dSx =

∫
Γ

v dSx for any Γ ∈ Γh. (2.6)
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2.2.3 Upwind

Denote
[c]+ = max{c, 0}, [c]− = min{c, 0}, 〈v〉Γ =

1
|Γ|

∫
Γ

v dSx.

Following [4], we introduce a dissipative upwind operator Up[r,u] on a face Γ by

Up[r,u] =
rin

2
(
[〈u · n〉Γ + hα]+ + [〈u · n〉Γ − hα]+

)
+

rout

2
(
[〈u · n〉Γ + hα]− + [〈u · n〉Γ − hα]−

)
, (2.7)

with a positive exponent α determined below. Note that such a definition makes sense as soon as
r ∈ Qh(Ωh), u ∈ Vh(Ωh;R3) and Γ ∈ Γh,int.

Setting, formally, hα ≈ 0 in (2.7), we obtain the conventional definition of the upwind operator

rin[〈u · n〉Γ]+ + rout[〈u · n〉Γ]−.

To see the dissipative character of this upwind operator, we write

Up[r,u] = rin[〈u · n〉Γ]+ + rout[〈u · n〉Γ]−︸ ︷︷ ︸
conventional upwind

− [[r]]Γ hαχ

(
〈u · n〉Γ

hα

)
︸ ︷︷ ︸

dissipative component

, (2.8)

where

χ(z) =



0 for z < −1,

1
2(z + 1) if − 1 ≤ z ≤ 0,

−1
2(z − 1) if 0 < z ≤ 1,

0 for z > 1,

and where the dissipative component is reminiscent of the finite volume discretization of the conventional
artificial diffusion operator −hα∆r.

2.3 Numerical scheme

Extending both %0 and u0 to be zero outside Ω we set

%0
h = ΠQ

h [%0] ∈ Qh(Ωh), u0
h = ΠQ

h [u0] ∈ Qh(Ωh;R3). (2.9)

Next, we introduce the discrete time derivative

Dtb
k
h =

bk
h − bk−1

h

∆t
, ∆t ≈ h,

and define (implicitly) a family of numerical solutions {%k
h,uk

h}h>0, k = 1, 2, . . . ,

%k
h ∈ Qh(Ωh), uk

h ∈ Vh,0(Ωh;R3)

satisfying: ∫
Ωh

Dt%
k
hφ dx−

∑
Γ∈Γh,int

∫
Γ

Up[%k
h,uk

h] [[φ]] dSx = 0 for all φ ∈ Qh(Ωh), (2.10)

∫
Ωh

Dt(%k
hû

k
h) · φ dx−

∑
Γ∈Γh,int

∫
Γ

Up[%k
hû

k
h,uk

h] ·
[[

φ̂
]]

dSx (2.11)

+
∫

Ωh

[
µ∇huk

h : ∇hφ +
µ

3
divhuk

hdivhφ
]

dx−
∫

Ωh

p(%k
h)divhφ dx = 0 for all φ ∈ Vh,0(Ωh;R3).
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3 Main result

To formulate our main result, it is convenient to extend the numerical solution to be defined for any
t ∈ (−∞, T ). To this end, we set

%h(t, ·) = %0
h, uh(t, ·) = u0

h for t ≤ 0,

%h(t, ·) = %k
h, uh(t, ·) = uk

h for t ∈ [k∆t, (k + 1)∆t), k = 1, 2, . . . . (3.1)

Accordingly, we define

Dtvh(t, ·) =
vh(t)− vh(t−∆t)

∆t
, t > 0.

Our main result reads as follows:

Theorem 3.1. Let Ω ⊂ R3 be a bounded domain of class C3. Let the initial data [%0,u0] belong to the
regularity class

%0 ∈ C3(Ω), %0 > 0 in Ω, u0 ∈ C3(Ω; R3),

and satisfy the compatibility conditions

u0|∂Ω = 0, ∇xp(%0)|∂Ω = divxS(∇xu0)|∂Ω.

Let {%k
h,uk

h}h>0, k = 0, 1, . . . , [T/∆t], h ≈ ∆t, be a family of numerical solutions satisfying (2.10),
(2.11), where the upwind term is determined by (2.7), with

0 < α < 1.

Finally, suppose that

%k
h ≤ r < ∞ for all h > 0, k = 0, 1, . . . , [T/∆t]. (3.2)

Then problem (1.1–1.5) admits a classical solution [%,u] in (0, T )× Ω, and

ess sup
t∈(0,T )

∫
Ω∩Ωh

[
%h|ûh − u|2 + |%h − %|2

]
(t, ·) dx +

∫ T

0

∫
Ω∩Ωh

|∇huh −∇xu|2 dx dt (3.3)

<∼
(

hα/2 +
∫

Ωh

[
%0|û0 − u0|2 + |%0 − %0|2

]
dx

)
.

Remark 3.1. We point out that the existence of the classical exact solution [%,u] is not assumed a
priori. As we will see in the next section, it is a consequence of hypothesis (3.2) and the convergence
result for the numerical scheme established in [4].

Remark 3.2. Since the Crouzeix-Raviart elements are of the first order, the rate of convergence stated
in (3.3) is optimal also in view of the approximation distance between Ωh and Ω stated in (2.1), cf.
Lenoir [13].

The rest of the paper is devoted to the proof of Theorem 3.1.

6



4 Convergence, regularity of the limit solution

Since the numerical densities are assumed to be uniformly bounded, the behavior of the pressure p = p(%)
for large values of % is irrelevant. In particular, we may take pressure p(%) ≈ %γ for large values of %,
with γ > 1 arbitrary. Consequently, we may apply [4, Theorem 3.1] to obtain the following conclusion:

Under the hypotheses of Theorem 3.1, extending %h, uh to be zero outside Ωh, we may extract a
subsequence of the numerical solutions such that

%h → % weakly-(*) in L∞(0, T ;Lγ(Ω)) and strongly in L1((0, T )× Ω),

uh → u weakly in L2(0, T ;L6(Ω; R3)), ∇huh → ∇xu weakly in L2((0, T )× Ω; R3×3),

where [%,u] is a weak solution of problem (1.1 - 1.5) in the space time cylinder (0, T )×Ω. Moreover, as
a consequence of hypothesis (3.2),

% ∈ L∞((0, T )× Ω). (4.1)

Now, since the limit density is bounded, the data as well as the spatial domain are regular, we
may use the conditional regularity result of Sun, Wang, and Zhang [16], together with the weak-strong
uniqueness principle established in [3], to conclude that the limit solution is regular; whence unique.
More specifically, [%,u] is a classical solution of problem (1.1–1.5), the density % is positive bounded
below away from zero, and

‖1/%‖C([0,T ]×Ω) + ‖%‖C1([0,T ]×Ω) + ‖∂t∇x%‖C([0,T ];L6(Ω;R3)) + ‖∂2
t,t%‖C([0,T ];L6(Ω)) ≤ D, (4.2)

‖u‖C1([0,T ]×Ω;R3) + ‖u‖C([0,T ];C2(Ω;R3)) + ‖∂t∇xu‖C([0,T ];L6(Ω;R3×3)) + ‖∂2
t,tu‖C([0,T ];L6(Ω;R3)) ≤ D, (4.3)

where D is a constant depending only on T and the regularity properties of the initial data, see [2,
Proposition 2.1].

5 Relative energy

Having observed that the exact solution is smooth, we are ready to derive rigorous error estimates for
the approximate solutions. Following [6] we evaluate the differences %h − %, uh − u by means of the
relative energy functional

E
(
%h,uh

∣∣∣%,u
)

=
∫

Ωh

[
1
2
%h|u− uh|2 + H(%h)−H ′(%)(%h − %)−H(%)

]
dx,

where H is the pressure potential,

H(%) = %

∫ %

1

p(z)
z2

dz.

In accordance with hypothesis (1.7), the pressure p = p(%) is strictly increasing, therefore H = H(%)
is a strictly convex function. Moreover, as %h, % range in a bounded subset of [0,∞) and % is strictly
positive, we may assume

H(%h)−H ′(%)(%h − %)−H(%) ≈ (%h − %)2. (5.1)

5.1 Discrete relative energy inequality

The abstract form of the inequality satisfied by the relative energy functions E was derived in [3]. Here,
we introduce its discrete analogue proved in Gallouet et al. [7]:

E
(
%n

h, ûn
h

∣∣∣rn
h , v̂n

h

)
+ ∆t

n∑
k=1

(
µ

∫
Ωh

|∇huk
h −∇hvk

h|2 dx +
µ

3

∫
Ωh

|divhuk
h − divhvk

h|2 dx

)
(5.2)
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<∼ E
(
%0

h, û0
h

∣∣∣r0
hv̂

0
h

)
+ ∆t

n∑
k=1

6∑
j=1

Rk
h,j ,

for any rk
h ∈ Qh(Ωh), rk

h > 0, vk
h ∈ Vh,0(Ωh;R3), where the remainders are

Rk
h,1 = µ

∫
Ωh

∇hvk
h : ∇h

(
vk

h − uk
h

)
dx +

µ

3

∫
Ωh

divhvk
hdivh

(
vk

h − uk
h

)
dx,

Rk
h,2 =

∫
Ωh

%k−1
h

(
vk

h − vk−1
h

∆t

)
·

(
vk

h + vk−1
h

2
− uk−1

h

)
dx

Rk
h,3 =

∑
Γ∈Γh,int

∫
Γ

Up[%k
hû

k
h,uk

h]
[[

v̂k
h

]]
dSx −

∑
Γ∈Γh,int

∫
Γ

Up[%k
h,uk

h]
{
v̂k

h

}[[
v̂k

h

]]
dSx

Rk
h,4 = −

∫
Ωh

p(%k
h)divhvk

h dx,

Rk
h,5 =

∫
Ωh

H ′(rk
h)−H ′(rk−1

h )
∆t

(rk
h − %k

h) dx,

Rk
h,6 =

∑
G∈Γh,int

∫
Γ

Up[%k
h,uk

h]
[[

H ′(rk−1
h )

]]
dSx.

5.2 Extending the exact solution

The leading idea of the proof of the error estimates (3.3) is now the same as in [2], namely to take rk
h, vk

h

suitable approximations of the exact solution [%,u]. To this end, we first extend [%,u] to be defined on
the numerical domains Ωh. This can be done preserving the bounds (4.2), (4.3). We report the following
result, see [2, Lemma 2.1]:

Lemma 5.1. The exact solution [%,u] can be extended as [r,v] outside Ω in such a way that:

• the extended density r is bounded below away from zero in [0, T ]×R3, the extended velocity field v
has compact support in [0, T ]×R3;

• the equation of continuity

∂tr + divx(rv) = 0 holds in (0, T )×R3; (5.3)

• we have the following estimates
r|Ω = %, v|Ω = u,

‖v‖C1([0,T ]×R3;R3)+‖v‖C([0,T ];C2(R3;R3))+‖∂t∇xv‖C([0,T ];L6(R3;R3×3))+‖∂2
t,tv‖C([0,T ];L6(R3;R3)) (5.4)

<∼ ‖u‖C1([0,T ]×Ω;R3) + ‖u‖C([0,T ];C2(Ω;R3)) + ‖∂t∇xu‖C([0,T ];L6(Ω;R3×3)) + ‖∂2
t,tu‖C([0,T ];L6(Ω;R3))

‖1/r‖C([0,T ]×R3) + ‖r‖C1([0,T ]×R3) + ‖∂t∇xr‖C([0,T ];L6
loc(R

3;R3)) + ‖∂2
t,tr‖C([0,T ];L6

loc(R
3)) (5.5)

<∼ ‖1/%‖C([0,T ]×Ω) + ‖%‖C1([0,T ]×Ω) + ‖∂t∇x%‖C([0,T ];L6(Ω;R3)) + ‖∂2
t,t%‖C([0,T ];L6(Ω))

+ ‖u‖C1([0,T ]×Ω;R3) + ‖u‖C([0,T ];C2(Ω;R3)) + ‖∂t∇xu‖C([0,T ];L6(Ω;R3×3)) + ‖∂2
t,tu‖C([0,T ];L6(Ω;R3)).
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5.3 Ansatz in the relative energy inequality

Following the strategy of [2], we take

rk
h = ΠQ

h [r(k∆t, ·)], k = 0, 1, . . . n

as a “test” function in the relative energy inequality (5.2), where r is the extension of the exact solution
% and ΠQ

h is the projection onto the space of piece-wise constant functions introduced in (2.3).
Similarly, one is tempted to take vk

h = ΠV
h [v(k∆t, ·)], with ΠV

h given by (2.6). Unfortunately, this
is not a legitimate test function as, in general, ΠV

h [v(k∆t, ·)] /∈ V0,h(Ωh;R3). Instead, following [2], we
introduce a projection

ΠV
h,0 : W 1,q(Ωh) → Vh,0(Ωh),

∫
Γ

ΠV
h,0[v] dSx =

∫
Γ

v dSx if Γ ∈ Γh,int,

∫
Γ

ΠV
h,0[v] dSx = 0 if Γ ∈ Γh,ext.

(5.6)
We have, see [2, Lemma 2.3, Corollary 2.1]:∥∥ΠV

h [φ]−ΠV
h,0[φ]

∥∥
L∞(E)

+ h
∥∥∇xΠV

h [φ]−∇xΠV
h,0[φ]

∥∥
L∞(E;R3)

<∼ sup
Γ⊂∂E, Γ∈Γh,ext

‖φ‖L∞(Γ) (5.7)

for any E ∈ Eh, φ ∈ C(E), and∥∥ΠV
h [φ]−ΠV

h,0[φ]
∥∥

L∞(E)
+ h

∥∥∇xΠV
h [φ]−∇xΠV

h,0[φ]
∥∥

L∞(E;R3)

<∼ h‖∇xφ‖L∞(R3;R3) (5.8)

for any E ∈ Eh, φ ∈ C1(R3), φ|∂Ω = 0.

Remark 5.1. Note that (5.8) is worse than its counterpart in [2, Corollary 2.1] due to the rough domain
approximation considered in the present paper.

The desired error estimates (3.3) will be deduced from the relative energy inequality (5.2) evaluated
for the test functions

rk
h = ΠQ

h [r(k∆t, ·)], vk
h = ΠV

h,0[v(k∆t, ·)] for k = 0, 1, . . . n,

where r, v is the extension of the exact solution [%,u] and n ≥ T/∆t.

6 Error estimates

Our ultimate goal is to establish the error estimates claimed in (3.3).

6.1 Energy estimates

We start by recalling the energy estimates for the family of approximate solutions. They can be deduced
easily taking rk

h = 1, vk
h = 0 in the relative energy inequality (5.2):

ess sup
t∈(0,T )

∫
Ωh

%h|ûh|2(t, ·) dx
<∼ 1, (6.1)

∫ T

0

∫
Ωh

|∇huh|2 dx dt <∼ 1, (6.2)

and, by virtue of the discrete analogue of the Sobolev embedding,∫ T

0
‖uh‖2

L6(Ωh;R3) dt <∼ 1. (6.3)
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6.2 Perturbations

The crucial observation is that the proof of (5.2) reduces to that of [2, Theorem 3.1] provided we can
“replace”

vk
h = ΠV

h,0[v(k∆t, ·)] by ṽk
h = ΠV

h [v(k∆t, ·)]

in the relative entropy inequality (5.2), therefore we revisit [2, Lemma 6.1.]. Consequently, we have to
show that the remainders resulting from such a procedure remain small. We proceed in several steps
handling term by term the integrals Rk

h,j . In what follows, we denote R̃k
h,1 the expression Rk

h,1 with vk
1

replaced by ṽk
1 .

6.2.1 Remainder term Rk
h,1

We have to control∫
Ωh

∇h

(
vk

h − ṽk
h

)
: ∇h

(
uk

h − vk
h

)
dx and

∫
Ωh

∇h

(
vk

h − ṽk
h

)
: ∇hṽk

h dx. (6.4)

Since vk
h − ṽk

h = 0 in E whenever E ∩ ∂Ωh = ∅, we have∫
Ωh

∇h

(
vk

h − ṽk
h

)
:
[
∇h

(
uk

h − vk
h

)
+∇hṽk

h

]
dx =

∫
Uh

∇h

(
vk

h − ṽk
h

)
:
[
∇h

(
uk

h − vk
h

)
+∇hṽk

h

]
dx,

where
|Uh|

<∼ h. (6.5)

By virtue of (5.8), ∥∥∥∇h

(
vk

h − ṽk
h

)∥∥∥
L∞(Uh;R3)

<∼ 1,

and, in accordance with (6.2),

sup
t∈(0,T )

∥∥∥∇hṽk
h(t, ·)

∥∥∥
L∞(Uh;R3)

+
∫ T

0

∥∥∥∇h

(
vk

h − uk
h

)∥∥∥2

L2(Uh;R3)
dt <∼ 1.

Seeing that the integral containing divh can be treated in the same manner, we may infer that

∆t
n∑

k=1

∣∣∣Rk
h,1 − R̃k

h,1

∣∣∣ <∼ h1/2. (6.6)

6.2.2 Remainder term Rk
h,2

Obviously, the most difficult term to handle reads∫
Ωh

%k−1
h uk−1

h ·
(

vk
h − ṽk

h

∆t

)
dx.

Again, we reduce the integration domain from Ωh to Uh. Then, in view of (5.8) and the hypothesis
∆t ≈ h, we have∣∣∣∣∫

Uh

%k−1
h uk−1

h ·
(

vk
h − ṽk

h

∆t

)
dx

∣∣∣∣ <∼ r

∣∣∣∣∫
Uh

|uk−1
h | dx

∣∣∣∣ <∼ h1/2‖uk−1
h ‖L2(Ωh;R3).

Seeing that the other integrals in Rk
h,2 may be treated in a similar way, we may use the energy bound

(6.3) to conclude

∆t

n∑
k=1

∣∣∣Rk
h,2 − R̃k

h,2

∣∣∣ <∼ h1/2. (6.7)
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6.2.3 Remainder term Rk
h,3

The most difficult term is of the type∑
Γ∈Γh,int

∫
Γ

%k
h|ûk

h|
∣∣∣〈uk

h · n
〉

Γ

∣∣∣ ∣∣∣[[v̂k
h − ̂̃vk

h

]]∣∣∣ dSx,

where, by virtue of (5.8), ∣∣∣[[v̂k
h − ̂̃vk

h

]]∣∣∣ <∼ h,

and the sum is taken only over Γ ⊂ E, such that E ⊂ Uh, where the set Uh ⊂ Ωh satisfies (6.5).
Consequently, we get∣∣∣∣∣∣

∑
Γ∈Γh,int

∫
Γ

%k
h|ûk

h|
∣∣∣〈uk

h · n
〉

Γ

∣∣∣ ∣∣∣[[v̂k
h − ̂̃vk

h

]]∣∣∣ dSx

∣∣∣∣∣∣ <∼ h
∑

Γ∈Γh,int,Γ⊂∂E,E⊂Uh

∫
Γ
|ûk

h|
∣∣∣〈uk

h · n
〉

Γ

∣∣∣ dSx

<∼
∫

Uh

|ûk
h| |uk

h| dx.

Finally, in accordance with (6.3),

ûh,uh ∈ L2(0, T ;L6(Ωh;R3)),

and we may infer, exactly as in the previous step,

∆t

n∑
k=1

∣∣∣Rk
h,3 − R̃k

h,3

∣∣∣ <∼ h2/3. (6.8)

6.2.4 Remainder term Rk
h,4

In view of (5.8) and hypothesis (3.2), we get∣∣∣Rk
h,4 − R̃k

h,4

∣∣∣ <∼
∫

Uh

1 dx,

where Uh is the same as in (6.5); whence

∆t
n∑

k=1

∣∣∣Rk
h,4 − R̃k

h,4

∣∣∣ <∼ h. (6.9)

As observed at the beginning of this section, the estimates (6.6–6.9) reduce the proof of Theorem 3.1
to the arguments used in the proof [2, Theorem 3.1].
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