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Abstract

We study an hydrodynamical model describing the motion of thick astrophysical disks relying

on compressible Navier-Sokes-Poisson system and we also suppose that the medium is electrically

charged and we include energy exchanges through radiative transfer. Supposing that the system is

rapidly rotating, we study the singular limit of the system when the Mach number, the Alfven number

and Froude number go to zero and we prove convergence to a 3D incompressible MHD system with

radiation with two stationary linear transport equations for transport of radiation intensity.

Key words: Navier-Stokes-Poisson system, magnetohydrodynamics, radiating transfer, rotation,
accretion disk, weak solution.

1 Introduction

Our motivation in this work is the study of the equations describing objects called “accretion disk” which
are quasi planar structures observed in various places in the universe. From a naive point of view, if a
massive object attracts matter distributed around it through Newtonian gravitation in presence of a high
angular momentum, the matter is not accreted isotropically around the central object but forms a disk
around it. As the three main ingredients claimed by astrophysicists for explaining the existence of such
objects are: gravitation, angular momentum and viscosity (see [22] [26] [27] for detailed presentations),
a reasonable framework for their study seems to be a viscous selfgravitating rotating fluid.

In previous works we derived thin disks models [8] [9] corresponding to limit domains Ωε = ω× (0, ε)
for ε → 0. In the present one we consider a thick model where ǫ is no more small and replaced by 1 in
the sequel.

The mathematical model we consider is basically the compressible heat conducting MHD system [5]
describing the motion of a viscous charged fluid confined to the thick disk Ω = ω × (0, 1), where ω ∈ R

2

is a 2-D domain, moreover as we suppose a global rotation of the system, some new terms appear due to
the change of frame and we also suppose that the fluid exchanges energy with radiation through radiative
transfers (see [5] [7]).
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More precisely, the non-dimensional system of equations giving the evolution of the mass density ̺ =
̺(t, x), the velocity field ~u = ~u(t, x), the (divergence free) magnetic field ~B = ~B(x, t), and the radiative
intensity I = I(x, t, ~ω, ν̂) as functions of the time t ∈ (0, T ), the spatial coordinate x = (x1, x2, x3) ∈ Ω ⊂
R

3, and (for I) the angular and frequency variables (~ω, ν̂) ∈ S2 × R+, reads as follows

∂t̺+ divx(̺~u) = 0 in (0, T )× Ω, (1.1)

∂t(̺~u) + divx(̺~u⊗ ~u) + ∇xp+ ̺~χ× ~u

= divxS + ̺∇Ψ − ̺∇x|~χ× ~x|2 +~j × ~B in (0, T )× Ω, (1.2)

∂t (̺e) + divx (̺e~u) + divx~q = S : ∇x~u− pdivx~u+~j · ~E − SE in (0, T )× Ω, (1.3)

1

c
∂tI + ~ω · ∇xI = S in (0, T )× Ω × (0,∞) × S2. (1.4)

∂t
~B + curlx( ~B × ~u) + curlx(λ curlx ~B) = 0 in (0, T ) × Ω. (1.5)

−∆Ψ = 4πG(η̺+ g) in (0, T ) × Ωǫ. (1.6)

In the electromagnetic source terms, electric current ~j and electric field ~E are interrelated by Ohm’s law

~j = σ( ~E + ~u× ~B),

and Ampère’s law
ζ~j = curlx ~B,

where ζ > 0 is the (constant) magnetic permeability.
In (1.6) Ψ is the gravitational potential and the corresponding source term in (1.2) is the Newton

force ̺∇Ψ. G is the Newton constant and g is a given function, modelling an external gravitational effect.
Supposing that ̺ is extended by 0 outside Ω we have

Ψ(t, x) = G

∫

Ω

K(x− y)(η̺(t, y) + g(y)) dy,

where K(x) = 1
|x| , and the parameter η may take the values 0 or 1: for η = 1 selfgravitation is present

and for η = 0 gravitation only acts as an external field (some astrophysicists consider selfgravitation of
accretion disks as small compared to the external attraction by a given massive central object modeled
by g [27]).

We also assume that the system is globally rotating at uniform velocity χ around the vertical direction
~e3 and we note ~χ = χ~e3. Then Coriolis acceleration term ̺~χ × ~u appears in the system, together with
the centrifugal force term ̺∇x|~χ× ~x|2 (see [3]).

In (1.5) λ = λ(ϑ) > 0 is the magnetic diffusivity of the fluid.
Observe that we consider here the simplified model studied in [11] where radiation does not appear

in the momentum equation. Only appears the source SE in the energy equation

SE(t, x) =

∫

S2

∫ ∞

0

S(t, x, ~ω, ν) d~ω dν.

The symbol p = p(̺, ϑ) denotes the thermodynamic pressure and e = e(̺, ϑ) is the specific internal
energy, interrelated through Maxwell’s relation

∂e

∂̺
=

1

̺2

(

p(̺, ϑ) − ϑ
∂p

∂ϑ

)

. (1.7)
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Furthermore, S is the viscous stress tensor determined by

S = µ

(

∇x~u+ ∇t
x~u− 2

3
divx~u

)

+ η divx~u I, (1.8)

where the shear viscosity coefficient µ = µ(ϑ) > 0 and the bulk viscosity coefficient η = η(ϑ) ≥ 0 are
effective functions of the temperature. Similarly, ~q is the heat flux given by Fourier’s law

~q = −κ∇xϑ, (1.9)

with the heat conductivity coefficient κ = κ(ϑ) > 0. Finally,

S = Sa,e + Ss, (1.10)

where
Sa,e = σa

(

B(ν, ϑ) − I
)

, Ss = σs

(

Ĩ − I
)

. (1.11)

In this formula Ĩ := 1
4π

∫

S2 I(·, ~ω) d~ω and B(ν, ϑ) = 2hν3c−2
(

e
hν
kϑ − 1

)−1

is the radiative equilibrium

function where h and k are the Planck and Boltzmann constants, σa = σa(ν, ϑ) ≥ 0 is the absorption
coefficient and σs = σs(ν, ϑ) ≥ 0 is the scattering coefficient. More restrictions on these structural
properties of constitutive quantities will be imposed in Section 2 below.

System (1.1 - 1.6) is supplemented with the boundary conditions:

~u|∂Ω = 0, ~q · ~n|∂Ω = 0, ~B · ~n|∂Ω = 0, ~E × ~n|∂Ω = 0, (1.12)

I(t, x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0, (1.13)

where ~n denotes the outer normal vector to ∂Ω.
Let us mention that there are already existing works in this field but not in the case of rotating fluid

with radiation. We can mention some of existing works. First one was done by Kukučka [18] when Mach
and Alpfen number go to zero in the case of bounded domain. In [25] Novotný and his investigated the
problem in the case of strong stratification. See also work of Trivisa et al. [19] or work of Wang et
al.[14],or works of Jiang et al.[16, 17, 15].

The paper is organized as follows.
In Section 2, we list the principal hypotheses imposed on constitutive relations, introduce the concept

of weak solution to problem (1.1 - 1.13), and state the existence result for our model. In Section 3 we
compute the formal asymptotics of the problem. Uniform bounds imposed on weak solutions by the data
are derived in Section 4. The convergence Theorem is proved in Section 5. Existence of a solution for
the target system is briefly given in the Appendix.

2 Hypotheses and stability result

We consider the pressure in the form

p(̺, ϑ) = ϑ5/2P
( ̺

ϑ3/2

)

+
a

3
ϑ4, a > 0, (2.1)
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where P : [0,∞) → [0,∞) is a given function with the following properties:

P ∈ C1[0,∞), P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (2.2)

0 <
5
3P (Z) − P ′(Z)Z

Z
< c for all Z ≥ 0, (2.3)

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (2.4)

After Maxwell’s equation (1.7), the specific internal energy e is

e(̺, ϑ) =
3

2
ϑ

(

ϑ3/2

̺

)

P
( ̺

ϑ3/2

)

+ a
ϑ4

̺
, (2.5)

and the associated specific entropy reads

s(̺, ϑ) = M
( ̺

ϑ3/2

)

+
4a

3

ϑ3

̺
, (2.6)

with

M ′(Z) = −3

2

5
3P (Z) − P ′(Z)Z

Z2
< 0.

A new feature of the present paper (see below) will be the explicit introduction of the entropy for the
photon gas.

The transport coefficients µ, η, κ and λ are continuously differentiable functions of the absolute
temperature such that

0 < c1(1 + ϑ) ≤ µ(ϑ), µ′(ϑ) < c2, 0 ≤ η(ϑ) ≤ c(1 + ϑ), (2.7)

0 < c1(1 + ϑ3) ≤ κ(ϑ), λ(ϑ) ≤ c2(1 + ϑ3) (2.8)

for any ϑ ≥ 0. Moreover we assume that σa, σs, B are continuous functions of ν, ϑ such that

0 ≤ σa(ν, ϑ), σs(ν, ϑ), |∂ϑσa(ν, ϑ)|, |∂ϑσs(ν, ϑ)| ≤ c1, (2.9)

0 ≤ σa(ν, ϑ)B(ν, ϑ), |∂ϑ{σa(ν, ϑ)B(ν, ϑ)}| ≤ c2, (2.10)

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), h ∈ L1(0,∞). (2.11)

for all ν ≥ 0, ϑ ≥ 0, where c1,2,3 are positive constants.

Let us recall some definitions introduced in [10].

• In the weak formulation of the Navier-Stokes-Fourier system the equation of continuity (1.1) is
replaced by its (weak) renormalized version [4] represented by the family of integral identities

∫ T

0

∫

Ω

((

̺+ b(̺)
)

∂tϕ+
(

̺+ b(̺)
)

~u · ∇xϕ+
(

b(̺) − b′(̺)̺
)

divx~u ϕ
)

dx dt = −
∫

Ω

(

̺0+b(̺0)
)

ϕ(0, ·) dx

(2.12)
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satisfied for any ϕ ∈ C∞
c ([0, T ) × Ω), and any b ∈ C∞[0,∞), b′ ∈ C∞

c [0,∞), where (2.12) implicitly
includes the initial condition ̺(0, ·) = ̺0.

• Similarly, the momentum equation (1.2) is replaced by

∫ T

0

∫

Ω

(

(̺~u) · ∂tϕ+ (̺~u⊗ ~u) : ∇xϕ+ p divxϕ+ (̺~χ× ~u) · ϕ
)

dx dt (2.13)

=

∫ T

0

∫

Ω

(

S : ∇xϕ− ̺∇xΨ · ϕ− (~j × ~B) · ϕ− ̺∇x|~χ× ~x|2 · ϕ
)

dx dt−
∫

Ω

(̺~u)0 · ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0, T ) × Ω; R3). As usual, for (2.13) to make sense, the field ~u must belong to a certain

Sobolev space with respect to the spatial variable we require that

~u ∈ L2(0, T ;W 1,2
0 (Ω; R3)), (2.14)

where (2.14) already includes the no-slip boundary condition (1.12).

• The magnetic equation (1.5) is replaced by

∫ T

0

∫

Ω

(

~B · ∂tϕ− ( ~B × ~u+ λcurlx ~B) · curlxϕ
)

dx dt+

∫

Ω

~B0 · ϕ(0, ·) dx = 0, (2.15)

to be satisfied for any vector field ϕ ∈ D([0, T ) ×R3).
Here, according the boundary conditions, one has to take

~B0 ∈ L2(Ω), divx
~B0 = 0 in D′(Ω), ~B0 · ~n|∂Ω = 0. (2.16)

Following Theorem 1.4 in [30], ~B0 belongs to the closure of all solenoidal functions from D(Ω) with respect
to the L2−norm.

Anticipating (see (2.28) below) we see that

~B ∈ L∞(0, T ;L2(Ω;R3)), curlx ~B ∈ L2(0, T ;L2(Ω;R3))

and we deduce from (2.15) that

divx
~B(t) = 0 in D′(Ω), ~B(t) · ~n|∂Ω = 0 for a.a. t ∈ (0, T ).

In particular, using Theorem 6.1 in [12], we conclude

~B ∈ L2(0, T ;W 1,2(Ω;R3)), divx
~B(t) = 0, ~B · ~n|∂Ω = 0 for a.a. t ∈ (0, T ). (2.17)

• From (1.2) and (1.3) we have the energy conservation law

∂t

(1

2
̺|~u|2+̺e+ 1

2µ
| ~B|2

)

+divx

(

(
1

2
̺|~u|2+̺e+p)~u+ ~E× ~B−S~u+~q

)

= ̺∇xΨ·~u+̺∇x|~χ×~x|2·~u−SE. (2.18)

Let us rearrange the right hand side.
As the gravitational potential Ψ is determined by equation (1.6) considered on the whole space R

3,
the density ̺ being extended to be zero outside Ω we observe that

∫

Ω
̺∇xΨ · ~u dx = − d

dt
1
2

∫

Ω
̺Ψ dx.
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In the same stroke
∫

Ω
̺∇x|~χ× ~x|2 · ~u dx = − d

dt
1
2

∫

Ω
̺|~χ× ~x|2 dx.

Denoting now by ER the radiative energy given by

ER(t, x) =
1

c

∫

S2

∫ ∞

0

I(t, x, ~ω, ν) d~ω dν, (2.19)

and integrating the radiative transfer equation (1.5), we get

∂t

∫

Ω

ER dx+

∫ τ

0

∫ ∫

∂Ω×S2, ~ω·~n≥0

∫ ∞

0

~ω · ~nI(t, x, ~ω, ν) dν d~ω dSx dt =

∫

Ω

SE dx.

Using boundary conditions, we deduce the identity

d

dt

∫

Ω

(1

2
̺|~u|2+̺e+ 1

2µ
| ~B|2−1

2
̺Ψ+

1

2
̺|~χ×~x|2+ER

)

dx+

∫ ∫

∂Ω×S2, ~ω·~n≥0

∫ ∞

0

~ω·~nI(t, x, ~ω, ν) dν d~ω dSx = 0.

(2.20)
• Finally, dividing (1.3) by ϑ and using Maxwell’s relation (1.7), we obtain the entropy equation

∂t (̺s) + divx (̺s~u) + divx

(

~q

ϑ

)

= ς, (2.21)

where

ς =
1

ϑ

(

S : ∇x~u− ~q · ∇xϑ

ϑ
+
λ

ζ
|curlx ~B|2

)

− SE

ϑ
, (2.22)

where the first term ςm := 1
ϑ

(

S : ∇x~u− ~q·∇xϑ
ϑ + λ

ζ |curlx ~B|2
)

is the (positive) electromagnetic matter

entropy production.
In order to identify the second term in (2.22), let us recall [1] the formula for the entropy of a photon

gas

sR = −2k

c3

∫ ∞

0

∫

S2

ν2 [n logn− (n+ 1) log(n+ 1)] d~ωdν, (2.23)

where n = n(I) = c2I
2hν3 is the occupation number. Defining the radiative entropy flux

~qR = −2k

c2

∫ ∞

0

∫

S2

ν2 [n logn− (n+ 1) log(n+ 1)] ~ω d~ωdν, (2.24)

and using the radiative transfer equation, we get the equation

∂ts
R + divx~q

R = −k
h

∫ ∞

0

∫

S2

1

ν
log

n

n+ 1
S d~ωdν =: ςR. (2.25)

Checking the identity log n(B)
n(B)+1 = hν

kϑ with B = B(ϑ, ν) the Planck’s function, and using the definition

of S, the right-hand side of (2.25) rewrites

ςR =
SE

ϑ
− k

h

∫ ∞

0

∫

S2

1

ν

[

log
n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]

σa(B − I) d~ωdν

−k
h

∫ ∞

0

∫

S2

1

ν

[

log
n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]

σs(Ĩ − I) d~ωdν,
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where we used the hypothesis that the transport coefficients σa,s do not depend on ~ω. So we obtain
finally

∂t

(

̺s+ sR
)

+ divx

(

̺s~u+ ~qR
)

+ divx

(

~q

ϑ

)

= ς + ςR. (2.26)

and equation (2.21) is replaced in the weak formulation by the inequality

∫ T

0

∫

Ω

(

(̺s+ sR)∂tϕ+ ̺s~u · ∇xϕ+ (
~q

ϑ
+ ~qR) · ∇xϕ

)

dx dt (2.27)

≤ −
∫

Ω

(̺s+ sR)0ϕ(0, ·) dx−
∫ T

0

∫

Ω

1

ϑ

(

S : ∇x~u− ~q · ∇xϑ

ϑ
+
λ

ζ
|curlx ~B|2

)

ϕ dx dt

−k
h

∫ T

0

∫

Ω

[
∫ ∞

0

∫

S2

1

ν

[

log
n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]

σa(B − I) d~ωdν

+

∫ ∞

0

∫

S2

1

ν

[

log
n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]

σs(Ĩ − I) d~ωdν

]

ϕ dxdx dt

for any ϕ ∈ C∞
c ([0, T ) × Ω), ϕ ≥ 0, where the sign of all the terms in the right hand side may be

controlled.
• Since replacing equation (1.3) by inequality (2.27) would result in a formally under-determined

problem, system (2.12), (2.13), (2.27) must be supplemented with the total energy balance

∫

Ω

(

1

2
̺|~u|2 + ̺e(̺, ϑ) +

1

2µ
| ~B|2 − 1

2
̺Ψ +

1

2
̺|~χ× ~x|2 + ER

)

(τ, ·) dx (2.28)

+

∫ τ

0

∫ ∫

∂Ω×S2, ~ω·~n≥0

∫ ∞

0

~ω · ~nI(t, x, ~ω, ν) dν d~ω dSx dt

=

∫

Ω

(

1

2̺0
|(̺~u)0|2 + (̺e)0

1

2µ
| ~B0|2 −

1

2
̺0Ψ0 +

1

2
̺0|~χ× ~x|2 + ER

0

)

dx,

where ER
0 is given by

ER
0 (x) =

1

c

∫

S2

∫ ∞

0

I(0, x, ~ω, ν) d~ω dν.

Concerning the transport equation (1.4), it can be extended to the whole physical space R
3 provided

we set σa(x, ν, ϑ) = 1Ωσa(ν, ϑ) and σs(x, ν, ϑ) = 1Ωσs(ν, ϑ) and take the initial distribution I0(x, ~ω, ν)
to be zero for x ∈ R

3 \ Ω. Accordingly, for any fixed ~ω ∈ S2, equation (1.4) can be viewed as a linear
transport equation defined in (0, T )×R

3, with a right-hand side S. With the above mentioned convention,
extending ~u to be zero outside Ω, we may therefore assume that both ̺ and I are defined on the whole
physical space R

3.

Definition 2.1 We say that ̺, ~u, ϑ, ~B, I is a weak solution of problem (1.1 - 1.6) if

̺ ≥ 0, ϑ > 0 for a.a. (t, x) × Ω, I ≥ 0 a.a. in (0, T ) × Ω × S2 × (0,∞),

̺ ∈ L∞(0, T ;L5/3(Ω)), ϑ ∈ L∞(0, T ;L4(Ω)),
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~u ∈ L2(0, T ;W 1,2
0 (Ω; R3)),

ϑ ∈ L2(0, T ;W 1,2(Ω)), ϑ ∈ L∞(0, T ;L4(Ω))

~B ∈ L2(0, T ;W 1,2
0 (Ω; R3)),

I ∈ L∞((0, T ) × Ω × S2 × (0,∞)), I ∈ L∞(0, T ;L1(Ω × S2 × (0,∞)),

and if ̺, ~u, ϑ, ~B, I satisfy the integral identities (2.12), (2.13), (2.27), (2.15), (2.28), together with the
transport equation (1.4).

The stability result of [7] reads now

Theorem 2.1 Let Ω ⊂ R
3 be a bounded Lipschitz domain. Assume that the thermodynamic functions

p, e, s satisfy hypotheses (2.1 - 2.6), and that the transport coefficients µ, λ, κ, σa, and σs comply with
(2.7 - 2.11).

Let {̺ε, ~uε, ϑε, ~Bε, Iε}ε>0 be a family of weak solutions to problem (1.1 - 1.13) in the sense of Definition
2.1 such that

̺ε(0, ·) ≡ ̺ε,0 → ̺0 in L5/3(Ω), (2.29)
∫

Ω

(

1

2
̺ε|~uε|2 + ̺εe(̺ε, ϑε)

1

2µ
| ~Bε|2 −

1

2
̺εΨε +

1

2
̺ε|~χ× ~x|2 + ER,ε

)

(0, ·) dx (2.30)

≡
∫

Ω

(

1

2̺0,ε
|(̺~u)0,ε|2 + (̺e)0,ε + ER,0,ε

)

dx ≤ E0,

∫

Ω

[̺εs(̺ε, ϑε) + sR(Iε)](0, ·) dx ≡
∫

Ω

(̺s+ sR)0,ε dx ≥ S0,

and
0 ≤ Iε(0, ·) ≡ I0,ε(·) ≤ I0, |I0,ε(·, ν)| ≤ h(ν) for a certain h ∈ L1(0,∞).

Then
̺ε → ̺ in Cweak([0, T ];L5/3(Ω)),

~uε → ~u weakly in L2(0, T ;W 1,2
0 (Ω; R3)),

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)),

~Bε → ~B weakly in L2(0, T ;W 1,2
0 (Ω; R3)),

and
Iε → I weakly-(*) in L∞((0, T ) × Ω × S2 × (0,∞)),

at least for suitable subsequences, where {̺, ~u, ϑ, ~B, I} is a weak solution of problem (1.1 - 1.6).
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3 Formal scaling analysis

In order to identify the appropriate limit regime we perform a general scaling, denoting by Lref , Tref , Uref ,
ρref , ϑref , pref , eref , µref , λref , κref , the reference hydrodynamical quantities (length, time, ve-

locity, density, temperature, pressure, energy, viscosity, conductivity), by Iref , νref , σa,ref , σs,ref , the
reference radiative quantities (radiative intensity, frequency, absorption and scattering coefficients), by
χref the reference rotation velocity, and by ζref , Bref the reference electrodynamic quantities (perme-
ability and magnetic induction).

We also assume the compatibility conditions pref ≡ ρreferef , νref =
kBϑref

h , Iref =
2hν3

ref

c2 ,

λ =
λref

Lref Uref
and we denote by Sr :=

Lref

Tref Uref
, Ma :=

Uref√
pref /ρref

, Re :=
Uref ρref Lref

µref
, P e :=

Uref pref Lref

ϑref κref
, F r :=

Uref
√

Gρref L2
ref

, C := c
Uref

, the Strouhal, Mach, Reynolds, Péclet, Froude and “infrarela-

tivistic” dimensionless numbers corresponding to hydrodynamics, by Ro :=
Uref

χref Lref
the Rossby number,

by Al :=
Uref ρ

1/2

ref
ζ
1/2

ref

Bref
the Alfven number and by L := Lrefσa,ref , Ls :=

σs,ref

σa,ref
, P :=

2k4
Bϑ4

ref

h3c3 ρref eref
, various

dimensionless numbers corresponding to radiation.
Using these scalings and using carets to symbolize renormalized variables we get

S =
Iref

Lref
Ŝ,

where

Ŝ = Lσ̂a

(

B(ν̂, ϑ̂) − Î
)

+ LLsσ̂s

(

1

4π

∫

S2

Î(·, ~ω) d~ω − Î

)

.

Omitting the carets in the following, we get first the scaled equation for I, in the region (0, T ) × Ω ×
(0,∞) × S2

Sr

C ∂tI + ~ω · ∇xI = s = Lσa (B − I) + LLsσs

(

1

4π

∫

S2

I d~ω − I

)

, (3.1)

where we used the same notation B for the dimensionless Planck function B(ν, ϑ) =
ν3

e
ν
ϑ − 1

.

Denoting also by ER =
∫

S2

∫∞

0 I dν d~ω, the (renormalized) radiative energy, by ~FR =
∫

S2

∫∞

0 ~ω I dν d~ω,

the renormalized radiative momentum, by sE =
∫

S2

∫∞

0 s dν d~ω, the renormalized radiative energy

source, by ~sR = −
∫∞

0

∫

S2 ν
2 [n logn− (n+ 1) log(n+ 1)] d~ωdν, the renormalized radiative entropy with

n = n(I) = I
ν3 , by ~qR = −

∫∞

0

∫

S2 ν
2 [n logn− (n+ 1) log(n+ 1)] ~ω d~ωdν, the renormalized radiative

entropy flux, and taking the first moment of (3.1) with respect to ~ω, we get first an equation for ER

1

C ∂tE
R + ∇x

~FR = sE . (3.2)

The continuity equation is now
Sr ∂t̺+ divx(̺~u) = 0, (3.3)

and the momentum equation

Sr ∂t(̺~u)+divx(̺~u⊗~u)+ 1

Ma2
∇xp(̺, ϑ)+

1

Ro
̺~χ×~u =

1

Re
divxS+

1

Fr2
̺∇Ψ− 1

Ro
̺∇x|~χ×~x|2+

1

Al2
~j× ~B

(3.4)
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The balance of internal energy rewrites

Sr ∂t

(

̺e+ PER
)

+ divx

(

̺e~u+ PC ~FR
)

+
1

Pe
divx~q =

Ma2

Re
S : ∇x~u− pdivx~u+

Ma2

Al2
~j · ~E,

and we get the balance of matter (fluid) entropy

Sr∂t (̺s) + divx (̺s~u) +
1

Pe
divx

(

~q

ϑ

)

= ς, (3.5)

with

ς =
1

ϑ

(

Ma2

Re
S : ∇x~u− 1

Pe

~q · ∇xϑ

ϑ
+
λ

ζ
|curlx ~B|2

)

+
SE

ϑ
,

and the balance of radiative entropy

Sr

C ∂ts
R + divx~q

R = ςR, (3.6)

with

ςR = L
∫ ∞

0

∫

S2

1

ν

[

log
n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]

σa(I −B) d~ωdν

+LLs

∫ ∞

0

∫

S2

1

ν

[

log
n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]

σs(I − Ĩ) d~ωdν +
SE

ϑ
.

The scaled equation for the electomagnetic field is

Sr∂t
~B + curlx( ~B × ~u) + curlx(λ curlx ~B) = 0. (3.7)

The scaled equation for total energy gives finally the total energy balance

Sr
d

dt

∫

Ω

(

Ma2

2
̺|~u|2 + ̺e+

1

C ER +
Ma2

Al2
1

ζ
| ~B|2 − 1

2

Ma2

Fr2
̺Ψ +

1

2

Ma2

Ro
̺|~χ× ~x|2

)

dx

+P
∫ ∞

0

∫

Γ+

~ω · ~nI dΓ+dν = 0. (3.8)

In the sequel we analyze the asymptotic regime defined by

Ma = ε, Al = ε, Fr = ε1/2, C = ε−1,

where ε > 0 is small and we put Sr = 1, Pe = 1, Re = 1, Ro = 1, P = 1, L = Ls = 1 in the previous
system. Plugging this scaling into the previous system gives

ε∂tI + ~ω · ∇xI = σa (B − I) + σs

(

1

4π

∫

S2

I d~ω − I

)

, (3.9)

∂t̺+ divx(̺~u) = 0, (3.10)

∂t(̺~u) + divx(̺~u⊗ ~u) +
1

ε2
∇xp(̺, ϑ) + ̺~χ× ~u = divxS +

1

ε
̺∇Ψ − ̺∇x|~χ× ~x|2 +

1

ε2
~j × ~B (3.11)
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∂t

(

̺e+ εER
)

+ divx

(

̺e~u+ ~FR
)

+ divx~q = ε2S : ∇x~u− pdivx~u+~j · ~E (3.12)

∂t

(

̺s+ εsR
)

+ divx

(

̺s~u+ ~qR
)

+ divx

(

~q

ϑ

)

≥ ςε, (3.13)

with

ςε =
1

ϑ

(

ε2S : ∇x~u− ~q · ∇xϑ

ϑ
+
λ

ζ
|curlx ~B|2

)

+

∫ ∞

0

∫

S2

1

ν

[

log
n(I)

n(I) + 1
− log

n(B)

n(B) + 1

]

σa(I −B) d~ωdν

+

∫ ∞

0

∫

S2

1

ν

[

log
n(I)

n(I) + 1
− log

n(Ĩ)

n(Ĩ) + 1

]

σs(I − Ĩ) d~ωdν,

∂t
~B + curlx( ~B × ~u) + curlx(λ curlx ~B) = 0, (3.14)

and finally
d

dt

∫

Ω

(

1

2
ε2 ̺|~u|2 + ̺e+ εER +

1

2ζ
| ~B|2 − 1

2
ε̺Ψ +

1

2
̺|~χ× ~x|2

)

dx

+

∫ ∞

0

∫

Γ+

~ω · ~nI dΓ+dν = 0 (3.15)

where Γ+ = {(x, ~ω) ∈ ∂Ω × S2 : ~ω · ~nx > 0}
In order to compute the limit system, we consider now the formal expansions

(I, ̺, ~u, ϑ, p, ~B) = (I0, ̺0, ~u0, ϑ0, p0, ~B0) + ε(I1, ̺1, ~u1, ϑ1, p1, ~B1) +O(ε2). (3.16)

• We first observe from (3.11) that ̺0 = Cte and ϑ0 = Cte., moreover

∇xp1 = ̺0∇xΨ(̺0). (3.17)

From (3.10) we derive the incompressibility condition

divx~u0 = 0, (3.18)

and
∂t̺1 + divx (̺0~u1 + ̺1~u0) = 0. (3.19)

• From (3.9) we get now two stationary linear transport equations for the two moments I0 and I1

~ω · ∇xI0 = σa,0 (B0 − I0) + σs,0

(

Ĩ0 − I0

)

, (3.20)

~ω · ∇xI1 = σa,0 (∂ϑB0ϑ1 − I1) + ∂ϑσa,0 (B0 − I0)ϑ1 + ∂ϑσs,0

(

Ĩ0 − I0

)

ϑ1 + σs,0

(

Ĩ1 − I1

)

, (3.21)

where Ĩ := 1
4π

∫

S2 I d~ω, σa,0 = σa(ν, ϑ0), σs,0 = σs(ν, ϑ0) and B0 = B(ν, ϑ0).
• The limit momentum equation is

̺0 (∂t~u0 + divx(~u0 ⊗ ~u0)) + ∇xΠ + ̺0~χ× ~u0 = divxS(~u0) +
1

ζ
curlx ~B1 × ~B1 + ~F , (3.22)
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where µ0 = µ(ϑ0), ~F = ̺1∇xΨ0 + ̺0∇x|~χ× ~x|2 and Π is an effective pressure.

• The limit magnetic field ~B1 solves

∂t
~B1 + curlx( ~B1 × ~u0) + curlx(λ0 curlx ~B1) = 0, (3.23)

for λ0 = λ(ϑ0).
• At lowest order the energy equation gives

̺0∂ϑe0Dϑ1 + (̺0∂̺e0 + e0)D̺1 + (̺0e0 + p0) ~u1 − divx(κ0∇xϑ1) = −SE1, (3.24)

where D is the transport operator D := ∂t + ~u0 · ∇x.
Observing that from (3.17) we have

∂̺p0D̺1 + ∂ϑp0Dϑ1 + ̺0~u0 · ∇xΦ0 = 0, (3.25)

where D := ∂t + ~u0 · ∇x, and from (3.17)

̺0divx~u1 = −D̺1,

and after (3.21)

SE1 =

∫ ∞

0

∫

S2

{∂ϑσa,0 (B0 − I0)ϑ1 + σs,0 (∂ϑB0ϑ1 − I1)} d~ω dν,

we end with
̺0cP (∂tϑ1 + divx(ϑ1~u0)) − divx (κ0∇xϑ1) = G,

where cP = ∂ϑe0+
ϑ0

̺2
0

∂ϑp2
0

∂̺p0
andG = − ̺0

∂ϑp0
~u0·∇xΨ(̺0)−

∫∞

0

∫

S2 {∂ϑσa,0 (B0 − I0)ϑ1 + σs,0 (∂ϑB0ϑ1 − I1)} d~ω dν.
Putting

~U = ~u0, Θ = ϑ1, ~B = ~B1, ̺ = ̺0, ϑ = ϑ0, µ = µ(ϑ0), λ = λ(̺0), σa = σa,0, σs = σs,0,

B = B0, D(~U) =
1

2

(

∇~u0 + ∇T~u0

)

, κ = κ0, ~F = −∂ϑp(̺, ϑ)

∂̺p(̺, ϑ)
∇xΨ(̺) Θ,

and

G = − ̺

∂ϑp(̺, ϑ)
~U · ∇xΨ(̺) +

∫ ∞

0

∫

S2

σs,0I1 d~ω dν − Θ

∫ ∞

0

∫

S2

(

∂ϑσa,0 (B0 − I0) + σs,0∂ϑB0

)

d~ω dν,

we obtain the limit system in (0, T ) × Ω

divx
~U = 0, (3.26)

̺(∂t
~U + divx(~U ⊗ ~U)) + ∇xΠ = divx(2µ D(~U)) +

1

ζ
curlx ~B × ~B + ~F (3.27)

∂t
~B + curlx( ~B × ~U) + curlx(λ curlx ~B) = 0, (3.28)

divx
~B = 0, (3.29)

̺ cP (∂tΘ + divx(Θ~U)) − divx(κ∇Θ) = G, (3.30)
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~ω · ∇xI0 = σa (B − I0) + σs

(

Ĩ0 − I0

)

, (3.31)

~ω · ∇xI1 =
(

σa∂ϑB + ∂ϑσa(B − I0) + ∂ϑσs(Ĩ0 − I0)
)

Θ − σaI1 + σs

(

Ĩ1 − I1

)

, (3.32)

together with the Boussinesq relation (3.17)

∂ϑp0∇xΘ + ∂̺p0∇xr = ̺0∇xΨ(̺0). (3.33)

We finally consider the boundary conditions

~U |∂Ω = 0, ∇Θ · ~n|∂Ω = 0, ~B · ~n|∂Ω = 0, curlx ~B × ~n|∂Ω = 0 (3.34)

for (3.26)-(3.30) and
I0(x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0 (3.35)

I1(x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0 (3.36)

for (3.31) and (3.32), and the initial conditions

~U |t=0 = ~U0, Θ|t=0 = Θ0, ~B|t=0 = ~B0, I0|t=0 = I0,0, I1|t=0 = I1,0. (3.37)

For this system we have the following existence result (see the Appendix for a short proof)

Theorem 3.1 Let Ω ⊂ R
3 be a bounded Lipschitz domain.

For any T > 0 the initial-bounday value problem (3.26) - (3.37) has at least a weak solution (~U,Θ, ~B, I0, I1)
such that

1.

~U ∈ L∞(0, T ;H(Ω)) ∩ L2(0, T ;V(Ω)),

~B ∈ L∞(0, T ;V(Ω)) ∩ L2(0, T ;W(Ω)),

with H(Ω) = {~U ∈ L2(Ω; R3), divx
~U = 0 in Ω, ~U

∣

∣

∣

∂Ω
= 0}, U(Ω) = H(Ω) ∩ W

1,2
0 (Ω; R3)),

V(Ω) =
{

~b ∈ L2(Ω; R3) divx
~b = 0, ~b · ~n

∣

∣

∣

∂Ω
= 0
}

and W(Ω) = V(Ω) ∩W 1,2
0 (Ω; R3),

2.

Θ ∈ V
1,1/2
2 ((0, T ) × Ω),

where V
1,1/2
2 is the energy space defined in [20] p.6,

3.

I0, I1 ∈ L∞((0, T ) × Ω) × S2 × R+),

with
~ω · ∇xI0, ~ω · ∇xI1 ∈ Lp((0, T )× Ω) × S2 × R+),

for any p > 1.

In the following we introduce the convergence result from the primitive system (1.1)-(1.13) to the incom-
pressible limit (3.26)-(3.37).
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4 Global existence for the primitive system and uniform esti-

mates

Let us prepare initial data such that



























̺(0, ·) = ̺0,ε = ̺+ ε̺
(1)
0,ε,

~u(0, ·) = ~u0,ε,

ϑ(0, ·) = ϑ0,ε = ϑ+ εϑ
(1)
0,ε,

I(0, ·, ·, ·) = I0,ε = I + εI
(1)
0,ε ,

~B(0, ·) = B0,ε = ε ~B
(1)
0,ε ,

(4.1)

where ̺ > 0, ϑ > 0, I > 0 and
∫

Ω ̺
(1)
0,ε dx = 0 for any ε > 0.

After [13], for any locally compact Hausdorff metric space X we denote by M(X) the set of signed
Borel measures on X and by M+(X) the cone of non-negative elements of M(X).

From Theorem 2.1 we get immediately (by combining the approximating schemes introduced in [10]

and [5]) the existence of a weak solution (̺ε, ~uε, ϑε, Iε, ~Bε) to the radiative MHD system (1.1 - 1.11)

Theorem 4.1 Let Ω ⊂ R
3 be a bounded Lipschitz domain. Assume that the thermodynamic functions p,

e, s satisfy hypotheses (2.1 - 2.6), and that the transport coefficients µ, λ, κ, σa, σs and the equilibrium

function B comply with (2.7 - 2.11). Let the initial data (̺0,ε, ~u0,ε, ϑ0,ε, I0,ε, ~B0,ε) be given by (4.1), where

(̺
(1)
0,ε, ϑ

(1)
0,ε, I

(1)
0,ε ,

~B
(1)
0,ε) are bounded measurable functions.

Then for any ε > 0 small enough (in order to maintain positivity of ̺
(1)
0,ε and ϑ

(1)
0,ε), there exits

a weak solution (̺ε, ~uε, ϑε, Iε, ~Bε) to the radiative Navier-Stokes system (1.1 - 1.11) for (t, x, ~ω, ν) ∈
(0, T )×Ω×S2 ×R+, supplemented with the boundary conditions (1.12 - 1.13) and the initial conditions
(4.1).

More precisely we have

•
∫ T

0

∫

Ω

̺εb(̺ε) (∂tφ+ ~uε · ∇xφ) dx dt =

∫ T

0

∫

Ω

β(̺ε)divxuε φ dx dt−
∫

Ω

̺0,εb(̺0,ε) φ(0, ·) dx,
(4.2)

for any β such that β ∈ L∞ ∩ C[0,∞), b(̺) = b(1) +
∫ ̺

1
β(z)
z2 dz and any φ ∈ C∞

c ([0, T )× Ω),

•
∫ T

0

∫

Ω

(

̺ε~uε · ∂tφ+ ̺ε~uε ⊗ ~uε : ∇xφ+
pε

ε2
divxφ+ ̺ε~χ× ~uε · φ

)

dx dt

=

∫ T

0

∫

Ω

(

Sε : ∇xφ−
1

ε
̺ε∇xΨε ·ϕ−

1

ε2
(~jε× ~Bε) ·ϕ−̺ε∇x|~χ×~x|2 ·ϕ

)

dx dt−
∫

Ω

̺0,ε~u0,ε ·φ(0, ·) dx,
(4.3)

for any φ ∈ C∞
c ([0, T ) × Ω; R3) with pε = p(̺ε, ϑε), Sε = S(~uε, ϑε), and ~jε = 1

ζ curlx ~Bε,
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•
∫

Ω

(

ε2

2
̺ε|~uε|2 + ̺εeε + εER

ε +
1

2ζ
| ~Bε|2 −

1

2
ε̺εΨε +

1

2
̺ε|~χ× ~x|2

)

dx dt

+

∫ T

0

∫ ∞

0

∫

Γ+

~ω · ~nxIε(t, x, ~ω, ν) dΓ dν dt

=

∫

Ω

(

ε2

2
̺0,ε|~u0,ε|2 + ̺0,εe0,ε + εER

0,ε +
1

2ζ
| ~B0,ε|2 −

1

2
ε0,ε̺Ψ0,ε +

1

2
̺0,ε|~χ× ~x|2

)

dx, (4.4)

for a.a. t ∈ (0, T ) with Γ+ = {(x, ~ω) ∈ ∂Ω×S2 : ~ω ·~nx ≥ 0} and with eε = e(̺ε, ϑε), Ψε = Ψ(̺ε),
Ψ0,ε = Ψ(̺0,ε) and ER

ε (t, x) =
∫∞

0

∫

S2 Iε(t, x, ~ω, ν) d~ω dν

•
∫ T

0

∫

Ω

(

~Bε · ∂tϕ− ( ~Bε × ~uε + λεcurlx ~Bε) · curlxϕ
)

dx dt+

∫

Ω

~B0,ε · ϕ(0, ·) dx = 0, (4.5)

for any vector field ϕ ∈ D([0, T ) × R
3), with λε = λ(ϑε).

•
∫ T

0

∫

Ω

((

̺εsε + εsR
ε

)

∂tϕ+
(

̺εsε~uε + ~qR
ε

)

· ∇xϕ
)

dx dt+

∫ T

0

∫

Ω

~qε

ϑε
· ∇xϕ dx dt

+
〈

ςmε + ςRε ;ϕ
〉

[M;C]([0,T )×Ω)
= −

∫

Ω

(

(̺s0,ε + sR
0,ε)ϕ(0, ·)

)

dx, (4.6)

where

ςmε ≥ 1

ϑε

(

Sε : ∇x~uε −
~qε · ∇xϑε

ϑε
+
λε

ζ
|curlx ~Bε|2

)

,

and

ςRε ≥ k

h

∫ ∞

0

∫

S2

1

ν

[

log
n(Iε)

n(Iε) + 1
− log

n(Bε)

n(Bε) + 1

]

σaε(Bε − Iε) d~ωdν

+

∫ ∞

0

∫

S2

1

ν

[

log
n(Iε)

n(Iε) + 1
− log

n(Ĩε)

n(Ĩε) + 1

]

σsε(Ĩε − Iε) d~ωdν,

for any ϕ ∈ C∞
c ([0, T ) × Ω) with ςmε ∈ M+([0, T ) × Ω) and ςRε ∈ M+([0, T ) × Ω), and with

σaε = σa(ν, ϑε), σsε = σs(ν, ϑε), Bε = B(ν, ϑε), ~qε = κ(̺ε, ϑε)∇xϑε, , sε = s(̺ε, ϑε), s
R
ε = sR(Iε),

~qR
ε = ~qR(Iε) and Ĩε := 1

4π

∫

S2 Iε(t, x, ν, ~ω) d~ω,

•
∫ T

0

∫

Ω

∫ ∞

0

∫

S2

(ε∂tψ + ~ω · ∇xψ) Iε d~ω dν dx dt

+

∫ T

0

∫

Ω

∫ ∞

0

∫

S2

[

σaε (Bε − Iε) + σsε

(

Ĩε − Iε

)]

ψ d~ω dν dx dt,

=

∫

Ω

∫ ∞

0

∫

S2

εI0,εψ(0, x, ~ω, ν) d~ω dν dx+

∫ T

0

∫

Γ+

∫ ∞

0

~ω · ~nxIεψ dΓ dν dt, (4.7)

for any ψ ∈ C∞
c ([0, T )× Ω × S2 × R+).
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4.1 Uniform estimates

We recall from [13] the necessary definitions in the formalism of essential and residual sets (see [11]).
Given three numbers ̺ ∈ R+, ϑ ∈ R+ and E ∈ R+ we define OH

ess the set of hydrodynamical essential
values

OH
ess :=

{

(̺, ϑ) ∈ R
2 :

̺

2
< ̺ < 2̺,

ϑ

2
< ϑ < 2ϑ

}

, (4.8)

and OR
ess the set of radiative essential values

OR
ess :=

{

ER ∈ R :
E

2
< ER < 2E

}

, (4.9)

with Oess := OH
ess ∪ OR

ess, and their residual counterparts

OH
res := (R+)2\OH

ess, OR
res := R+\OR

ess, Ores := (R+)3\Oess. (4.10)

Let {̺ε, ~uε, ϑε, Iε}ε>0) a family of solutions of the scaled radiative Navier-Stokes system given in Theorem
4.1. We call Mε

ess ⊂ (0, T ) × Ω the set

Mε
ess =

{

(t, x) ∈ (0, T ) × Ω : (̺ε(t, x), ϑε(t, x), E
R
ε (t, x)) ∈ Oess

}

,

and Mε
res = (0, T )× Ω\Mε

ess the corresponding residual set.
To any measurable function h we associate its decomposition into essential and residual parts

h = [h]ess + [h]res,

where [h]ess = h · IMε
ess

and [h]res = h · IMε
res

.
Denoting by Hϑ the Helmholtz function for matter

Hϑ(̺, ϑ) = ̺e− ϑ ̺s,

and
HR

ϑ(I) = ER − ϑ sR,

the corresponding radiative function and using (4.6) we rewrite (4.4) as

∫

Ω

(

ε2

2
̺ε|~uε|2 +Hϑ(̺ε, ϑε) + εHR

ϑ(Iε) +
1

2ζ
| ~Bε|2 −

1

2
ε̺εΨε +

1

2
ε̺ε|~χ× ~x|2

)

dx

+

∫ T

0

∫

Γ+

~ω · ~nxIε(t, x, ~ω, ν) dΓ dν dt+ ϑ
(

ςmε + ςRε
) [

[0, t] × Ω
]

=

∫

Ω

(

ε2

2
̺0,ε|~u0,ε|2 + ̺0,εe0,ε + εER

0,ε +
1

2ζ
| ~B0,ε|2 −

1

2
ε0,ε̺Ψ0,ε +

1

2
ε̺0,ε|~χ× ~x|2

)

dx.

Observing that the total mass is a constant of motion M =
∫

Ω ̺ε dx = ̺|Ω| and using Hardy-Littlewood-

Sobolev inequality, we get ε
2

∫

Ω
̺εΨε dx ≤ Gε

2 CM
2/3‖̺ε‖4/3

L4/3(Ω)
. After (2.1) and (2.5) we have also

̺εe(̺ε, ϑε) ≥ aϑ4
ε + 3p∞

2 ̺
5/3
ε , so we have the lower bound
∫

Ω

Hϑ(̺ε, ϑε) −
1

2
ε̺εΨε dx ≥ c

∫

Ω

Hϑ(̺ε, ϑε) dx,
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for ε small and a c(ε) < 1 and we deduce finally the energy-entropy inequality

∫

Ω

(

ε2

2
̺ε|~uε|2 +Hϑ(̺ε, ϑε) − (̺ε − ̺)∂̺Hϑ(̺, ϑ) −Hϑ(̺, ϑ) +

1

2ζ
| ~Bε|2 + εHR

ϑ(Iε)

)

dx

+

∫ T

0

∫

Γ+

~ω · ~nxIε(t, x, ~ω, ν) dΓ dν dt+ ϑ
(

ςmε + ςRε
) [

[0, t] × Ω
]

≤ C

∫

Ω

(

ε2

2
̺0,ε|~u0,ε|2 +

(

Hϑ(̺0,ε, ϑ0,ε) − (̺0,ε − ̺)∂̺Hϑ(̺, ϑ) −Hϑ(̺, ϑ)
)

+
1

2ζ
| ~B0,ε|2 + εHR

ϑ(I0,ε)

)

dx.

(4.11)
Now, after Lemma 4.1 in [11] (see [13]) we have the following properties for matter and radiative Helmholtz
functions

Lemma 4.1 Let ̺ > 0 and ϑ > 0 two given constants and let

Hϑ(̺, ϑ) = ̺e− ϑ ̺s,

and
HR

ϑ(I) = ER − ϑ sR.

Let Oess and Ores be the sets of essential and residual values introduced in (4.8- 4.10).
There exist positive constants Cj = Cj(̺, ϑ) for j = 1, · · ·, 8 such that

1.

C1

(

|̺− ̺|2 + |ϑ− ϑ|2
)

≤ Hϑ(̺, ϑ) − (̺− ̺)∂̺Hϑ(̺, ϑ) −Hϑ(̺, ϑ)

≤ C2

(

|̺− ̺|2 + |ϑ− ϑ|2
)

, (4.12)

for all (̺, ϑ) ∈ OH
ess,

2.

Hϑ(̺, ϑ) − (̺− ̺)∂̺Hϑ(̺, ϑ) −Hϑ(̺, ϑ)

≥ inf
˜̺,ϑ̃∈Ores

{

Hϑ(˜̺, ϑ̃) − (˜̺− ̺)∂̺Hϑ(̺, ϑ) −Hϑ(̺, ϑ)
}

= C3, (4.13)

for all (̺, ϑ) ∈ OH
res,

3.
Hϑ(̺, ϑ) − (̺− ̺)∂̺Hϑ(̺, ϑ) −Hϑ(̺, ϑ) ≥ C4 (̺e(̺, ϑ) + ̺|s(̺, ϑ)|) , (4.14)

for all (̺, ϑ) ∈ OH
res,

4.
C5|ER − E|2 ≤ ER(I) − ϑ sR(I) ≤ C6|ER − E|2, (4.15)

for all E ∈ OR
ess,
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5.
ER(I) − ϑ sR(I) ≥ inf

Ĩ∈Ores

ER(Ĩ) − ϑ sR(Ĩ) = C7, (4.16)

for all E ∈ OR
res,

6.
ER(I) − ϑ sR(I) ≥ C8

(

ER(I) + |sR(I)|
)

(4.17)

for all E ∈ OR
res

Using (4.11) and Lemma 4.1, we get the following energy estimates

Lemma 4.2 Suppose that the initial data satisfy

‖[̺0,ε − ̺]‖2
L2(Ω) ≤ Cε2, ‖[ϑ0,ε − ϑ]‖2

L2(Ω) ≤ Cε2, ‖ER
0,ε − E‖2

L2(Ω) ≤ Cε2, ‖ ~B0,ε‖2

L2(Ω;R
3
)
≤ Cε2,

and
‖√̺0,ε ~u0,ε‖L2(Ω;R

3
)
≤ C,

the following estimates hold
ess sup

t∈(0,T )

|Mε
res(t)| ≤ Cε2. (4.18)

ess sup
t∈(0,T )

‖[̺ε − ̺]ess(t)‖2
L2(Ω) ≤ Cε2, (4.19)

ess sup
t∈(0,T )

‖[ϑε − ϑ]ess(t)‖2
L2(Ω) ≤ Cε2, (4.20)

ess sup
t∈(0,T )

‖[ER
ε − E]ess(t)‖2

L2(Ω) ≤ Cε, (4.21)

ess sup
t∈(0,T )

‖[̺εe(̺ε, ϑε)]res(t)‖L1(Ω) ≤ Cε2, (4.22)

ess sup
t∈(0,T )

‖[̺εs(̺ε, ϑε)]res(t)‖L1(Ω) ≤ Cε2, (4.23)

ess sup
t∈(0,T )

‖[ER(Iε)]res(t)‖L1(Ω) ≤ Cε, (4.24)

ess sup
t∈(0,T )

‖[sR(Iε)]res(t)‖L1(Ω) ≤ Cε. (4.25)

(

ςmε + ςRε
) [

[0, t] × Ω
]

≤ Cε2, (4.26)

ess sup
t∈(0,T )

∥

∥

∥

∥

∥

~Bε(t)

ε

∥

∥

∥

∥

∥

L2(Ω;R
3
)

≤ C, (4.27)

ess sup
t∈(0,T )

‖√̺ε ~uε(t)‖L2(Ω;R
3
)
≤ C. (4.28)

ess sup
t∈(0,T )

∫

Ω

(

[̺ε]
5
3 ]res + [ϑε]

4]res

)

(t) dx ≤ Cε2, (4.29)
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∫ T

0

‖~uε(t)‖2

W 1,2(Ω;R
3
)
dt ≤ C, (4.30)

∫ T

0

∥

∥

∥

∥

ϑε − ϑ

ε
(t)

∥

∥

∥

∥

2

W 1,2(Ω)

dt ≤ C, (4.31)

∫ T

0

∥

∥

∥

∥

log(ϑε) − log(ϑ)

ε
(t)

∥

∥

∥

∥

2

W 1,2(Ω)

dt ≤ C, (4.32)

∫ T

0

∥

∥

∥

∥

∥

~Bε(t)

ε

∥

∥

∥

∥

∥

2

W 1,2(Ω;R
3
)

dt ≤ C. (4.33)

Proof: Estimate (4.18) follow after (4.13). Bounds (4.19),(4.20) and (4.24) follow after (4.12) and (4.15).
Bounds (4.22) and (4.23) follow after (4.14) Bounds (4.24) and (4.25) follow after (4.17). Bounds (4.26),
(4.27) and (4.28) follow after energy inequality (4.11). Bound (4.29) follows after (4.22) and the expression
(2.5) of e.

From (4.26) we see that

∫ T

0

‖∇x~uε + ∇t
x~uε −

2

3
divx~uεI‖2

L2

(

Ω;R
3×3
)dt ≤ C. (4.34)

From (4.18), (4.28) and (4.34) we get (4.30). From (4.26) we get

∫ T

0

∥

∥

∥

∥

∇x

(

ϑε

ε

)
∥

∥

∥

∥

2

L2(Ω)

+

∥

∥

∥

∥

∇x

(

logϑε

ε

)
∥

∥

∥

∥

2

L2(Ω)

dt ≤ C,

which, using (4.19) and (4.20) gives (4.31) and (4.32).
Finally after (4.26) one gets

∥

∥

∥

∥

∥

curlx ~Bε

ε

∥

∥

∥

∥

∥

2

L2(Ω;R
3
)

≤ C,

and (4.33) follows by using Theorem 6.1 in [12].
Our goal in the next Section will be to prove that the incompressible system (3.26)-(3.37) is the limit

of the primitive system (4.2)-(4.7) in the following sense

Theorem 4.2 Let Ω ⊂ R
3 be a bounded domain of class C2,ν . Assume that the thermodynamic functions

p, e, s satisfy hypotheses (2.1 - 2.6) with P ∈ C1[0,∞) ∩C2(0,∞), and that the transport coefficients µ,
η, κ, λ, σa, σs and the equilibrium function B comply with (2.7 - 2.11).

Let (̺ε, ~uε, ϑε, ~Bε, Iε) be a weak solution of the scaled system (1.1 - 1.11) for (t, x, ~ω, ν) ∈ [0, T ]×Ω×
S2×R+, supplemented with the boundary conditions (1.12 - 1.13) and initial conditions (̺0,ε, ~u0,ε, ϑ0,ε, ~B0,ε, I0,ε)
given by

̺ε(0, ·) = ̺+ ε̺
(1)
0,ε, ~uε(0, ·) = ~u0,ε, ϑε(0, ·) = ϑ+ εϑ

(1)
0,ε, Iε(0, ·) = I + εI

(1)
0,ε ,

~Bε(0, ·) = ε ~B
(1)
0,ε ,

where ̺ > 0, ϑ > 0, I > 0 are constants and
∫

Ω

̺
(1)
0,ε dx = 0,

∫

Ω

ϑ
(1)
0,ε dx = 0,

∫

Ω

I
(1)
0,ε dx = 0,

∫

Ω

~B
(1)
0,ε dx = 0 for all ε > 0.
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Assume that






























̺
(1)
0,ε → ̺

(1)
0 weakly − (∗) in L∞(Ω),

~u
(1)
0,ε → ~U0 weakly − (∗) in L∞(Ω; R3),

ϑ
(1)
0,ε → ϑ

(1)
0 weakly − (∗) in L∞(Ω),

I
(1)
0,ε → I

(1)
0 weakly − (∗) in L∞(Ω × S2 × R+),

~B
(1)
0,ε → ~B

(1)
0 weakly − (∗) in L∞(Ω; R3),

Then
ess sup

t∈(0,T )

‖̺ε(t) − ̺‖
L

4
3 (Ω)

≤ Cε, (4.35)

and up to subsequences
~uε → ~U weakly − (∗) in L2(0, T ;W 1,2(Ω; R3)), (4.36)

ϑε − ϑ

ε
= ϑ(1) → Θ weakly − (∗) in L2(0, T ;W 1,2(Ω)), (4.37)

Iε → I0 weakly − (∗) in L2(0, T ;L2(Ω × S2 × R+)), (4.38)

~Bε

ε
= ~B(1) → ~B weakly − (∗) in L2(0, T ;W 1,2(Ω; R3)), (4.39)

and
Iε − I

ε
= I(1) → I1 weakly − (∗) in L2(0, T ;L2(Ω × S2 × R+)), (4.40)

where (~U,Θ, ~B, I0, I1) solves the system (3.26)-(3.32).

5 Proof of Theorem 4.2

Let us first quote the following result of [11] (see [13])

Proposition 5.1 Let {̺ε}ε>0, {ϑε}ε>0{Iε}ε>0 be three sequences of non-negative measurable functions
such that

[

̺(1)
ε

]

ess
→ ̺(1) weakly − (∗) in L∞(0, T ;L2(Ω)),

[

ϑ(1)
ε

]

ess
→ ϑ(1) weakly − (∗) in L∞(0, T ;L2(Ω)),

[

I(1)
ε

]

ess
→ I(1) weakly − (∗) in L∞(0, T ;L2(Ω)), a.e. in S2 × R+,

where

̺(1)
ε =

̺ε − ̺

ε
, ϑ(1)

ε =
ϑε − ϑ

ε
, I(1)

ε =
Iε − I

ε
.

Suppose that
ess sup

t∈(0,T )

|Mε
res(t)| ≤ Cε2. (5.1)

Let G,GR ∈ C1(Oess) be given functions. Then

[G(̺ε, ϑε)]ess −G(̺, ϑ)

ε
→ ∂G(̺, ϑ)

∂̺
̺(1) +

∂G(̺, ϑ)

∂ϑ
ϑ(1),
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weakly − (∗) in L∞(0, T ;L2(Ω)), and if we note

[

GR(Iε)
]

ess
:=
[

GR(Iε(·, ·, ~ω, ν))
]

ess
= GR(Iε) · IMε

ess
, for a.a. (~ω, ν) ∈ S2 × R+,

we have
[

GR(Iε)
]

ess
−GR(I)

ε
→ ∂G(I)

∂I
I(1),

weakly − (∗) in L∞(0, T ;L2(Ω)), a.e. in S2 × R+.
Moreover if G,GR ∈ C2(Oess) then

∥

∥

∥

∥

∥

[G(̺ε, ϑε)]ess −G(̺, ϑ)

ε
− ∂G(̺, ϑ)

∂̺

[

̺(1)
]

ess
− ∂G(̺, ϑ)

∂ϑ

[

ϑ(1)
]

ess

∥

∥

∥

∥

∥

L∞(0,T ;L1(Ω)

≤ Cε,

and
∥

∥

∥

∥

∥

[

GR(Iε)
]

ess
−GR(I)

ε
− ∂G(I)

∂I

[

I(1)
]

ess

∥

∥

∥

∥

∥

L∞(0,T ;L1(Ω)

≤ Cε,

for a.a. (~ω, ν) ∈ S2 × R+.

Clearly, this result provides us with the convergence properties (4.35-4.40).

To conclude the proof of Theorem 4.2, let us prove that the limit quantities (~U,Θ, ~B, I0, I1) solve the
target system (3.26)-(3.32).

As number of terms in the equations of our model are similar to those of the radiative Navier-Stokes-
Fourier analyzed in [11] we only focus on the new contributions.

5.1 Continuity and Momentum equations

For the continuity equation, one expects that in the low Mach number limit, it reduces to the incom-

pressibility constraint. In fact after Lemma 4.2 we know that
∫ T

0
‖~uε(t)‖2

W 1,2(Ω;R
3
)
dt ≤ C so passing to

the limit after possible extraction of a subsequence, we deduce that

~uε → ~U, weakly in L2(0, T ;W 1,2(Ω; R3)). (5.2)

In the same stroke ̺ε → ̺, weakly in L∞(0, T ;L5/3(Ω; R3)). So we can pass to the limit in the weak

continuity equation (4.2) which gives
∫ T

0

∫

Ω
~U ∇xφ dx dt = 0 for all φ ∈ D((0, T ) × Ω), which rewrites

divx
~U = 0, a.e. in (0, T ) × Ω, ~U

∣

∣

∣

∂Ω
= 0,

provided ∂Ω is regular.
For the momentum equation one knows that due to possible strong time oscillations of the gradient

component of velocity, one has only ̺ε~uε ⊗ ~uε → ̺~U ⊗ ~U weakly in L2(0, T ;L
30
29 (Ω; R3)). However one

can show after the analysis in [13] that one can pass to the limit in the convective term and obtain

∫ T

0

∫

Ω

̺ ~U ⊗ ~U : ∇xφ dx dt→
∫ T

0

∫

Ω

̺ ~U ⊗ ~U : ∇xφ dx dt.
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Moreover after the hypotheses on the pressure law, the temperature ϑε is bounded in L∞((0, T );L4(Ω))∩
L2(0, T ;L6(Ω)), which implies that Sε → µ(ϑ)(∇x

~U + ∇t
x
~U) weakly in Lq(0, T ;Lq(Ω; R3)) for a q > 1.

So taking a divergence free test vector field φ in (4.3), we have

∫ T

0

∫

Ω

(̺ε~uε · ∂tφ+ ̺ε~uε ⊗ ~uε : ∇xφ+ ̺ε~χ× ~uε · φ) dx dt

=

∫ T

0

∫

Ω

(

Sε : ∇xφ−
̺ε − ̺

ε
∇xΨε ·ϕ−

1

ζ

curlx ~Bε

ε
×
~Bε

ε
·ϕ−̺ε∇x|~χ×~x|2 ·ϕ

)

dx dt−
∫

Ω

̺0,ε~u0,ε ·φ(0, ·) dx.
(5.3)

Moreover, using (2.15) together with estimates (4.27), (4.33) and Lions-Aubin lemma we get

~Bε

ε
→ ~B weakly in L2(0, T ;W 1,2(Ω; R3)) and strongly in L2((0, T ) × Ω; R3), (5.4)

1

ζ

curlx ~Bε

ε
×
~Bε

ε
→ 1

ζ
curlx ~B × ~B weakly in Lq((0, T ) × Ω; R3),

for a certain q > 1.
Then passing to the limit and using (4.36)-(4.40), we get

∫ T

0

∫

Ω

(

̺~U · ∂tφ+ ̺~U ⊗ ~U : ∇xφ+ ̺~χ× ~U · φ
)

dx dt

=

∫ T

0

∫

Ω

(

µ(ϑ)(∇x
~U + ∇t

x
~U) : ∇xφ− ̺1∇xΨ(̺) · φ− 1

ζ
curlx ~B × ~B · φ− ̺∇x|~χ× ~x|2 · φ

)

dx dt−
∫

Ω

̺~U0·φ dx,

provided that ~u0,ε → ~U0 weakly ∗ in L∞(Ω; R3).
As in [13], the formal relation between ̺(1) and ϑ(1) is recovered by multiplying the momentum

equation by ε. One gets, using Proposition 5.1 and passing to the limit

∫ T

0

∫

Ω

(

∇xp
(1) − ̺∇xΨ(̺)

)

· φ dx dt = 0, (5.5)

which is the weak formulation of

∂̺p(̺, ϑ)∇x̺
(1) + ∂ϑp(̺, ϑ)∇xϑ

(1) − ̺∇xΨ(̺) = 0. (5.6)

5.2 Radiative transfer equation

Using the L∞ bound shown in the previous sections for Iε, it is clear that Iε → I0 weakly in L2((0, T )×
Ω × S2 × R+), and we have also after Lemma 4.2 ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)).

Using the cut-off hypotheses (2.9)(2.11), we can pass to the limit which gives

∫

Ω

∫ ∞

0

∫

S2

~ω · ∇xψ I0 d~ω dν dx+

∫

Ω

∫ ∞

0

∫

S2

[

σa(ν, ϑ)
(

B(ν, ϑ) − I0
)

+ σs(ν, ϑ)
(

Ĩ0 − I0

)]

ψ d~ω dν dx

=

∫

Γ+

∫ ∞

0

~ω · ~nxI0 ψ dΓ dν,
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using the same notation for any time-independent test function ψ ∈ C∞
c (Ω×S2×R+), which is the weak

formulation of the stationary problem
~ω · ∇xI0 = S0, (5.7)

with the boundary condition
I0 = 0 on Γ+, (5.8)

where S0 = σa(ν, ϑ)
(

B(ν, ϑ) − I0
)

+ σs(ν, ϑ)
(

Ĩ0 − I0

)

.

Now from (4.7)

∫ T

0

∫

Ω

∫ ∞

0

∫

S2

(ε∂tψ + ~ω · ∇xψ)
Iε − I0

ε
d~ω dν dx dt+

∫ T

0

∫

Ω

∫ ∞

0

∫

S2

[

Sε − S0

ε

]

ψ d~ω dν dx dt,

=

∫

Ω

∫ ∞

0

∫

S2

ε
I0,ε − I0

ε
ψ(0, x, ~ω, ν) d~ω dν dx+

∫ T

0

∫

Γ+

∫ ∞

0

~ω · ~nx
Iε − I0

ε
ψ dΓ dν dt,

for any ψ ∈ C∞
c ([0, T ] × Ω × S2 × R+), with Sε − S0 = S(Iε) − S(I0). From Proposition 5.1, we get

Sε − S0

ε
→ S1 := ∂ϑ(σaB)(ν, ϑ)ϑ(1) − ∂ϑσa(ν, ϑ)ϑ(1)I0 − σa(ν, ϑ)I1

+∂ϑσs(ν, ϑ)ϑ(1)Ĩ0 + σs(ν, ϑ)Ĩ1 − ∂ϑσs(ν, ϑ)ϑ(1)I0 − σs(ν, ϑ)I1,

weakly in L∞((0, T );L2(Ω × S2 × R+)) with I1 := I(1).
Passing to the limit we find the limit equation

∫

Ω

∫ ∞

0

∫

S2

~ω · ∇xψ I1 d~ω dν dx+

∫

Ω

∫ ∞

0

∫

S2

S1ψ d~ω dν dx,=

∫

Γ+

∫ ∞

0

~ω · ~nx I1ψ dΓ dν, (5.9)

using the same notation for any time-independent test function ψ ∈ C∞
c (Ω×S2 ×R+) which is the weak

formulation of the stationary problem
~ω · ∇xI1 = S1, (5.10)

with the boundary condition
I1 = 0 on Γ+. (5.11)

5.3 Entropy balance

We rewrite equation (4.6) as

∫ T

0

∫

Ω

{

̺ε
sε − s

ε
(∂tϕ+ ~uε · ∇xϕ) +

sR
ε − sR

ε
ε∂tϕ+

~qR
ε − ~qR

ε
· ∇xϕ

}

dx dt

+

∫ T

0

∫

Ω

κ(ϑε)

ϑε
∇x

(

ϑε

ε

)

·∇xϕ dx dt+
1

ε

〈

ςmε + ςRε ;ϕ
〉

[M;C]([0,T×Ω)
= −

∫

Ω

{(

̺0,ε
s0,ε − s

ε
+ ε

sR
ε − sR

ε

)

ϕ(0, ·)
}

dx,

Similarly to [13], using Proposition 5.1 and energy estimates, we see that

̺ε
sε − s

ε
→ ̺

(

∂̺s(̺, ϑ)̺(1) + ∂ϑs(̺, ϑ)ϑ(1)
)

,
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weakly ∗ in L∞(0, T ;L2(Ω; R3)),

κ(ϑε)

ϑε
∇x

(ϑε

ε

)

→ κ(ϑ)

ϑ
∇xϑ

(1),

weakly ∗ in L2(0, T ;L2(Ω; R3)) and

1

ε

〈

ςmε + ςRε ;φ
〉

[M;C]([0,T×Ω)
→ 0.

Moreover

̺ε
sε − s

ε
· ~uε → ̺

(

∂̺s(̺, ϑ)̺(1) + ∂ϑs(̺, ϑ)ϑ(1)
)

· ~U,

weakly ∗ in L2(0, T ;L3/2(Ω; R3)). Now applying Proposition 5.1 in the same stroke, we get

ε
sR

ε − sR

ε
→ 0,

weakly ∗ in L∞(0, T ;L2(Ω; R3)).

Let us compute the limit of
~qR

ε −~qR

ε . We have

~qR
ε = ~qR(Iε) = −

∫ ∞

0

∫

S2

ν2 {nε lognε − (nε + 1) log(nε + 1)} d~Ω dν,

with nε = n(Iε) = Iε

ν3 .
Applying once more Proposition 5.1 with GR(I) = n(I) logn(I) − (n(I) + 1) log(n(I) + 1) and inte-

grating on S2 × R+, we find

~qR
ε − ~qR

ε
→
∫ ∞

0

∫

S2

1

ν
log

(

n(I) + 1

n(I)

)

~ω I(1) d~ω dν,

and as n(I)+1

n(I)
= ν

ϑ
, we have

~qR
ε − ~qR

ε
→ 1

ϑ
~FR(I(1)),

with the radiative momentum ~FR(I(1)) =
∫∞

0

∫

S2 ~ω I(1) d~ω dν. So

∫ T

0

∫

Ω

(

~qR
ε − ~qR

ε

)

· ∇xϕ dx dt→ −
∫ T

0

∫

Ω

divx
~FR(I(1))

ϑ
φ dx dt.

As we have, from (5.10)

divx
~FR =

∫ ∞

0

∫

S2

[

∂ϑσa(ν, ϑ)
(

B(ν, ϑ) − I0
)

ϑ(1) + σa(ν, ϑ)
(

∂ϑB(ν, ϑ)ϑ(1) − I1

)]

d~ω dν,

the limit contribution in the right-hand side becomes

−
∫ T

0

∫

Ω

∫ ∞

0

∫

S2

1

ϑ

[

∂ϑσa(ν, ϑ)
(

B(ν, ϑ) − I0
)

ϑ(1) + σa(ν, ϑ)
(

∂ϑB(ν, ϑ)ϑ(1) − I1

)]

φ d~ω dν dx dt,
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Gathering all of these terms, we find the limit equation for entropy

−
∫ T

0

∫

Ω

̺
(

∂̺s(̺, ϑ)̺(1) + ∂ϑs(̺, ϑ)ϑ(1)
)(

∂tφ+ ~U · ∇xφ
)

dx dt−
∫ T

0

∫

Ω

κ(̺, ϑ)

ϑ
∇xϑ

(1) ∇xφ dx dt

+

∫ T

0

∫

Ω

∫ ∞

0

∫

S2

1

ϑ

[

∂ϑσa(ν, ϑ)
(

B(ν, ϑ) − I0
)

ϑ(1) + σa(ν, ϑ)
(

∂ϑB(ν, ϑ)ϑ(1) − I1

)]

φ d~ω dν dx dt

= −
∫

Ω

̺
(

∂̺s(̺, ϑ)̺
(1)
0 + ∂ϑs(̺, ϑ)ϑ

(1)
0

)

φ(0, ·) dx.

Using (5.6), it is routine to check that we finally obtain the thermal equation (3.30).

5.4 Maxwell equation

From (5.2) and (5.4) we get

~Bε

ε
× ~u→ ~B × ~U weakly in Lq(0, T ;Lq(Ω,R3)) for q > 1,

and

λcurlx
~Bε

ε
→ λcurlx ~B weakly in L2(0, T, L2(Ω,R3)).

Then it is easy to pass to the limit in (4.5).

Appendix: Proof of Theorem 3.1

1. The stationary radiative problem (3.31),(3.35) has a weak solution I0 ∈ L∞(Ω × S2 × R+) such
that ~ω · ∇xI0 ∈ Lp(Ω × S2 × R+) for any p > 1, after Theorem 1 and Proposition 2 of [2].

2. Consider now the linearly coupled problem for the remaining equations

divx
~U = 0, (.12)

∂t
~U + (~U · ∇x)~U + ∇xΠ − µ∆~U +

1

ζ
∇x

(

~B2

2

)

− 1

ζ
( ~B · ∇x) ~B = ~αΘ, (.13)

∂t
~B + (~U · ∇x) ~B + ( ~B · ∇x)~U − λ∆ ~B = 0, (.14)

divx
~B = 0, (.15)

∂tΘ + (~U · ∇x)Θ − divx(K∇Θ) = ~β · ~U + ηΘ +

∫ ∞

0

∫

S2

σs(ν, ϑ)I1(x, ν, ~ω) d~ω dν, (.16)

~ω · ∇xI1 + σaI1 − σs

(

Ĩ1 − I1

)

= ξΘ, (.17)

where ~α ∈ (C∞(Ω))3, ~β ∈ (L∞(Ω))3, η, ξ ∈ L∞(Ω), together with the boundary conditions

~U |∂Ω = 0, ∇Θ · ~n|∂Ω = 0, ~B · ~n|∂Ω = 0, curlx ~B × ~n|∂Ω = 0 (.18)
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for (.12)-(.14) and
I1(x, ν, ~ω) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0 (.19)

for (.15), and the initial conditions

~U |t=0 = ~U0, Θ|t=0 = Θ0, ~B|t=0 = ~B0, I1|t=0 = I1,0. (.20)

In order to apply Schauder’s fixed point method used by Nečas and Roub́ıček [23] (see [28] Chap.

XII.2) we first consider, for Θ given, the solution (~U, ~B, I1) of the“radiative-MHD problem”

divx
~U = 0, (.21)

∂t
~U + (~U · ∇x)~U + ∇xΠ − µ∆~U = −1

ζ
curlx ~B × ~B − ~αΘ, (.22)

∂t
~B + (~U · ∇x) ~B − λ∆ ~B = 0, (.23)

divx
~B = 0, (.24)

~ω · ∇xI1 + σaI1 − σs

(

Ĩ1 − I1

)

= ξΘ, (.25)

with
~U |∂Ω = 0, ~B · ~n|∂Ω = 0, curlx ~B × ~n|∂Ω = 0,

and
~U |t=0 = ~U0, ~B|t=0 = ~B0, I1|t=0 = I1,0.

The mhd part has a weak solution ~U ∈ L2(0, T ;U(Ω)), ~B ∈ L2(0, T ;W(Ω)) after an extension of the
Leray-Hopf Theorem (see [29]). Moreover the inhomogeneous stationary radiative equation (.25)
also has a weak solution I1 ∈ L2((0, T )× Ω) × S2 × R+) after Theorem 1 and Proposition 2 of [2].
Consequently the mapping

A : Θ → (~U, ~B, I1) : L2(0, T ;W−1,2(Ω)) → L2(0, T ;U(Ω))×L2(0, T ;W(Ω))×L2((0, T )×Ω)×S2×R+),

is continuous.

Then we consider the solution Θ of the transport-diffusion equation

∂tΘ + (~V · ∇x)Θ − divx(K∇Θ) − ηΘ = ~β · ~U +

∫ ∞

0

∫

S2

σs(ν, ϑ)I1(x, ν, ~ω) d~ω dν, (.26)

with
∇Θ · ~n|∂Ω = 0 and Θ|t=0 = Θ0.

It has a weak solution Θ ∈ V
1,1/2
2 ((0, T ) × Ω) after Theorem 5.1 in [20] Chapter III, moreover

Θ ∈ L2(0, T ;W−1,2(Ω)) and the mapping

B : (~U, I1) → Θ : L2(0, T ;U(Ω)) × Ω) × S2 × R+) → L2(0, T ;W−1,2(Ω)),

is also continuous.

So we can follow verbatim the scheme of proof of Proposition 12.6 in [23] to conclude.
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