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Abstract

We consider weak solutions to the stationary Navier-Stokes system with Oseen and rotational terms, in an exterior
domain. We are interested in the leading term for the velocity field and its gradient. Moreover, we deal with the
asymptotic behavior at infinity. We proved the velocity may be split into a constant times the first column of the
fundamental solution of the Oseen system, plus a remainder term decaying pointwise near infinity at a rate which
is higher than the decay rate of the Oseen tensor. This result improves the theory by M. Kyed, Asymptotic profile
of a linearized flow past a rotating body, Q. Appl. Math. 71 (2013), 489-500.

Résumé

Nous considérons des solutions faibles du système de Navier-Stokes stationnaire avec un terme d’Oseen et des
termes rotationnels, dans un domaine extérieur. Notre intérêt se porte sur la partie principale d’un développement
asymptotique de la vitesse et de son gradient. Nous montrons que la vitesse peut être scindée, à des constantes
près, en la première colonne de la solution fondamentale du système d’Oseen (”tenseur d’Oseen”), plus un reste
qui décrôıt ponctuellement dans un voisinage d’infini, à un taux qui est plus élevé que le taux de décroissance du
tenseur d’Oseen. Ce résultat améliore la théorie présentée par M. Kyed, Asymptotic profile of a linearized flow
past a rotating body, Q. Appl. Math. 71 (2013), 489-500.
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1. Introduction

We shall consider the following problem. Let D ⊂ R3 be an open bounded set. Suppose this set describes
a rigid body moving with constant nonzero translational and angular velocity in an incompressible viscous
fluid. Then the flow around this body with respect to a frame attached to this body is governed by the
following set of non-dimensional equations (see [7]),

−∆u+ τ ∂1u+ τ (u · ∇)u− (ω × x) · ∇u+ ω × u+∇π = f, divu = 0, (1)

in the exterior domain D
c

:= R3\D, supplemented by a decay condition at infinity,

u(x) → 0 for |x| → ∞, (2)

and suitable boundary conditions on ∂D.
In (1) and (2), the functions u : D

c 7→ R3 and π : D
c 7→ R are the unknown relative velocity and

pressure field of the fluid, respectively, whereas the function f : D
c 7→ R3 stands for a prescribed volume

force acting on the fluid. The vector τ (−1, 0, 0) represent the uniform velocity of the flow at infinity or the
velocity of the body, depending on the physical situation, and ω := % ·(1, 0, 0) corresponds to the constant
angular velocity of the body. In particular the vectors of translational and angular velocity are parallel.
From a physical point of view this assumption is natural for a steady flow. The parameters τ ∈ (0,∞)
and % ∈ R\{0} are dimensionless quantities that can be identified with the Reynolds and Taylor number,
respectively. They will be considered as fixed, like the domain D.

We are interested in “Leray solutions” of (1), (2), that is, weak solutions characterized by the conditions
u ∈ L6(D

c
)3 ∩W 1,1

loc (D
c
)3, ∇u ∈ L2(D

c
)9 and π ∈ L2

loc(D
c
).

From [8] and [3] it follows that the velocity part u of a Leray solution (u, π) to (1), (2) decays for
|x| → ∞ as expressed by the estimates

|u(x)| ≤ C
(
|x| s(x)

)−1
, |∇u(x)| ≤ C

(
|x| s(x)

)−3/2 (3)

for x ∈ R3 with |x| sufficiently large, where s(x) := 1 + |x| − x1 (x ∈ R3) and C > 0 a constant inde-
pendent of x. The factor s(x) may be considered as a mathematical manifestation of the wake extending
downstream behind a body moving in a viscous fluid.

By Kyed [9] it was shown that

uj(x) = γ Ej1(x) +Rj(x), ∂luj(x) = γ ∂lEj1(x) + Sjl(x) (x ∈ D
c
, 1 ≤ j, l ≤ 3), (4)

where E : R3\{0} 7→ R4 × R3 denotes a fundamental solution to the Oseen system

−∆v + τ ∂1v +∇Π = f, div v = 0 in R3. (5)

The definition of the function E is stated in Section 2. As becomes apparent from this definition, the
term Ej1(x) may be expressed explicitly in terms of elementary functions. The coefficient γ is also given
explicitly, its definition involving the Cauchy stress tensor. The remainder terms R and S are characterized
by the relations R ∈ Lq(D

c
)3 for q ∈ (4/3, ∞), S ∈ Lq(D

c
)3 for q ∈ (1,∞). Since it is known from [6,

Section VII.3] that Ej1|Bc
r /∈ Lq(Bc

r) for r > 0, q ∈ [1, 2], and ∂lEj1|Bc
r /∈ Lq(Bc

r) for r > 0, q ∈
[1, 4/3], j, l ∈ {1, 2, 3}, the function R decays faster than Ej1, and Sjl faster than ∂lEj1, in the sense of
Lq-integrability. Thus the equations in (4) may in fact be considered as asymptotic expansions of u and
∇u, respectively. The theory in [9] is valid under the assumption that u verifies the boundary conditions

u(x) = e1 + (ω × x) for x ∈ ∂D. (6)

Reference [9] does not deal with pointwise decay of R and S, nor does it indicate whether S = ∇R.
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In Theorem 3.1 below we derive a pointwise decay of respectively u and ∇u, which is independent on
the boundary conditions but in comparison with [9] and indicated in (4) our leading term is less explicit
than the term γ Ej1(x) in (4) and instead of the fundamental solution Ej1(x) of the stationary Oseen
system, we use the time integral of the fundamental solution of the evolutionary Oseen system.

In [5] it was shown that Zj1(x, 0) = Ej1(x) for x ∈ R3\{0}, 1 ≤ j ≤ 3, and lim|x|→∞ |∂α
xZjk(x, 0)| =

O
(
(|x| s(x))−3/2−|α|/2

)
for 1 ≤ j ≤ 3, k ∈ {2, 3} ([[5] Corollary 4.5, Theorem 5.1 ]). Thus, setting

Gj(x) :=
3∑

k=2

βk Zjk(x, 0) + Fj(x) (x ∈ BS1

c
, 1 ≤ j ≤ 3), (7)

we may deduce from (16) that

uj(x) = β1Ej1(x) +
(∫

∂Ω

u · ndox

)
xj (4π |x|3)−1 + Gj(x) (x ∈ BS1

c
, 1 ≤ j ≤ 3) (8)

and

lim
|x|→∞

|∂αG(x)| = O
(
(|x| s(x))−3/2−|α|/2 ln(2 + |x|)

)
for α ∈ N3

0 with |α| ≤ 1 (9)

(Theorem 3.2, Corollary 3.3). If we compare how the coefficient γ from (4) is defined in [9], and the
coefficient β1 from (21) in [4] (see Theorem 3.1 below), and if we take account of the boundary condition
(6) satisfied by u in [9], we see that γ and β1 coincide.

2. Notation. Definition of fundamental solutions. Auxiliary results.

By | | we denote the Euclidean norm in R3 and the length α1 + α2 + α3 of a multiindex α ∈ N3
0. Put

e1 := (1, 0, 0). For r > 0, we set Br := {y ∈ R3 : |y| < r}. If A ⊂ R3, we put Ac := R3\A. Recall the
abbreviation s(x) := 1 + |x| − x1 (x ∈ R3) introduced in Section 1.

If A ⊂ R3 is open, p ∈ [1,∞) and k ∈ N, we write W k,p(A) for the usual Sobolev space of order k
and exponent p. If B ⊂ R3 is again an open set, we define Lp

loc(B), W k,p
loc (B) as the set of all functions

v : B 7→ R such that v|U ∈ Lp(U) and v|U ∈ W k,p(U), respectively, for any open bounded set U ⊂ R3

with U ⊂ B.
For the Fourier transform ĝ of a function g ∈ L1(R3), we choose the definition
ĝ(ξ) := (2π)−3/2

∫
R3 e

−i ξ x g(x) dx (ξ ∈ R3). This fixes the definition of the Fourier transform of a
tempered distribution as well.

The numbers τ ∈ (0,∞), % ∈ R\{0} introduced in Section 1 will be kept fixed throughout. Recall that
the vector ω is given by ω := % · e1. We introduce a matrix Ω ∈ R3×3 by setting

Ω := %


0 0 0

0 0 −1

0 1 0

 .

Note that ω×x = Ω·x for x ∈ R3. We write C for positive constants that may depend on τ or %. Constants
additionally depending on parameters σ1, ..., σn ∈ (0,∞) for some n ∈ N are denoted by C(σ1, ..., σn).
We state some inequalities involving s(x) or x−τ t e1. Next we introduce some fundamental solutions. Put
N(x) := (4π |x|)−1 for x ∈ R3\{0} (”Newton potential”, fundamental solution of the Poisson equation

3



in R3), O(x) := (4π |x|)−1 e−τ (|x|−x1)/2 for x ∈ R3\{0} (fundamental solution of the scalar Oseen
equation −∆v+ τ ∂1v = g in R3), K(x, t) := (4π t)−3/2 e−|x|

2/(4 t) for x ∈ R3, t ∈ (0,∞) (fundamental
solution of the heat equation in R3),
ψ(r) :=

∫ r

0
(1− e−t) t−1 dt (r ∈ R), Φ(x) := (4π τ)−1 ψ

(
τ (|x| − x1)/2

)
(x ∈ R3),

Ejk(x) := (δjk ∆ − ∂j∂k)Φ(x), E4k(x) := xk (4π |x|3)−1 (x ∈ R3\{0}, 1 ≤ j, k ≤ 3) (fundamental
solution of the Oseen system (5), with (Ejk)1≤j,k≤3 the velocity part and (E4k)1≤k≤3 the pressure part).
Following Solonnikov [10, (40)]we introduce the velocity part (Tjk)1≤j,k≤3 of a fundamental solution of

the time-dependent Stokes system, setting Tjk(x, t) := δjk K(x, t) + ∂j∂k

(∫
R3 N(x− y)K(y, t) dy

)
(x ∈

R3, t > 0, 1 ≤ j, k ≤ 3).
Put

Γ(x, y, t) := T (x− τ t e1 − e−t Ω · y, t) · e−t Ω for x, y ∈ R3, t > 0. (10)

The matrix-valued function (Γjk)1≤j,k≤3 is the velocity part of a fundamental solution to the time-
dependent variant of the linearized equation of (1), precisely

−∆v + τ ∂1v − (ω × x) · ∇v + ω × v +∇Π = f, div v = 0. (11)

This fundamental solution was constructed by Guenther, Thomann [11] via a procedure involving Kummer
functions, an approach also used in [1] – [5]. However, Guenther, Thomann [11, (3.9)] showed that Γ is
given by (10) as well, thus providing an access to this function which is more convenient in many respects.

From [1] we have
∫∞
0
|Γ(x, y, t)| dt <∞ for x, y ∈ R3 with x 6= y, so we may define

Zjk(x, y) :=
∫ ∞

0

Γjk(x, y, t) dt for x, y ∈ R3 with x 6= y, 1 ≤ j, k ≤ 3.

This function Z was introduced on [11, p. 96] as the velocity part of a fundamental solution to (11).

3. Statement of our main result.

Theorem 3.1 Let D ⊂ R3 be open, p ∈ (1,∞), f ∈ Lp(R3)3 with supp(f) compact. Let S1 ∈ (0,∞)
with D ∪ supp(f) ⊂ BS1 .

Let u ∈ L6(D
c
)3 ∩W 1,1

loc (D
c
)3, π ∈ L2

loc(D
c
) with ∇u ∈ L2(D

c
)9, divu = 0 and∫

D
c

[
∇u · ∇ϕ +

(
τ ∂1u+ τ (u · ∇)u− (ω × z) · ∇u+ ω × u

)
· ϕ− π div ϕ

]
dz (12)

=
∫
D

c
f · ϕdz for ϕ ∈ C∞0 (D

c
)3.

(This means the pair (u, π) is a Leray solution to (1), (2).) Suppose in addition that

D is C2-bounded, u|∂D ∈W 2−1/p, p(∂D)3, π|BS1\D ∈ Lp(BS1\D). (13)

Let n denote the outward unit normal to D, and define

βk :=
∫
D

c
fk(y) dy (14)

+
∫

∂D

3∑
l=1

(
−∂luk(y) + δkl π(y) + (τ e1 − ω × y)l uk(y)− τ (ul uk)(y)

)
nl(y) doy (15)
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for 1 ≤ k ≤ 3,

Fj(x) :=
∫
D

c

[ 3∑
k=1

(
Zjk(x, y)−Zjk(x, 0)

)
fk(y)− τ ·

3∑
k,l=1

Zjk(x, y) (ul ∂luk)(y)
]
dy

+
∫

∂D

3∑
k=1

[(
Zjk(x, y)−Zjk(x, 0)

) 3∑
l=1

(
−∂luk(y) + δkl π(y) + (τ e1 − ω × y)l uk(y)

)
nl(y)

+
(
E4j(x− y)− E4j(x)

)
uk(y)nk(y)

+
3∑

l=1

(
∂ylZjk(x, y) (uk nl)(y) + τZjk(x, 0) (ul uk nl)(y)

)]
doy

for x ∈ BS1

c
, 1 ≤ j ≤ 3. The preceding integrals are absolutely convergent. Moreover F ∈ C1(BS1

c
)3 and

equation

uj(x) =
3∑

k=1

βk Zjk(x, 0) +
(∫

∂Ω

u · ndox

)
xj (4π |x|3)−1 + Fj(x) (16)

holds. In addition, for any S ∈ (S1,∞), there is a constant C > 0 which depends on τ, %, S1, S, f, u and
π, and which is such that

|∂αF(x)| ≤ C
(
|x| s(x)

)−3/2−|α|/2 ln(2 + |x|) for x ∈ BS
c
, α ∈ N3

0 with |α| ≤ 1. (17)

Proof : We will just give main lines of proof. For complete details see [4, Theorem 3.1]. The main tool
of proof is the representation formula (12) with

uj(y) = Rj(f − τ(u · ∇)u)(y) + Bj(u, π(y)), (18)

where

Bj(y) := Bj(u, π)(y) (19)

:=
∫

∂D

3∑
k=1

[ 3∑
l=1

(
Zjk(y, z) ·

(
−∂luk(z) + δkl · π(z) + uk(z) · (τ · e1 − ω × z)l

)
+∂zlZjk(y, z) · uk(z)

)
· n(D)

l (z) + E4j(y − z) · uk(z) · n(D)
k (z)

]
doz

for y ∈ D
c
, with outer normal n(D) to D.

We have to consider term Rj((u · ∇)u)(x) =
∫
Dc

∑3
k=1Zjk(x, y)[(u · ∇)uk](y)dy. Applying the integra-

tion by parts, [1, Lemma 4.2, Theorem 2.19, Theorem 5.5, Theorem 3.3] and [2, Theorem 1.1] we get corre-
sponding estimate. Concerning leading term for gradient of velocity

∫
Dc

∑3
k=1 ∂mZjk(x, y)[(u·∇)uk](y)dy.

we have first to divide the integral on two parts
∫
Dc\B1(x)

and
∫

B1(x)
. Again integrating by parts and

using [1, Lemmas 3.3, 5.4], and [2, Theorem 1] we get the leading term for the velocity part.

Theorem 3.2 Let D, p, f, S1, u, π satisfy the assumptions of Theorem 3.1, including (13). Let β1, β2, β3

and F be defined as in Theorem 3.1. Define the function G as

Gj(x) :=
3∑

k=2

βk Zjk(x, 0) + Fj(x) (x ∈ BS1

c
, 1 ≤ j ≤ 3). (20)
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Then G ∈ C1(BS1

c
)3, equation

uj(x) = β1Ej1(x) +
(∫

∂Ω

u · ndox

)
xj (4π |x|3)−1 + Gj(x) (x ∈ BS1

c
, 1 ≤ j ≤ 3) (21)

holds, and for any S ∈ (S1,∞), there is a constant C > 0 which depends on τ, %, S1, S, f, u and π, and
which is such that

|∂αG(x)| ≤ C
(
|x| s(x)

)−3/2−|α|/2 ln(2 + |x|) for x ∈ BS
c
, α ∈ N3

0 with |α| ≤ 1.

Corollary 3.3 Take D, p, f, S1, u, π as in Theorem 3.1, but without requiring (13). (This means that
(u, π) is only assumed to be a Leray solution of (1), (2).) Put p̃ := min{3/2, p}.

Then u ∈W 2,p̃
loc (D

c
)3 and π ∈W 1,p̃

loc (D
c
).

Fix some number S0 ∈ (0, S1) with D∪ supp(f) ⊂ BS0 , and define β1, β2, β3 and F as in Theorem 3.1,
but with D replaced by BS0 , and n(x) by S−1

0 x, for x ∈ ∂BS0 . Moreover, define G as in (20).
Then all the conclusions of Theorem 3.2 are valid.
Proof : Proof is based on the Fourier transformation of the Oseen resolvent to get Fourier transfor-

mation of our fundamental solution and applying [11, Lemma 13]. For complete details see [5].
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