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INCOMPRESSIBLE VISCOUS STATIONARY FLOW THROUGH A CASCADE OF
PROFILES - EXISTENCE OF A WEAK SOLUTION, TRANSFERABILITY OF
RESULTS FROM ONE PERIOD BACK TO ORIGINAL DOMAIN

Tomas Neustupa
Faculty of Mechanical Engineering, Czech Technical University, Prague

Introduction

We study the steady flow through a simplified plane cascade of profiles. The model of cas-
cade of profiles describes e.g. the flow through a turbine or thorough a general blade machine.
If we consider the intersection of the real 3D region filled by the moving fluid with a surface
defined along the streamlines of the flow, and expand the surface in thg—plane we will
naturally arrive at a 2D domain. The obtained two dimensional domain (denotéJ lsyun-
bounded, however periodic in the—direction. Its complement iR? consists of the infinite
number of profiles, numbered fromoo to +oco. From the definition of the domain it is reason-
able to assume that the flow through the cascade is periodic i Hakrection with the period
7. Consequently, the problem then can be formulated in a bounded dofjaif the form of
one space period and completed by the Dirichlet boundary condition on thelijlengd the
profile (I',,), a suitable natural boundary condition on the ouflgl &nd periodic boundary con-
ditions on artificial cutsI(,,I"_). In this paper we study the possibility to periodically extend
the weak solution obtained on one pertdo get the solution on the whole cascade. This is
necessary to legitimate the idea, to solve the problem analytically or numerically on just a part
of the infinite but periodical domain.
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Figure 1. One spatial period of the profile cascade

Used Equations and Boundary conditions

We assume that the fluid is viscous, stationary, incompressible and newtonian. For simplicity
we suppose that the unit system is chosen in such a way that the constant density of the fluid is
one. The conservation of momentum is described by the Navier-Stokes equations in the form
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(u-V)u =f — Vp + vAu, 1)

whereu (= (u1, us)) is the velocity of the fluid ang the pressure in the fluid,(= (f1, f2)) is
the density of the volume force and constant 0 is the kinematic viscosity. The conservation
of mass is described by the equation of continuity

divu = 0. (2)
We prescribe the inhomogeneous Dirichlet boundary condition on the inlet and the no slip
Dirichlet boundary condition on the profile:
ulp, = 0. )

According to the definition of the model we suppose that the following conditions of periodicity
are fulfilled on the artificial boundarids andI_:

u(zy, zo+7) = u(zy,xs) for (z1,29) € I'_, 4)
0 0
8—E(x1,x2 +7) = —a—z(xl, Ta). for (z1,29) € T, (5)
plxr,xe+7) = p(ay,x9) for (x1,29) € I'_. (6)

We use the the nonlinear form of the do-nothing type of boundary condition proposed Bruneau
and Fabri.

0 1
_Vﬁ_z +p-n—§(u-n)_u:h onl, (7)
wheren is the outer normal vector ardis a given function. Fot € R we seta™ = (|a|+a)/2
anda™ = (Ja| —a)/2.

Weak formulation

We denote by (€2) the usual Sobolev space of functions defined a.€.ifthe space of
vector—functions (with values iR?), whose each component belongsé(f?), is denoted by
H'(Q)2. Furthermore)/ denotes the space of vector—functions= (vy,v,) € H'(2)? such
thatdivv = 0a.e.inQ, v = 0 a.e. in[;ULl, andv(xy, zo+7) = v(z1, x9) fora.a.(zy, x2) € I,
(The conditions on the curvds, I, andI_ are interpreted in the sense of traces.) We equip
the linear spacé” by the norm||v|| := (f;,>;,_; (3%)* dx)'/? which is equivalent to the

norm of the spacéf! (). In order to derive formally the weak formulation of the problem, we
multiply equation (1) by an arbitrary test functien= (vy,v2) € V, integrate inQ2, apply the
Green’s theorem and use all the boundary conditions (3)—(7). We obtain

ou; Ov; 1 _
/f de_”/zax]ax] /Z“Ja v; dx +/ §(u.n) u-vdsS

2,7=1

—i—/h-vdS, vel. (8)
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In order to simplify its form, we introduce the following notation: ior= (uq, us), v = (v1,vs),
w = (wy,wy) € H'(Q)?, we put

2
u; Ov; ov;
a(u,v) = v L2 dx, as(u, v, w) ::/ u; — w; dx,
Q i1 an aCL’j Q z,]zl J (%j
1
as(u,v,w) = / E(u-n)_v-wdS,
a(u,v) = ai(u,v) +az(u,u,v) + az(u,u,v),
(f,v) = /f-vdx, b(h,v) = —/ h-vdSs.
Q o

Obviously, all these forms are well defined forv, w € H'(Q)?, f € L*(Q2)? and
h € L*(T',)?. Now the identity (8) can shortly be written as

a(u,v) = (f,v) + b(h,v), velV. 9)

Let the functiong, appearing in the boundary condition (3), belong$ftqT’;)* for s € (3,1)
andg(A;) = g(Ap). (Let us recall thatd, and A, are the end—points df;.) Letf € L?(Q2)?
andh € L*(T,)? be given functions. We seek a vector functione H'(2)? which satisfies
the equation of continuity (2) a.e. i, the boundary conditions (3) in the sense of tracek,on
(respectively ol’,,), the condition of periodicity (4) a.e. dn. and such that identity (9) holds
for all test functionsv € V. The solutionu of this problem is calleé weak solutionn the
domain). Now let us suppose that we have a weak solutian V' to the problem (1)—(7). The
existence of such a weak solution is proved for e.g. in [2] or in [3] for nonstationary problem.

The extension of the weak solution front) to D

The next theorem shows that the weak solution in the unbounded ddmzan be obtained
by means of an appropriate extension of the weak solution in the ddmain

Theorem 1: Letu be aweak solution of problem in the dom&inThen the periodic extension
(with period ) in the variabler, of the functionu onto the domairnD is a weak solution of
problem inD.

Proof. We can naturally extend all functions appearing in the weak formulation of the problem
in the domair() asT—periodic functions in the variable,. Because of simplicity the extended
functions will be denoted by the same symbols. Thus, the fun€tismow defined a.e. i,
the functiong is defined a.e. idz; and the functiorh is defined a.e. if,. Clearly, the extended
functionsf andh fulfill the assumptions. It can be easily shown that the extended fungtion
also fulfills the assumptions.

A function from H'((2), extended-—periodically in variabler,, need not generally belong
to H'(D’) for an arbitrary bounded sub—domdin of D. In the sequel we shall show that the
extended functiom1, however, has this property. Obviously, due to the periodicity af the
xo—direction, it is sufficient to verify thai (precisely, its restriction of, UI'_ UQ_;) belongs
to H'(QUT_UN_4).
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The functionu has generalized first order derivativeéa/0z; (i = 1,2) in domains(,
and(2_; and these derivatives are square integrable bothiand2_;. To verify thatu
H' (QyUT_UQ_), we need to show that the functidiu, defined by

ou
851355

ou
8@

(x)  forx € Qo,
DzU(J?) =

(x) forxey,

is a generalized derivative afin the union2,UI'_US2_;. Thus, suppose thgt € C5°(QUI_U
I'_;)2. Then, denoting by, ; thei—th component of the outer normal vector to the boundary of
2y on the curvd_ and byn_, ; thei—th component of the outer normal vector to the boundary
of 2_; on the curvd_, we have

= /ToucpnoldS—/ ua(P dX+/ T_lll'QO?’L_lidS
~ ’ o O r ’

—/ u-a(’odX:—/ u-acpdx. (20)
Q-1 Ox; QoUT_UQ_1 ox;

(We have denoted b¥ju the trace ofu onT_ as the trace of a function frofi*(€2,)? and by
T_,u the trace ofu onT'_ as the trace of a function frodi'(2_;)2.) Due to the periodicity
condition (4), both the traces dn coincide, i.elyu = 7_;u onI'. Moreoverng;, = —n_y;
onI'. Hence,

/ Tou-png; dS + / T qu-pn_q;dS = 0.

I _

If we use this equality in (10), we can observe thati is a generalized derivative of functian
with respect tar; in Qo UT_ U Q_;. The square integrability of functioP;u in Qo UT_ UQ_;
now follows from the definition o;u and from the square integrability 6f1/0x; in £, and
in_;.

To prove thatu is the solution of problem in domaif, we must show that function,
moreover, fulfills the integral identity (8) rewritten for domdinfor an arbitrary acceptable test
functionw in D (i.e. a test functiorw that is an element o/ ! (D’)?, whereD’ C D is compact,

w has zero traces ofi; andG,,, its divergence is equal to zero a.e.inand it has a compact
support inD U G,). Due to the periodicity ofs, f, g andh in the z,—direction, it is sufficient

to consider only such test functioms € C>(D)? that have a compact supportinu G, It
means that we can work only with test functiomssuch thatw (z,, z5) = 0, if |xzo| > K(w),
whereK (w) is a positive constant depending an The validity of (8) rewritten for domai®

forw € H'(D)? having a compact support il U G, can afterwards be proven by means of an
appropriate limit procedure. (We can use the density of the space of all infinitely differentiable
test functionsw with the described properties in the space of test functiors H'(D)2.)

First let us show the validity of (8) rewritten for domain for a smooth admissible test
functionw that equals zero outside, U 2_;.
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Lemma 2: Suppose thai is a function which satisfies the assumptions of Theorem 1. Then
u fulfills the integral identity (8) rewritten for domaif for each test functionw € C>(D)?
suchthatw = 00onG; UG, divw =0in Dandw =0in D — (QUQ_,).

Proof. Functionu is a weak solution in the domain = 2,. Hence,

ou,; 0v;
f-vdx = 1// : Ldx + / v; dx
/Qo o Z; 81’j 8.1'] Q

0@]1

+/l(u-n)_u-vd5+/h-vd5. (11)
r, 2 Lo

for each test functiow € V. We shall prove the validity of (8) rewritten for domain with a

test functionw, satisfying the assumptions of Lemma 2. Sirecean differ from zero only in
Qo U Q_;, we can integrate only ovét, U €)_; instead ofD. Thus, (8) rewritten for domaim

takes the form

2

2
Oou; Ow; ou;

f-wdx = V/ g : de+/ E w; w; dx
/QoLJQ_l QU _1 i, 8x] ax] QU _1 ij=1 ! 81‘]

+/ 1(u-n)u-wdS—i—/ h-w dsS. (12)
BB 2

B_1B;

The integrals o), U )_; are equal to the sum of two integrals Qg and onQ2_;. Similarly,

the integrals on the line segmeRt ; B; are equal to the sum of two integrals on line segments
B_1By and By B;. (The line segmenB, B, coincides withl’,.) The integrals ovef)_; (respec-
tively along B_; By) can easily be transformed (just shifting the system of coordinates) to the
integrals ovef), (respectively alond3, B;). We can show it, for example, in the case of the first
integral on the right-hand side of (12):

0 4,j=1 Z'] J

a i 8 4 2 8 i a :
/Q 1 Zzl i(x1,x2)@—;i(x1,x2) dx = /Q Z —u($17$2—7)8—$(x1,x2—7) dx

2
ou; ow;
- Yool gt _7) dx.
/QO 2. axj(xl,xg) o, (x1,29 —7) dx

(We have used the—periodicity of functionu in variablex,.) If we apply the same procedure
to all integrals ovef)_, or alongB_; By in (12) and then sum the integrals o¥ey and along

ByB;, we obtain
ou; O0v;
f-vdx = 1// : : / v; dx
/Qo % ZZ:: oz, 8:15] Q

0 4,5=1

+/1(u-n)_u-vd5+/h'Vdsa (13)
r, 2 T,

wherev(zy, xe) = W(z1,29) + W(x1, 29 — 7) fOr (1, 25) € Q. This identity is of the same
form as (8). In order to verify that (13) holds, we need to show that funestiosed in (13) has
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all the properties required in (8), i.e. thatc V' and then the validity of (13) will immediately
follow from (8). Due to the assumption that = 0 outside(Q, U Q_;) and the continuity ofv,
we havew(zy,xo + 7) = 0 for (z,z5) € I'_. This implies thatv satisfies, forz,, xzs) € I'_,
the condition of periodicity in the,—direction:

v(zy, za+7) = w(z, 29+ 7) + W(21,22)

= w(x1,x2) +W(x1, 20 — T) = V(T1,T2).

Thus,v € V, (13) is satisfied and consequently, the identities (12) and (8) (rewritten)fare
also satisfied. I

Suppose further that is an infinitely differentiable divergence—free vector functiorfin
equal to zero orz; and onG,,, and such thatv(xzy,x2) = 0 if |z2| > K(w). In order to
complete the proof of Theorem 1, we need one more lemma.

Lemma 3: Let a functionw satisfy the above assumptions. Then there exists a fungtien

C*(D) (the so-called “stream function”) such that
a) Y(xy,x2) =0 for |zs| > K(w),

oY oy .
b = — = —— D.
) (o 81‘27 Wo axl n B
Proof. We can choose an integ8f so large thatv = 0 in ©; for all i € Z such thati| > N.

Let us denote

Dy is a bounded domain. Its boundap y has the following components:

a) the line segmem_y Ay (which lies on the straight lin€&';),
b) the curved—" andI'V+!,

c) the line segmenB_y By (which lies on the straight lin€',)
d) andthe curve§; fori=—N,..., N.

Theorem 3.1 in [5], page 37, provides the existence of a funetienC> (D) such that
o o
Wy = —— = ——

= = in Dy. 14

(An analogous theorem can be found in [4].) Due to the smoothness of the fugiction y,
that first formula in (14) also holds on the open line segmént Ay. Since the functionu,
equals zero on this line segment, the derivative)akith respect tar, also equals zero and
consequently, the functiony is constant on the line segmedt yAy. The constant can be
chosen to be zero because the functias given uniquely up to an additive constant. Using the
identity w = 0 and the second formula in (14) f& and in€2_, we can derive thap = 0 in
both domaing2y and)_ . (Sincew, = 0 = —g—;ﬁ andy = 0 on A_yAy).
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If we extend functiony) from domainD, onto the whole domai® by zero, we obtain a
function with all the properties stated in Lemma 3. I

Continuation of the proof of Theorem 1. Let us denote by an infinitely differentiable func-
tion of one variable defined in the intervgl oo, +00) such that its support is contained in
(—7,7), its range i40, 1] and

n(xs) + n(xe +7) =1 forzo € [ — 7,0]. (15)

)

Fig. 3 (the example of function)
If Vis an integer then

o —0 form € (=00, ~(N + )] U[(N + 1)r, +o0).
Z n(xe + k1) €10,1] forxzy € [-(N+1)1,—N7] U [N7, (N +1)7],
e =1 for x5 € [—NT, NT].

(In the first caser, + k7 is outside the interval—7, 7) forall k = —N, ..., N. In the second
case, just one of the poinis + k7 belongs to/—7, 7). In the third case, just two of the points
x9 + k7 find themselves in the region whege# 0 and the sum of the function values pft
these points equals one due to (15).)

Further, we put(zy, x2) := n(z2 — v(z1)). We can observe that

. =0 for (zy,m2) € Qi |i| > N +1,
Z C(xq, 29 + kT) €[0,1] for (x1,29) € Qn U Q_y, (16)
e =1 for (z1,22) € Uy |i| < N.
(In the first casegy + k7 — ~(z1) is outside the interval—7,7) forall k = —N,...,N. In

the second case, just one of the poimist+ k7 — v(z1) belongs to(—7, 7). In the third case,
just two of the points:, + k7 — v(z1) are in the region wherg # 0.) Obviously, the functions
((zq, 9 + kT) represent an appropriate partition of unity.

p.
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If N is the same number as in the proof of Lemma 3, then 0 in Q; for |i| > N and

+N
Y(xy,x9) = (21, 22) Z C(xq1, 29 + kT) for (z1,25) € D. a7)

k=—N

Fork € Z we define, a vector functiow” = (w¥, w%) by the formulas

wi(zy,29) = ai@[Yﬂ(l’l,xz)C(iUl,xz—i‘kT)],
wh (2, 29) = —aixl[w(xl,xg)g“(xl,xz—l—kﬂ].

The functionw® differs from zero only i3, U Q,. By analogy, the functionv” (for a general
k € Z) differs from zero only i), U Q.1 andw—* differs from zero only in2_, U Q_;_.
From (17) it follows that

+N
w(T1,29) = Z W (1, 5)
k=—N
for (z1,x9) € D.

Now we use this functiorv in the integral identity (8) rewritten for domaif. Obviously,
if this identity is separately satisfied for each functieh (k = —N, —N + 1, ..., N), then it
is also satisfied for the test function

The identity (8) rewritten for domaim, with the test functiorw”, has the form

Ou; Owk 2 ou;
f -whdx = -t dx —wi d
/ W dx = v / Z oz, oz, + /D Z]Z::I U D w; dx

+/ %(u-n)u-wdeJr/ h-w" ds.

o

In order to simplify the integrals, we use the substitution= z,, z, = Z, + k7. If we denote
T = (fl, Zf’2>, Wk(fl, .7_52) = Wk<I1, 132—]{37') and use the equaliﬁy(ﬂ_ﬁl, i’g) = U.(Ll’l, IQ—I{ZT) =
u(xy, z2) (following from the periodicity of the functiom), we obtain,

ok g% — Ou; Owk Ou; @t d
/DWX_/Zaxjax]d /Zu]

+/ %(u-n)—u-v—v’“ds+/ h-w" ds. (18)

Functionw” differs from zero only inQ, U Q_; and fulfills all the assumptions put on a test
function in Lemma 2. Thus, we can apply Lemma 2 and we see that identity (18) holds. This
completes the proof. I

Conclusion. The presented result shows that its legal to study analytically or numerically
just one period of the cascade of profiles. The obtained result can be extended to get the weak
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solution to the whole infinite domain. This is very important for numerical calculations. Similar
result can be obtained for classical solution.
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