Perfect cliques with respect to infinitely many relations

Martin Doležal joint work with Wiesław Kubiś

Institute of Mathematics AS CR

Winter School in Abstract Analysis 2016

< 🗇 🕨

Cantor-Bendixson Derivative

Let *X* be a topological space, and let $A \subseteq X$.

The Cantor-Bendixson derivative of A is the set

 $A' = \{x \in A : x \text{ is a limit point of } A\}$

The iterated Cantor-Bendixson derivatives A^{γ} , $\gamma \in ORD$, are defined by

$$A^{0} = A$$

$$A^{\gamma+1} = (A^{\gamma})'$$

$$A^{\gamma} = \bigcap_{\alpha < \gamma} A^{\alpha}, \text{ if } \gamma \text{ is limit}$$

ヘロト ヘワト ヘビト ヘビト

Cantor-Bendixson Derivative

Let *X* be a topological space, and let $A \subseteq X$.

The Cantor-Bendixson derivative of A is the set

 $A' = \{x \in A : x \text{ is a limit point of } A\}$

The iterated Cantor-Bendixson derivatives A^{γ} , $\gamma \in ORD$, are defined by

$$A^{0} = A$$

$$A^{\gamma+1} = (A^{\gamma})'$$

$$A^{\gamma} = \bigcap_{\alpha < \gamma} A^{\alpha}, \text{ if } \gamma \text{ is limit}$$

イロト イポト イヨト イヨト

Cantor-Bendixson Derivative

Let *X* be a topological space, and let $A \subseteq X$.

The Cantor-Bendixson derivative of A is the set

$$A' = \{x \in A : x \text{ is a limit point of } A\}$$

The iterated Cantor-Bendixson derivatives A^{γ} , $\gamma \in ORD$, are defined by

$$\begin{array}{rcl} \mathcal{A}^{0} & = & \mathcal{A} \\ \mathcal{A}^{\gamma+1} & = & (\mathcal{A}^{\gamma})' \\ \mathcal{A}^{\gamma} & = & \bigcap_{\alpha < \gamma} \mathcal{A}^{\alpha}, \text{ if } \gamma \text{ is limit} \end{array}$$

▲/□ ▶ ▲ 臣 ▶ ▲ 臣

The Cantor-Bendixson rank of *A* (denoted by rank(*A*)) is the least $\gamma \in \text{ORD}$ such that $A^{\gamma} = \emptyset$. If such γ does not exist then the Cantor-Bendixson rank of *A* is $+\infty$.

Observation ⁻

 $rank(A) = +\infty \iff A \text{ contains a dense in itself subset}$

Observation 2

X second countable and $rank(A) < \omega_1 \implies A$ is at most countable

イロト イポト イヨト イヨト

The Cantor-Bendixson rank of *A* (denoted by rank(*A*)) is the least $\gamma \in \text{ORD}$ such that $A^{\gamma} = \emptyset$. If such γ does not exist then the Cantor-Bendixson rank of *A* is $+\infty$.

Observation 1

 $rank(A) = +\infty \iff A \text{ contains a dense in itself subset}$

Observation 2

X second countable and $rank(A) < \omega_1 \implies A$ is at most countable

イロト イポト イヨト イヨト 一日

The Cantor-Bendixson rank of *A* (denoted by rank(*A*)) is the least $\gamma \in \text{ORD}$ such that $A^{\gamma} = \emptyset$. If such γ does not exist then the Cantor-Bendixson rank of *A* is $+\infty$.

Observation 1

 $rank(A) = +\infty \iff A \text{ contains a dense in itself subset}$

Observation 2

X second countable and $rank(A) < \omega_1 \implies A$ is at most countable

イロト イポト イヨト イヨト 一日

The Cantor-Bendixson rank of *A* (denoted by rank(*A*)) is the least $\gamma \in \text{ORD}$ such that $A^{\gamma} = \emptyset$. If such γ does not exist then the Cantor-Bendixson rank of *A* is $+\infty$.

Observation 1

 $rank(A) = +\infty \iff A \text{ contains a dense in itself subset}$

Observation 2

X second countable and $rank(A) < \omega_1 \implies A$ is at most countable

イロト イポト イヨト イヨト

A set $S \subseteq X$ is called an *R*-clique if $(s_1, \ldots, s_n) \in R$ whenever $s_1, \ldots, s_n \in S$ are pairwise distinct.

If \mathcal{R} is a family of relations on X then a set $S \subseteq X$ is called an \mathcal{R} -clique if it is an R-clique for every $R \in \mathcal{R}$.

A perfect \mathcal{R} -clique is an \mathcal{R} -clique which is a perfect set (i.e. completely metrizable without isolated points).

・ロト ・ 同ト ・ ヨト ・ ヨト

A set $S \subseteq X$ is called an *R*-clique if $(s_1, \ldots, s_n) \in R$ whenever $s_1, \ldots, s_n \in S$ are pairwise distinct.

If \mathcal{R} is a family of relations on X then a set $S \subseteq X$ is called an \mathcal{R} -clique if it is an R-clique for every $R \in \mathcal{R}$.

A perfect \mathcal{R} -clique is an \mathcal{R} -clique which is a perfect set (i.e. completely metrizable without isolated points).

イロト イポト イヨト イヨト

A set $S \subseteq X$ is called an *R*-clique if $(s_1, \ldots, s_n) \in R$ whenever $s_1, \ldots, s_n \in S$ are pairwise distinct.

If \mathcal{R} is a family of relations on X then a set $S \subseteq X$ is called an \mathcal{R} -clique if it is an R-clique for every $R \in \mathcal{R}$.

A perfect \mathcal{R} -clique is an \mathcal{R} -clique which is a perfect set (i.e. completely metrizable without isolated points).

ヘロト ヘアト ヘビト ヘビト

A set $S \subseteq X$ is called an *R*-clique if $(s_1, \ldots, s_n) \in R$ whenever $s_1, \ldots, s_n \in S$ are pairwise distinct.

If \mathcal{R} is a family of relations on X then a set $S \subseteq X$ is called an \mathcal{R} -clique if it is an R-clique for every $R \in \mathcal{R}$.

A perfect \mathcal{R} -clique is an \mathcal{R} -clique which is a perfect set (i.e. completely metrizable without isolated points).

ヘロト ヘアト ヘビト ヘビト

Question

Let X be a topological space, and let \mathcal{R} be a family of relations on X. When does there exist a perfect \mathcal{R} -clique?

Similar questions were already studied by J. Mycielski (for comeager relations), Q. Feng (for one binary relation), W. Kubiś (for one symmetric relation)...

Our main theorem is a variant of the previous results.

Question

Let X be a topological space, and let \mathcal{R} be a family of relations on X. When does there exist a perfect \mathcal{R} -clique?

Similar questions were already studied by J. Mycielski (for comeager relations), Q. Feng (for one binary relation), W. Kubiś (for one symmetric relation)...

Our main theorem is a variant of the previous results.

Question

Let X be a topological space, and let \mathcal{R} be a family of relations on X. When does there exist a perfect \mathcal{R} -clique?

Similar questions were already studied by J. Mycielski (for comeager relations), Q. Feng (for one binary relation), W. Kubiś (for one symmetric relation)...

Our main theorem is a variant of the previous results.

Let X be a completely metrizable space of weight $\kappa \ge \omega_0$, and let \mathcal{R} be a countable family of G_{δ} relations on X. Then exactly one of the following two statements holds:

- (S) There exists an ordinal $\gamma < \kappa^+$ such that every \mathcal{R} -clique has Cantor-Bendixson rank $< \gamma$.
- (P) There exists a perfect \mathcal{R} -clique.

<u>Note</u>: This theorem fails if we replace ' G_{δ} relations' by ' F_{σ} relations' (even for one F_{σ} relation). This was proved by S. Shelah, and a concrete example we found by W. Kubié and B. Voinar.

イロト イポト イヨト イヨ

Let X be a completely metrizable space of weight $\kappa \ge \omega_0$, and let \mathcal{R} be a countable family of G_{δ} relations on X. Then exactly one of the following two statements holds:

- (S) There exists an ordinal $\gamma < \kappa^+$ such that every \mathcal{R} -clique has Cantor-Bendixson rank $< \gamma$.
- (P) There exists a perfect \mathcal{R} -clique.

<u>Note</u>: This theorem fails if we replace ' G_{δ} relations' by ' F_{σ} relations' (even for one F_{σ} relation). This was proved by S. Shelah, and a concrete example was found by W. Kubiś and B. Vejnar.

イロト イポト イヨト イヨト

Let X be an analytic space, and let \mathcal{R} be a countable family of G_{δ} relations on X. If there exists an uncountable \mathcal{R} -clique then there exists a perfect \mathcal{R} -clique.

<u>Proof</u>: There is a continuous surjection $f: Y \to X$ where Y is a completely metrizable space of weight ω_0 .

For $R \in \mathcal{R}$, let $\tilde{R} = \{(y_1, \dots, y_n) \in Y^n : (f(y_1), \dots, f(y_n)) \in R\}$. Let $\tilde{\mathcal{R}} = \{\tilde{R} : R \in \mathcal{R}\}$.

Then exactly one holds:

- (S) There exists an ordinal $\gamma < \omega_1$ such that every $\tilde{\mathcal{R}}$ -clique has rank $< \gamma \implies$ all \mathcal{R} -cliques are at most countable.
- (P) There exists a perfect $\tilde{\mathcal{R}}$ -clique \Longrightarrow there exists a perfect \mathcal{R} -clique.

Let X be an analytic space, and let \mathcal{R} be a countable family of G_{δ} relations on X. If there exists an uncountable \mathcal{R} -clique then there exists a perfect \mathcal{R} -clique.

<u>Proof</u>: There is a continuous surjection $f: Y \to X$ where Y is a completely metrizable space of weight ω_0 .

For $R \in \mathcal{R}$, let $\tilde{R} = \{(y_1, \dots, y_n) \in Y^n : (f(y_1), \dots, f(y_n)) \in R\}$. Let $\tilde{\mathcal{R}} = \{\tilde{R} : R \in \mathcal{R}\}$. Then exactly one holds:

- (S) There exists an ordinal $\gamma < \omega_1$ such that every $\tilde{\mathcal{R}}$ -clique has rank $< \gamma \implies$ all \mathcal{R} -cliques are at most countable.
- (P) There exists a perfect $\tilde{\mathcal{R}}$ -clique \Longrightarrow there exists a perfect \mathcal{R} -clique.

Let X be an analytic space, and let \mathcal{R} be a countable family of G_{δ} relations on X. If there exists an uncountable \mathcal{R} -clique then there exists a perfect \mathcal{R} -clique.

<u>Proof</u>: There is a continuous surjection $f: Y \to X$ where Y is a completely metrizable space of weight ω_0 .

For $R \in \mathcal{R}$, let $\tilde{R} = \{(y_1, \ldots, y_n) \in Y^n : (f(y_1), \ldots, f(y_n)) \in R\}$. Let $\tilde{\mathcal{R}} = \{\tilde{R} : R \in \mathcal{R}\}$.

Then exactly one holds:

- (S) There exists an ordinal $\gamma < \omega_1$ such that every $\tilde{\mathcal{R}}$ -clique has rank $< \gamma \implies$ all \mathcal{R} -cliques are at most countable.
- (P) There exists a perfect $\tilde{\mathcal{R}}$ -clique \Longrightarrow there exists a perfect \mathcal{R} -clique.

Let X be an analytic space, and let \mathcal{R} be a countable family of G_{δ} relations on X. If there exists an uncountable \mathcal{R} -clique then there exists a perfect \mathcal{R} -clique.

<u>Proof</u>: There is a continuous surjection $f: Y \to X$ where Y is a completely metrizable space of weight ω_0 .

For $R \in \mathcal{R}$, let $\tilde{R} = \{(y_1, \ldots, y_n) \in Y^n : (f(y_1), \ldots, f(y_n)) \in R\}$. Let $\tilde{\mathcal{R}} = \{\tilde{R} : R \in \mathcal{R}\}$.

Then exactly one holds:

- (S) There exists an ordinal $\gamma < \omega_1$ such that every $\tilde{\mathcal{R}}$ -clique has rank $< \gamma \implies$ all \mathcal{R} -cliques are at most countable.
- (P) There exists a perfect $\tilde{\mathcal{R}}$ -clique \Longrightarrow there exists a perfect \mathcal{R} -clique.

Let X be an analytic space. Then either X is at most countable, or else X contains a perfect subset.

Proof:

Let $R = X^2$, and let $\mathcal{R} = \{R\}$. Then every subset of *X* is an \mathcal{R} -clique. So if *X* has an uncountable subset then *X* has a perfect subset

(This proof was already known earlier, using a theorem by Q. Feng instead of our result.)

Let X be an analytic space. Then either X is at most countable, or else X contains a perfect subset.

Proof:

Let $R = X^2$, and let $\mathcal{R} = \{R\}$.

Then every subset of X is an \mathcal{R} -clique. So if X has an uncountable subset then X has a perfect subset.

(This proof was already known earlier, using a theorem by Q. Feng instead of our result.)

Let X be an analytic space. Then either X is at most countable, or else X contains a perfect subset.

Proof:

Let $R = X^2$, and let $\mathcal{R} = \{R\}$. Then every subset of X is an \mathcal{R} -clique.

So if X has an uncountable subset then X has a perfect subset.

(This proof was already known earlier, using a theorem by Q. Feng instead of our result.)

Let X be an analytic space. Then either X is at most countable, or else X contains a perfect subset.

Proof:

Let $R = X^2$, and let $\mathcal{R} = \{R\}$. Then every subset of X is an \mathcal{R} -clique. So if X has an uncountable subset then X has a perfect subset.

(This proof was already known earlier, using a theorem by Q. Feng instead of our result.)

Let X be an analytic space. Then either X is at most countable, or else X contains a perfect subset.

Proof:

Let $R = X^2$, and let $\mathcal{R} = \{R\}$.

Then every subset of *X* is an \mathcal{R} -clique.

So if X has an uncountable subset then X has a perfect subset.

(This proof was already known earlier, using a theorem by Q. Feng instead of our result.)

▲ @ ▶ ▲ 三 ▶

S. Głąb, F. Strobin (2015):

Let G_n , $n \in \mathbb{N}$, be countable groups, and let $G = \prod_{n \in \mathbb{N}} G_n$. Then either all free subgroups of G are countable, or else G contains a free subgroup generated by a set of cardinality \mathfrak{c} .

Question: Does this hold for other groups *G* as

Answer:

Yes, it holds for every Polish group!

イロト イポト イヨト イヨト

S. Głąb, F. Strobin (2015):

Let G_n , $n \in \mathbb{N}$, be countable groups, and let $G = \prod_{n \in \mathbb{N}} G_n$. Then either all free subgroups of *G* are countable, or else *G* contains a free subgroup generated by a set of cardinality \mathfrak{c} .

Question:

Does this hold for other groups G as well?

Answer:

Yes, it holds for every Polish group!

- 4 間 ト 4 ヨ ト 4 ヨ ト

S. Głąb, F. Strobin (2015):

Let G_n , $n \in \mathbb{N}$, be countable groups, and let $G = \prod_{n \in \mathbb{N}} G_n$. Then either all free subgroups of *G* are countable, or else *G* contains a free subgroup generated by a set of cardinality \mathfrak{c} .

Question:

Does this hold for other groups G as well?

Answer:

Yes, it holds for every Polish group!

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroup generated by a perfect set.

Proof:

For each nonempty word $w(x_1, ..., x_n)$ on G, let $R_w = \{(x_1, ..., x_n) \in G^n : w(x_1, ..., x_n) \neq 0\}.$ Let $\mathcal{R} = \{R_w : w \text{ is a nonempty word on } G\}.$ Then a subset of G generates a free group \iff it is an \mathcal{R} -clique.

So if *G* has an uncountably generated free subgroup then it has a perfectly generated free subgroup.

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroup generated by a perfect set.

Proof:

For each nonempty word $w(x_1, ..., x_n)$ on *G*, let $R_w = \{(x_1, ..., x_n) \in G^n : w(x_1, ..., x_n) \neq 0\}.$ Let $\mathcal{R} = \{R_w : w \text{ is a nonempty word on } G\}.$ Then a subset of *G* generates a free group \iff it is a \mathcal{R} -clique.

So if *G* has an uncountably generated free subgroup then it has a perfectly generated free subgroup.

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroup generated by a perfect set.

Proof:

For each nonempty word $w(x_1, ..., x_n)$ on *G*, let $R_w = \{(x_1, ..., x_n) \in G^n : w(x_1, ..., x_n) \neq 0\}.$ Let $\mathcal{R} = \{R_w : w \text{ is a nonempty word on } G\}.$ Then a subset of *G* generates a free group \iff it is an \mathcal{R} -clique.

So if *G* has an uncountably generated free subgroup then it has a perfectly generated free subgroup.

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroup generated by a perfect set.

Proof:

For each nonempty word $w(x_1, ..., x_n)$ on *G*, let $R_w = \{(x_1, ..., x_n) \in G^n : w(x_1, ..., x_n) \neq 0\}.$ Let $\mathcal{R} = \{R_w : w \text{ is a nonempty word on } G\}.$ Then a subset of *G* generates a free group \iff it is an \mathcal{R} -clique.

So if *G* has an uncountably generated free subgroup then it has a perfectly generated free subgroup.

イロト イヨト イヨト イ

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroup generated by a perfect set.

Proof:

For each nonempty word $w(x_1, ..., x_n)$ on G, let $R_w = \{(x_1, ..., x_n) \in G^n : w(x_1, ..., x_n) \neq 0\}.$ Let $\mathcal{R} = \{R_w : w \text{ is a nonempty word on } G\}.$ Then a subset of G generates a free group \iff it is an \mathcal{R} -clique.

So if *G* has an uncountably generated free subgroup then it has a perfectly generated free subgroup.

< ロ > < 同 > < 三 >

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroups generated by a perfect set.

Other variants of the previous theorem:

Theorem

Let G be a Polish group. Then either all free abelian subgroups of G are countable, or else G contains a free abelian subgroup generated by a perfect set.

Theorem

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroups generated by a perfect set.

Other variants of the previous theorem:

Theorem

Let G be a Polish group. Then either all free abelian subgroups of G are countable, or else G contains a free abelian subgroup generated by a perfect set.

Theorem

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroups generated by a perfect set.

Other variants of the previous theorem:

Theorem

Let G be a Polish group. Then either all free abelian subgroups of G are countable, or else G contains a free abelian subgroup generated by a perfect set.

Theorem

Let G be a Polish group. Then either all free subgroups of G are countable, or else G contains a free subgroups generated by a perfect set.

Other variants of the previous theorem:

Theorem

Let G be a Polish group. Then either all free abelian subgroups of G are countable, or else G contains a free abelian subgroup generated by a perfect set.

Theorem

Thank you for your attention!

∃ → < ∃ →</p>