# The theory of power spectrum break frequency in multi-flare accretion disc variability models

Tomáš Pecháček, René Goosmann, Vladimír Karas, Bożena Czerny, Michal Dovčiak

# **Motivation of the problem**



Reynolds & Armitage 2003

#### Formulation of the problem

- Spot/flare with decaying emissivity on circular orbit.
- Each single spot/flare is described by
  - $\diamond$  "time and place of birth":  $t_j$  &  $r_j$ ,  $\phi_j$
  - $\diamond$  Other shape determining parameters:  $\vec{\xi}$ , lifetime, emitted energy
- Observed signal is modulated by relativistic effects: (redshift, gravitational lensing, time delay)

#### Power spectrum of a random process

Process without relativistic effects (F(t,r) = 1):

$$S(\omega) = m_1 \operatorname{E}[|\mathcal{F}[I](\omega)|^2] + S_{\mathrm{P}}(\omega) |\operatorname{E}[\mathcal{F}[I](\omega)]|^2$$

For stationary processes:  $S_{\rm P}(\omega) = m_1^2 \mathcal{F}[\dot{c}(|t|)](\omega)$ ,

- *I*(*t*, .) Signal of individual flare
- c(t): Pair correlation function of flares

#### Relativistic effects:

$$\mathcal{F}[I](\omega) \to \sum_{k=-\infty}^{\infty} c_k(r) \mathcal{F}[I](\omega - k\Omega(r)),$$

where 
$$F(t,r) = \sum_{k=-\infty}^{\infty} c_k(r) e^{ik\Omega(r)t}$$

#### **Poisson and Hawkes process + relativistic effects**



## The problem of the broken power-spectra

The power-spectrum of a random process consisting of independent exponentials has the form,

$$S(\omega) = \lambda \int \frac{\tau^2}{1 + \omega^2 \tau^2} I_0^2(\tau) p(\tau) d\tau.$$

A minimal non-trivial example,

$$S_{\rm r}(\omega) = \frac{\alpha}{1 + \omega^2} + \frac{1 - \alpha}{1 + K^2 \omega^2}.$$





Internal structure of the PSD:

- Extrema of  $\omega S(\omega)$ .
- Inflection point of  $\omega S(\omega)$ .
- Inflection point of  $S(\omega)$ .
- Inflection point of the local power-law index,  $\frac{d \ln(S(\omega))}{d \ln(\omega)}$ .

## **PSDs** of exponential processes

 $I(t,\tau) = I_0 \exp(-t/\tau)\theta(t)$ . Local maximum of  $\omega S(\omega)$ :

$$\frac{\mathrm{d}}{\mathrm{d}\omega} \left[\omega S(\omega)\right] = \int \frac{1 - \omega^2 \tau^2}{\left(1 + \omega^2 \tau^2\right)^2} \,\tilde{p}(\tau) \mathrm{d}\tau$$

$$= E\left[\frac{1 - \omega^2 \tau^2}{\left(1 + \omega^2 \tau^2\right)^2}\right].$$

Linearity of the averaging operator:

$$E\left[\left(1 + \omega_{M}^{2} \tau^{2}\right)^{-2}\right] = \omega_{M}^{2} E\left[\tau^{2} \left(1 + \omega_{M}^{2} \tau^{2}\right)^{-2}\right]$$

We substitute  $x = \omega_{\rm M}^2$  and define function g(x) as

$$g(x) = \frac{E[(1+\tau^2 x)^{-2}]}{E[\tau^2 (1+\tau^2 x)^{-2}]}.$$

- Local extremes of the spectra are given by q(x) = x.
- ullet g(x) is non-decreasing and constrained by

$$(E[\tau^2])^{-1} = g(0) \le g(x) \le g(\infty) = \frac{E[\tau^{-4}]}{E[\tau^{-2}]}$$

- $\mathbb{E}\left[\left(1 + \omega_{\mathrm{M}}^{2} \tau^{2}\right)^{-2}\right] = \omega_{\mathrm{M}}^{2} \mathbb{E}\left[\tau^{2} \left(1 + \omega_{\mathrm{M}}^{2} \tau^{2}\right)^{-2}\right] . \quad \text{lterations of } g(x) \colon g^{(1)}(x) = g(x), \\ g^{(n)}(x) = g(q^{(n-1)}(x)).$ 
  - (Almost)contracting map:  $q^{(n)}(0) > q^{(n-1)}(0)$ .  $q^{(n)}(\infty) < q^{(n-1)}(\infty)$
  - Iff g'(x) < 1 for all x, the local extreme is unique.

- It works for an arbitrary distribution  $p(\tau)$ .
- Analogical calculation can be done for position of inflection point.
- Less straightforward but possible for profiles of the form  $I(t,\tau) = P(t) \exp(-t/\tau)\theta(t)$ .
- Similar analysis for the relativistic modulation with arbitrary distribution  $p(\tau, r)$ .

Applications in modeling (Starting from the distribution  $p(\tau)$ ):

- The position of PSD break is constrained by g(0) and  $g(\infty)$
- Let  $\mathcal{C}_{\mathrm{M}}$  be the set of all spectra with more than one break. We can find its boundaries  $\mathcal{C}_{\mathrm{M}}^{\mathrm{S}} \subseteq \mathcal{C}_{\mathrm{M}} \subseteq \mathcal{C}_{\mathrm{M}}^{\mathrm{N}}$  at the cost of calculation a few mean values  $\mathrm{E}[\tau^k]$ .

Applications in modeling (Starting from the distribution  $p(\tau)$ ):

- The position of PSD break is constrained by g(0) and  $g(\infty)$
- Let  $\mathcal{C}_{\mathrm{M}}$  be the set of all spectra with more than one break. We can find its boundaries  $\mathcal{C}_{\mathrm{M}}^{\mathrm{S}} \subseteq \mathcal{C}_{\mathrm{M}} \subseteq \mathcal{C}_{\mathrm{M}}^{\mathrm{N}}$  at the cost of calculation a few mean values  $\mathrm{E}[\tau^k]$ .





Applications in adaptation of the model (Starting from a measured break frequency  $\omega_{\rm M}$ ):

$$\omega_0 = \sqrt{g(0)} \le \omega_{\rm M} \le \sqrt{g(\infty)} = \omega_{\infty}$$





Applications in adaptation of the model (Starting from a measured break frequency  $\omega_{\rm M}$ ):

$$\omega_0 = \sqrt{g(0)} \le \sqrt{g^{(2)}(0)} \le \omega_{\mathrm{M}} \le \sqrt{g^{(2)}(\infty)} \le \sqrt{g(\infty)} = \omega_{\infty}$$





#### **Conclusions**

- Given a physical model, it is easy to calculate  $S(\omega)$ .
- Due to overwhelming degeneracy of the problem it is difficult to use to data interpretation.
- General robust constrains on the shape of  $S(\omega)$  are good tool for ruling out of models.
- Evaluation of g(x) is less complex than calculation of PSD  $S(\omega)$ .

# **Questions & Answers**

## **Appendix**



#### Different Processes:

- a) Gaussian noise
- b) Mutually independent exponential "flares"
- c) & d) Continuous time Markov chains with discrete states.

Identical PSD,

$$S(\omega) = 1/(1+\omega^2).$$

The PSD is related to variance. Break frequency constrains only moments of  $p(\tau)$ .

# **Questions & Answers**