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Abstract

In a series of four papers we prove the following relaxation of the Loebl–Komlós–Sós Con-
jecture: For every α > 0 there exists a number k0 such that for every k > k0 every n-vertex
graph G with at least ( 1

2
+α)n vertices of degree at least (1+α)k contains each tree T of order k

as a subgraph.
The method to prove our result follows a strategy similar to approaches that employ the

Szemerédi regularity lemma: we decompose the graph G, find a suitable combinatorial structure
inside the decomposition, and then embed the tree T into G using this structure. Since for sparse
graphs G, the decomposition given by the regularity lemma is not helpful, we use a more general
decomposition technique. We show that each graph can be decomposed into vertices of huge
degree, regular pairs (in the sense of the regularity lemma), and two other objects each exhibiting
certain expansion properties. In this paper, we introduce this novel decomposition technique. In
the three follow-up papers, we find a combinatorial structure suitable inside the decomposition,
which we then use for embedding the tree.
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1 Introduction

1.1 Statement of the problem

This is the first of a series of four papers [HKP+a, HKP+b, HKP+c, HKP+d] in which we provide
an approximate solution of the Loebl–Komlós–Sós Conjecture, a problem in extremal graph theory
which fits the classical form Does a certain density condition imposed on a graph guarantee a certain
subgraph? Classical results of this type include Dirac’s Theorem which determines the minimum
degree threshold for containment of a Hamilton cycle, or Mantel’s Theorem which determines the
average degree threshold for containment of a triangle. Indeed, most of these extremal problems
are formulated in terms of the minimum or average degree of the host graph.

We investigate a density condition which guarantees the containment of each tree of order k.
The greedy tree-embedding strategy shows that requiring a minimum degree of more than k − 2
is sufficient. Further, this bound is best possible as any (k − 2)-regular graph avoids the k-vertex
star. Erdős and Sós conjectured that one can replace the minimum degree with the average degree,
with the same conclusion.

Conjecture 1.1 (Erdős–Sós Conjecture 1963). Let G be a graph of average degree greater than
k − 2. Then G contains each tree of order k as a subgraph.

A solution of the Erdős–Sós Conjecture for all k greater than some absolute constant was an-
nounced by Ajtai, Komlós, Simonovits, and Szemerédi in the early 1990’s. In a similar spirit, Loebl,
Komlós, and Sós conjectured that a median degree of k− 1 or more is sufficient for containment of
any tree of order k. By median degree we mean the degree of a vertex in the middle of the ordered
degree sequence.

Conjecture 1.2 (Loebl–Komlós–Sós Conjecture 1995 [EFLS95]). Suppose that G is an n-vertex
graph with at least n/2 vertices of degree more than k − 2. Then G contains each tree of order k.

We discuss Conjectures 1.1 and 1.2 in detail in Section 1.3. Here, we just state the main
result we achieve in our series of four papers, an approximate solution of the Loebl–Komlós–Sós
Conjecture.

Theorem 1.3 (Main result [HKP+d]). For every α > 0 there exists k0 such that for any k > k0 we
have the following. Each n-vertex graph G with at least (12 +α)n vertices of degree at least (1 +α)k
contains each tree T of order k.

The proof of this theorem is in [HKP+d]. The first step towards this result is Lemma 3.14,
which constitutes the main result of the present paper. It gives a decomposition of the host graph G
into several parts which will be later useful for the embedding. See Section 1.5 for a description of
the result and its role in the proof of Theorem 1.3. Also see [HPS+15] for a more detailed overview
of the proof.

1.2 The regularity lemma and the sparse decomposition

The Szemerédi regularity lemma has been a major tool in extremal graph theory for more than
three decades. It provides an approximation of an arbitrary graph by a collection of generalized
quasi-random graphs. This allows to represent the graph by a so-called cluster graph. Then, instead
of solving the original problem, one can solve a modified simpler problem in the cluster graph.
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1.3 Loebl–Komlós–Sós Conjecture and Erdős–Sós Conjecture

The applicability of the original Szemerédi regularity lemma is, however, limited to dense
graphs, i.e., graphs that contain a substantial proportion of all possible edges. There is a version
of the regularity lemma for sparser graphs by Kohayakawa and Rödl [Koh97] later strengthened by
Scott [Sco11], as well as other statements that draw on something from its philosophy (e.g. [EL]).
However, these statements provide a picture much less informative than Szemerédi’s original result.
A regularity type representation of general (possibly sparse) graphs is one of the most important
goals of contemporary discrete mathematics. By such a representation we mean an approxima-
tion of the input graph by a structure of bounded complexity carrying enough of the important
information about the graph.

A central tool in the proof of Theorem 1.3 is a structural decomposition of the graph G. This
decomposition — which we call sparse decomposition — applies to any graph whose average degree
is greater than a constant. The sparse decomposition provides a partition of any graph into vertices
of huge degrees and into a bounded degree part. The bounded degree part is further decomposed
into dense regular pairs, an edge set with certain expander-like properties, and a vertex set which
is expanding in a different way (we shall give a more precise description in Section 1.5). This
kind of decomposition was first used by Ajtai, Komlós, Simonovits, and Szemerédi in their yet
unpublished work on the Erdős–Sós Conjecture. The main goal of this paper is to present the
sparse decomposition, and to show that each graph has such a sparse decomposition: This will be
done in Lemma 3.13. Lemma 3.14 provides a sparse decomposition with additional tailor-made
features for graphs that fulfil the conditions of Theorem 1.3.

In the case of dense graphs the sparse decomposition produces a Szemerédi regularity partition
(as explained in Section 3.8), and thus the decomposition lemma (Lemma 3.13) extends the Sze-
merédi regularity lemma. But the interesting setting for the decomposition lemma is the field of
sparse graphs.

1.3 Loebl–Komlós–Sós Conjecture and Erdős–Sós Conjecture

Let us first introduce some notation. We say that H embeds in a graph G and write H ⊆ G if H
is a (not necessarily induced) subgraph of G. The associated map φ : V (H) → V (G) is called an
embedding of H in G. More generally, for a graph class H we write H ⊆ G if H ⊆ G for every
H ∈ H. Let trees(k) be the class of all trees of order k.

Conjecture 1.2 is dominated by two parameters: one quantifies the number of vertices of ‘large’
degree, and the other tells us how large this degree should actually be. Strengthening either of
these bounds sufficiently, the conjecture becomes trivial. Indeed, if we replace n/2 with n, then
any tree of order k can be embedded greedily. Also, if we replace k − 2 with 4k − 4, then G, being
a graph of average degree at least 2k − 2, has a subgraph G′ of minimum degree at least k − 1.
Again we can greedily embed any tree of order k.

On the other hand, one may ask whether smaller lower bounds would suffice. For the bound k−2,
this is not the case, since stars of order k require a vertex of degree at least k−1 in the host graph.
Another example can be obtained by considering a disjoint union of cliques of order k− 1. No tree
of order k is contained in such a graph.

For the bound n/2, the following example shows that this number cannot be decreased much.
First, assume that n is even, and that n = k. Let G∗ be obtained from the complete graph on n
vertices by deleting all edges inside a set of n

2 + 1 vertices. It is easy to check that G∗ does not
contain the k-vertex path. In general, G∗ does not contain any tree of order k with independence
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1.3 Loebl–Komlós–Sós Conjecture and Erdős–Sós Conjecture

Figure 1.1: An extremal graph for the Loebl–Komlós–Sós Conjecture.

number less than k
2 + 1. Now, taking the union of several disjoint copies of G∗ we obtain examples

for other values of n. (And adding a small complete component we can get to any value of n.) See
Figure 1.1 for an illustration.

However, we do not know of any example attaining the exact bound n/2. Thus it might be
possible to lower the bound n/2 from Conjecture 1.2 to the one attained in our example above:

Conjecture 1.4. Let k ∈ N and let G be a graph on n vertices, with more than n
2 − ⌊nk ⌋ − (n

mod k) vertices of degree at least k − 1. Then trees(k) ⊆ G.

It might even be that if n/k is far from integrality, a slightly weaker lower bound on the number
of vertices of large degree still works (see [Hla, HP15]).

Several partial results concerning Conjecture 1.2 have been obtained; let us briefly summarize
the major ones. Two main directions can be distinguished among those results that prove the
conjecture for special classes of graphs: either one places restrictions on the host graph, or on the
class of trees to be embedded. Of the latter type is the result by Bazgan, Li, and Woźniak [BLW00],
who proved the conjecture for paths. Also, Piguet and Stein [PS08] proved that Conjecture 1.2
is true for trees of diameter at most 5, which improved earlier results of Barr and Johansson [BJ]
and Sun [Sun07]. Restrictions on the host graph have led to the following results. Soffer [Sof00]
showed that Conjecture 1.2 is true if the host graph has girth at least 7. Dobson [Dob02] proved
the conjecture for host graphs whose complement does not contain a K2,3. This has been extended
by Matsumoto and Sakamoto [MS] who replace the K2,3 with a slightly larger graph.

A different approach is to solve the conjecture for special values of k. One such case, known as
the Loebl conjecture, or also as the (n/2–n/2–n/2)-Conjecture, is the case k = n/2. Ajtai, Komlós,
and Szemerédi [AKS95] solved an approximate version of this conjecture, and later Zhao [Zha11]
used a refinement of this approach to prove the sharp version of the conjecture for large graphs.

An approximate version of Conjecture 1.2 for dense graphs, that is, for k linear in n, was proved
by Piguet and Stein [PS12].

Theorem 1.5 (Piguet–Stein [PS12]). For any q > 0 and α > 0 there exists a number n0 such that
for any n > n0 and k > qn the following holds. For each n-vertex graph G with at least n/2 vertices
of degree at least (1 + α)k we have trees(k + 1) ⊆ G.

This result was proved using the regularity method. Adding stability arguments, Hladký and
Piguet [HP15], and independently Cooley [Coo09] proved Conjecture 1.2 for large dense graphs.

Theorem 1.6 (Hladký–Piguet [HP15], Cooley [Coo09]). For any q > 0 there exists a number
n0 = n0(q) such that for any n > n0 and k > qn the following holds. For each n-vertex graph G
with at least n/2 vertices of degree at least k we have trees(k + 1) ⊆ G.
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1.4 Related tree containment problems

Figure 1.2: An almost extremal graph for the Erdős–Sós Conjecture.

Let us now turn our attention to the Erdős–Sós Conjecture. The Erdős–Sós Conjecture 1.1 is
best possible whenever n(k−2) is even. Indeed, in that case it suffices to consider a (k−2)-regular
graph. This is a graph with average degree exactly k−2 which does not contain the star of order k.
Even when the star (which in a sense is a pathological tree) is excluded from the considerations, we
can — at least when k − 1 divides n — consider a disjoint union of n

k−1 cliques Kk−1. This graph
contains no tree from trees(k). There is another important graph with many edges which does not
contain for example the path Pk, depicted in Figure 1.2. This graph consists of a set of vertices of
size ⌊(k−2)/2⌋ that are connected to all vertices in the graph. This graph has 1

2(k−2)n−O(k2) edges
when k is even and 1

2(k − 3)n−O(k2) edges otherwise, and therefore gets close to the conjectured
bound when k ≪ n. Apart from the already mentioned announced breakthrough by Ajtai, Komlós,
Simonovits, and Szemerédi, work on this conjecture includes [BD96, Hax01, MS, SW97, Woź96].

Both Conjectures 1.2 and Conjecture 1.1 have an important application in Ramsey theory. Each
of them implies that the Ramsey number of two trees Tk+1 ∈ trees(k + 1), Tℓ+1 ∈ trees(ℓ + 1) is
bounded by R(Tk+1, Tℓ+1) 6 k + ℓ + 1. Actually more is implied: Any 2-edge-colouring of Kk+ℓ+1

contains either all trees in trees(k + 1) in red, or all trees in trees(ℓ + 1) in blue.
The bound R(Tk+1, Tℓ+1) 6 k + ℓ + 1 is almost tight only for certain types of trees. For

example, Gerencsér and Gyárfás [GG67] showed R(Pk, Pℓ) = max{k, ℓ} +
⌊

min{k,ℓ}
2

⌋

− 1 for paths

Pk ∈ trees(k), Pℓ ∈ trees(ℓ). Harary [Har72] showed R(Sk, Sℓ) = k + ℓ − 2 − ε for stars Sk ∈
trees(k), Sℓ ∈ trees(ℓ), where ε ∈ {0, 1} depends on the parity of k and ℓ. Haxell,  Luczak, and
Tingley confirmed asymptotically [HLT02] that the discrepancy of the Ramsey bounds for trees
depends on their balancedness, at least when the maximum degrees of the trees considered are
moderately bounded.

1.4 Related tree containment problems

Minimum degree conditions for spanning trees. Recall that the tight min-degree condition
for containment of a general spanning tree T in an n-vertex graph G is the trivial one, mindeg(G) >
n − 1. However, the only tree which requires this bound is the star. This indicates that this
threshold can be lowered substantially if we have a control of maxdeg(T ). Szemerédi and his
collaborators [KSS01, CLNGS10] showed that this is indeed the case, and obtained tight min-degree
bounds for certain ranges of maxdeg(T ). For example, if maxdeg(T ) 6 no(1), then mindeg(G) >
(12 + o(1))n is a sufficient condition. (Note that G may become disconnected close to this bound.)

Trees in random graphs. To complete the picture of research involving tree containment prob-
lems we mention two rich and vivid (and also closely connected) areas: trees in random graphs,
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1.4 Related tree containment problems

and trees in expanding graphs. The former area is centered around the following question: What
is the probability threshold p = p(n) for the Erdős–Rényi random graph Gn,p to contain asymptoti-
cally almost surely (a.a.s.) each tree/all trees from a given class Fn of trees? Note that there is a
difference between containing “each tree” and “all trees” (i.e., all trees simultaneously; this is often
referred to as universality) as the error probabilities for missing individual trees might sum up.

Most research focused on containment of spanning trees, or almost spanning trees. The only
well-understood case is when Fn = {Pkn} is a path. The threshold p = (1+o(1)) lnn

n for appearance of
a spanning path (i.e., kn = n) was determined by Komlós and Szemerédi [KS83], and independently
by Bollobás [Bol84]. Note that this threshold is the same as the threshold for connectedness. We
should also mention a previous result of Pósa [Pós76] which determined the order of magnitude of
the threshold, p = Θ( lnn

n ). The heart of Pósa’s proof, the celebrated rotation-extension technique,
is an argument about expanding graphs, and indeed many other results about trees in random
graphs exploit the expansion properties of Gn,p in the first place.

The threshold for the appearance of almost spanning paths in Gn,p was determined by Fernandez
de la Vega [FdlV79] and independently by Ajtai, Komlós, and Szemerédi [AKS81]. Their results
say that a path of length (1 − ε)n appears a.a.s. in Gn,C

n
for C = C(ε) sufficiently large. This

behavior extends to bounded degree trees. Indeed, Alon, Krivelevich, and Sudakov [AKS07] proved
that Gn,C

n
(for a suitable C = C(ε,∆)) a.a.s. contains all trees of order (1 − ε)n with maximum

degree at most ∆ (the constant C was later improved in [BCPS10]).
Let us now turn to spanning trees in random graphs. It is known [AKS07] that a.a.s. Gn,C lnn

n

contains a single spanning tree T with bounded maximum degree and linearly many leaves. This
result can be reduced to the main result of [AKS07] regarding almost spanning trees quite easily.
The constant C can be taken C = 1 + o(1), as was shown recently by Hefetz, Krivelevich, and
Szabó [HKS12]; obviously this is best possible. The same result also applies to trees that contain a
path of linear length whose vertices all have degree two. A breakthrough in the area was achieved by
Krivelevich [Kri10] who gave an upper bound on the threshold p = p(n,∆) for embedding a single
spanning tree of a given maximum degree ∆. This bound is essentially tight for ∆ = nc, c ∈ (0, 1).
Even though the argument in [Kri10] is not difficult, it relies on a deep result of Johansson, Kahn
and Vu [JKV08] about factors in random graphs. Montgomery [Mona] complemented Krivelevich’s
result obtaining an almost tight upper bound on p(n,∆) in the case when ∆ is small. Further,
Montgomery [Monb] achieved an essentially optimal bound for containment of some comb-like
graphs.

Regarding universality of random graphs with respect to spanning trees, most of the research
focused on the subclass of bounded-degree trees. Let us mention papers [JKS12] and [FNP] which
improve the upper-bounds for the probability of containing all trees of maximum degree ∆ (the
results are meaningful for ∆ < nc for some small value of c).

Trees in expanders. By an expander graph we mean a graph with a large Cheeger constant,
i.e., a graph which satisfies a certain isoperimetric property. As indicated above, random graphs
are very good expanders, and this is the main motivation for studying tree containment problems in
expanders. Another motivation comes from studying the universality phenomenon. Here the goal
is to construct sparse graphs which contain all trees from a given class, and expanders are natural
candidates for this. The study of sparse tree-universal graphs is a remarkable area by itself which
brings challenges both in probabilistic and explicit constructions. For example, Bhatt, Chung,
Leighton, and Rosenberg [BCLR89] give an explicit construction of a graph with only O∆(n) edges
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1.5 Overview of the proof of our main result

which contains all n-vertex trees with maximum degree at most ∆. The above mentioned paper by
Johannsen, Krivelevich, and Samotij [JKS12] shows a number of universality results for expanders,
too. For example, they show universality for the class of graphs with a large Cheeger constant that
satisfy a certain connectivity condition.

Friedman and Pippenger [FP87] extended Pósa’s rotation-extension technique from paths to
trees and found many applications (e.g. [HK95, Hax01, BCPS10]). Sudakov and Vondrák [SV10]
use tree-indexed random walks to embed trees in Ks,t-free graphs (this property implies expansion);
a similar approach is employed by Benjamini and Schramm [BS97] in the setting of infinite graphs.
Tree-indexed random walks are also used (in conjunction with the Regularity Lemma) in the work
of Kühn, Mycroft, and Osthus on Sumner’s universal tournament conjecture, [KMO11a, KMO11b].

In our proof of Theorem 1.3, embedding trees in expanders play a crucial role, too. However,
our notion of expansion is very different from those studied previously. (Actually, we introduce
two, very different, notions in Definitions 3.3 and 3.6.)

1.5 Overview of the proof of our main result

This is a very brief overview of the proof. A more thorough overview is given in [HPS+15].

The structure of the proof of our main result (Theorem 1.3) resembles the proof of the dense
case, Theorem 1.5. We obtain an approximate representation — called the sparse decomposition
— of the host graph G from Theorem 1.3. Then we find a suitable combinatorial structure inside
the sparse decomposition. Finally, we embed a given tree T into G using this structure.

Here we explain the key ingredients of the proof in more detail. The input graph G has
Θ(kn) edges. Indeed, an easy counting argument gives that e(G) > kn/4. On the other hand,
we can assume that e(G) < kn, as otherwise G contains a subgraph of minimum degree at least
k, and the assertion of Theorem 1.3 follows. Recall that the Szemerédi regularity lemma gives
an approximation of dense graphs in which o(n2) edges are neglected. The sparse decomposition
introduced here captures all but at most o(kn) edges. The vertex set of G is partitioned into a set
of vertices of degree much larger than k and a set of vertices of degree O(k). Further, the induced
graph on the second set is split into regular pairs (in the sense of the Szemerédi regularity lemma)
with clusters of sizes Θ(k) leading to a cluster graph Greg, and into two additional parts which each
have certain (different) expansion properties. The first of these two expanding parts — called Gexp

— is a subgraph of G that contains no bipartite subgraphs of a density above a certain threshold
density (we call such bipartite subgraphs dense spots). The second expanding part — called the
avoiding set E— consists of vertices that lie in many of these dense spots. The vertices of huge
degrees, the regular pairs, and the two expanding parts form the sparse decomposition of G. The
key ideas behind obtaining this sparse decomposition are given in [HPS+15, Section 3], and full
details can be found in Section 3. It is well-known that regular pairs are suitable for embedding
small trees. In [HKP+d] we work out techniques for embedding small trees in each of the three
remaining parts of the sparse decomposition. A nontechnical description of these techniques is
given in Section 3.5 (for E) and Section 3.6 (for Gexp). It is a bit difficult to describe precisely the
way the huge degree vertices are utilized. At this moment it suffices to say that it is easy to extend
a partial embedding of a k-vertex tree from a vertex u mapped to a huge-degree vertex x to the
children of u. Of course, for such an extension alone, deg(x) > k − 1 would have been sufficient.
So, the fact that the degree of x is much larger than k is used (together with other properties) to
accommodate these children so that it is possible to continue even with subsequent extensions.

6



Tree-embedding results in the dense setting (e.g. Theorem 1.5) rely on finding a (connected)
matching structure in the cluster graph. Indeed, this allows for distributing different parts of the
tree in the matching edges. In analogy, in the second paper of this series [HKP+b] we find a
structure based on the sparse decomposition. This rough structure utilizes all the concepts suitable
for embedding trees described above: huge degree vertices, the avoiding set E, the graph Gexp, and
dense regular pairs. Somewhat surprisingly, the dense regular pairs do not come only from Greg.
Let us make this more precise. An initial matching structure is found in Greg and this structure
is enhanced using other parts of G to yield further regular pairs, referred to in this context as the
regularized matching. One may ask what the role of Greg is. The answer is that either we can
take directly a sufficiently large matching in Greg, or the lack of any such matching in Greg gives
us information about a compensating enhancement in a form of a regularized matching based on
other parts of the decomposition. A simplified version of this rough structure is given as Lemma 7
in [HPS+15].

However, the rough structure is not immediately suitable for embedding T , and we shall further
refine it in the third paper of this series [HKP+c]. We will show that in the setting of Theorem 1.3,
we can always find one of ten configurations, denoted by (⋄1)–(⋄10), in the host graph G. Obtaining
these configurations from the rough structure is based on pigeonhole-type arguments such as: if
there are many edges between two sets, and few “kinds” of edges, then many of the edges are of
the same kind. The different kinds of edges come from the sparse decomposition (and allow for
different kinds of embedding techniques). Just “homogenizing” the situation by restricting to one
particular kind is not enough, we also need to employ certain “cleaning lemmas”. A simplest such
lemma would be that a graph with many edges contains a subgraph with a large minimum degree;
the latter property evidently being more directly applicable for a sequential embedding of a tree.
The actual cleaning lemmas we use are complex extensions of this simple idea.

Finally, in [HKP+d], we show how to embed the tree T . This is done by first establishing some
elementary embedding lemmas for small subtrees, and then combine these for each of the cases
(⋄1)–(⋄10) to yield an embedding of the entire tree T .

A scheme of the proof of Theorem 1.3 is given in Figure 1.3.

2 Notation and preliminaries

2.1 General notation

All graphs considered in this paper are finite, undirected, without multiple edges, and without self-
loops. We write V (G) and E(G) for the vertex set and edge set of a graph G, respectively. Further,
v(G) = |V (G)| is the order of G, and e(G) = |E(G)| is its number of edges. If X,Y ⊆ V (G) are
two, not necessarily disjoint, sets of vertices we write e(X) for the number of edges induced by X,
and e(X,Y ) for the number of ordered pairs (x, y) ∈ X × Y such that xy ∈ E(G). In particular,
note that 2e(X) = e(X,X).

For a graph G, a vertex v ∈ V (G) and a set U ⊆ V (G), we write deg(v) and deg(v, U) for the
degree of v, and for the number of neighbours of v in U , respectively. We write mindeg(G) for the
minimum degree of G, mindeg(U) := min{deg(u) : u ∈ U}, and mindeg(V1, V2) = min{deg(u, V2) :
u ∈ V1} for two sets V1, V2 ⊆ V (G). Note that for us, the minimum degree of a graph on zero
vertices is ∞. Similar notation is used for the maximum degree, denoted by maxdeg(G). The
neighbourhood of a vertex v is denoted by N(v). We set N(U) :=

⋃

u∈U N(u). The symbol − is

7



2.1 General notation

Figure 1.3: Structure of the proof of Theorem 1.3, including parts from [HKP+b, HKP+c,
HKP+d].
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2.2 Regular pairs

used for two graph operations: if U ⊆ V (G) is a vertex set then G−U is the subgraph of G induced
by the set V (G) \ U . If H ⊆ G is a subgraph of G then the graph G−H is defined on the vertex
set V (G) and corresponds to deletion of edges of H from G. Any graph with zero edges is called
empty.

A family A of pairwise disjoint subsets of V (G) is an ℓ-ensemble in G if |A| > ℓ for each A ∈ A.
The set {1, 2, . . . , n} of the first n positive integers is denoted by [n].
Suppose that we have a nonempty set A, and X and Y each partition A. Then X ⊞ Y denotes

the coarsest common refinement of X and Y, i.e.,

X ⊞ Y := {X ∩ Y : X ∈ X , Y ∈ Y} \ {∅} .

We frequently employ indexing by many indices. We write superscript indices in parentheses
(such as a(3)), as opposed to notation of powers (such as a3). We use sometimes subscript to refer
to parameters appearing in a fact/lemma/theorem. For example, αT1.3 refers to the parameter α
from Theorem 1.3. We omit rounding symbols when this does not affect the correctness of the
arguments. In overviews we use the symbol ≪ equivalently to the o(·) symbol.

In Table 2.1 we indicate our notation system (with an outlook to [HKP+b]–[HKP+d]).

Table 2.1: Specific notation used in the series.

lower case Greek letters small positive constants (≪ 1)
φ reserved for embedding; φ : V (T ) → V (G)

upper case Greek letters large positive constants (≫ 1)

one-letter bold sets of clusters

bold (e.g., trees(k),LKS(n, k, η)) classes of graphs

blackboard bold (e.g., H,E, Sη,k(G),XA) distinguished vertex sets, except for
N which denotes the set {1, 2, . . .}

script (e.g., A,D,N ) families (of vertex sets, “dense spots”, and regular pairs)

∇ (“nabla”) reserved for “sparse decomposition”

Lemma 2.1. For all ℓ, n ∈ N, every n-vertex graph G contains a (possibly empty) subgraph G′

such that mindeg(G′) > ℓ and e(G′) > e(G) − (ℓ− 1)n.

Proof. We construct the graph G′ by sequentially removing vertices of degree less than ℓ from the
graph G. In each step we remove at most ℓ− 1 edges. Thus the statement follows.

2.2 Regular pairs

In this section we introduce the notion of regular pairs which is central for Szemerédi’s regularity
lemma and its extension, discussed in Section 2.3. We also list some simple properties of regular
pairs.

Given a graph H and a pair (U,W ) of disjoint sets U,W ⊆ V (H) the density of the pair (U,W )
is defined as

d(U,W ) :=
e(U,W )

|U ||W | .

For a given ε > 0, a pair (U,W ) of disjoint sets U,W ⊆ V (H) is called an ε-regular pair if
|d(U,W ) − d(U ′,W ′)| < ε for every U ′ ⊆ U , W ′ ⊆ W with |U ′| > ε|U |, |W ′| > ε|W |. If the pair
(U,W ) is not ε-regular, then we call it ε-irregular.

9



2.3 Regularizing locally dense graphs

We give a useful and well-known property of regular pairs.

Fact 2.2. Suppose that (U,W ) is an ε-regular pair of density d. Let U ′ ⊆ W,W ′ ⊆ W be sets of
vertices with |U ′| > α|U |, |W ′| > α|W |, where α > ε. Then the pair (U ′,W ′) is a 2ε/α-regular pair
of density at least d− ε.

The following fact states a simple relation between the density of a (not necessarily regular)
pair and the densities of its subpairs.

Fact 2.3. Let H = (U,W ;E) be a bipartite graph of d(U,W ) > α. Suppose that the sets U and W
are partitioned into sets {Ui}i∈I and {Wj}j∈J , respectively. Then at most βe(H)/α edges of H
belong to a pair (Ui,Wj) with d(Ui,Wj) 6 β.

Proof. Trivially, we have
∑

i∈I,j∈J

|Ui||Wj |
|U ||W | = 1 . (2.1)

Consider a pair (Ui,Wj) of d(Ui,Wj) 6 β. Then

e(Ui,Wj) 6 β|Ui||Wj | =
β

α

|Ui||Wj |
|U ||W | α|U ||W | 6 β

α

|Ui||Wj |
|U ||W | e(U,W ) .

Summing over all such pairs (Ui,Wj) and using (2.1) yields the statement.

2.3 Regularizing locally dense graphs

The regularity lemma [Sze78] has proved to be a powerful tool for attacking graph embedding
problems; see [KO09] for a survey. We first state the lemma in its original form.

Lemma 2.4 (Regularity lemma). For all ε > 0 and ℓ ∈ N there exist n0,M ∈ N such that for
every n > n0 the following holds. Let G be an n-vertex graph whose vertex set is pre-partitioned
into sets V1, . . . , Vℓ′, ℓ

′ 6 ℓ. Then there exists a partition {U0, U1, . . . , Up} of V (G), ℓ < p < M ,
with the following properties.

(1) For every i, j ∈ [p] we have |Ui| = |Uj |, and |U0| < εn.

(2) For every i ∈ [p] and every j ∈ [ℓ′] either Ui ∩ Vj = ∅ or Ui ⊆ Vj.

(3) All but at most εp2 pairs (Ui, Uj), i, j ∈ [p], i 6= j, are ε-regular.

Property (3) of Lemma 2.4 is often called ε-regularity of the partition {U0, U1, . . . , Up}. For us,
it is more convenient to introduce this notion in the bipartite context (in Definition 2.6).

We shall use Lemma 2.4 for auxiliary purposes only as it is helpful only in the setting of dense
graphs (i.e., graphs which have n vertices and Ω(n2) edges). This is not necessarily the case in
Theorem 1.3. For this reason, we give a version of the regularity lemma — Lemma 2.5 below —
which allows us to regularize even sparse graphs.

More precisely, suppose that we have an n-vertex graph H whose edges lie in bipartite graphs
H[Wi,Wj ], where {W1, . . . ,Wℓ} is an ensemble of sets of individual sizes Θ(k). Although ℓ may
be unbounded, for a fixed i ∈ [ℓ] there are only a bounded number (independent of k), say m, of
indices j ∈ [ℓ] such that H[Wi,Wj ] is non-empty. See Figure 2.1 for an example. Lemma 2.5 then

10



2.3 Regularizing locally dense graphs

Figure 2.1: A locally dense graph as in Lemma 2.5. The sets W1, . . . ,Wℓ are depicted with
grey circles. Even though there is a large number of them, each Wi is linked to only boundedly
many other Wj ’s (at most four, in this example). Lemma 2.5 allows us to regularize all the
bipartite graphs using the same system of partitions of the sets Wi.

allows us to regularize (in the sense of the regularity lemma, Lemma 2.4) all the bipartite graphs

G[Wi,Wj ] using the same partition {W (0)
i ∪̇W (1)

i ∪̇ . . . ∪̇W (pi)
i = Wi}ℓi=1. Note that as |Wi| = Θ(k)

for all i ∈ [ℓ] then H has at most

Θ(k2) ·m · ℓ 6 Θ(k2) ·m · n

Θ(k)
= Θ(kn)

edges. Thus, when k ≪ n, this is a regularization of a sparse graph. This “sparse regularity lemma”
is very different to that of Kohayakawa and Rödl (see e.g. [Koh97]). Indeed, the Kohayakawa–Rödl
regularity lemma only deals with graphs which have no local condensation of edges, e.g., subgraphs
of random graphs.1 Consequently, the resulting regular pairs are of density o(1). In contrast,
Lemma 2.5 provides us with regular pairs of density Θ(1), but, on the other hand, is useful only
for graphs which are locally dense.

Lemma 2.5 (Regularity lemma for locally dense graphs). For all m, z ∈ N and ε > 0 there exists
qMAXCL ∈ N such that the following is true. Suppose H and F are two graphs, V (F ) = [ℓ] for
some ℓ ∈ N, and maxdeg(F ) 6 m. Suppose that Z = {Z1, . . . , Zz} is a partition of V (H). Let
{W1, . . . ,Wℓ} be a qMAXCL-ensemble in H, such that for all i, j ∈ [ℓ] we have

2|Wi| > |Wj | . (2.2)

Then for each i ∈ [ℓ] there exists a partition W
(0)
i ,W

(1)
i , . . . ,W

(pi)
i of the set Wi such that for all

i, j ∈ [ℓ] we have

(a) 1/ε 6 pi 6 qMAXCL,

(b) |W (i′)
i | = |W (j′)

j | for each i′ ∈ [pi], j
′ ∈ [pj ],

(c) for each i′ ∈ [pi] there exists x ∈ [z] such that W
(i′)
i ⊆ Zx,

1There is a recent refinement of the Kohayakawa–Rödl regularity lemma, due to Scott [Sco11]. Scott’s regularity
lemma gets around the no-condensation condition, which proves helpful in some situations, e.g. [AKSV14]; still, the
main features remain.
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2.3 Regularizing locally dense graphs

(d)
∑

i |W
(0)
i | < ε

∑

i |Wi|, and

(e) at most ε |Y| pairs
(

W
(i′)
i ,W

(j′)
j

)

∈ Y form an ε-irregular pair in H, where

Y :=
{(

W
(i′)
i ,W

(j′)
j

)

: ij ∈ E(F ), i′ ∈ [pi], j
′ ∈ [pj ]

}

.

We use Lemma 2.5 in the proof of Lemma 3.13. Lemma 3.13 is in turn the main tool in the proof
of our main structural decomposition of the graph GT1.3, Lemma 3.14. In the proof of Lemma 3.14
we decompose the input graph into several parts with very different properties, and one of these
parts is a locally dense graph which can be then regularized by Lemma 3.13. A similar regularity
lemma is used in [AKSS].

The proof of Lemma 2.5 is similar to the proof of the standard regularity lemma (Lemma 2.4),
as given for example in [Sze78]. The key notion is that of the index (a.k.a. the mean square density)
which we recall now. For us, it is convenient to work in the category of bipartite graphs.

Definition 2.6. Suppose that X = {X0, X1, . . . , Xℓ} and Y = {Y0, Y1, . . . , Yp} are partitions of
a set X, and of Y with distinctive sets X0 and Y0 which we call garbage clusters. We use the
symbol ◦ to indicate a new partition in which the garbage cluster is broken into singletons, e.g.,
X ◦ = {X1, . . . , Xℓ} ∪ {{x} : x ∈ X0}. We say that X refines Y up to the garbage cluster if X ◦

refines Y◦.
Suppose that G = (A,B;E) is a bipartite graph. Let A = {A0, A1, . . . , As} and B = {B0, B1, . . . , Bt}

be partitions of A and B, with garbage clusters A0 and B0. We say that the pair (A,B) is an ε-
regular partition of G if at most εst pairs (Ai, Bj), i ∈ [s], j ∈ [t] are irregular. Otherwise, (A,B)
is ε-irregular.

We then define the index of (A,B) by

ind(A,B) =
1

(|A| + |B|)2 ·
∑

X∈A◦,Y ∈B◦

e(X,Y )2

|X||Y | .

Clearly, ind(A,B) ∈ [0, 1]. Here is another fundamental property of the index.

Fact 2.7 (Bipartite version of Lemma 7.4.2 in [Die05]). Suppose that G = (A,B;E) is a bipartite
graph. Let A and A′ be partitions of A with given garbage clusters. Let B and B′ be partitions of
B with given garbage clusters. Suppose that A′ refines A and B′ refines B up to garbage clusters.
Then ind(A′,B′) > ind(A,B).

Lemma 2.8 (Index Pumping Lemma; bipartite version of Lemma 7.4.4. in [Die05]). Let ε ∈ (0, 14)

and p, q ∈ N. Let G be a bipartite graph G = (A,B;E), with |A|
2 6 |B| 6 2|A|. Suppose that A

and B are partitions of vertex sets A and B with distinctive garbage clusters A0 and B0. Suppose
further that

(a) p 6 |A|, |B| 6 q,

(b) |A0| < ε|A|, |B0| < ε|B|, and

(c) all the sets in A ∪ B \ {A0, B0} have the same size.
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2.3 Regularizing locally dense graphs

If (A,B) is not an ε-regular partition of G then there exist partitions A′ and B′ of A and B with
garbage clusters A′

0 and B′
0 such that

(i) p + 1 6 |A′|, |B′| 6 2q16q, and

(ii) |A′
0| 6 |A0| + |A|

2p , |B′
0| 6 |B0| + |B|

2p ,

(iii) all the sets in A′ ∪ B′ \ {A′
0, B

′
0} have the same size,

(iv) the partitions A′ and B′ refine A and B up to garbage clusters, and

(v) ind(A′,B′) > ind(A,B) + ε5

3691 .

We note that by stating a version for bipartite graphs we had to adjust numerical values
compared to [Die05]. Recall that the proof of Lemma 2.8 has two independent steps: first the
partitions A and B are suitably refined (so that the index increases) and then these new partitions
are further refined (up to garbage clusters) so that the non-garbage sets have the same size. The
latter step does not decrease the index by Fact 2.7 but may possibly increase the sizes of the
garbage clusters. Thus, we can state a version of Lemma 2.8 in which refinements are performed
simultaneously on a number of bipartite graphs (referred to as (Gi)i in the corollary below), and
in addition refines further partitions (referred to as (Cj)j below) on which no regularization is
imposed.

Corollary 2.9. Let ε ∈ (0, 14) and p, q ∈ N. Let Gi i ∈ I be bipartite graphs Gi = (Ai, Bi;Ei). Let
Cj, j ∈ J be sets of vertices. Suppose that all the sets Ai, Bi, and Cj are mutually disjoint. Suppose

further that for each i ∈ I and j ∈ J , max{ |Ai|
2 , |Bi|

2 } 6 |Cj | 6 min{2|Ai|, 2|Bi|}. Suppose that Ai

and Bi are partitions of Ai and Bi with garbage clusters A0i and B0i, and that Cj are partitions of
Cj with garbage clusters C0j. Suppose further that for each i ∈ I, and j ∈ J ,

(a) p 6 |Ai|, |Bi|, |Cj | 6 q,

(b) |A0i| < ε|Ai|, |B0i| < ε|Bi|, |C0j | < ε|Cj |, and

(c) all the sets in
⋃

m∈I(Am ∪ Bm \ {A0m, B0m}) ∪⋃

n∈J(Cn \ {C0n}) have the same size.

If all partitions (Ai,Bi), i ∈ I are ε-irregular then there exist partitions A′
i and B′

i of A and B with
garbage clusters A′

0i and B′
0i, and partitions C′

j of Cj with garbage clusters C ′
0j such that for each

i ∈ I and j ∈ J ,

(i) p + 1 6 |A′
i|, |B′

i|, |C′
j | 6 2q · 16q, and

(ii) |A′
0i| 6 |A0i| + |Ai|

2p , |B′
0i| 6 |B0i| + |Bi|

2p , and |C ′
0j | 6 |C0j | +

|Cj |
2p ,

(iii) all the sets in
⋃

m∈I A′
m ∪ B′

m \ {A′
0m, B′

0m} ∪⋃

n∈J C′
n \ {C ′

0n} have the same size,

(iv) the partitions A′
i, B′

i and C′
j refine Ai, Bi and Cj up to garbage clusters, and

(v) ind(A′
i,B′

i) > ind(Ai,Bi) + ε5

3691 .
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2.3 Regularizing locally dense graphs

We are now in a position when we can prove Lemma 2.5. But before, let us describe how
a more naive approach fails. For each edge ij ∈ E(F ) consider a regularization of the bipartite

graph H[Wi,Wj ], let {U (i′)
i,j }i′∈[qi,j ] be the partition of Wi into clusters, and let {U (j′)

j,i }j′∈[qj,i] be the

partition of Wj into clusters such that almost all pairs (U
(i′)
i,j , U

(j′)
j,i ) ⊆ (Wi,Wj) form an ε′-regular

pair (for some ε′ of our taste). We would now be done if the partition {U (i′)
i,j }i′∈[qi,j ] of Wi was

independent of the choice of the edge ij. This however need not be the case. The natural next step
would therefore be to consider the common refinement

⊞
j:ij∈E(F )

{

U (i′)i,j
}

i′∈[qij ]

of all the obtained partitions of Wi. The pairs obtained in this way lack however any regularity
properties as they are too small. Indeed, it is a notorious drawback of the regularity lemma that
the number of clusters in the partition is enormous as a function of the regularity parameter. In

our setting, this means that qi,j ≫ 1
ε′ . Thus a typical cluster U

(i′1)
i,j1

occupies on average only a 1
qi,j1

-

fraction of the cluster U
(i′2)
i,j2

, and thus already the set U
(i′1)
i,j1

∩U
(i′2)
i,j2

⊆ U
(i′2)
i,j2

is not substantial (in the
sense of the regularity). The same issue arises when regularizing multicoloured graphs (cf. [KS96,
Theorem 1.18]). The solution is to impel the regularizations to happen in a synchronized way.

Proof of Lemma 2.5. Without loss of generality, assume that ε < 1. Set ε̃ = ε/8. The number
qMAXCL can be taken by considering the function q 7→ 2q · 16q with initial value ⌈4zε̃ ⌉ and iterating

it ⌈3691(m+1)
ε̃6

⌉-many times.

For each i ∈ [ℓ] consider an arbitrary initial partition Wi = {W (0)
i ,W

(1)
i , . . . ,W

(pi)
i } of Wi such

that for the garbage cluster we have |W (0)
i | 6 ε̃|Wi|, all the non-garbage clusters W

(i′)
i are disjoint

subsets of some set Zr, r ∈ [z]. Further, we make all the non-garbage clusters (coming from all the
sets Wi) have the same size. It is clear that this can be achieved, and that we can further impose
that

1 +
1

ε
6 pi 6

4z

ε
. (2.3)

By Vizing’s Theorem we can cover the edges of F by non-empty disjoint matchings M1, . . . ,MQ,
Q 6 m + 1. For each q ∈ [Q] we shall introduce a variable indq,

indq =
1

|Mq|
∑

xy∈Mq

ind(Wx,Wy) .

We shall now keep refining the partitions (Wz)z∈V (F ) in steps ℓ = 1, 2, . . ., as follows. Suppose
that for some q ∈ [Q], for the matching

M ′
q = {xy ∈ Mq : the partition (Wx,Wy) of the bipartite graph H[Wx,Wy] is ε̃-irregular}

we have |M ′
q| > ε̃|Mq|. We apply Corollary 2.9 with the following setting. The partitions

{(Wx,Wy)}xy∈M ′
q

play the role of (Ai,Bi)’s and the partitions {Wx}x∈V (F )\V (M ′
q)

play the role

of Cj ’s. Further, in step ℓ we set pC2.9 = 1
ε + ℓ. Corollary 2.9 says that for the modified partitions

(which we still denote the same), the index along each edge of M ′
q increased by at least ε̃5

3691 . Com-
bined with Fact 2.7 and with the fact that |M ′

q| > ε̃|Mq|, we get that indq increased by at least
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2.3 Regularizing locally dense graphs

ε̃6

3691 , and none other index indt decreased. Observe also that the lower-bound in Corollary 2.9(i)
makes it possible to apply Corollary 2.9 with pC2.9 increased by one in a next step.

Since
∑Q

t=1 indt 6 |Q| 6 m+ 1, we conclude that after at most 3691(m+1)
ε̃6

steps, for each q ∈ [Q]
the number of bipartite graphs H[Wx,Wy], xy ∈ Mq that are partitioned ε̃-irregularly is less than
ε̃|Mq|. In particular, among all the bipartite graphs (H[Wx,Wy])xy∈E(F ), at most ε̃ · e(F ) are
partitioned ε̃-irregularly. We claim that this system of partitions satisfies Properties (a)–(e) as in
the statement of the lemma.

Each irregular pair counted in (e) is a pair contained either in ε̃-regularly partitioned or an
ε̃-irregularly partitioned bipartite graph H[Wx,Wy]. It follows from above that the number of
irregular pairs of each of these two types is upper-bounded by ε

2 |Y|. For the bound (d), recall that

initially we had |W (0)
i | 6 ε

2 |Wi|. During each application of Corollary 2.9, the garbage sets W
(0)
i

could have grown by at most |Wi|
2p , for p = 1

ε + 1, 1ε + 2, . . .. Thus, at the end of the process, we have

|W (0)
i | 6 ( ε2 +

∑

p> 1
ε

2−p)|Wi| 6 ε|Wi|, as needed. The other assertions of the lemma are clear.

Usually after applying the regularity lemma to some graph G, one bounds the number of edges
which correspond to irregular pairs, to regular, but sparse pairs, or are incident with the exceptional
sets U0. We shall do the same for the setting of Lemma 2.5.

Lemma 2.10. In the situation of Lemma 2.5, suppose that maxdeg(H) 6 Ωk and e(H) 6 kn, and
that each edge xy ∈ E(H) is captured by some edge ij ∈ E(F ), i.e., x ∈ Wi, y ∈ Wj. Moreover
suppose that

d(Wi,Wj) > γ if ij ∈ E(F ). (2.4)

Then all but at most (4εγ + εΩ + γ)nk edges of H belong to regular pairs (W
(i)
i′ ,W

(j)
j′ ), i, j 6= 0, of

density at least γ2.

Proof. Set w := min{|Wi| : i ∈ V (F )}. By (2.4), each edge of F represents at least γw2 edges
of H. Since e(H) 6 kn it follows that e(F ) 6 kn/(γw2). Thus, by the assumption (2.2),
∑

AB∈E(F ) |A||B| 6 e(F )(2w)2 6 4kn
γ . Using (e) of Lemma 2.5 we get that the number of edges of

H contained in ε-irregular pairs from Y is at most

4εnk

γ
. (2.5)

Write E1 for the set of edges of H which are incident with a vertex in
⋃

i∈[ℓ]W
(0)
i . Then by (d)

of Lemma 2.5, and since maxdeg(H) 6 Ωk,

|E1| 6 εΩnk . (2.6)

Let E2 be the set of those edges of H which belong to ε-regular pairs (W
(i′)
i ,W

(j′)
j ) with

ij ∈ E(F ), i′ ∈ [pi], j
′ ∈ [pj ] of density at most γ2. We claim that

|E2| 6 γkn . (2.7)

Indeed, because of (2.4) and by Fact 2.3 (with αF2.3 := γ and βF2.3 := γ2), for each ij ∈ E(F )

there are at most γeH(Wi,Wj) edges contained in the bipartite graphs H[W
(i′)
i ,W

(j′)
j ], i′ ∈ [pi], j

′ ∈
[pj ], with dH(W

(i′)
i ,W

(j′)
j ) 6 γ2. Since

∑

ij∈E(F ) eH(Wi,Wj) 6 kn, the validity of (2.7) follows.
Combining (2.5), (2.6), and (2.7) we finish the proof.
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2.4 LKS graphs

2.4 LKS graphs

Write LKS(n, k, α) for the class of all n-vertex graphs with at least (12 +α)n vertices of degrees at
least (1 +α)k. With this notation, Conjecture 1.2 states that every graph in LKS(n, k, 0) contains
every tree from trees(k + 1).

Given a graph G, denote by Sη,k(G) the set of those vertices of G that have degree less than
(1 + η)k and by Lη,k(G) the set of those vertices of G that have degree at least (1 + η)k.2 Thus the
sizes of the sets Sη,k(G) and Lη,k(G) are what specifies the membership to LKS(n, k, η).

Define LKSmin(n, k, η) as the set of all graphs G ∈ LKS(n, k, η) that are edge-minimal with
respect to the membership in LKS(n, k, η). In order to prove Theorem 1.3 it suffices to restrict our
attention to graphs from LKSmin(n, k, η), and this is why we introduce the class. Let us collect
some properties of graphs in LKSmin(n, k, η).

Fact 2.11. For any graph G ∈ LKSmin(n, k, η) the following is true.

1. Sη,k(G) is an independent set.

2. All the neighbours of every vertex v ∈ V (G) with deg(v) > ⌈(1 + η)k⌉ have degree exactly
⌈(1 + η)k⌉.

3. |Lη,k(G)| 6 ⌈(1/2 + η)n⌉ + 1.

Observe that every edge in a graph G ∈ LKSmin(n, k, η) is incident to at least one vertex of
degree exactly ⌈(1 + η)k⌉. This gives the following inequality.

e(G) 6 ⌈(1 + η)k⌉ |Lη,k(G)|
F2.11(3.)

6 ⌈(1 + η)k⌉
(⌈(

1

2
+ η

)

n

⌉

+ 1

)

< kn . (2.8)

(The last inequality is valid under the additional mild assumption that, say, η < 1
20 and n > k > 20.

This can be assumed throughout the paper.)

Definition 2.12. Let LKSsmall(n, k, η) be the class of those graphs G ∈ LKS(n, k, η) for which
we have the following three properties:

1. All the neighbours of every vertex v ∈ V (G) with deg(v) > ⌈(1 + 2η)k⌉ have degrees at most
⌈(1 + 2η)k⌉.

2. All the neighbours of every vertex of Sη,k(G) have degree exactly ⌈(1 + η)k⌉.

3. We have e(G) 6 kn.

Observe that the graphs from LKSsmall(n, k, η) also satisfy 1., and a quantitatively somewhat
weaker version of 2. of Fact 2.11. This suggests that in some sense LKSsmall(n, k, η) is a good
approximation of LKSmin(n, k, η).

As said, we will prove Theorem 1.3 only for graphs from LKSmin(n, k, η). However, it turns
out that the structure of LKSmin(n, k, η) is too rigid. In particular, LKSmin(n, k, η) is not closed
under discarding a small amount of edges during our cleaning procedures. This is why the class
LKSsmall(n, k, η) comes into play: starting with a graph in LKSmin(n, k, η) we perform some
initial cleaning and obtain a graph which lies in LKSsmall(n, k, η/2). We then heavily use its
structural properties from Definition 2.12 throughout the proof.

2“S” stands for “small”, and “L” for “large”.
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3 Decomposing sparse graphs

In this section, we work out a structural decomposition of a possibly sparse graph which is suitable
for embedding trees. Our motivation comes from the success of the regularity method in the
setting of dense graphs (see [KO09]). The main technical result of this section, the “decomposition
lemma”, Lemma 3.13, provides such a decomposition. Roughly speaking, each graph of a moderate
maximum degree can be decomposed into regular pairs, and two different expanding parts.

We then combine Lemma 3.13 with a lemma on creating a gap in the degree sequence (Lemma 3.2)
to get a decomposition lemma for graphs from LKS(n, k, η), Lemma 3.14. Lemma 3.14 asserts that
each graph from LKS(n, k, η) can be decomposed into vertices of degree much larger than k, reg-
ular pairs, and expanding parts. Further we give a non-LKS-specific version of Lemma 3.14 in
Lemma 3.15, which asserts that each graph with average degree bigger than an absolute constant
has a sparse decomposition. Such a decomposition lemma was used by Ajtai, Komlós, Simonovits
and Szemerédi in their work on the Erdős–Sós conjecture and we expect that it will find applications
in other tree embedding problems, and possibly elsewhere.

3.1 Creating a gap in the degree sequence

The goal of this section is to show that any graph G ∈ LKSmin(n, k, η) has a subgraph G′ ∈
LKSsmall(n, k, η/2) which has a gap in its degree sequence. Note that G′ then contains almost all
the edges of G. This is formulated in Lemma 3.2. Before stating and proving it, we illustrate our
proof technique on a simpler version of Lemma 3.2 that applies to all graphs. This simpler lemma
will not be used except in the proof of Lemma 3.15 which serves also for illustration only.

Lemma 3.1. Let (Ωi)i∈N be a sequence of positive numbers with
Ωj

Ωj+1
6 η

2 for all j ∈ N. Let G be

a graph of order n with average degree k. Then there is an index i∗ 6 4
η and a spanning subgraph

G′ ⊆ G with e(G′) > e(G) − ηkn and with the property that G′ contains no vertex with degree in
the interval [Ωik,Ωi+1k).

Proof. Set R := ⌊4η−1⌋. For i ∈ [R] and any graph H ⊆ G define the sets Xi(H) := {v ∈ V (H) :
degH(v) ∈ [Ωik,Ωi+1k)} and for i = R + 1 set Xi(H) := {v ∈ V (H) : degH(v) ∈ [Ωik,∞)}. As

∑

i∈[R]

∑

v∈Xi(G)∪Xi+1(G)

deg(v) 6 4e(G) ,

by averaging we find an index i∗ ∈ [R] such that

∑

v∈Xi∗ (G)∪Xi∗+1(G)

deg(v) 6
4e(G)

R
=

2kn

R
.

Let G0 ⊆ G be obtained from G by deleting all the edges incident with Xi∗(G) ∪ Xi∗+1(G). In
particular,

e(G0) > e(G) − ηkn/2 . (3.1)

We continue successively deleting edges as follows. If in some step j = 1, 2, . . . the set Xi∗(Gj−1)
is non-empty, we take an arbitrary vertex vj ∈ Xi∗(Gj−1) and obtain a new graph Gj from Gj−1

by deleting all the (at most Ωi∗+1k many) edges incident with vj . Obviously, this procedure will

17



3.1 Creating a gap in the degree sequence

terminate eventually. Let G′ denote the final graph. Clearly, G′ has the desired gap in the degree
sequence. It therefore suffices to upper bound e(G) − e(G′).

Observe that for any vertex vj above we have vj ∈
⋃R+1

i=i∗+2Xi(G). Thus,

e(G′) − e(G0) 6 Ωi∗+1k

∣

∣

∣

∣

∣

R+1
⋃

i=i∗+2

Xi(G)

∣

∣

∣

∣

∣

6 Ωi∗+1k · 2e(G)

Ωi∗+2k
6

ηkn

2
.

Combined with (3.1) we get the statement.

Lemma 3.2. Let η ∈ (0, 1), G ∈ LKSmin(n, k, η) and let (Ωi)i∈N be a sequence of positive numbers
with Ω1 > 2 and Ωj/Ωj+1 6 η2/100 for all j ∈ N. Then there exist an index i∗ 6 100η−2 and a
subgraph G′ ⊆ G such that

(i) G′ ∈ LKSsmall(n, k, η/2), and

(ii) no vertex v ∈ V (G′) has degree degG′(v) ∈ [Ωi∗k,Ωi∗+1k).

Proof. Set R := ⌊100η−2⌋. For i ∈ [R] and any graph H ⊆ G define the sets Xi(H) := {v ∈ V (H) :
degH(v) ∈ [Ωik,Ωi+1k)} and for i = R + 1 set Xi(H) := {v ∈ V (H) : degH(v) ∈ [Ωik,∞)}. As

∑

i∈[R]

∑

v∈Xi(G)∪Xi+1(G)

deg(v) 6 4e(G) ,

by averaging we find an index i∗ ∈ [R] such that

∑

v∈Xi∗ (G)∪Xi∗+1(G)

deg(v) 6
4e(G)

R
. (3.2)

Let E0 be the set of all the edges incident with Xi∗(G) ∪Xi∗+1(G). Now, starting with G0 :=
G−E0, inductively define graphs Gj ( Gj−1 for j > 1 using any of the following two types of edge
deletions:

(T1) If there is a vertex vj ∈ Xi∗(Gj−1) then we choose an edge ej incident with vj , and set
Gj := Gj−1 − ej .

(T2) If there is an edge ej = ujvj of Gj−1 with uj ∈ Sη/2,k(Gj−1) and vj ∈
⋃R+1

i=i∗+1Xi(Gj−1) then
set Gj := Gj−1 − ej .

Since we keep deleting edges, the procedure stops at some point, say at step j∗, when neither of
(T1), (T2) is applicable. Note that the resulting graph Gj∗ already has Property (ii).

Let E1 ⊆ E(G) be the set of those edges deleted by applying (T1). We shall estimate the size
of E1. First, observe that

∣

∣

∣

∣

∣

R+1
⋃

i=i∗+2

Xi(G)

∣

∣

∣

∣

∣

6
2e(G)

Ωi∗+2k
.

Moreover, each vertex of
⋃R+1

i=i∗+2Xi(G) appears at most (Ωi∗+1 − Ωi∗)k < Ωi∗+1k times as the
vertex vj in the deletions of type (T1). Consequently,

|E1| 6 Ωi∗+1

∣

∣

∣

∣

∣

R+1
⋃

i=i∗+2

Xi(G)

∣

∣

∣

∣

∣

k 6
2Ωi∗+1e(G)

Ωi∗+2
. (3.3)
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3.2 Decomposition of graphs with moderate maximum degree

Consider an arbitrary vertex w ∈ Lη,k(G) ∩ Sη/2,k(Gj∗) and the interval of those (j − 1)’s for
which w ∈ Lη/2,k(Gj−1) ∩ Sη,k(Gj−1). In such a step the vertex w cannot play the role of the
vertices uj or vj in (T2). So, each vertex from Lη,k(G) ∩ Sη/2,k(Gj∗) is incident with at least ηk/2
edges from the set E0 ∪ E1. Therefore, by the definition of E0, by (3.2), and by (3.3),

∣

∣Lη,k(G) ∩ Sη/2,k(Gj∗)
∣

∣ 6
2 · |E0 ∪ E1|

ηk/2
6

(

4

R
+

2Ωi∗+1

Ωi∗+2

)

· 4e(G)

ηk

(2.8)

6
ηn

2
.

Thus
|Lη/2,k(Gj∗)| > |Lη,k(G)| − |Lη,k(G) ∩ Sη/2,k(Gj∗)| > (1/2 + η/2)n ,

and consequently, Gj∗ ∈ LKS(n, k, η/2).
Last, we obtain the graph G′ by successively deleting any edge from Gj∗ which connects a

vertex from Sη/2,k(Gj∗) with a vertex whose degree is not exactly ⌈(1 + η
2 )k⌉. This does not affect

the already obtained Property (ii), since we could not apply (T2) to Gj∗ . We claim that for the
resulting graph G′ we have G′ ∈ LKSsmall(n, k, η/2). Indeed, Lη/2,k(G′) = Lη/2,k(Gj∗), and thus
G′ ∈ LKS(n, k, η/2). Property 2 of Definition 2.12 follows from the last step of the construction
of G′. To see Property 1 of Definition 2.12 we use Fact 2.11(2) for G (which by assumption is in
LKSmin(n, k, η)).

3.2 Decomposition of graphs with moderate maximum degree

First we introduce some useful notions. We start with dense spots which indicate an accumulation
of edges in a sparse graph.

Definition 3.3 ((m, γ)-dense spot, (m, γ)-nowhere-dense). An (m, γ)-dense spot in a graph
G is a non-empty bipartite subgraph D = (U,W ;F ) of G with d(D) > γ and mindeg(D) > m. We
call G (m, γ)-nowhere-dense if it does not contain any (m, γ)-dense spot.

We remark that dense spots as bipartite graphs do not have a specified orientation, that is, we
view (U,W ;F ) and (W,U ;F ) as the same object.

Fact 3.4. Let (U,W ;F ) be a (γk, γ)-dense spot in a graph G of maximum degree at most Ωk. Then
max{|U |, |W |} 6 Ω

γ k.

Proof. It suffices to observe that

γ|U ||W | 6 e(U,W ) 6 maxdeg(G) · min{|U |, |W |} 6 Ωk · min{|U |, |W |}.

The next fact asserts that in a bounded degree graph there cannot be too many edge-disjoint
dense spots containing a given vertex.

Fact 3.5. Let H be a graph of maximum degree at most Ωk, let v ∈ V (H), and let D be a family
of edge-disjoint (γk, γ)-dense spots in H. Then less than Ω

γ dense spots from D contain v.

Proof. This follows as v sends more than γk edges to each dense spot from D it is incident with,
the dense spots D are edge-disjoint, and deg(v) 6 Ωk.
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3.2 Decomposition of graphs with moderate maximum degree

Our second definition of this section might seem less intuitive at first sight. It describes a
property for finding dense spots outside some “forbidden” set U , which in later applications will be
the set of vertices already used for a partial embedding of a tree T ∈ trees(k) from Theorem 1.3
during our sequential embedding procedure. In Section 3.5 we give a non-technical description of
this embedding technique. Informally, a set E of vertices is avoiding if for each set U of size Θ(k)
and each vertex v ∈ E there is a dense spot containing v that is almost disjoint from U .

Definition 3.6 ((Λ, ε, γ, k)-avoiding set). Suppose that G is a graph and D is a family of dense
spots in G. A set E ⊆ ⋃

D∈D V (D) is (Λ, ε, γ, k)-avoiding with respect to D if for every U ⊆ V (G)
with |U | 6 Λk the following holds for all but at most εk vertices v ∈ E. There is a dense spot
D ∈ D with |U ∩ V (D)| 6 γ2k that contains v.

Note that a subset of a (Λ, ε, γ, k)-avoiding set is also (Λ, ε, γ, k)-avoiding.
We now come to the main concepts of this section, the bounded and the sparse decompositions.

These notions in a way correspond to the partition structure from the regularity lemma, although
naturally more complex since we deal with (possibly) sparse graphs here. Lemma 3.13 is then a
corresponding regularization result.

Definition 3.7 ((k,Λ, γ, ε, ν, ρ)-bounded decomposition). Suppose that k ∈ N and ε, γ, ν, ρ > 0
and Λ > 2. Let V = {V1, V2, . . . , Vs} be a partition of the vertex set of a graph G. We say
that (V,D, Greg, Gexp,E) is a (k,Λ, γ, ε, ν, ρ)-bounded decomposition of G with respect to V if the
following properties are satisfied:

1. Gexp is a (γk, γ)-nowhere-dense subgraph of G with mindeg(Gexp) > ρk.

2. The elements of V are disjoint subsets of V (G).

3. Greg is a subgraph of G−Gexp on the vertex set
⋃

V. For each edge xy ∈ E(Greg) there are
distinct Cx ∋ x and Cy ∋ y from V, and G[Cx, Cy] = Greg[Cx, Cy]. Furthermore, G[Cx, Cy]
forms an ε-regular pair of density at least γ2.

4. We have νk 6 |C| = |C ′| 6 εk for all C,C ′ ∈ V.

5. D is a family of edge-disjoint (γk, γ)-dense spots in G−Gexp. For each D = (U,W ;F ) ∈ D
all the edges of G[U,W ] are covered by D (but not necessarily by D).

6. If Greg contains at least one edge between C1, C2 ∈ V then there exists a dense spot D =
(U,W ;F ) ∈ D for which C1 ⊆ U and C2 ⊆ W .

7. For each C ∈ V there is a V ∈ V so that either C ⊆ V ∩ V (Gexp) or C ⊆ V \ V (Gexp). For
each C ∈ V and D = (U,W ;F ) ∈ D we have C ∩ U,C ∩W ∈ {∅, C}.

8. E is a (Λ, ε, γ, k)-avoiding subset of V (G) \⋃V with respect to dense spots D.

We say that the bounded decomposition (V,D, Greg, Gexp,E) respects the avoiding threshold b
if for each C ∈ V we either have maxdegG(C,E) 6 b, or mindegG(C,E) > b.

Here “exp” in Gexp stands for “expander” and “reg” in Greg stands for “regular(ity)”.
The members of V are called clusters. Define the cluster graph Greg as the graph on the vertex

set V that has an edge C1C2 for each pair (C1, C2) which has density at least γ2 in the graph Greg.
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3.2 Decomposition of graphs with moderate maximum degree

Property 7 tells us that the clusters may be prepartitioned, just as it is the case in the classic
regularity lemma. When in Lemma 3.14 below we classify the graph G from Theorem 1.3 we shall
use the prepartition into (roughly) SαT1.3,k(G) and LαT1.3,k(G).

As said above, the notion of bounded decomposition is needed for our regularity lemma type
decomposition given in Lemma 3.13. It turns out that such a decomposition is possible only when
the graph is of moderate maximum degree. On the other hand, Lemma 3.1 tells us that the vertex
set of any graph can be decomposed into vertices of enormous degree and moderate degree. The
graph induced by the latter type of vertices then admits the decomposition from Lemma 3.13.
Thus, it makes sense to enhance the structure of bounded decomposition by vertices of unbounded
degree. This is done in the next definition.

Definition 3.8 ((k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition). Suppose that k ∈ N and ε, γ, ν, ρ >
0 and Λ,Ω∗,Ω∗∗ > 2. Let V = {V1, V2, . . . , Vs} be a partition of the vertex set of a graph G. We
say that ∇ = (H,V,D, Greg, Gexp,E) is a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition of G with
respect to V1, V2, . . . , Vs if the following holds.

1. H ⊆ V (G), mindegG(H) > Ω∗∗k, maxdegH(V (G) \ H) 6 Ω∗k, where H is spanned by the
edges of

⋃D, Gexp, and edges incident with H,

2. (V,D, Greg, Gexp,E) is a (k,Λ, γ, ε, ν, ρ)-bounded decomposition of G−H with respect to V1 \
H, V2 \H, . . . , Vs \H.

If the parameters do not matter, we call ∇ simply a sparse decomposition, and similarly we
speak about a bounded decomposition.

Definition 3.9 (captured edges). In the situation of Definition 3.8, we refer to the edges in
E(Greg) ∪ E(Gexp) ∪ EG(H, V (G)) ∪ EGD

(E,E ∪ ⋃

V) as captured by the sparse decomposition.
We write G∇ for the subgraph of G on the vertex set V (G) which consists of the captured edges.
Likewise, the captured edges of a bounded decomposition (V,D, Greg, Gexp,E) of a graph G are those
in E(Greg) ∪ E(Gexp) ∪ EGD

(E,E ∪⋃

V).

Throughout the paper we write GD for the subgraph of G which consists of the edges contained
in D. We now include an easy fact about the relation of GD and Greg.

Fact 3.10. Let ∇ = (H,V,D, Greg, Gexp,E) be a sparse decomposition of a graph G. Then each
edge xy ∈ E(GD) with x, y ∈ ⋃

V is either contained in Greg, or is not captured.

Proof. Indeed, suppose that xy ∈ E(GD), x, y ∈ ⋃

V, and xy 6∈ E(Greg). Property 2 of Defini-
tion 3.8 says that x, y /∈ H. Further, by Property 8 of Definition 3.7, we have x, y 6∈ E. Last,
Property 5 of Definition 3.7 implies that xy 6∈ E(Gexp). Hence xy is not captured, as desired.

We now give a bound on the number of clusters reachable through edges of the dense spots
from a fixed vertex outside H.

Fact 3.11. Let ∇ = (H,V,D, Greg, Gexp,E) be a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition of a
graph G. Let x ∈ V (G) \H. Assume that V 6= ∅, and let c be the size of each of the members of V.
Then there are less than

2(Ω∗)2k

γ2c
6

2(Ω∗)2

γ2ν

clusters C ∈ V with degGD
(x,C) > 0.
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3.2 Decomposition of graphs with moderate maximum degree

Proof. Property 1 of Definition 3.8 says that degGD
(x) 6 Ω∗k. For each D ∈ D with x ∈ V (D) we

have that degD(x) > γk, since D is a (γk, γ)-dense spot. By Fact 3.5

|{D ∈ D : degD(x) > 0}| < Ω∗

γ
. (3.4)

Furthermore, by Fact 3.4, and using Properties 4 and 6 of Definition 3.7, we see that for a
fixed D ∈ D, we have

|{C ∈ V : C ⊆ V (D)}| 6 2Ω∗k

γ
· 1

c

6
2Ω∗

γν
.

Together with (3.4) this gives that the number of clusters C ∈ V with degGD
(x,C) > 0 is less than

Ω∗

γ
· 2Ω∗k

γc
6

Ω∗

γ
· 2Ω∗

γν
,

as desired.

As a last step before we state the main result of this section we show that the cluster graph
Greg corresponding to a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition (H,V,D, Greg, Gexp,E) has
bounded degree.

Fact 3.12. Let ∇ = (H,V,D, Greg, Gexp,E) be a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition of a
graph G, and let Greg be the corresponding cluster graph. Let c be the size of each cluster in V.
Then maxdeg(Greg) 6 Ω∗k

γ2
c
6 Ω∗

γ2ν
.

Proof. Let C ∈ V. Then by the definition of Greg and by Property 3 of Definition 3.7 we have

degGreg
(C) 6

∑

C′∈NGreg (C)

eGreg (C,C′)

γ2|C||C′|
=

∑

C′∈NGreg (C)

eGreg (C,C′)

γ2|C|c
. Since the maximum degree in

Greg is upper-bounded by Ω∗k (c.f. Property 1 of Definition 3.8), we get

degGreg
(C) 6

∑

C′∈NGreg (C)

eGreg(C,C ′)

γ2|C|c 6
Ω∗k|C|
γ2|C|c

D3.7(4)

6
Ω∗

γ2ν
,

as desired.

We now state the most important lemma of this section. It says that any graph of bounded
degree has a bounded decomposition which captures almost all its edges. This lemma can be
considered as a sort of regularity lemma for sparse graphs.

Lemma 3.13 (Decomposition lemma). For each Λ,Ω, s ∈ N and each γ, ε, ρ > 0 there exist k0 ∈ N,
ν > 0 such that for every k > k0 and every n-vertex graph G with e(G) 6 kn, maxdeg(G) 6 Ωk,
and with a given partition V of its vertex set into at most s sets, the following holds for each
b > 0. There exists a (k,Λ, γ, ε, ν, ρ)-bounded decomposition (V,D, Greg, Gexp,E) with respect to V,
which captures all but at most (4εγ + εΩ + γ + ρ)kn edges of G and respects avoiding threshold b.
Furthermore, we have

|E(D) \ (E(Greg) ∪ EGD
[E,E ∪

⋃

V])| 6 (
4ε

γ
+ εΩ + γ)kn . (3.5)

A proof of Lemma 3.13 is given in Section 3.7.
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3.3 Decomposition of LKS graphs

3.3 Decomposition of LKS graphs

Lemma 3.2 and Lemma 3.13 enable us to decompose graphs in LKS(n, k, η) in a particular manner.

Lemma 3.14. For every η,Λ, γ, ε, ρ ∈ (0, 1) there are ν > 0 and k0 ∈ N such that for every k > k0
and for every number b > 0 the following holds. For every sequence (Ωj)j∈N of positive numbers
with Ω1 > 2, Ωj/Ωj+1 6 η2/100 for all j ∈ N and for every G ∈ LKS(n, k, η) there are an index i
and a subgraph G′ of G with the following properties:

(a) G′ ∈ LKSsmall(n, k, η/2),

(b) i 6 100η−2,

(c) G′ has a (k,Ωi+1,Ωi,Λ, γ, ε, ν, ρ)-sparse decomposition (H,V,D, G′
reg, G

′
exp,E) with respect to

the partition {V1, V2} := {Sη/2,k(G′),Lη/2,k(G′)}, and with respect to avoiding threshold b,

(d) (H,V,D, G′
reg, G

′
exp,E) captures all but at most (4εγ + εΩ⌊100η−2⌋ + γ + ρ)kn edges of G′, and

(e) |E(D) \ (E(G′
reg) ∪ EG′ [E,E ∪⋃

V])| 6 (4εγ + εΩ⌊100η−2⌋ + γ)kn.

Proof. Let ν and k0 be given by Lemma 3.13 for input parameters ΩL3.13 := Ω⌊100η−2⌋, ΛL3.13 :=
Λ, γL3.13 := γ, εL3.13 := ε, ρL3.13 := ρ, bL3.13 := b, and sL3.13 := 2. Now, given G, let us consider a
subgraph G̃ of G such that G̃ ∈ LKSmin(n, k, η). Lemma 3.2 applied to the sequence (Ωj)j and
G̃ yields a graph G′ ∈ LKSsmall(n, k, η/2) and an index i 6 100η−2. We set H := {v ∈ V (G) :
degG′(v) > Ωi+1k}.

Observe that by (2.8), e(G′) < kn. Let (H,D, G′
reg, G

′
exp,E) be the (k,Λ, γ, ε, ν, ρ)-bounded

decomposition of the graph G′ − H with respect to {Sη/2,k(G′),Lη/2,k(G′) \ H} that is given by
Lemma 3.13. Clearly, (H,V,D, G′

reg, G
′
exp,E) is a (k,Ωi+1,Ωi,Λ, γ, ε, ν, ρ)-sparse decomposition

of G′ capturing at least as many edges as promised in the lemma.

The process of embedding a given tree TT1.3 ∈ trees(k) into GT1.3 is based on the sparse de-
composition ∇ = (H,V,D, Greg, Gexp,E) of GT1.3 given by Lemma 3.14 and is much more complex
than in approaches based on the standard regularity lemma. The embedding ingredient in the clas-
sic (dense) regularity method inheres in blow-up lemma type statements which roughly tell that
regular pairs of positive density in some sense behave like complete bipartite graphs. In our setting,
in addition to regular pairs we shall use three other components of ∇: the vertices of huge degree
H, the nowhere-dense graph Gexp, and the avoiding set E. Each of these components requires a
different strategy for embedding (parts of) TT1.3. Let us mention that rather major technicalities
arise when combining these strategies.

These strategies are described precisely and in detail in [HKP+d]. An informal account on
the role of E is given in Section 3.5. We discuss the use of Gexp in Section 3.6. Only very little
can be said about the set H at an intuitive level: these vertices have huge degrees but are very
unstructured otherwise. If only o(kn) edges are incident with H then we can neglect them. If, on
the other hand, there are Ω(kn) edges incident with H, then we have no choice but to use them
for our embedding. Very roughly speaking, in that case we find sets H′ ⊆ H and V ′ ⊆ V (G) \ H
such that still mindeg(H′, V ′) ≫ k, and mindeg(V ′,H′) = Ω(k), and then use H′ and V ′ in our
embedding.
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3.4 Decomposition of general graphs

Last, let us note that when GT1.3 is close to the extremal graph (depicted in Figure 1.1) then
all the structure in GT1.3 captured by Lemma 3.14 accumulates in the cluster graph G′

reg, i.e., H,
G′

exp and E are all almost empty. For that reason, when some of H, G′
exp or E is substantial we gain

some extra aid. In comparison, one of the almost extremal graphs for the Erdős–Sós Conjecture 1.1
has a substantial H-component (see Figure 1.2).

3.4 Decomposition of general graphs

A version of Lemma 3.14 can be formulated for general graphs. To illustrate this, we present below
a generic lemma of this type, which will not be used in the proof of the main theorem.

Lemma 3.15. For every η,Λ, γ, ε, ρ > 0 there are numbers ν > 0 and k0 ∈ N such that for every
sequence (Ωj)j∈N of positive numbers with

Ωj

Ωj+1
6 η

4 the following holds. Suppose that G is a

graph of order n with average degree k > k0. Then there is an index i 6 4
η , such that G has a

(k,Ωi+1,Ωi,Λ, γ, ε, ν, ρ)-sparse decomposition (H,V,D, Greg, Gexp,E) that captures all but at most

(η +
4ε

γ
+ εΩ⌊4η−1⌋ + γ + ρ)kn (3.6)

edges.

The proof follows the same strategy as that of Lemma 3.14.

Proof outline. By Lemma 3.1 there exists a spanning sugraph G′ of G with e(G) − e(G′) < ηkn,
and an index i 6 4

η such that the assertion of Lemma 3.2(ii) holds. The bounded-degree part can
then be decomposed using Lemma 3.13, yielding the desired sparse decomposition.

This decomposition could be used to attack other problems; probably with a version of Lemma 3.15
tailored to a particular setting similarly as we did in Lemma 3.14. However, our feeling is that such
a decomposition lemma is limited in applications to tree-containment problems. The reason is that
two of the features of the sparse decomposition, the nowhere-dense graph Gexp and the avoiding
set E, seem to be useful only for embedding trees. See Section 3.5 and Section 3.6 for a discussion
of the respective embedding strategies.

3.5 The role of the avoiding set E

Let us explain the role of the avoiding set E in Lemma 3.13. As said above, our aim in Lemma 3.13
will be to locally regularize parts of the input graph G. Of course, first we try to regularize as large
a part of the G as possible. The avoiding set arises as a result of the impossibility to regularize
certain parts of the graph. Indeed, it is one of the most surprising steps in our proof of Theorem 1.3
that the set E is initially defined as — very loosely speaking — “those vertices where the regularity
lemma fails to work properly”, and only then we prove that E actually satisfies the useful conditions
of Definition 3.6.

We now sketch how to utilize avoiding sets for the purpose of embedding trees. In our proof
of Theorem 1.3 we preprocess the tree T = TT1.3 ∈ trees(k) by choosing several cut-vertices so
that the tree decomposes into small components, called shrubs. We cut T so that the order of each
shrub is at most τk, where τ > 0 is a small constant. Then we sequentially embed those shrubs.
Thus embedding techniques for embedding a single shrub are the building blocks of our embedding
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3.5 The role of the avoiding set E

machinery; and E is one of the enviroments which provides us with such a technique. Let us discuss
here the simpler case of embedding end shrubs (i.e. shrubs incident to a single cut-vertex). More
precisely, we show how to extend a partial embedding of a tree by one end-shrub. To this end,
let us suppose that φ is a partial embedding of a tree T , and v ∈ V (T ) is its active vertex , i.e., a
vertex which is embedded, but not all its children are. We write U ⊆ V (G) for the current image
of φ. Let T ′ ⊆ T be an end-shrub which is not embedded yet, and suppose u ∈ V (T ′) is adjacent
to v. We have v(T ′) 6 τk.

We now show how to extend the partial embedding φ to T ′, assuming that degG
(

φ(v),E\U
)

>
γk for some (1, ε, γ, k)-avoiding set E (where τ ≪ ε ≪ γ ≪ 1). Let X be the set of at most εk
exceptional vertices from Definition 3.6 corresponding to the set U . We now embed T ′ into G,
starting by embedding u in a vertex of E\ (U ∪X) in the neighbourhood of φ(v). By Definition 3.6,
there is a dense spot D = (AD, BD;F ) ∈ D such that φ(u) ∈ V (D) and |U ∩ V (D)| 6 γ2k. As
D is a dense spot, we have degG(φ(u), V (D)) > γk. We can greedily embed T ′ into D using the
minimum degree in D. See Figure 3.1 for an illustration, and [HKP+d, Lemma 6.4] for a precise
formulation.

Figure 3.1: Embedding using the set E.

We indeed use the avoiding set for embedding shrubs of T as above. The major simplification
we made in the exposition is that we only discussed the case when T ′ is an end shrub. To cover
embedding of an internal shrub T ′ as well (i.e. a shrub that is incident to more than one cut-vertex),
one needs to have a more detailed control over the embedding, i.e., one must be able to extend the
embedding of T ′ to the neighbouring cut-vertices, in such a way that one can then continue the
embedding.

Last, let us remark, that unlike our baby-example above, we use an (Λ, ε, γ, k)-avoiding set with
Λ ≫ 1. This is because in the actual proof one has to avoid more vertices than just the current
image of the embedding.
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3.6 The role of the nowhere-dense graph Gexp

3.6 The role of the nowhere-dense graph Gexp

In this section we shall give some intuition on how the (γk, γ)-nowhere-dense graph Gexp from the
(k,Ω∗∗,Ω∗,Λ, γ, ε′, ν, ρ)-sparse decomposition3 (H,V,D, Greg, Gexp,E) of a graph G is useful for
embedding a given tree T ∈ trees(k). We start out with the rather simple case when T is a path.
We then point out an issue with this approach for trees with many branching vertices and show
how to overcome this problem.

Embedding a path in Gexp. Assume we are given a path T = u1u2 · · ·uk ∈ trees(k) and we
wish to embed it into Gexp. The idea is to apply a one-step look-ahead strategy. We first embed u1
in an arbitrary vertex v ∈ V (Gexp). Then, we extend our embedding φℓ of the path u1 · · ·uℓ in Gexp

in step ℓ by embedding uℓ+1 in a (yet unused) neighbour w of the image of the active vertex uℓ,
requiring that

degGexp

(

w, φℓ(u1 · · ·uℓ)
)

<
√
γk . (3.7)

Let us argue that such a vertex w exists using induction on ℓ. First, observe that Property 1 of
Definition 3.7 implies that φℓ(uℓ) has at least ρk neighbours. By (3.7) applied to ℓ−1, at most

√
γk

of these neighbours lie inside φℓ(u1 · · ·uℓ−1); this property is also trivially satisfied when ℓ = 1.
Further, an easy calculation shows that at most 16

√
γk of them have degree more than

√
γk in Gexp

into the set φℓ(u1 · · ·uℓ), otherwise we would get a contradiction to Gexp being (γk, γ)-nowhere-
dense. Since we assumed ρ > 17

√
γ we can find a vertex w satisfying (3.7) and thus embed all

of T .

Embedding trees with many branching points. We certainly cannot hope that a nonempty
graph Gexp alone will provide us with embeddings of all trees T ∈ trees(k) from Theorem 1.3. For
instance, if T is a star, then we need in G a vertex of degree k − 1, which Gexp might not have.
The structure of LKS graphs allows to deal with embedding high-degree vertices. However, even
without any vertex of large degree in our tree, the method described above might not always work,
as we show next.

Consider a binary tree T ∈ trees(k), rooted at its central vertex r. Now if we try to embed T
sequentially as above we will arrive at a moment when there are many (as many as log2 k) active
vertices; regardless in which order we embed.4 Now, the neighbourhoods of the images of the
active vertices cannot be controlled much, i.e., they may be intersecting considerably. Hence, when
embedding children of active vertices we might block available space in the neighbourhoods of other
active vertices. See Figure 3.2 for an illustration.

To rescue the situation we partition T so that the first q levels of T from the root r form the set
of the cut-vertices W . All other vertices make up the end shrubs T ∗

1 , . . . , T
∗
h . That is, |W | = 2q−1,

and h = 2q+1 − 2.
We first embed the few cut-vertices W . As ρk will be much larger 2q, following a strategy similar

to the one above we ensure that all cut-vertices get correctly embedded. The next step is to make
the transitions at the q-th level from embedding cut-vertices to embedding shrubs T ∗

1 , . . . , T
∗
h . But

since this step requires to exploit the structure of LKS graphs, we skip the details in the high-level

3We shall assume that 17
√
γ < ρ; this will be the setting of the sparse decomposition we shall work with in the

proof of Theorem 1.3.
4The only requirement on the ordering is that in each moment the embedded part of the tree forms a connected

subgraph; in particular we may use the depth-first and the breadth-first orders.
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3.6 The role of the nowhere-dense graph Gexp

Figure 3.2: Embedded part of the binary tree in bold. The neighbourhoods of active vertices
may overlap.

overview here. For the sake of this simplified example, let us assume that all the cut-vertices are
embedded in a set L with

mindegGexp
(L) > δk , (3.8)

(where ρ ≪ δ < 1 is a small constant).
For the point we wish to make here, it is more relevant to see how to complete the last part

of our embedding, that is, how to embed a tree T ∗
i whose root ri is already embedded in a vertex

φ(ri) ∈ V (Gexp). Let imi := im(φ) be the current (partial) image of φ. Further, we assume that
throughout the entire process we have

degGexp
(φ(ri), V (Gexp) \ im) ' δk/2 , (3.9)

where im is the image at that moment (and in particular, also at the end of the process). We
explain how to achieve this property at the end.

We emphasize that at this moment we are working exclusively with the tree T ∗
i , i.e., any other

tree T ∗
j is either completely embedded, or will be embedded only after we finish the embedding

of T ∗
i . Suppose we are about to embed a vertex v ∈ V (T ∗

i ) whose ancestor v′ ∈ V (T ∗
i ) ∪ W is

already embedded in V (Gexp). We choose for the image of v any (yet unused) vertex w in the
neighbourhood of ϕ(v′), requiring that

degGexp
(w, imi) < ρk/100 . (3.10)

This condition is very similar to our path-embedding procedure above, and can be proved in exactly
the same way, using the fact that Gexp is (γk, γ)-nowhere-dense. When v′ ∈ W is a cut-vertex, we
need to combine this argument with (3.9).

Note that during our embedding |im(φ)\ imi| will grow. However, |im(φ)\ imi| is at most v(T ∗
i ),

which is much smaller than ρk. Thus, for every vertex v′′ ∈ V (T ∗
i ), when its time to be embedded

comes, we still have a small degree to the partial image of the tree. Therefore v′′ can be embedded
on a vertex w that satisfies degGexp

(w, im(φ)) < ρk/50 similarly as in (3.10).
Note that the trick here was to keep on working on one subtree T ∗

i , whose size is small enough
to be negligible in comparison to the degree of the vertices in Gexp. So, by avoiding the vertices that
have a considerable degree into imi, we actually also avoid those vertices that have a considerable
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3.7 Proof of the decomposition lemma

degree into im(φ). Breaking up the tree into tiny shrubs was thus the key to successfully embedding
it.

Let us now explain how to achieve (3.9). Instead of just embedding the tree T ∗
i we shall also

reserve an equal amount of vertices in Gexp that are touched only exceptionally. More precisely,
in a given step, instead of extending the embedding from a vertex to its two children, we first find
four candidate vertices, and we randomly select two of them to host these children and insert the
remaining two into a reserve set R. Condition (3.10) is replaced by degGexp

(w, imi ∪R) < ρk/100.
This allows us to avoid not only imi but also R when extending the embedding of T ∗

i . The only
time the set R may be used to host a vertex v of some tree T ∗

1 , . . . , T
∗
h is when v is the root of such

a tree. Since the choice for the inclusion of vertices to R was random, with high probability we
have5

degGexp
(φ(ri), imi) ≈ degGexp

(φ(ri), R) ± h , (3.11)

where the ±h term amounts to the roots for which the random choice is not used. Recall that
h ≪ ρk. This together with (3.8) establishes (3.9). We call this probabilistic tool Duplicate and
introduce it in [HKP+d, Section 6.3].

3.7 Proof of the decomposition lemma

This subsection is devoted to the proof of the decomposition lemma (Lemma 3.13). In the proof,
we start by extracting the edges of as many (γk, k)-dense spots from G as possible; these together
with the incident vertices will form the auxiliary graph GD. Most of the remaining edges will form
the edge set of the graph Gexp. Next, we consider the intersections of the dense spots captured in
GD. We apply the regularity lemma for locally dense graphs (Lemma 2.5) to the subgraph of GD

that is spanned by the large intersections, and thus obtain Greg. The other part of V (GD) will be
taken as the (Λ, ε, γ, k)-avoiding set E.

Setting up the parameters. We start by setting

ν̃ := ε · 3
−ΩΛ

γ3 .

Let qMAXCL be given by Lemma 2.5 for input parameters

mL2.5 :=
Ω

γν̃
, zL2.5 := 4s and εL2.5 := ε . (3.12)

Define an auxiliary parameter q := max{qMAXCL, ε
−1} and choose the output parameters of

Lemma 3.13 as

k0 :=
⌈qMAXCL

ν̃

⌉

and ν :=
ν̃

q
.

5(3.11) holds with positive probability not only for one fixed root ri but even for all roots simoultaneously. Indeed,
allowing the additive error ≈ in (3.11) to be k3/4 (which we can still afford), the Chernoff bounds gives that for one
fixed root ri, (3.11) fails with probability at most exp(−Θ(

√
k)). Thus, we can take the union bound over all the

roots (boundedly many of them).
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3.7 Proof of the decomposition lemma

Defining D and Gexp. Given a graph G, take a family D of edge-disjoint (γk, γ)-dense spots
such that the resulting graph GD ⊆ G (which contains those vertices and edges that are contained
in

⋃D) has the maximum number of edges.
Then by Lemma 2.1 there exists a graph Gexp ⊆ G − GD with mindeg(Gexp) > ρk and such

that
|E(G) \ (E(Gexp) ∪ E(GD))| 6 ρkn . (3.13)

This choice of D and Gexp already satisfies Properties 5 and 1 of Definition 3.7.

Preparing for an application of the regularity lemma. Let

X :=⊞D{U,W, V (G) \ V (D)} , (3.14)

where the latter partition refinement ranges over all D = (U,W ;F ) ∈ D. Let B := {X ∈ X :
X ⊆ V (GD)}, B̃ := {B ∈ B : |B| > 2ν̃k}, and C̃ := B \ B̃. Furthermore let B̃ :=

⋃

B∈B̃ B and
E :=

⋃

C∈C̃ C.

Now, partition each set B ∈ B̃ into cB := ⌈|B|/2ν̃k⌉ subsets B1, . . . , BcB of cardinalities differing
by at most one, and let B′ be the set containing all the sets Bi (for all B ∈ B̃). Then for each
B ∈ B′ we have that

ν̃k 6 |B| 6 2ν̃k 6 εk . (3.15)

Construct a graph H on B′ by making two vertices A1, A2 ∈ B′ adjacent in H if

(A) there is a dense spot D = (U,W ;F ) ∈ D such that A1 ⊆ U and A2 ⊆ W , and

(B) dG(A1, A2) > γ.

Note that it follows from the way D was chosen that if A1A2 ∈ E(H) then G[A1, A2] = GD[A1, A2].
On the other hand note that we do not necessarily have G[A1, A2] = D[A1, A2] for the dense spot
D appearing in (A); just because there may be several such dense spots D.

By the assumption of Lemma 3.13, maxdeg(G) 6 Ωk. So, for each B ∈ B′ we have eG(B, B̃ \
B) 6 Ωk|B|. On the other hand, (3.15) and (B) imply that γν̃k|B| degH(B) 6 eG(B, B̃ \ B). We
conclude that

maxdeg(H) 6
Ω

γν̃
= mL2.5 . (3.16)

Regularising the dense spots in B̃. We apply Lemma 2.5 with parameters mL2.5, zL2.5 and
εL2.5 as defined by (3.12) to the graphs HL2.5 := GD and FL2.5 := H, together with the ensemble
B′ in the role of the sets Wi, and partition of V (GD) induced by

ZL2.5 := V ⊞
{

V (Gexp), V (G) \ V (Gexp)
}

⊞
{

V E, V (G) \ V E

}

,

where V E := {v ∈ V (G) : deg(v,E) > b}.
Observe that B′ is an (ν̃k)-ensemble satisfying condition (2.2) of Lemma 2.5, by (3.15), by the

choice of k0, and by (3.16). Thus we obtain integers {pA}A∈B′ and a family V = {W (1)
A , . . . ,W

(pA)
A }A∈B′

and a set W0 :=
⋃

A∈B′ W
(0)
A such that, in particular, we have the following.

(I) We have ε−1 6 pA 6 qMAXCL for all A ∈ B′.
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3.7 Proof of the decomposition lemma

(II) We have |W (x)
A | = |W (y)

B | for any A,B ∈ B′ and for any x ∈ [pA], y ∈ [pB].

(III) For any A ∈ B′ and any a ∈ [pA], there is a set V ∈ V for which W
(a)
A ⊆ V . We either have

that W
(a)
A ⊆ V (Gexp), or W

(a)
A ∩ V (Gexp) = ∅ and W

(a)
A ⊆ V E, or W

(a)
A ∩ V E = ∅.

(IV)
∑

e∈E(H) |irreg(e)| 6 ε
∑

AB∈E(H) |A||B|, where irreg(AB) is the set of all edges of the graph

G contained in an ε-irregular pair (W
(x)
A ,W

(y)
B ), with x ∈ [pA], y ∈ [pB], AB ∈ E(H).

Let Greg be obtained from GD by erasing all vertices in W0, and all edges that lie in pairs

(W
(x)
A ,W

(y)
B ) which are irregular or of density at most γ2. Then Properties 2, 3, 6 and 7 of

Definition 3.7 are satisfied. Further, Lemma 2.10 implies (3.5). Together with (3.13) we obtain
that the number of edges that are not captured by (V,D, Greg, Gexp,E) is at most (4εγ +εΩ+γ+ρ)kn.

Note that Properties (I), (II) and (3.15) imply that for all A ∈ B′ and for any a ∈ [pA] we have
that

εk > |A| > |W (a)
A | > ν̃k

qMAXCL
>

ν̃k

q
= νk.

Thus also Property 4 of Definition 3.7 holds.
The refinement in (3.14) guarantees that the bounded decomposition we have constructed re-

spects the avoiding threshold b.
So, it only remains to see Property 8 of Definition 3.7.

The avoiding property of E. In order to see Property 8 of Definition 3.7, we have to show
that E is (Λ, ε, γ, k)-avoiding with respect to D. For this, let Ū ⊆ V (G) be such that |Ū | 6 Λk.
Let X be the set of those vertices v ∈ E that are not contained in any dense spot D ∈ D for which
|Ū ∩ V (D)| 6 γ2k. Our aim is to see that |X| 6 εk.

Let DX ⊆ D be the set of all dense spots D with X ∩V (D) 6= ∅. Setting A := {A ∈ C̃ : A∩X 6=
∅}, the definition of E trivially implies that |X|

2ν̃k 6 |A|. Now, by the definition of B, we know that

there are at most 3|DX | sets A ∈ A. Indeed, for each D = (U,W ;F ) ∈ DX , either A is a subset of
U , or of W , or of V (G) \ V (D). Thus,

3|DX | > |A| > |X|
ν̃k

. (3.17)

By Fact 3.5, each vertex of V (G) lies in at most Ω/γ of the (γk, γ)-dense spots from D. Hence

Ω

γ
|Ū | >

∑

D∈DX

|V (D) ∩ Ū | > |DX |γ2k
(3.17)

> log3

( |X|
ν̃k

)

γ2k ,

where the second inequality holds by the definition of X. Thus

|X| 6 3
ΩΛ
γ3 · ν̃k = εk ,

as desired. This finishes the proof of Lemma 3.13.
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3.8 Sparse decomposition of dense graphs

Let us explain our remark above that in the setting of a dense graph G, Lemmas 3.14 and 3.15
produce a regularity partition in the usual sense. So, suppose that G is an n-vertex graph and has
at least an2 edges. This needs to be understood with the usual quantification “a > 0 is fixed and
n is large”.

Recall that when we inquire a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-sparse decomposition, the parameters
satisfy Ω∗∗,Ω∗,Λ ≫ 1 ≫ γ, ε, ν, ρ > 0. The interplay between the parameters is quite complicated,
and we do not give it here in full (see [HKP+d, p. 69] for details). We justify with “parameter
choice” any further relation we assume between them. Also, let us note that while our exact choice
of parameters made in [HKP+d] are tailored for proving Theorem 1.3, we expect these relations to
be satisfied in any application of Lemma 3.15, at least on the loose level we make use of them in
this section.

First, we argue that it makes sense to set k linear in n, i.e., k = cn for some c depending
on a only. Indeed, having k ≫ n would allow that all edges of G are uncaptured in (3.6), which
would make the lemma worthless. On the other hand, with k ≪ n we would have all vertices
from Q = {v ∈ V (G) : deg(v) >

√
an} ending up in the huge-degree set H for which the sparse

decomposition provides no structural information. Since |Q| > √
an, that would be a big loss of

information, and thus often undesirable.
So, suppose now that k = cn, and suppose that (H,V,D, Greg, Gexp,E) is a (k,Ω∗∗,Ω∗,Λ, γ, ε, ν, ρ)-

sparse decomposition of the dense graph G. Since Ω∗∗k = Ω∗∗cn > n, we have that H = ∅. Next,
we argue that Gexp contains no vertices. Suppose on the contrary that it does. Then the mini-
mum degree condition in Property 1 of Definition 3.7 tells us that Gexp has at least ρk vertices of
degrees at least ρk each. Thus, e(Gexp) > ρ2k/2 = c2ρ2n2/2. Since Gexp has at most n vertices,
and since cρ ≫ γ (parameter choice), we get that Gexp contains at least one (γk, γ)-dense spot, a
contradiction to Gexp being nowhere-dense. Last, we claim, that |E| 6 εk. To this end, consider
the set UD3.6 = V (G). We have |UD3.6| = n 6 Λcn, and thus the condition in Definition 3.6 applies.
But there cannot exist any (γk, γ)-dense spot as asserted in Definition 3.6 since for such a dense
spot D we would have |V (D)| < γ2k, contradicting its required minimum degree condition. Thus,
we conclude that all the vertices v ∈ E are exceptional in the sense of Definition 3.6, leading to the
desired bound on |E|.

To summarize, in the sparse decomposition (H,V,D, Greg, Gexp,E), we have that H, Gexp, E
are empty or almost empty. Thus, according to Definition 3.9, all the captured edges lie in the
regularized graph Greg. Property 4 of Definition 3.7 tells us that the clusters have size at least
νk = (νc)n, that is, linear in the order of G. Further, this property tells us that these clusters
are of the same size. We conclude that Greg is a regularization of G in the sense of the original
regularity lemma.

3.9 Algorithmic aspects of the decomposition lemma

Let us look back at the proof of the decomposition lemma (Lemma 3.13) and observe that we can
get a bounded decomposition of any bounded-degree graph algorithmically in quasipolynomial time
(in the order of the graph). Note that this in turn provides efficiently a sparse decomposition of
any graph, since the initial step of splitting the graph into huge versus bounded degree vertices
(cf. Lemma 3.2) can be done in polynomial time.

There are only two steps in the proof of Lemma 3.13 which need to be done algorithmically:
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the extraction of dense spots, and the simultaneous regularization of some dense pairs.
It will be more convenient to work with a relaxation of the notion of dense spots. We call a

graph H (d, ℓ)-thick if v(H) > ℓ, and e(H) > dv(H)2. The notion of thick graphs is a relaxation
of dense spots, where the minimum degree condition is replaced by imposing a lower bound on the
order, and the bipartiteness requirement is dropped. It can be verified that in our proof it is not
important that the dense spots D and the nowhere-dense graph Gexp are parametrized by the same
constants, i.e., the entire proof would go through even if the spots in D were (γk, γ)-dense, and
Gexp were (βk, β)-nowhere-dense for some β ≫ γ. Each (βk, β)-thick graph gives (algorithmically)
a (βk/4, β/4)-dense spot, and thus it is enough to extract thick graphs.

For the extraction of thick graphs we would need to efficiently answer the following: Given a
number β > 0, find a number γ > 0 such that for an input number h and an N -vertex graph we
can localize in G a (γ, h)-thick graph if it contains a (β, h)-thick graph, and output NO otherwise.6

Employing techniques from a deep paper of Arora, Frieze and Kaplan [AFK02], one can solve this
problem in quasipolynomial time O(N c·logN ). This was communicated to us by Maxim Sviridenko.
On the negative side, a truly polynomial algorithm seems to be out of reach, as Alon, Arora,
Manokaran, Moshkovitz, and Weinstein [AAM+] reduced the problem to the notorious hidden
clique problem, whose tractability has been open for twenty years.

Theorem 3.16 ([AAM+]). If there is no polynomial time algorithm for solving the clique problem
for a planted clique of size n1/3, then for any ε ∈ (0, 1) and δ > 0 there is no polynomial time
algorithm that distinguishes between a graph G on N vertices containing a clique of size κ = N ε

and a graph G′ on N vertices in which the densest subgraph on κ vertices has density at most δ.7

Of course, Theorem 3.16 leaves some hope for a polynomial time algorithm when h = No(1)

(which corresponds to kL3.13 = n
o(1)
L3.13).

The regularity lemma can be made algorithmic [ADL+94]. The algorithm from [ADL+94] is
based on index pumping-up, and thus applies even to the locally dense setting of Lemma 2.5.

It will turn out that the extraction of dense spots is the only obstruction to a polynomial time
algorithm for Theorem 1.3. In [HKP+d], we sketch a truly polynomial time algorithm which avoids
this step. It seems that the method sketched there is generally applicable for problems which
employ sparse decompositions.
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developed for the Erdős-Sós Conjecture. Hladký, Piguet, and Stein are very grateful to the former
group for explaining them those techniques.
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SYMBOL INDEX

Symbol index

[n], 9
⊞, 9
d(U,W ), 9
deg, 7
E(G), 7
e(G), 7
ensemble, 9
e(X), 7
e(X,Y ), 7
GD, 21
Greg, 20
G∇, 21
ind(A,B), 12
Lη,k(G), 16
LKS(n, k, η), 16
LKSmin(n, k, η), 16
LKSsmall(n, k, η), 16
maxdeg, 7
mindeg, 7
N(v), 7
Sη,k(G), 16
trees(k), 2
V (G), 7
v(G), 7
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GENERAL INDEX

General index

active vertex, 25
avoiding (set), 20
avoiding threshold, 20

bounded decomposition, 20

captured edges, 21
cluster, 20
cluster graph, 20

dense spot, 19
density, 9

embedding, 2
empty graph, 9
ensemble, 9

garbage cluster, 12

index, 12
irregular, 9
irregular partition, 12

nowhere-dense, 19

refine up to garbage cluster, 12
regular pair, 9
regular partition, 12
respect avoiding threshold, 20

sparse decomposition, 21

thick graph, 32
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C4. J. Combin. Theory (Series B), 70(2):229–234, 1997.

[Sze78] E. Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie des
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