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ON A PERIODIC PROBLEM FOR SECOND-ORDER DUFFING

TYPE EQUATIONS

ALEXANDER LOMTATIDZE AND JIŘÍ ŠREMR

Abstract. Sufficient and necessary conditions are found for the existence of

a positive periodic solution to the Duffing type equation

u′′ = p(t)u− q(t, u)u.

The results obtained are compared with facts well known for the autonomous

Duffing equation
y′′ − ay + by3 = 0.

Uniqueness of solutions and possible generalisations are discussed, as well.

1. Introduction

In the paper, we are intersted in the question on the existence of a positive
solution to the periodic problem

u′′ = p(t)u− q(t, u)u; u(0) = u(ω), u′(0) = u′(ω), (1.1)

where p ∈ L([0, ω]) and q : [0, ω] × R → R is a Carathéodory function. Under
a solution to problem (1.1), as usually, we understand a function u : [0, ω]→ R which
is absolutely continuous together with its first derivative, satisfies given equation
almost everywhere, and verifies periodic conditions. Equation in (1.1) is a natural
generalisation of the equation

y′′ − ay + by3 = 0, (1.2)

where a, b ∈ R. This equation is the central topic of the monograph [1] by Duffing
published in 1918 and still bears his name today. Consider a free undamped oscil-
lator consisting of the mass body with the weight m and two linear springs with
the characteristic k and the non-deformed length ` (see Fig. 1) whose equation of
motion has the form

y′′ +
2k

m
y

(
1− `√

(`− d)2 + y2

)
= 0. (1.3)

Equation (1.2) with a, b > 0 appears when approximating the non-linearity in (1.3)
by Taylor’s polynomial of the third order with the centre at 0. It can be also
interpreted as the equation of motion of a free undamped oscillator with a spring
whose restoring force is given as a third-order polynomial. The phase portrait of
(1.2) with a, b > 0 can be easily determined and it is illustrated on Fig. 2.
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Figure 1. Free undamped transversal oscillator.
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Figure 2. Phase portrait of equation (1.2) with a, b > 0.

Definition 1.1. A solution u to problem (1.1) is referred as a sign-constant solution
if there exists i ∈ {0, 1} such that

(−1)iu(t) ≥ 0 for t ∈ [0, ω],

and a sign-changing solution otherwise.

Let us summarize some well-known facts concerning periodic solutions to equa-
tion (1.2) (see, e. g., [6, 7]).

Proposition 1.2. The following statements hold:

(1) For any a ≤ 0 and b > 0, equation (1.2) has a unique equilibrium y = 0
and every non-trivial periodic solution to (1.2) changes its sign.
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(2) For any a, b > 0, equation (1.2) has exactly three equilibria y = 0, y =
√

a
b ,

and y = −
√

a
b , positive and negative non-constant periodic solutions, and

periodic sign-changing solutions with various periods.

(3) For any a, b > 0 and T ≤ π
√

2√
a

, equation (1.2) has exactly two non-trivial

T -periodic sign-constant solutions.

(4) For any a, b > 0 and T > π
√

2√
a

, equation (1.2) has a positive (resp. negative)

non-constant periodic solution with the minimal period T .

In the present paper, we generalise above assertions to a non-autonomous case
and an arbitrary power of the super-linearity in (1.2) (see Corollary 2.11 and Re-
mark 2.12). Therefore, we fix ω > 0 and consider the non-autonomous periodic
problem

u′′ = p(t)u− h(t)|u|λ sgnu; u(0) = u(ω), u′(0) = u′(ω), (1.4)

where p, h ∈ L([0, ω]) and λ > 1. Since our results do not depend on the value of the
power λ, it is nature to generalise (1.4) to problem (1.1). In spite of the autonomous
case, only a few results dealing with question on the existence of periodic solutions
to the non-autonomous Duffing type equations with a super-linear non-linearity
is known (see, e. g., [2, 8, 9, 12–14] and references therein). Below, we establish
effective conditions for the existence of a positive periodic solution to (1.1) and
their consequences for non-autonomous Duffing equation in (1.4), which can be
easily compared with the facts well known in the autonomous case (1.2). At last,
we discuss possible extensions for a more general problem than (1.4), namely, for
the periodic problem with two super-linear terms

u′′ = p(t)u− h(t)|u|λ sgnu+ f(t)|u|µ sgnu; u(0) = u(ω), u′(0) = u′(ω), (1.5)

where p, h, f ∈ L([0, ω]) and λ, µ > 1. It is worth mentioning that Duffing type
equations with two or more super-linear terms appear when approximating the
non-linearity in the equation of oscillator (1.3) by Taylor’s polynomials of higher
orders than 3.

The following notation is used throughout the paper:

– N and R are the sets of natural and real numbers, respectively. For any
x ∈ R, we put [x]+ = 1

2 (|x|+ x) and [x]− = 1
2 (|x| − x).

– C(I) denotes the linear space of continuous real functions defined on the
interval I ⊆ R. For any u ∈ C([a, b]), we put ‖u‖C = max{|u(t)| : t ∈ [a, b]}.

– AC 1([a, b]) is the set of functions u : [a, b] → R which are absolutely con-
tinuous together with their first derivatives.

– AC `([a, b]) (resp. AC u([a, b])) is the set of absolutely continuous functions
u : [a, b]→ R such that u′ admits the representation u′(t) = γ(t) + σ(t) for
a. e. t ∈ [a, b], where γ : [a, b]→ R is absolutely continuous and σ : [a, b]→ R
is a non-decreasing (resp. non-increasing) function whose derivative is equal
to zero almost everywhere on [a, b].

– L([0, ω]) denotes the Banach space of Lebesgue integrable functions p : [0, ω]→
R equipped with the norm ‖p‖L =

∫ ω
0
|p(s)|ds. The symbol IntA stands

for the interior of the set A ⊂ L([0, ω]).

Definition 1.3 ([11, Definition 0.1]). We say that the function p ∈ L([0, ω]) belongs
to the set V+(ω) (resp. V−(ω)) if for any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω),
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the inequality

u(t) ≥ 0 for t ∈ [0, ω] (resp. u(t) ≤ 0 for t ∈ [0, ω])

holds.

Remark 1.4. Efficient conditions for p to belong to each of the sets V+(ω) and
V−(ω) are given in [11].

2. Main results

In this part, we formulate all the results, their proofs are given later in Section 4.
Let us introduce the hypothesis:

q(t, x) ≥ q0(t, x) for a. e. t ∈ [0, ω] and all x ≥ 0,

q0 : [0, ω]× [0,+∞[→ R is a Carathéodory function,

q0(t, ·) : [0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω].

 (H1)

Theorem 2.1. Let p ∈ V−(ω), q(·, 0) ≡ 0, and hypothesis (H1) be fulfilled. Let,
moreover, there exist a function α ∈ AC `([0, ω]) satisfying

α(t) > 0 for t ∈ [0, ω], (2.1)

α′′(t) ≥ p(t)α(t)− q(t, α(t))α(t) for a. e. t ∈ [0, ω], (2.2)

α(0) = α(ω), α′(0) ≥ α′(ω). (2.3)

Then problem (1.1) has at least one positive solution u such that

u(tu) ≤ α(tu) for some tu ∈ [0, ω]. (2.4)

Corollary 2.2. Let q(·, 0) ≡ 0 and hypothesis (H1) be satisfied. Let, moreover,

p ∈ V−(ω) (2.5)

and at least one of the following conditions be fulfilled:

(a) There exists c > 0 such that

p(t) ≤ q(t, c) for a. e. t ∈ [0, ω]. (2.6)

(b) There exists r > 0 such that p− q0(·, r) ∈ IntV+(ω).

Then problem (1.1) has at least one positive solution.

Now we give an effective condition guaranteeing that the assumption (b) of
Corollary 2.2 is satisfied.

Corollary 2.3. Let q(·, 0) ≡ 0, hypothesis (H1) be satisfied, condition (2.5) hold,
and

lim
x→+∞

∫ ω

0

q0(s, x)ds = +∞. (2.7)

Then problem (1.1) has at least one positive solution.

Remark 2.4. By using Lebesgue’s domination theorem, one can show that for the
function q0 appearing in hypothesis (H1), condition (2.7) is satisfied if there exists
E ⊆ [0, ω] such that measE > 0 and the equality

lim
x→+∞

q0(t, x) = +∞ for every t ∈ E (2.8)

holds.
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Under the hypothesis

for every b > a > 0 there exists hab ∈ L([0, ω]) such that

hab(t) ≥ 0 for a. e. t ∈ [0, ω], hab 6≡ 0,

q(t, x) ≥ hab(t) for a. e. t ∈ [0, ω] and all x ∈ [a, b],

 (H2)

the assumption p ∈ V−(ω) in the above results is also necessary as follows from the
next proposition.

Proposition 2.5. Let hypothesis (H2) hold. If problem (1.1) has a positive solution
then condition (2.5) is satisfied.

Finally, we give a statement guaranteeing that any pair of positive solutions to
problem (1.1) has to intersect. Introduce the hypothesis:

For every d > c > 0 and e > 0, there exists hcde ∈ L([0, ω]) such that

hcde(t) ≥ 0 for a. e. t ∈ [0, ω], hcde 6≡ 0,

q(t, x+ e)− q(t, x) ≥ hcde(t) for a. e. t ∈ [0, ω] and all x ∈ [c, d].

 (H3)

Proposition 2.6. Let hypothesis (H3) hold and

q(t, 0) ≥ 0 for a. e. t ∈ [0, ω]. (2.9)

Let, moreover, u and v be distinct positive solutions to problem (1.1). Then there
exist t1, t2 ∈ [0, ω] such that

u(t1) < v(t1), u(t2) > v(t2). (2.10)

If q in (1.1) is a function with separated variables, we arrive at the problem

u′′ = p(t)u− h(t)ϕ(u)u; u(0) = u(ω), u′(0) = u′(ω), (2.11)

where p, h ∈ L([0, ω]) and ϕ ∈ C(R). This problem covers a rather wide class of
problems arising in applications and serves us as a model problem to illustrate the
results stated above.

Theorem 2.7. Let p ∈ V−(ω), ϕ(0) = 0, and

h(t) ≥ 0 for a. e. t ∈ [0, ω], h 6≡ 0. (2.12)

Let, moreover, at least one of the following conditions be fulfilled:

(i) The inequality
lim inf
x→+∞

ϕ(x) > −∞ (2.13)

holds and there exists c > 0 such that

p(t) ≤ h(t)ϕ(c) for a. e. t ∈ [0, ω]. (2.14)

(ii) The equality
lim

x→+∞
ϕ(x) = +∞ (2.15)

holds.

Then problem (2.11) has at least one positive solution. If in addition, the function
ϕ is increasing on [0,+∞[ and u and v are distinct positive solutions to problem
(2.11) then inequalities (2.10) hold with some t1, t2 ∈ [0, ω].

Remark 2.8. If ϕ(x) > 0 for x > 0 then the assumption p ∈ V−(ω) in Theorem 2.7
is also necessary for the existence of a positive solution to problem (2.11) (see
Proposition 2.5 with q(t, x) := h(t)ϕ(x)).
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Remark 2.9. It follows from results obtained in [12] that problem (2.11) has a pos-
itive solution provided that condition (2.12) holds,

p(t) ≥ 0 for t ∈ [0, ω], p 6≡ 0 (2.16)

and
ϕ(0) = 0, ϕ(x) ≥ 0 for x > 0, lim

x→+∞
ϕ(x) = +∞. (2.17)

Observe that condition (2.16) yields p ∈ V−(ω) (see, e. g., Lemma 3.7 with g(t) :=
p(t) and γ(t) := 1). Therefore, in Theorem 2.7(ii), condition (2.16) is weakened to
the assumption p ∈ V−(ω) and condition (2.17) is relaxed to ϕ(0) = 0 and (2.15).

Now we derive corollaries for a non-autonomous Duffing equation and compare
the results with facts well known in the autonomous case. We first give an existence
and uniqueness result for a particular case of (1.4), where p ≡ h.

Proposition 2.10. Let λ > 1,

p(t) ≥ 0 for a. e. t ∈ [0, ω], p 6≡ 0, (2.18)

and ∫ ω

0

p(s)ds ≤ 16λ∗

ω
, (2.19)

where

λ∗ :=

{⌊
1

λ−1

⌋
for λ ∈ ]1, 2],

1
dλ−1e for λ > 2

(2.20)

in which b·c and d·e denote the floor function and ceiling function, respectively.
Then the constant function

u(t) := 1 for t ∈ [0, ω]

is a unique positive solution to the problem

u′′ = p(t)
(
1− |u|λ−1

)
u; u(0) = u(ω), u′(0) = u′(ω). (2.21)

Corollary 2.11. Let λ > 1 and condition (2.12) hold. Then the following asser-
tions hold:

(1) Problem (1.4) has at least one positive (resp. negative) solution if and only
if p ∈ V−(ω).

(2) If u and v are distinct positive (resp. negative) solutions to problem (1.4)
then inequalities (2.10) are satisfied with some t1, t2 ∈ [0, ω].

(3) If p ∈ V−(ω) and

e
−1+

√
1+

ω
4

∫ ω
0
p(s)ds

(
−1 +

√
1 +

ω

4

∫ ω

0

p(s)ds

)
≤ 8λ∗, (2.22)

where the number λ∗ is defined by formula (2.20), then problem (1.4) has
a unique positive (resp. negative) solution.

Remark 2.12. It is clear that the Duffing equation (1.2) is a particular case of the
equation in (1.4), where λ := 3 and

p(t) := a, h(t) := b for t ∈ [0, ω]. (2.23)

One can easily derive that, in this case, p ∈ V−(ω) if and only if a > 0. Hence, it
follows from Corollary 2.11(1) that for any a ≤ 0 and b, ω > 0, equation (1.2) has no
non-trivial sign-constant ω-periodic solution. This is in a compliance with assertion



ON A PERIODIC PROBLEM 7

(1) of Proposition 1.2. On the other hand, Corollary 2.11(1) also yields that for
any a, b, ω > 0, equation (1.2) has at least one positive (resp. negative) ω-periodic
solution. This is in a compliance with assertion (2) of Proposition 1.2. Finally, it
follows from Proposition 2.10 that if 0 < a ≤ 8

ω2 and b > 0, then the equilibrium√
a
b is a unique positive ω-periodic solution to equation (1.2). Therefore, if a, b > 0

and y is a periodic solution to equation (1.2) corresponding to a closed orbit on
Fig. 2, then the minimal period T of y satisfies the estimate

T >
2
√

2√
a
.

This estimate was derived from the result dealing with a non-autonomous equation
and thus, it is not surprising that it can be improved in the autonomous case (see
assertion (3) of Proposition 1.2). Consequently, Corollary 2.11 naturally extends
the basic facts concerning periodic solutions to the Duffing equation (1.2) to the
non-autonomous case.

Finally, we consider problem (1.5), where two super-linear terms are involved.
Clearly, if u is a solution to problem (1.5) then the function −u is its solution, as
well. Therefore, the following statements follow from Corollary 2.3.

Theorem 2.13. Let λ > µ > 1, relation (2.12) hold, and there exists c > 0 such
that

[f(t)]+ ≤ ch(t) for a. e. t ∈ [0, ω]. (2.24)

If, moreover, condition (2.5) is satisfied then problem (1.5) has at least three solu-
tions (positive, negative, and trivial).

Remark 2.14. It follows from [3, Theorem 0.1 and Remark 1] that the problem

u′′ = p(t)u− h(t)u3 + f(t)u2; u(0) = u(ω), u′(0) = u′(ω) (2.25)

has at least one nontrivial solution provided that p, h, f : [0, ω]→ R are continuous
functions such that

p(t) > 0, h(t) > 0 for t ∈ [0, ω]. (2.26)

In Theorem 2.13, a stronger assertion is claimed under weaker assumptions then
(2.26), because Theorem 2.13 guarantees the existence of a positive solution to
problem (2.25).

Theorem 2.15. Let λ > µ > 1,

h(t) > 0 for a. e. t ∈ [0, ω], (2.27)

and

[f ]
λ−1
λ−µ
+ h−

µ−1
λ−µ ∈ L([0, ω]). (2.28)

If, moreover, condition (2.5) is satisfied then problem (1.5) has at least three solu-
tions (positive, negative, and trivial).

Remark 2.16. If

f(t) ≤ 0 for a. e. t ∈ [0, ω]

then both conditions (2.24) and (2.28) are satisfied and, moreover, it follows from
Proposition 2.5 that assumption (2.5) is necessary in Theorems 2.13 and 2.15 for
the existence of a positive solution to problem (1.5).
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3. Auxiliary statements

We first recall some results proved in [11].

Lemma 3.1 ([11, Proposition 10.8]). If p ∈ V−(ω) then
∫ ω

0
p(s)ds > 0.

Lemma 3.2 ([11, Proposition 10.1]). The set V−(ω) is open in L([0, ω]).

Definition 3.3 ([11, Definition 0.4]). We say that the function p ∈ L([0, ω]) belongs
to the set D(ω) if the problem

u′′ = p̃(t)u; u(a) = 0, u(b) = 0 (3.1)

has no non-trivial solution for any a < b satisfying b − a < ω, where p̃ is the
ω-periodic extension of the function p to the whole real axis.

Lemma 3.4. V−(ω) ⊂ IntD(ω).

Proof. It follows from Propositions 2.1, 10.5, and 10.6 established in [11]. �

Lemma 3.5 ([11, Proposition 2.5]). Let g : R→ R be an ω-periodic function such
that g ∈ D(ω). Then for any t1 < t2 and w ∈ AC 1([t1, t2]) satisfying t2 − t1 < ω
and

w′′(t) ≥ g(t)w(t) for a. e. t ∈ [t1, t2], w(t1) ≤ 0, w(t2) ≤ 0,

the inequality

w(t) ≤ 0 for t ∈ [t1, t2] (3.2)

holds.

Lemma 3.6 ([11, Proposition 2.2]). Let p ∈ L([0, ω]). Then the inclusion p ∈
IntD(ω) holds if and only if problem (3.1) has no non-trivial solution for any a < b
satisfying b − a ≤ ω, where p̃ is the ω-periodic extension of the function p to the
whole real axis.

Lemma 3.7 ([11, Theorem 8.3]). Let g ∈ L([0, ω]). Then the inclusion g ∈ V−(ω)
holds if and only if there exists a positive function γ ∈ AC 1([0, ω]) satisfying

γ′′(t) ≤ g(t)γ(t) for a. e. t ∈ [0, ω], γ(0) ≥ γ(ω),
γ′(ω)

γ(ω)
≥ γ′(0)

γ(0)
,

and

γ(0)− γ(ω) +
γ′(ω)

γ(ω)
− γ′(0)

γ(0)
+ meas{t ∈ [0, ω] : γ′′(t) < g(t)γ(t)} > 0.

Lemma 3.8 ([11, Theorem 9.1′]). Let g ∈ L([0, ω]). Then the inclusion g ∈
IntV+(ω) holds if and only if g ∈ IntD(ω) and there exists a positive function
γ ∈ AC 1([0, ω]) satisfying

γ′′(t) ≥ g(t)γ(t) for a. e. t ∈ [0, ω], γ(0) = γ(ω), γ′(0) ≥ γ′(ω),

and

γ′(0)− γ′(ω) + meas{t ∈ [0, ω] : γ′′(t) > g(t)γ(t)} > 0.

Lemma 3.9 ([11, Theorem 16.4]). Let g ∈ IntV+(ω). Then there exist ν,∆ > 0
such that for any non-negative function f ∈ L([0, ω]), the problem

u′′ = g(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (3.3)
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has a unique solution u and this solution satisfies the relation

ν

∫ ω

0

|f(s)|ds ≤ u(t) ≤ ∆

∫ ω

0

|f(s)|ds for t ∈ [0, ω]. (3.4)

Lemma 3.10 ([11, Theorem 16.2]). Let g ∈ V−(ω). Then there exist ν,∆ > 0
such that for any non-positive function f ∈ L([0, ω]), problem (3.3) has a unique
solution u and this solution satisfies relation (3.4).

Lemma 3.11. Let n ∈ N. Then

n−1∑
k=0

x
k
n ≥ nxn−1

2n for x > 0.

Proof. To prove the lemma, it is sufficient to show that for any n ∈ N, the inequality

n−1∑
k=0

zk ≥ nz n−1
2 for z > 0 (3.5)

is fulfilled. For n = 1, the inequality (3.5) holds. Assume that the inequality (3.5)
is satisfied for n := m. We show that (3.5) remains true for n := m+ 1. It is clear
that

m∑
k=0

zk = zm +

m−1∑
k=0

zk ≥ zm +mz
m−1

2 = z
m−1

2

(
z
m+1

2 +m
)

for z > 0. (3.6)

Put `(z) := z
m+1

2 +m− (m+ 1)z
1
2 for z ≥ 0. Then `(0) = m, `(1) = 0, and

`′(z) =
m+ 1

2
z−

1
2

(
z
m
2 − 1

)
for z > 0.

Hence, `(z) ≥ 0 for z ≥ 0. Now it follows from inequality (3.6) that

m∑
k=0

zk ≥ (m+ 1)z
m
2 for z > 0,

i. e., (3.5) holds for n := m+ 1. �

Lemma 3.12. Let p ∈ L([0, ω]) and u be a nontrivial solution to the problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω) (3.7)

with at least two zeros in the interval [0, ω]. Then∫ ω

0

[p(s)]−ds >
16

ω
. (3.8)

Proof. Extend the functions u and p periodically to the whole real axis and denote
them by the same symbols. Then there exists a ∈ [0, ω[ such that the function u
has at least three zeros in the interval [a, a + ω]. It follows from [5, Corollary 5.2]
(and its proof) that ∫ a+ω

a

[p(s)]−ds >
16

ω

and thus, the inequality (3.8) holds. �
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Now along with problem (3.3), we consider the sequence of the problems

u′′ = gn(t)u+ fn(t); u(0) = u(ω), u′(0) = u′(ω), (3.3n)

where gn, fn ∈ L([0, ω]), n ∈ N. A simple application of the Arzelà-Ascoli theorem
leads to the following statement.

Lemma 3.13. Let

lim
n→+∞

‖gn − g‖L = 0, lim
n→+∞

‖fn − f‖L = 0.

Let, moreover, for any n ∈ N, un be a solution to problem (3.3n) and the sequence
{‖un‖C}+∞n=1 be bounded. Then there exists a subsequence {unk}+∞k=1 of {un}+∞n=1

such that

lim
k→+∞

u(i)
nk

= u(i)(t) uniformly on [0, ω], i = 0, 1,

where u is a solution to problem (3.3).

Furthermore, we recall a classical result concerning the solvability of the periodic
problem

u′′ = f(t, u); u(a) = u(b), u′(a) = u′(b), (3.9)

where f : [a, b]× R→ R is a Carathéodory function (see, e. g., [4]).

Lemma 3.14. Let there exist functions α ∈ AC `([a, b]) and β ∈ AC u([a, b]) satis-
fying

α(t) ≤ β(t) for t ∈ [a, b],

α′′(t) ≥ f(t, α(t)) for a. e. t ∈ [a, b], α(a) = α(b), α′(a) ≥ α′(b), (3.10)

and

β′′(t) ≤ f(t, β(t)) for a. e. t ∈ [a, b], β(a) = β(b), β′(a) ≤ β′(b). (3.11)

Then problem (3.9) has at least one solution u such that

α(t) ≤ u(t) ≤ β(t) for t ∈ [a, b].

Moreover, the following existence result is known.

Lemma 3.15 ([10, Theorem 1.1 and Remark 1.2]). Let there exist p ∈ IntD(ω)
and a Carathéodory function g : [0, ω]× [0,+∞[→ [0,+∞[ such that

f(t, x) sgnx ≥ p(t)|x| − g(t, |x|) for a. e. t ∈ [0, ω] and all x ∈ R

and

lim
x→+∞

1

x

∫ ω

0

g(s, x)ds = 0.

Let, moreover, there exist functions α ∈ AC `([0, ω]) and β ∈ AC u([0, ω]) satisfying
relations (3.10) and (3.11) with a := 0, b := ω. Then problem (3.9) with a := 0,
b := ω has a solution u such that

min{α(tu), β(tu)} ≤ u(tu) ≤ max{α(tu), β(tu)}
for some tu ∈ [0, ω].
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Lemma 3.16. Let λ > 1, `, h ∈ L([0, ω]), and u ∈ AC 1([0, ω]) be such that

h(t) ≥ 0 for a. e. t ∈ [0, ω], (3.12)

u(t) > 0 for t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω), (3.13)

and
u′′(t) ≤ `(t)u(t)− h(t)uλ(t) for a. e. t ∈ [0, ω]. (3.14)

Then ∫ ω

0

`(s)ds ≥ 0 (3.15)

and

M ≤ m e

√
ω
4

∫ ω
0
`(s)ds

, (3.16)

where

M := max{u(t) : t ∈ [0, ω]}, m := min{u(t) : t ∈ [0, ω]}. (3.17)

Moreover, the function u satisfies the estimate∫ ω

0

1

u2(s)
ds

∫ ω

0

h(s)uλ+1(s)ds

≤ 2 e
−1+

√
1+

ω
4

∫ ω
0
p(s)ds

(
−1 +

√
1 +

ω

4

∫ ω

0

p(s)ds

)
.

(3.18)

Proof. First observe that, in view of assumption (3.13), we have∫ ω

0

u′′(s)
u(s)

ds =

∫ ω

0

(
u′(s)
u(s)

)2

ds

which together with (3.13) and (3.14) yields that∫ ω

0

h(s)uλ−1(s)ds ≤
∫ ω

0

`(s)ds−
∫ ω

0

(
u′(s)
u(s)

)2

ds. (3.19)

Taking (3.12) into account, it follows from (3.19) that inequality (3.15) is fulfilled.
Let the numbers M and m be defined by formulae (3.17). Extend the functions

u, `, and h periodically to the whole real axis and denote them by the same symbols.
Clearly, there exist tm ∈ [0, ω[ and tM ∈ ]tm, tm + ω[ such that u(tm) = m and
u(tM ) = M . Then, by Hölder’s inequality, one gets

ln2 M

m
=

(∫ tM

tm

u′(s)
u(s)

ds

)2

≤ (tM − tm)

∫ tM

tm

(
u′(s)
u(s)

)2

ds

and

ln2 M

m
≤
(∫ tm+ω

tM

∣∣∣∣u′(s)u(s)

∣∣∣∣ ds)2

≤ (tm + ω − tM )

∫ tm+ω

tM

(
u′(s)
u(s)

)2

ds

which, by virtue of the inequality 4xy ≤ (x+ y)2 for x, y ∈ R, implies

ln4 M

m
≤ ω2

16

[∫ ω

0

(
u′(s)
u(s)

)2

ds

]2

.

Consequently, it follows from (3.19) that∫ ω

0

h(s)uλ−1(s)ds ≤
∫ ω

0

`(s)ds− 4

ω
ln2 M

m
.
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Therefore, in view of (3.12) and (3.17), we get∫ ω

0

1

u2(s)
ds

∫ ω

0

h(s)uλ+1(s)ds ≤ ω
(
M

m

)2 ∫ ω

0

h(s)uλ−1(s)ds

≤ ω
(
M

m

)2(∫ ω

0

`(s)ds− 4

ω
ln2 M

m

)
.

(3.20)

Now observe that the latter relation immediately yields inequality (3.16). Moreover,
it follows from (3.20) that∫ ω

0

1

u2(s)
ds

∫ ω

0

h(s)uλ+1(s)ds ≤ 4 max
{
f(z) : z ∈ [0, z0]

}
,

where

f(z) := e2z
(
z2

0 − z2
)

for z ∈ R, z0 :=

√
ω

4

∫ ω

0

`(s)ds.

It can be easily verified by direct calculation that

f(z) ≤ f
(
− 1

2 +
√

1
4 + z2

0

)
for z ∈ [0, z0]

and thus, we have∫ ω

0

1

u2(s)
ds

∫ ω

0

h(s)uλ+1(s)ds ≤ 4f
(
− 1

2 +
√

1
4 + z2

0

)
which yields the desired estimate (3.18). �

Lemma 3.17. Let p ∈ V−(ω), hypothesis (H1) hold, and there exist functions
α ∈ AC `([0, ω]) and β ∈ AC u([0, ω]) satisfying relations (2.1), (2.2), (2.3), and

β(t) > 0 for t ∈ [0, ω], (3.21)

β′′(t) ≤ p(t)β(t)− q(t, β(t))β(t) for a. e. t ∈ [0, ω], (3.22)

β(0) = β(ω), β′(0) ≤ β′(ω). (3.23)

Then problem (1.1) has a positive solution u such that

u(tu) ≤ max{α(tu), β(tu)} for some tu ∈ [0, ω]. (3.24)

Proof. Put

δ := max
{
‖α‖C , ‖β‖C

}
e

√
ω
4

(
‖p‖L+‖q0(·,0)‖L

)
and

χ(t, x) := [x+ β(t)]+ − [x− δ]+ − β(t) for t ∈ [0, ω], x ∈ R. (3.25)

Then obviously,

|χ(t, x)| ≤ δ for t ∈ [0, ω], x ∈ R (3.26)

and there is a non-negative function qδ ∈ L([0, ω]) such that

|q(t, x)| ≤ qδ(t) for a. e. t ∈ [0, ω] and all x ∈ R, |x| ≤ δ. (3.27)

Consider the periodic problem

u′′ = p(t)u− q(t, |χ(t, u)|)χ(t, u), (3.28)

u(0) = u(ω), u′(0) = u′(ω). (3.29)
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Since ‖α‖C ≤ δ and ‖β‖C ≤ δ, it follows from relations (2.1), (2.2), (3.21), and
(3.22) that

α′′(t) ≥ p(t)α(t)− q(t, |χ(t, α(t))|)χ(t, α(t)) for a. e. t ∈ [0, ω]

and
β′′(t) ≤ p(t)β(t)− q(t, |χ(t, β(t))|)χ(t, β(t)) for a. e. t ∈ [0, ω].

Therefore, by virtue of (3.26), (3.27), and Lemma 3.4, all the assumptions of
Lemma 3.15 with f(t, x) := p(t)x − q(t, |χ(t, x)|)χ(t, x) and g(t, x) := δqδ(t) are
satisfied and thus, problem (3.28), (3.29) has a solution u satisfying

0 < u(tu) ≤ max{α(tu), β(tu)} for some tu ∈ [0, ω]. (3.30)

We first show that
u(t) ≥ −β(t) for t ∈ [0, ω]. (3.31)

Indeed, assume on the contrary that (3.31) is violated. Extend the functions p, u,
β, q(·, x), and χ(·, x) periodically to the whole real axis and denote them by the
same symbols. Then, in view of the first inequality in (3.30), there exist t1, t2 ∈ R
such that 0 < t2 − t1 < ω and

u(t) < −β(t) for t ∈ ]t1, t2[ , u(t1) = −β(t1), u(t2) = −β(t2), (3.32)

whence we get, in particular, that χ(t, u(t)) = −β(t) for t ∈ [t1, t2]. Therefore,
equality (3.28) yields

u′′(t) = p(t)u(t) + q(t, β(t))β(t) for a. e. t ∈ [t1, t2].

The latter relation and (3.22) result in

(u(t) + β(t))′′ ≤ p(t)(u(t) + β(t)) for a. e. t ∈ [t1, t2].

Consequently, by virtue of Lemmas 3.4 and 3.5 with g(t) := p(t), we get

u(t) + β(t) ≥ 0 for t ∈ [t1, t2]

which is in a contradiction with (3.32). The contradiction obtained proves that
inequality (3.31) holds.

It is clear that either
u(t) ≥ 0 for t ∈ [0, ω], (3.33)

or
there exists t0 ∈ [0, ω] such that u(t0) < 0. (3.34)

First suppose that (3.33) is satisfied. We show that

u(t) > 0 for t ∈ [0, ω].

Indeed, assume on the contrary that there is t∗ ∈ [0, ω] such that u(t∗) = 0. Then,
by virtue of (3.30) and (3.33), there exist t1, t2 ∈ [0, ω] such that t1 < t2, t∗ ∈ [t1, t2],
and

0 ≤ u(t) ≤ δ for t ∈ [t1, t2], u 6≡ 0 on [t1, t2]. (3.35)

Hence, u′(t∗) = 0 and the function u is a solution to the initial value problem

w′′ =
(
p(t)− q(t, u(t))

)
w; w(t∗) = 0, w′(t∗) = 0

on the interval [t1, t2]. However it means that u ≡ 0 on [t1, t2] which is in a contra-
diction with (3.35). The contradiction obtained proves that u is a positive solution
to problem (3.28), (3.29). It remains to show that

u(t) ≤ δ for t ∈ [0, ω]. (3.36)
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Obviously, we have 0 < χ(t, u(t)) ≤ u(t) for t ∈ [0, ω] and thus, taking hypothesis
(H1) into account, from (3.28) we get

u′′(t) ≤ p(t)u(t)− q0(t, 0)χ(t, u(t)) ≤
(
p(t) + |q0(t, 0)|

)
u(t) for a. e. t ∈ [0, ω].

Consequently, in view of (3.29) and (3.30), it follows from Lemma 3.16 with `(t) :=
p(t) + |q0(t, 0)| and h(t) := 0 that

max{u(t) : t ∈ [0, ω]} ≤ max
{
‖α‖C , ‖β‖C

}
e

√
ω
4

(
‖p‖L+‖q0(·,0)‖L

)
,

i. e., inequality (3.36) holds. Therefore, we have χ(t, u(t)) = u(t) for t ∈ [0, ω] and
thus, u is a positive solution to problem (1.1) satisfying relation (3.24).

Now assume that (3.34) is fulfilled. Extend the functions p, u, β, q(·, x), and
χ(·, x) periodically to the whole real axis and denote them by the same symbols.
Then, in view of (3.30), there exist a, t1, t2 ∈ R such that a < t1 < t0 < t2 < a+ ω
and

u(t) < 0 for t ∈ ]t1, t2[ , u(t1) = 0, u(t2) = 0. (3.37)

Put

α0(t) :=

{
0 for t ∈ [a, t1] ∪ [t2, a+ ω],

−u(t) for t ∈ ]t1, t2[ .

It is not difficult to verify that α0 ∈ AC `([a, a+ ω]),

α0(a) = α0(a+ ω), α′0(a) = α′0(a+ ω). (3.38)

In view of (3.31), it is clear that

0 ≤ α0(t) ≤ β(t) for t ∈ [a, a+ ω]. (3.39)

Moreover, from equality (3.28) we get

α′′0(t) = p(t)α0(t)− q(t, α0(t))α0(t) for a. e. t ∈ [a, a+ ω]. (3.40)

Therefore, by virtue of relations (3.22), (3.23), (3.38), (3.39), and (3.40), it follows
from Lemma 3.14 with f(t, x) := p(t)x−q(t, x)x, α(t) := α0(t), and b := a+ω that
there exists a function u0 ∈ AC 1([a, a+ ω]) satisfying

u′′0(t) = p(t)u0(t)− q(t, u0(t))u0(t) for a. e. t ∈ [a, a+ ω],

u0(a) = u0(a+ ω), u′0(a) = u′0(a+ ω),

and

α0(t) ≤ u0(t) ≤ β(t) for t ∈ [a, a+ ω]. (3.41)

If we extend the function u0 periodically to the whole real axis and denote it by
the same symbol, in view of (3.41), we easily conclude that the restriction of u0 to
the interval [0, ω] is a solution to problem (1.1) such that

0 ≤ u0(t) ≤ β(t) for t ∈ [0, ω], u0 6≡ 0. (3.42)

Suppose now that there exists t∗ ∈ [0, ω] such that u0(t∗) = 0. Then u0 is obviously
a solution to the initial value problem

w′′ =
(
p(t)− q(t, u0(t))

)
w; w(t∗) = 0, w′(t∗) = 0

on the interval [0, ω]. However it means that u0 ≡ 0 which is in a contradiction with
(3.42). Consequently, in view of (3.42), the function u := u0 is a positive solution
to problem (1.1) satisfying (3.24) (e. g., tu := 0). �
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Proposition 3.18. Let p ∈ V−(ω) and f : [0, ω]× ]0,+∞[→ R be a locally Cara-
théodory function1such that

the function f(t, ·) : ]0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω], (3.43)

lim
x→0+

f(t, x) ≤ 0 for a. e. t ∈ [0, ω], (3.44)

and

lim
x→+∞

∫ ω

0

f(s, x)ds = +∞. (3.45)

Then there exists r > 0 such that p− f(·, r) ∈ IntV+(ω).

Proof. For any ν > 0, we put

pν(t) := p(t)− f(t, ν) for a. e. t ∈ [0, ω].

Let

A := {ν > 0 : pν 6∈ V−(ω)}.
According to assumption (3.45), there exists R > 0 such that∫ ω

0

f(s,R)ds ≥
∫ ω

0

p(s)ds.

Therefore, by virtue of Lemma 3.1, we get p − f(·, R) 6∈ V−(ω) and consequently,
A 6= ∅. Let

ν∗ := inf A.

Now we show that

ν∗ > 0. (3.46)

Indeed, put

gk(t) := max
{
− 1, f(t, 1

k )
}

for a. e. t ∈ [0, ω], k ∈ N.

Then, in view of assumption (3.43), we have

−1 ≤ gk+1(t) ≤ gk(t) for a. e. t ∈ [, ω], k ∈ N. (3.47)

Let

g(t) := lim
k→+∞

gk(t) for a. e. t ∈ [0, ω]. (3.48)

By virtue of (3.44), it is clear that g ∈ L([0, ω]) and

g(t) ≤ 0 for a. e. t ∈ [0, ω].

Since p ∈ V−(ω), it follows from Lemma 3.7 that p − g ∈ V−(ω). Moreover,
according to (3.47) and (3.48), we have

lim
k→+∞

∫ ω

0

|gk(s)− g(s)|ds = 0.

The set V−(ω) is open (see Lemma 3.2) and thus, there exists k0 ∈ N such that

p− gk0 ∈ V−(ω). (3.49)

On the other hand, we have

f(t, x) ≤ f(t, 1
k0

) ≤ gk0(t) for a. e. t ∈ [0, ω] and all x ∈
]
0, 1

k0

]
.

1It means that for any [x1, x2] ⊂ ]0,+∞[ , the restriction of f to the set [0, ω] × [x1, x2] is
a Carathéodory function.
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Therefore, in view above-proved inclusion (3.49), from Lemma 3.7 we get p −
f(·, x) ∈ V−(ω) for every x ∈

]
0, 1

k0

]
. Consequently, inequality (3.46) holds and

ν∗ ∈ A, (3.50)

because the set V−(ω) is open (see Lemma 3.2).
Now let {νn}+∞n=1 ⊆ ]0, ν∗[ be an increasing sequence such that

lim
n→+∞

νn = ν∗.

Clearly, pνn ∈ V−(ω) for n ∈ N. By virtue of Lemma 3.10 with g(t) := pνn(t) and
f(t) := −1, for any n ∈ N, the problem

u′′ = pνn(t)u− 1; u(0) = u(ω), u′(0) = u′(ω) (3.51)

has a unique solution un and this solution satisfies

un(t) > 0 for t ∈ [0, ω]. (3.52)

Observe that from (3.43) we get

pνn+1(t) ≤ pνn(t) for a. e. t ∈ [0, ω], n ∈ N (3.53)

and, moreover,
lim

n→+∞
‖pνn − pν∗‖L = 0 (3.54)

because the function f is continuous in the second argument. Therefore, in view of
inequalities (3.52) and (3.53), it follows from (3.51) that

(un(t)− un+1(t))′′ ≥ pνn+1
(t)(un(t)− un+1(t)) for a. e. t ∈ [0, ω], n ∈ N.

However, the inclusion pνn+1 ∈ V−(ω) holds for every n ∈ N and thus, the latter
inequality yields that

un(t) ≤ un+1(t) for t ∈ [0, ω], n ∈ N. (3.55)

It follows from (3.52) and (3.55) that the sequence {‖un‖C}+∞n=1 is non-decreasing.
We show that

lim
n→+∞

‖un‖C = +∞. (3.56)

Indeed, if the sequence {‖un‖C}+∞n=1 has a finite limit then, by virtue of (3.54),
(3.55), and Lemma 3.13 (with gn(t) := pνn(t), g(t) := pν∗(t), fn(t) := −1, f(t) :=
−1), we obtain

lim
n→+∞

u(i)
n (t) = u

(i)
0 (t) uniformly on [0, ω], i = 0, 1, (3.57)

where u0 ∈ AC 1([0, ω]) satisfies

u′′0(t) = pν∗(t)u0(t)− 1 for a. e. t ∈ [0, ω],

u0(0) = u0(ω), u′0(0) = u′0(ω).
(3.58)

Moreover, it follows from (3.55) and (3.57) that

u0(t) ≥ u1(t) > 0 for t ∈ [0, ω].

Therefore, from (3.58) and Lemma 3.7 with g(t) := pν∗(t) we get the inclusion
pν∗ ∈ V−(ω) which contradicts condition (3.50). The contradiction obtained proves
that relation (3.56) holds.

Put

vn(t) :=
un(t)

‖un‖C
, fn(t) :=

1

‖un‖C
for t ∈ [0, ω], n ∈ N.
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Then for any n ∈ N, the function vn is a solution to the problem

v′′ = pνn(t)v − fn(t); v(0) = v(ω), v′(0) = v′(ω).

It is clear that

‖vn‖C = 1 for n ∈ N, lim
n→+∞

‖fn‖L = 0. (3.59)

Therefore, by virtue of (3.54), (3.59), and Lemma 3.13 (with gn(t) := pνn(t), g(t) :=
pν∗(t), f(t) := 0), we can assume without loss of generality that

lim
n→+∞

v(i)
n (t) = v

(i)
0 (t) uniformly on [0, ω], i = 0, 1, (3.60)

where v0 ∈ AC 1([0, ω]) satisfies

v′′0 (t) = pν∗(t)v0(t) for a. e. t ∈ [0, ω], v0(0) = v0(ω), v′0(0) = v′0(ω). (3.61)

Moreover, it follows from (3.52), (3.59), and (3.60) that

v0(t) ≥ 0 for t ∈ [0, ω], v0 6≡ 0.

Consequently, we have
v0(t) > 0 for t ∈ [0, ω]. (3.62)

If we extend the function v0 periodically to the whole real axis, in view of Sturm’s
separation theorem and Lemma 3.6 with p(t) := pν∗(t), we get

pν∗ ∈ IntD(ω). (3.63)

Finally, we put

B :=

{
ν ≥ ν∗ :

∫ ω

0

f(s, ν)ds =

∫ ω

0

f(s, ν∗)ds

}
and

ν0 := supB.

Clearly, assumption (3.45) yields that ν∗ ≤ ν0 < +∞. Moreover, since the
Carathéodory function f satisfies condition (3.43), we have ν0 ∈ B,

f(t, ν∗) = f(t, ν0) for a. e. t ∈ [0, ω], (3.64)

and ∫ ω

0

f(s, ν)ds >

∫ ω

0

f(s, ν0)ds for ν > ν0.

Consequently, pν∗ ≡ pν0 and, in view of inclusion (3.63), there exists δ > 0 such
that

pν0+δ ∈ IntD(ω) (3.65)

and

f(t, ν0 + δ)− f(t, ν0) ≥ 0 for a. e. t ∈ [0, ω], f(·, ν0 + δ) 6≡ f(·, ν0). (3.66)

On the other hand, by virtue of (3.62), (3.64), and (3.66), it follows from (3.61)
that

v′′0 (t) =
(
p(t)− f(t, ν∗)

)
v0(t)

= pν0+δ(t)v0(t) +
(
f(t, ν0 + δ)− f(t, ν0)

)
v0(t)

≥ pν0+δ(t)v0(t)

for a. e. t ∈ [0, ω] and

meas{t ∈ [0, ω] : v′′0 (t) > pν0+δ(t)v0(t)} > 0.
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Consequently, by virtue of inclusion (3.65) and Lemma 3.8 with g(t) := pν0+δ(t), we
get pν0+δ ∈ IntV+(ω), i. e., the assertion of the proposition holds for r := ν0+δ. �

The last two statements of this section deal with the existence of functions α
and β appearing in Lemma 3.17 which are usually called lower and upper functions
of problem (1.1), respectively.

Proposition 3.19. Let p ∈ V−(ω) and q : [0, ω] × R → R be a Carathéodory
function satisfying hypothesis (H1). Let moreover, there exist a number r > 0 such
that

p− q0(·, r) ∈ IntV+(ω). (3.67)

Then for any c ≥ r, there is a function α ∈ AC 1([0, ω]) satisfying inequality (2.2)
and

α(0) = α(ω), α′(0) = α′(ω), (3.68)

α(t) ≥ c for t ∈ [0, ω]. (3.69)

Proof. Let ν > 0 be the number appearing in the assertion of Lemma 3.9 with
g(t) := p(t) − q0(t, r) and let c ≥ r be arbitrary. Then, in view of assumption
(3.67), it follows from Lemma 3.9 that the problem

α′′ =
(
p(t)− q0(t, r)

)
α+

c

νω
; α(0) = α(ω), α′(0) = α′(ω)

has a unique solution α and this solution satisfies inequality (3.69). Consequently,
(3.68) holds and since c ≥ r, hypothesis (H1) guarantees that the function α satisfies
relation (2.2), as well. �

Proposition 3.20. Let p ∈ V−(ω) and q : [0, ω] × R → R be a Carathéodory
function satisfying

q(t, 0) = 0 for a. e. t ∈ [0, ω]. (3.70)

Then for any c > 0, there exists a function β ∈ AC 1([0, ω]) satisfying inequality
(3.22) and

β(0) = β(ω), β′(0) = β′(ω), (3.71)

0 < β(t) ≤ c for t ∈ [0, ω]. (3.72)

Proof. Since q is a Carathéodory function with property (3.70), there exist a non-
negative function h ∈ L(0, ω) and a non-negative, non-decreasing function ϕ ∈
C([0,+∞[) such that ϕ(0) = 0 and

|q(t, x)| ≤ h(t)ϕ(|x|) for a. e. t ∈ [0, ω] and all x ∈ R, |x| ≤ 1. (3.73)

We first show that there is a number ε0 ∈ ]0, 1] such that

p− hϕ(ε) ∈ V−(ω) for every ε ∈ [0, ε0]. (3.74)

Indeed, assume on the contrary that there exists a sequence {εn}+∞n=1 ⊂ ]0, 1] such
that

p− hϕ(εn) 6∈ V−(ω) for n ∈ N, lim
n→+∞

εn = 0.

Since ϕ(0) = 0, it is clear that

lim
n→+∞

∫ ω

0

|h(s)ϕ(εn)|ds = 0.
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Consequently, we get p 6∈ V−(ω) because the set V−(ω) is open (see Lemma 3.2).
However, it contradicts the assumption p ∈ V−(ω).

Now let c > 0 be arbitrary and δ := min{ε0, c}. Let, moreover, ν,∆ > 0 be
numbers appearing in the assertion of Lemma 3.10 with g(t) := p(t) − h(t)ϕ(δ).
Then, in view of (3.74), it follows from Lemma 3.10 that the problem

β′′ =
(
p(t)− h(t)ϕ(δ)

)
β − δ

∆ω
; β(0) = β(ω), β′(0) = β′(ω)

has a unique solution β and
ν

∆
δ ≤ β(t) ≤ δ for t ∈ [0, ω].

Taking now into account that the function ϕ is non-decreasing and inequality (3.73)
holds, we easily conclude that the function β satisfies (3.22), (3.71), and (3.72). �

4. Proofs of main results

Proof of Theorem 2.1. According to Proposition 3.20, there exists a function β ∈
AC u([0, ω]) satisfying inequalities (3.22), (3.71), and

0 < β(t) ≤ α(t) for t ∈ [0, ω].

Consequently, all the assumptions of Lemma 3.17 are fulfilled and thus, problem
(1.1) has at least one positive solution u satisfying relation (2.4). �

Proof of Corollary 2.2. By virtue of Theorem 2.1, to prove the corollary it is suffi-
cient to show that, in both cases (a) and (b), there exists a function α ∈ AC `([0, ω])
satisfying relations (2.1), (2.2), and (2.3).

If condition (a) is fulfilled then it is clear that the constant function α(t) := c
satisfies (2.1), (2.2), and (2.3).

On the other hand, if condition (b) holds then the existence of a function α
fulfilling (2.1), (2.2), and (2.3) follows from Proposition 3.19. �

Proof of Corollary 2.3. Observe that hypothesis (H1) and assumption q(·, 0) ≡ 0
yield that

q0(t, 0) ≤ 0 for a. e. t ∈ [0, ω].

Therefore, according to Proposition 3.18 with f(t, x) := q0(t, x), there exists r > 0
such that p−q0(·, r) ∈ IntV+(ω). Hence, the assertion of the corollary follows from
Corollary 2.2(b). �

Proof of Proposition 2.5. Assume that problem (1.1) has a positive solution u.
Then there are numbers u∗ > u∗ > 0 such that

u∗ ≤ u(t) ≤ u∗ for t ∈ [0, ω]

and, by virtue of hypothesis (H2), we have

q(t, u(t)) ≥ hu∗u∗(t) for a. e. t ∈ [0, ω].

Therefore, we get

u′′(t) ≤ p(t)u(t)− u∗hu∗u∗(t) ≤ p(t)u(t) for a. e. t ∈ [0, ω]

and
meas{t ∈ [0, ω] : u′′(t) < p(t)u(t)} > 0.

Hence, it follows from Lemma 3.7 with g(t) := p(t) and γ(t) := u(t) that p ∈
V−(ω). �
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Proof of Proposition 2.6. According to hypothesis (H3), one can show that

the function q(t, ·) : [0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω] (4.1)

which together with assumption (2.9) yields that

q(t, x) ≥ 0 for a. e. t ∈ [0, ω] and all x ≥ 0. (4.2)

Suppose on the contrary that the assertion of the proposition is violated. Then we
can assume without loss of generality that either

(a)

u(t) > v(t) for t ∈ [0, ω],

or

(b) there exists t0 ∈ [0, ω] such that

u(t) ≥ v(t) for t ∈ [0, ω], u(t0) = v(t0), u′(t0) = v′(t0). (4.3)

In the case (a), there exist positive numbers v∗, v∗, e0 such that

u(t) ≥ v(t) + e0, v∗ ≤ v(t) ≤ v∗ for t ∈ [0, ω]. (4.4)

Therefore, in view of condition (4.1) and hypothesis (H3), for a. e. t ∈ [0, ω] we get

q(t, u(t))− q(t, v(t)) ≥ q(t, v(t) + e0)− q(t, v(t)) ≥ hv∗v∗e0(t). (4.5)

On the other hand, it follows immediately from the equation in (1.1) that u and v
are periodic solutions, respectively, to the equations

z′′ =
(
p(t)− q(t, v(t))

)
z −

[
q(t, u(t))− q(t, v(t))

]
u(t),

z′′ =
(
p(t)− q(t, v(t))

)
z

and thus, by virtue of (4.4) and (4.5), Fredholm’s third theorem yields the contra-
diction

0 =

∫ ω

0

[
q(s, u(s))− q(s, v(s))

]
u(s)v(s)ds ≥ (v∗ + e0)v∗

∫ ω

0

hv∗v∗e0(s)ds > 0.

In the case (b), by virtue of conditions (4.1), (4.2), and (4.3), we have

u(t)q(t, u(t)) ≥ v(t)q(t, v(t)) for a. e. t ∈ [0, ω]. (4.6)

Put

w(t) := u(t)− v(t) for t ∈ [0, ω].

Clearly, the function w is a solution to the periodic problem

w′′ = p(t)w −
[
u(t)q(t, u(t))− v(t)q(t, v(t))

]
; w(0) = w(ω), w′(0) = w′(ω).

If u(·)q(·, u(·)) 6≡ v(·)q(·, v(·)) then, in view of (2.5) and (4.6), it follows from
Lemma 3.10 with g(t) := p(t) that w(t) > 0 for t ∈ [0, ω], which contradicts (4.3).

On the other hand, if u(·)q(·, u(·)) ≡ v(·)q(·, v(·)) then, in view of (4.3), the
function w is a solution to the initial value problem

w′′ = p(t)w; w(t0) = 0, w′(t0) = 0.

Consequently, we get w ≡ 0 which is in a contradiction with the assumption that
u, v are distinct solutions to problem (1.1). �
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Proof of Theorem 2.7. Put

q(t, x) := h(t)ϕ(x) for a. e. t ∈ [0, ω] and all x ∈ R.

It is clear that q is a Carathéodory function satisfying q(·, 0) ≡ 0.
Assume that condition (i) holds. It follows from assumption (2.13) that there

exists a number ϕ0 ≤ 0 such that ϕ(x) ≥ ϕ0 for x ≥ 0. Therefore, in view of (2.12),
the function q satisfies hypothesis (H1) with q0(t, x) := h(t)ϕ0. Moreover, (2.14)
implies the validity of (2.6) and thus, Corollary 2.2(a) yields that problem (2.11)
has at least one positive solution.

Now assume that condition (ii) is satisfied. Let

ψ(x) := inf{ϕ(z) : z ∈ [x,+∞[} for x ≥ 0.

One can easily verify that the function ψ is well defined. Moreover, the function ψ
is continuous, non-decreasing, and

ϕ(x) ≥ ψ(x) for x ≥ 0, lim
x→+∞

ψ(x) = +∞.

Consequently, in view of assumption (2.12), the function q satisfies hypothesis (H1)
with q0(t, x) := h(t)ψ(x) and condition (2.7) is fulfilled. Therefore, Corollary 2.3
yields that problem (2.11) has at least one positive solution.

Assume, in addition, that the function ϕ is increasing. Then, in view of (2.12),
the function q satisfies hypothesis (H3) and q(·, 0) ≡ 0. Consequently, if u, v are
two distinct positive solutions to problem (2.11) then Proposition 2.6 yields that
(2.10) holds with some t1, t2 ∈ [0, ω]. �

Proof of Proposition 2.10. Assume on the contrary that problem (2.21) has a pos-
itive solution u such that u 6≡ 1. Let

q(t, x) := p(t)|x|λ−1 for a. e. t ∈ [0, ω] and x ∈ R.

In view of assumption (2.18), the function q satisfies hypothesis (H3) and q(·, 0) ≡ 0.
Therefore, Proposition 2.6 yields that there exist t1, t2 ∈ [0, ω] such that

u(t1) < 1, u(t2) > 1. (4.7)

It immediately follows from (2.21) that∫ ω

0

p(s)u(s)ds =

∫ ω

0

p(s)uλ(s)ds.

Hence, by Hölder’s inequality, we get∫ ω

0

p(s)uλ(s)ds =

∫ ω

0

p
λ−1
λ (s)p

1
λ (s)u(s)ds

≤
(∫ ω

0

p(s)ds

)λ−1
λ
(∫ ω

0

p(s)uλ(s)ds

) 1
λ

and thus, the inequality ∫ ω

0

p(s)uλ(s)ds ≤
∫ ω

0

p(s)ds (4.8)

holds. On the other hand, Hölder’s inequality yileds that∫ ω

0

p(s)uµ(s)ds =

∫ ω

0

p
λ−µ
λ (s)p

µ
λ (s)u(s)µds
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≤
(∫ ω

0

p(s)ds

)λ−µ
λ
(∫ ω

0

p(s)uλ(s)ds

)µ
λ

for µ ∈ ]0, λ[ .

Consequently, by virtue of (4.8), we get∫ ω

0

p(s)uµ(s)ds ≤
∫ ω

0

p(s)ds for µ ∈ [0, λ]. (4.9)

Put

p̃(t) := p(t)ψ(u(t)) for a. e. t ∈ [0, ω], (4.10)

where

ψ(x) :=

{
xλ−x
x−1 for x ∈ [0, 1[∪ ]1,+∞[ ,

λ− 1 for x = 1.

It is clear that the function ψ is continuous and non-negative on [0,+∞[ and thus,
we have p̃ ∈ L([0, ω]) and

p̃(t) ≥ 0 for a. e. t ∈ [0, ω]. (4.11)

First suppose that λ ∈ ]1, 2[ and put

n :=
⌊ 1

λ− 1

⌋
. (4.12)

Obviously, n ∈ N and

λ− 1 ≤ 1
n . (4.13)

Therefore, we have

uλ−1(t)− 1

u(t)− 1
≤ u

1
n (t)− 1

u(t)− 1
=

1∑n−1
k=0 u

k
n (t)

for t ∈ [0, ω], u(t) 6= 1

and thus, Lemma 3.11 yields that

ψ(u(t)) ≤ u(t)∑n−1
k=0 u

k
n (t)

≤ 1

n
u
n+1
2n (t) for t ∈ [0, ω], u(t) 6= 1.

Taking now into account (4.13), from the latter inequality we get

ψ(u(t)) ≤ 1

n
u
n+1
2n (t) for t ∈ [0, ω]. (4.14)

Hence, in view of (2.19), (2.20), (4.9), (4.12), and (4.14), notation (4.10) yields that∫ ω

0

p̃(s)ds ≤ 1

n

∫ ω

0

p(s)u
n+1
2n (s)ds ≤ 1⌊

1
λ−1

⌋ ∫ ω

0

p(s)ds ≤ 16

ω
. (4.15)

On the other hand, the function u− 1 is a nontrivial solution to the problem

v′′ = −p̃(t)v; v(0) = v(ω), v′(0) = v′(ω) (4.16)

with at least two zeros in the interval [0, ω] (see (4.7)). Therefore, taking into
account inequality (4.11), it follows from Lemma 3.12 that∫ ω

0

p̃(s)ds >
16

ω
, (4.17)

which is in a contradiction with (4.15).
Now suppose that λ ≥ 2 and put

n := dλ− 1e. (4.18)
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Obviously, n ∈ N and
λ− 1 ≤ n. (4.19)

Therefore, we have

uλ−1(t)− 1

u(t)− 1
≤ un(t)− 1

u(t)− 1
=

n−1∑
k=0

uk(t) for t ∈ [0, ω], u(t) 6= 1

and thus, taking into account (4.19), from the latter inequality we get

ψ(u(t)) ≤
n−1∑
k=0

uk+1(t) for t ∈ [0, ω]. (4.20)

Hence, in view of (2.19), (2.20), (4.9), (4.18), and (4.20), notation (4.10) yields that∫ ω

0

p̃(s)ds ≤
n−1∑
k=0

∫ ω

0

p(s)uk+1(s)ds ≤ n
∫ ω

0

p(s)ds ≤ 16

ω
. (4.21)

On the other hand, the function u− 1 is a nontrivial solution to problem (4.16)
with at least two zeros in the interval [0, ω] (see (4.7)). Therefore, taking into
account (4.11), it follows from Lemma 3.12 that inequality (4.17) holds, which
contradicts (4.21). �

Proof of Corollary 2.11. Put

q(t, x) := h(t)|x|λ−1 for a. e. t ∈ [0, ω] and x ∈ R.
Assertion (1): In view of assumption (2.12), the function q satisfies hypothe-

ses (H1) with q0(t, x) := h(t)xλ−1 and (H2). Consequently, assertion (1) of the
corollary follows from Corollary 2.3 and Proposition 2.5.

Assertion (2): By virtue of assumption (2.12), hypothesis (H3) is fulfilled and
q(·, 0) ≡ 0. Therefore, assertion (2) of the corollary follows from Proposition 2.6.

Assertion (3): Assume that p ∈ V−(ω) and inequality (2.22) holds. Then the
above-proved assertion (1) yields that problem (1.4) has a positive solution u0. It
remains to show that this problem has no other positive solution. Indeed, let

γ(t) :=

∫ t

0

1

u2
0(s)

ds for t ∈ [0, ω], ω0 :=

∫ ω

0

1

u2
0(s)

ds,

and
g(z) := h(γ−1(z))uλ+3

0 (γ−1(z)) for a. e. z ∈ [0, ω0].

Then the function g is well defined, g ∈ L([0, ω0]), and

g(z) ≥ 0 for a. e. z ∈ [0, ω0], g 6≡ 0, (4.22)

because the solution u0 is positive and the function h satisfies assumption (2.12).
On the interval [0, ω0], we consider the periodic problem

v′′ = g(z)v
(
1− |v|λ−1

)
; v(0) = v(ω0), v′(0) = v′(ω0). (4.23)

One can easily verify that if u is a positive solution to problem (1.4) then the
function

v(z) :=
u(γ−1(z))

u0(γ−1(z))
for z ∈ [0, ω0]

is a positive solution to problem (4.23). Moreover, we have∫ ω0

0

g(ξ)dξ =

∫ ω0

0

h(γ−1(ξ))uλ+3
0 (γ−1(ξ))dξ =

∫ ω

0

h(s)uλ+1
0 (s)ds
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and thus, in view of assumption (2.22), Lemma 3.16 with `(t) := p(t) and u(t) :=
u0(t) yields that∫ ω0

0

g(ξ)dξ ≤ 2

ω0
e
−1+

√
1+

ω
4

∫ ω
0
p(s)ds

(
−1 +

√
1 +

ω

4

∫ ω

0

p(s)ds

)
≤ 16λ∗

ω0
,

where the number λ∗ is defined by formula (2.20). Therefore, in view of (4.22), it
follows from Proposition 2.10 with p(t) := g(z) that problem (4.23) has the unique
positive solution v(z) := 1 for z ∈ [0, ω0]. However, it guarantees that u0 is a unique
positive solution to problem (1.4). �

Proof of Theorem 2.13. Put

q(t, x) := h(t)|x|λ−1 − f(t)|x|µ−1 for a. e. t ∈ [0, ω] and all x ∈ R. (4.24)

By virtue of assumptions (2.12) and (2.24), we have

q(t, x) ≥ xµ−1
(
h(t)xλ−µ − [f(t)]+

)
≥ h(t)xµ−1

(
xλ−µ − c

)
≥ h(t)ψ(x) for a. e. t ∈ [0, ω] and all x ≥ 0,

where

ψ(x) :=


−λ−µλ−1

[
µ−1
λ−1

] µ−1
λ−µ

c
λ−1
λ−µ for 0 ≤ x ≤

[
µ−1
λ−1 c

] 1
λ−µ

,

xµ−1
(
xλ−µ − c

)
for x >

[
µ−1
λ−1 c

] 1
λ−µ

.

Consequently, the function q satisfies q(·, 0) ≡ 0 and hypothesis (H1) with q0(t, x) :=
h(t)ψ(x) and, in view of (2.12), condition (2.7) holds. Therefore, the assertion of
the theorem follows from Corollary 2.3. �

Proof of Theorem 2.15. Let the function q be defined by formula (4.24). It is clear
that q(·, 0) ≡ 0 and, in view of assumption (2.27), we get

q(t, x) ≥ h(t)xµ−1

(
xλ−µ − [f(t)]+

h(t)

)
for a. e. t ∈ [0, ω] and all x ≥ 0.

Now for a. e. t ∈ [0, ω] and all x ≥ 0, we put

q0(t, x) :=


−λ−µλ−1

[
µ−1
λ−1

] µ−1
λ−µ

[f(t)]
λ−1
λ−µ
+ h−

µ−1
λ−µ (t) if 0 ≤ x ≤

[
µ−1
λ−1

[f(t)]+
h(t)

] 1
λ−µ

,

h(t)xλ−1 − [f(t)]+x
µ−1 if x >

[
µ−1
λ−1

[f(t)]+
h(t)

] 1
λ−µ

.

Then, by virtue of assumption (2.28), one can verify that q0 : [0, ω]× [0,+∞[→ R
is a Carathéodory function and hypothesis (H1) holds. Moreover, the function q0

satisfies

lim
x→+∞

q0(t, x) = +∞ for a. e. t ∈ [0, ω]

which, in view of Remark 2.4, yields that (2.7) is fulfilled. Therefore, the assertion
of the theorem follows from Corollary 2.3. �
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