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INTRODUCTION
Theoretical description of plasma instabilities can

be done with magnetohydrodynamics (MHD) theory,
which is suitable for macroinstabilities, or the kinetic
theory, which can be used for both micro- and macro-
instabilities. Since instabilities are highly nonlinear phe-
nomena, the fully analytical solution might be very com-
plicated, and the problem must be linearized or solved by
using some quasilinear theory.

Due to difficulties with analytical solutions, numerical
simulations, which allow for detailed study of nonlinear
phenomena such as instabilities or turbulence, became
more important in last decades. However, when using
numerical simulation one should be aware of particular
issues that are important for numerical stability.

The most important parameters which affect numeri-
cal stability are spatial grid resolution ∆x and size of
the time step ∆t. These arise due to approximations of
derivatives by finite differences. The role of spatial and
temporal spacing for numerical stability has been well
studied already by 1980’s [1]. For instance numerical in-
stabilities due to spatial spacing will occur if k∆x < 1,
or λD/∆x < 1.

In our recent paper, we studied the influence of col-
lision type on the stability of weakly collisional plasma
in E×B fields [2]. In the numerical study we encoun-
tered numerical instabilities even for the cases, which
should otherwise be numerically stable according to the
well-established stability conditions [1]. In this work we
identify these instabilities.

PARAMETERS OF THE MODEL
We use the self-consistent electrostatic 3D Particle-

in-Cell (PIC) numerical simulations. Our code allows us
to set external static magnetic and electric field in ar-
bitrary direction and set collisions with neutrals using
the Monte Carlo null collision method [3]. For the si-
mulation we set the external magnetic field B magni-
tude to B = 0.005T in the x̂–direction, and the exter-
nal electric field E magnitude to E = 550V ·m−1 in
the ŷ–direction. The plasma particle trajectories are cal-
culated using the leap-frog method combined with the
Boris algorithm [4]. In all simulations, the initial Ma-
xwellian plasma is used as well as elastic (E.S. case) and
charge exchange (C.E. case) collisions between char-
ged particles and neutrals in weakly collisional regime
(να/Ωα < 1). The stability condition λD/∆x > 1 was
satisfied in all cases.

The setup of all four simulations is sumarized in the
table below.

Parameter C.E. 1 C.E. 2 E.S. 1 E.S. 2
ng 128 65 128 65
L 0.5 m 0.5 m 0.5 m 0.5 m
∆x 3.9 mm 7.8 mm 3.9 mm 7.8 mm
Ni, Ne 4 · 107 4 · 107 4 · 107 4 · 107
RL/∆x 1.05 0.52 1.05 0.52
λD/∆x 2.5 1.25 2.5 1.25

NUMERICAL INSTABILITY

In our simulations, we have monitored the RMS values of electrostatic potential fluctuations. It is clearly visible that
the spatial resolution of electron gyro-radius significantly affects the stability and electron heating.
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We have also monitored potential density in the plane perpendicular to the magnetic field. For numerically unstable
case with elastic collisions the creation of filament structures along the magnetic field was identified. Artificial heating
for numerically unstable cases is depicted on the right panel.

KINETIC EQUATION AND CHALLENGES
To analytically identify the numerical instability is useful to know the analytical physical solution. The initial

Boltzmann equation (using the BGK approximation) is:

∂

∂t
fα + (vα · ∇x)fα +

(
qα
mα

(E+ vα ×B0) · ∇v

)
fα = −να(fα − f0α).

Initial distribution is Maxwellian including E × B drift velocity. External fields and subsequent drift velocity were
chosen as following:

E0 = (0, E0, 0), B0 = (B0, 0, 0), vd =
E0

B0
(−ez), and να < Ωα.

Using integration over unperturbed orbits [5] we obtain this expression for particle density perturbation:

n1α(t,x) =

∞∫
−∞

d3v′

C exp(−ναt)−
qα
mα

t∫
−∞

dt′
(
E1(t

′,x′) · ∂f0α(t
′,x′,v′α)

∂v′α
exp(ναt

′)

) ,
where primed denotes variables along unperturber orbits. This result yields several questions which should be ad-
dressed before other calculations. These questions are: i) Is this problem analytically solvable or we will have to
use some simplification? ii) Can be the transition process term neglected? iii) If not, should we use initial condition
f1α(t=−∞) = 0 or f1α(t=0) = 0 for finding the constant C?

These questions are also subject to our current work as answering them will help us finding the dispersion relation
of the studied problem.
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