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Abstract Let S¥ : IR” — IR denote the kth elementary symmetric function of » variables
(1< k<n,n=1,..). The class of all infinitely differentiable functions f : (0,0) — IR is
studied which satisfy the following condition:

foralln =1, ... we have

SO+ +f(x) < fOp+..+f ()

whenever x;,...,x, > 0and y,, ..., y, > 0 satisfy

Sk(xl,...,x”) SSk(yl,...,y”) for k=1,....,n—1,

S"(xl,...,xn) :Sn(yly-~'7yn)~

©)

Two sufficient conditions, themselves mutually equivalent, are given:

e the function x = xf’(x), x > 0, has an analytic extension ¢ : C ~ (-, 0] — C with
nonnegative imaginary part Im ¢ (z) for all z € C with Imz > 0;

e there exists a nonnegative measure u on (0, o) with _[(O’oo)y/(l +y?) du(y) < o and
constants a, c € IR and b = 0, d = 0 such that

S(x)=a+bx+clogx+d/x+ (log[(x+»)/(0+p] —10gx/(1+y2))d,u(y)

|
(0,)
for all x > 0.

These two conditions are equivalent to (C) if the function x + xf’(x) is bounded from
below or from above (in particular if f is nondecreasing or nonincreasing). The proofs rely
on classical results on Pick’s functions. The question of characterizing the class (C) was
raised in [11].

Key words Elementary symmetric functions - Bernstein’s theorem - completely mono-
tone functions - Stieltjes transform - matrix monotone functions - Pick class - Nevanlinna’s
representation
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1 Introduction

Motivated by questions related to the logarithmic strain measure and logarithmic
energy in nonlinear elasticity extensively studied by P. Neff and collaborators [6—10],
Pompe & Neff [11] raise the question of characterizing all functions f : (0,00) — IR
which satisfy Condition (C) in Definition 1.1, below. For each positive integer » and
each integer k with 0 < k < nlet S* : IR” — IR be the kth elementary symmetric
function of n variables,

S°(x) =1,

Sk(x) = > X, o x,, x=(x,....,x,) e R", if k>0.

1 I
1<ij < - <ig<n L g

To avoid repeated hypotheses, throughout the paper let / : (0,0) — IR be an
infinitely differentiable function.

1.1 Definition. f is said to satisfy Condition (C) [respectively, (C*)]if foralln=1,...

we have
SO+ +f(x) S )+ +f () (1.1)
whenever x and y € (0, )" satisfy
in the case of (C): Sk(x) < SK(y) for k=1,...,n—-1, S"(x) = S"(y),
in the case of (C*): Sk(x) < SK(y) for k=1,...,n.
Clearly,
(CH = (O

and the classes of functions satisfying Condition (C) [or (C")] form convex cones,
ie., if f;, f, satisfy any of these two conditions then ¢, f; + t, f, satisfies the same
condition for any ¢, 2 0, £, 2 0.

The goal of the present paper is to describe the classes of functions that satisfy
Conditions (C) or (C*). The description is almost complete, thanks to the powerful
results on the following class of analytic functions.

1.2 Theorem (Pick functions). Let 1, = {z e C:Imz > 0} be the upper complex

halfplane. A function ¢ : I1, — C is said to be a Pick function if it satisfies any of

the following two equivalent conditions:

(1) ¢ is analyticand Im ¢ (z) 2 0 forall z € 1 ;

(i1)) (R. Nevanlinna) there exists a nonnegative measure v on IR with _[IR(I +
A dv(L) < oo and constants b > 0, ¢ € IR such that for each z € 11 _,

p(z) =c+bz+ [(1/(A—2)=2/(1+2%))dv(L). (1.2)
R

A Pick function ¢ admits an analytic continuation across an open interval I C IR
into the lower halfplane if and only if the measure v in (1.2) satisfies v(I) = 0.

We refer to [4; Chapter II], [12; Chapter 2], [2; Chapter V] and [1; Sections 59
& 60] for proofs, for other equivalent characterizations of Pick’s functions, and for
their relationship to Lowner’s theory of monotone matrix functions.

The main message of this note is that Condition (C) is closely related to the
following condition.



1.3 Definition. 1 is said to satisfy Condition (G) if the function x — xf’(x) has an
analytic extension ¢ : € ~ (-0, 0] — € whose restriction to IT, is a Pick function.

Our results are as follows: if

either xf/(x) = c¢for all x > 0 and some c € IR (13)
or xf'(x) <cforall x > 0 and some c € R, '
then G o (© (1.4)
while generally G = (© (1.5)

and (C") < (G) & [ isnondecreasing.

Section 4 gives a synoptic summary of main results, but we first describe the under-
lying notions and their relationships in more detail.

In Section 2 we integrate Nevanlinna’s formula to obtain a representation formula
for functions satisfying Condition (G). Then we give an elementary proof that this
representation implies Condition (C). The mentioned representation is easily estab-
lished for the basic example of [11], viz., f(x) = log?x, x > 0, thus providing a
proof that log 2 x satisfies Condition (C) alternative to that of Borisov [3]. In Section 3
we establish the relationship of Condition (C) to completely monotone functions and
Bernstein’s representations of such functions. Using these ideas, a new proof is given
of the necessary condition for (C) established in [11; Theorem 2.4]. The main goal of
that section, however, is the proof that under (1.3), (C) conversely implies (G). This
is achieved by using a theorem by Widder [17; Theorem 18b, p. 366], which fits our
needs almost miraculously. Some examples are in Table 4.3.

A future paper will detailize the multifaceted relationships of Condition (C) to the
theory of Pick’s functions outlined above, and to the theory of majorization [5], whose
relevance to continuum mechanics has been first pointed out in [15; Introduction].

2 Integral representation of f, proof of (G) = (C), and log>x

From (1.2) we obtain the following central representation of functions satisfying
Condition (G):

2.1 Theorem. The following three conditions are equivalent:

(1) f satisfies Condition (G);

(i) there exists a nonnegative measure i on (0, ) with _[(O’oo) y/(1+y?)du(y) <
and constants a, c € IR, b 2 0 and d = 0 such that

f(x) =a+bx+clogx+d/x

+ [ (logl(x+y)/(1+y)]—logx/(1+y?))du(y)
(0)

2.1

forall x > 0;
(iii) there exists a nonnegative measure p on (0, o) with _[(O’oo)(l +32)dp(y) < o
and constants b2 0, c € IR, d =2 0 such that
xf'(x)=c+bx—d/x-— [ (1/(x+y)=y/(A+y?))dp(y), (2.2)

(0, )



x> 0.

Proof (i) < (iii): Let ¢ be the Pick extension of x — xf’(x). By Theorem 1.2, ¢

has the representation (1.2) with v a nonnegative measure supported by (—oo, 0] and

the constants b, ¢ as above. Defining the measure v/ on R by v/ = v —v({0})4d,

where d, is Dirac’s measure at 0, and a measure p by p(B) = v'(—B) for any Borel

subset B of IR, we see that (1.2) reduces to (2.2) with d = v({0}) and vice versa.
(i1) < (ii1): Equation (2.2) provides

') =c/x+b—d/x* + | [1/(x+y)—1/[x(+yH)]1]du»)

(0, )

where du(y) = dp(y)/y. Integrating this equality with respect to x from 1 to x > 0
provides

Sf(x)—f() =clogx+b(x—1) +d/x

+ [ [log[(x+»)/(1+p)]1-1logx/(1+y*)]du(y),
(0,0)

whichis (2.1) witha = f(1) —b. Conversely, a differentiation of (2.1) yields (2.2). O

2.2 Proof of (G) = (C). Let f satisfy (G) so that it is of the form (2.1) by Theorem

2.1. To prove that f satisfies (C), we note that in view of b 2 0,d =2 0and u 2 0, it
suffices to verify that Condition (C) is satisfied by each of the functions

fx) =41, f(x) =x, f(x)==xlogx, f(x)=1/x, (2.3)

f,(x) =log[(x+y)/(1+y)] - (logx) /(1 +y?) (2.4)

where y > 0 is a parameter. This is immediate for the functions (2.3),_5; in the case
(2.3), we have
SO+ +f(x,) = 8" (x) /8" (x),

which is an increasing function of S” ! at constant S”. Similarly,
LG+ 41, (x,) = Tog((x + p) - (x, + »)/(1+»)")
~(log(x; -+ x,)) /(1 +y?)

= log(éy”_iSi(X)/(l+y)”) — (log §"(x)) /(1 +»?)

which is an increasing function of S, ..., S” ! at constant S". O

The representation (2.1) identifies the functions in (2.3) and (2.4) as basic func-
tions satisfying Condition (C). A general function f is obtained by a synthesis of
these.

2.3 Example. The paper [11]is mainly motivated by the (then) conjectural statement
that the function
f(x) =log?x, x>0,

satisfies Condition (C). The authors show in [11] that Inequalities (1.1) hold if 1 <
n < 4 and a recent proof of Borisov [3] shows that the conjecture is true. An
alternative proof, which does not require any knowledge, is to realize that log? x



admits the representation (2.1) and to invoke the above verification that (2.1) implies
(O). Specifically, one has (2.1) witha = b =c=d = 0 and du(y) = 2dy/yif y > 0
and du(y) = 0 otherwise, i.e.,
log?x=2 [ (logl(x+y)/y]- (logx)/(1+y*))dy/y, x>0.
(0,00)

(Thisis elementary to verify: the equality plainly holds for x = 1 and the differentiation
followed by a subsequent multiplicstion by x/2 leads to

logx=— [ ((x+») " =y/U+y?))dy
(0, )
which is verified by an easy integration.) i

3 Bernstein, Stieltjes, and the proof of (C) = (G)

To summarize, we have proved Implication (1.5). As already mentioned, the converse
implication, and hence the equivalence (1.4), is currently available only under (1.3).
The main theme of the present section is just the proof of (C) = (G). This will bring
us to another relevant class of functions, see Definition 3.3, below. We first derive a
differential consequence of (C) for completeness; cf. [11] for similar considerations.

3.1 Proposition. If f satisfies Condition (C) then for any positive integer n and any
x=(x, ...,x,) € (0,00)" with mutually distinct components we have

é(—xi)kwi(x)f’(xi)zo, k=1,..,n—1, (3.1)

where i
w(x)=1/1T1(x, —x,), i=1...,n

m=1
m*i

Proof Let @ :(0,0)"” - IR and S : IR” — IR"” be defined by
O(xp, ...ox,) = fx)+...+f(x,), x4, ....,x, >0,
S(x) = (S'(x),...,8"(x)), xelR".
Let VS(x) be the derivative of S at x, i.e., a linear transformation from IR” to IR”

with the matrix VS(x) = [Jij], J;; = 8',(x). Foreach x € R”, let

ij
Z(x) =1Z,(x)] with Z;(x) =x/""
be the Vandermonde matrix and let
Q(x) = diag(w,(x),..., ,(x)).

By [14; Lemma 2.4], VS(x) is nonsingular if and only if the components of x are
distinct and then
VS(x) ™" = Q(x)Z(~x). (3.2)

If 6 = 0(z) : [0,e) — IR" is a smooth curve with 6(0) = S(x) then by the inverse
function theorem if ¢ small enough, there exists a smooth curve & = &(7) : [0,¢&) —
(0,00)" with £(0) = xand ¢ (1) = S(&(¢)) fort € [0, ). Equation (3.2) gives



d nooon ,
yr D)), = jzipjlgi(—xi)”_’w[(x)d), (x)

where p = (p,, ...,p,) = 6(0). Assuming that ¢,(¢) > 6(0),i=1,...,n—1,0,(7) =
6(0), for ¢ € [0, ), we obtain from Condition (C) the inequality ®(&(7)) = O (x).
Differentiating, we obtain d®(&(¢)) /dt|,_, = 0 and consequently the arbitrariness of
720,...,p,_, 20 gives

S(—x) o, (x)® (x) =0, k=1,...,n-1,
i=1 ’

which is to (3.1). O

Let/:(0,00) = IR. If x > 0, r > 0 and m is a nonnegative integer, we define the
mth iterated difference of /4 at x corresponding to the increment r by

m - m
Ah(x) = lgo(—nf( ") hGx+ i),

3.2 Theorem (Bernstein’s theorem; see, e.g., [13; Theorem 4.8]). Ifh: (0,00) — R
is a function then the following conditions are equivalent:
(1) & is infinitely differentiable and

(=D"h™(x) >0, m=0,1,..., x>O0;

(i1) we have
(-D"A"h(x) 20

for any nonnegative integer m, any x > 0 and r > 0;
(iii) there exists a nonnegative measure v on [0, «) such that

h(x)= | e™dv(1)

[0, )
for every x > 0 where the measure v is such that the integral on the right hand
side converges for every x > 0.

3.3 Definition. A function / is said to be completely monotone if it satisfies Condi-
tions (i)—(iii) in Theorem 3.2.

3.4 Proposition. Let k be a nonnegative integer and let h : (0,00) — IR be class k

function such that
(-D"A"h(x) =20

for any integer m = k, any x > 0 and r > 0. Then (=1)*h® is completely monotone.

Proof By induction on k. The case k = 0 is clear. Let & = 1. The inspection of [17;
Proof of Theorem 6, p. 150] shows that if ¢ : (—c0,0) — IR satisfies

AMg(x) 20
for some positive integer m and all x < 0, » > 0 such that x + mr < 0 then
A lq(x) < A lg(y)

whenever x <y < 0 and y + mr < 0. The differentiation then gives



A" g (x) =0 (3.3)

for every x < 0 and r > 0 such that x + (m — 1)r < 0. Let 4 satisfy the hypothesis of
the theorem. By (3.3) with ¢g(x) = h(—x) then A’ satisfies

-A"h'(x) 20
for any integer m = k — 1, any x > 0 and r > 0. The induction hypothesis gives that
—(=1)* =Y (h") %=1 = (=1) k1 ® is completely monotone. m

We are now ready to use completely monotone functions to derive the following
necessary condition for (C) by Pompe & Neff [11; Theorem 2.4], whose original
proof is different.

3.5 Proposition. If f satisfies (C) then for each k = 1, ..., the function (x*f'(x)) ©
is completely monotone, i.e.,

(=D"FfG)) M >0, x>0, m=0,... (3.4)

Proof Let m = k be a given integer and let x > 0 and r > 0. We apply Inequality
B.)ton=m+1land x = (x, ...,x,) € (0,00)" given by
x, =x+0U-Dr, i=1,....n

Observing that

0,0 = (0 (") -t =,

and writing g, (x) := x*f'(x), we see that (3.1) reduces to
S0 (1] )ater (=00 = (D S 0! () g i)

= (-1)"'A"g,(x) >0,
which holds for all m = k. The conclusion follows from Proposition 3.4. O
The proof that if f satisies the bounddness (1.3), then Condition (3.4) implies
(G) [and hence also (C)] is based on the following remarkable theorem of Widder,

proved by his inversion formula for the Stieltjes transform in [16], [17; Theorem 10a,
p. 348].

3.6 Theorem ([17; Theorem 18b, p. 366]). If & : (0,0) — IR is an infinitely
differentiable function then h has a representation

h(x)=b+c/x+ [ (x+p)du(y), x>0, (3.5)
(0,0)

where b2 0, ¢ 2 0, and u is a nonnegative measure on (0, ) if and only if h satisfies
h=0, (3.6)
(DM xFh(x)) =0, x>0, k=1,... (3.7)

We have slightly rephrased Widder’s original formulation by separating a possible
atom at 0 of Widder’s measure and moving it into the term ¢/x. The passage

e s(x)= | (x+y)du(y)
(0,)

is called the Stieltjes transformation.



3.7 Proof of the implication (C) = (G) under (1.3). Let f satisfy (C) and (1.3),.
One finds that the function

h(x) =f'(x)—c/x x>0,
satisfies (3.6) and (3.7) since for k = 1 we have
(=D* M h()) Y = (DA RS (0) T 20,
by (3.4) with m = k — 1. Thus Theorem 3.6 provides the representation

flx)=b+é/x+ [ (x+y)'du(y), x>0
(0,)

where ¢ = ¢ + ¢. Integrating from 1 to x > 0, we obtain

f(x)=a+bx+célogx+ [ logl(x+y)/(1+y)]du(y)
(0,)

with a = f(1) — b. The convergence of (3.5) for x = 1 gives

J A+»)du@y) <o
(0)

which implies

[ y/A+y)du(y) <o, | (1+y) 7 du(y) < .
(0.0) (00)

Thus we have (2.1) with

c=¢+ [ (L+yH) ' du(y).
(0.)

Next let f satisfy (C) and (1.3),. We reduce this case to the previous_ one. Let
f :(0,0) — IR be defined by f(x) = f(1/x), x > 0. Let us see that f satisfies
Condition (C). Indeed, let ¢ = (x;, ...,x,) and n = (y,, ...,»,) € (0,0)" satisfy

SK(E) <SK(y) for k=1,...,n—-1, S"(&)=S8"(n)

and prove that

FOD+ . 4+ (x,) SFOD)+.. +f (). (3.3)

The easily verifiable formulas

SH(&) =8"HO/S"(9),
0 < k < n, where & := (1/x, ...,1/x,), imply that & and n:=U/y, ...,1/y,) satisfy

SK(E) <8%(5) for k=1,...,n—=1, S"(&)=S8"(7).
By hypothesis, f satisfies (C) and hence
S/ x)+..+f(A/x,) < fA/y)+...+fA)y,),

i.e., (3.8) holds, which proves that f satisfies Condition (C). One easily notes that

xf'(x) = =(1/x)f"(1/x); (3.9)

therefore, since f satisfies (1.3),, f satisfies (1.3),. Hence f satisfies (G) by the
preceding part of the proof, i.e., x — xf'(x), x > 0, has an analytic extension



¢ : C~ (—00,0] — C. Equation (3.9) shows that then x + x/f’(x), x > 0, has an
analytic extension ¢ given by

p(z) =-p(1/z), z€C~ (—x,0]

and Im ¢ (z) = —Im @(1/z). Since ¢ is a Pick function, it satisfies Im ¢(1/z) < 0
whenever Im(1/z) < 0 by the reflection principle. Thus ¢ is a Pick function as well;
ie., x = xf'(x) satisfies (G). O

We close this section with the following remark on producing new functions
satisfying (C) or (C*) from old ones.

3.8 Remark. If f satisfies
(=D"(x'f'(x) ™ 20, x>0 (3.10)

for each
[,m=0,..., l+mz21,

then for any a = 0, the function f, : (0,00) — R given by f,(x) = f(x +a), x>0,
satisfies Condition (G) and hence also (C).

Proof 1t suffices to prove that x — xf,/(x) is bounded from below and that
(x*£/(x)) ® is completely monotone foreach k = 1,..., i.e.,

=D"(x*f(x+a))*™ >0, x>0, m=0,...,k=1,... (3.11)
We first apply (3.10) with / = 0, m = 1 and then with / =1, m = 0 to find that
f(x) <0, f'(x)+x/"(x)=20

which gives f’(x) = 0. Thus x — xf”’(x) is bounded from below by 0.
To prove (3.11), we note

(—l)m(xkf/(x+a))(k+m) — (_l)m[((x+a) _a)kf/(x+a)](k+m)

_(_1\m k k 1\ k=1 k=l 1, (k+m)
=(-1) E(,)([)( )""a (x+a)f(x+a)]

_ ﬁ (k)ak—l[(_l)k+m—l(x+a)lf/(x_l_a)](1+k+m—1).
2N

Each term in the last square bracket is nonnegative since it is (3.10) with m = 0
replaced by k + m—1/2 0. O

4 Summary of main results; examples

We summarize Sections 1-3 as follows.

4.1 Theorem. Consider the following three assertions:

(1) f satisfies condition (G);

(i1) f satisfies Condition (C);

(iii) for each k = 1,..., the function x — (x*f'(x)) %) is completely monotone.



10

Then
(i) = (ii) = (iii).
If additionally x = xf’'(x) is bounded from below or from above then
() & (i) & (ii).
The following theorem deals with Condition (C*).

4.2 Theorem. The following three assertions are equivalent:

(i) f satisfies Condition (C");,

(ii) f' = 0 and f satisfies (G);

(iii) there exists a nonnegative measure p on (0, c0) with _[(O’oo)(l +3)du(y) <
and constants a € IR, b 2 0 and ¢ = 0 such that

f(x)=a+bx+clogx+ [ logl(x+y)/(1+y)]ldu(y), x>0;
(0,)
(iv) f' = 0 and for each k = 1,..., the function x — (x*f'(x))® is completely
monotone.

We have equivalences here. We also see that f satisfies Condition (C") if it satisfies
Condition (C) and is nondecreasing.

Proof (i) = (iv): If f satisfies (C*) then Inequality (1.1) for n = 1 says that f is
nondecreasig: f'(x) = 0, x > 0. Also, if f satisfies (C*), it also satisfies (C) and
hence for each k = 1,..., the function x +> (x*f’(x)) ) is completely monotone by
Theorem 4.1.

(iv) = (iii): Noting that if (iii) holds, then the function / := f’ satisfies hypothesis
of Theorem 3.6. Hence we have the representation

f'x)=b+é/x+ | (x+y)'du(y), x>0,
(0,)
with » > 0, ¢ 2 0 and x a nonnegative measure on (0, o). Integrating in the same
way as in Subsection 3.7 we obtain (iii).
(ii1) < (i1): This follows from the equivalence (ii) < (i) in Theorem 2.1.
(ii1)) = (1): One just modifies the proof of (G) = (C) in Subsection 2.2. As b = 0,
¢ 2 0 and i 2 0, it suffices to verify that each of the functions

fx) =21, f(x)=x, f(x)=Ilogx,
£,(x) =log[(x+y)/(1+y]

where y > 0 is a parameter, satisfies (C"). This is almost the same as in the proof in
Subsection 2.2 and the details are left to the reader. O

4.3 Examples. The classes 4 and ¥ * of functions satisfying Conditions (C) and
(C") are large: by Theorem 4.1(i), € is parametrized by three constants and a nonneg-
ative measure. Alternatively, € is parametrized by Pick’s functions, via the associated
function xf”(x). The Pick class contains all complete Bernstein functions [13], some
of which are tabulated in [13] together with associated representations (2.2). In Table
4.3, below, we discuss some examples with a particular attention to those conjectured



11

in [11]. Let P be the set of all functions g on (0, o) which admit an analytic extension
to a Pick function and let g, (x) :=x*f'(x), k=1,...,and g := g,.

# f(x) in%? in€*? g(x) Why?

1 log’x yes  no logx g e P,(standard, e.g., [4;p.
19], f not monotone)

2 logx yes  yes 1 g € P, f' >0 (obvious)

3 -0 <p<-1, no no gk(k) is not completely
monotone for k = —p

4 -1<p<0 yes no g€ P, f' < 0 (obvious)

x? px?

5 0<p<1, yes yes g €P, f' >0 (obvious)

6 l<p<ew, no no gk(k) is not completely
monotone for k = p

Acknowledgment The research was supported by the RVO: 67985840.
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