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ON PERIODIC SOLUTIONS TO SECOND-ORDER DUFFING

TYPE EQUATIONS

ALEXANDER LOMTATIDZE AND JIŘÍ ŠREMR

Abstract. Sufficient and necessary conditions are found for the existence of

a positive periodic solution to the Duffing type equation

u′′ = p(t)u + q(t, u)u.

The results obtained are compared with facts well known for the autonomous

Duffing equation
y′′ + ay − by3 = 0.

Uniqueness of solutions and possible generalisations are discussed, as well.

1. Introduction

The paper deals with the question on the existence and uniqueness of a positive
solution to the periodic boundary value problem

u′′ = p(t)u+ q(t, u)u; u(0) = u(ω), u′(0) = u′(ω). (1.1)

Here, p ∈ L([0, ω]) and q : [0, ω] × R → R is a Carathéodory function. Under
a solution to problem (1.1), as usually, we understand a function u : [0, ω]→ R which
is absolutely continuous together with its first derivative, satisfies given equation
almost everywhere, and verifies periodic conditions.

In mathematical models of various oscillators, one can find the following equation

y′′ + δy′ + ay − by3 = γ sin t, (1.2)

where a, b, γ ∈ R and the damping constant satisfies δ ≥ 0. This equation is the
central topis of the monograph [1] by Duffing published in 1918 and still bears his
name today (see also [5]). Considering the equation of motion of the forced damped
pendulum

y′′ + δy′ +
g

`
sin y = γ sin t, (1.3)

the equation (1.2) with a, b > 0 appears when approximating the non-linearity in
(1.3) by Taylor’s polynomial of the third order with the centre at 0. A survey of
results dealing with the analysis of the pendullum equation is given in [10]. The
equation (1.2) can be also interpreted as the equation of motion of a forced oscillator
with a spring whose restoring force is given as a third-order polynomial. The phase
portrait of the free undamped equation (1.2) with a, b > 0, i. e., the equation

y′′ + ay − by3 = 0, (1.4)

can be easily determined and it is illustrated on Fig. 1.
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Figure 1. Phase portrait of equation (1.4) with a, b > 0.

Definition 1.1. A solution u to problem (1.1) is referred as a sign-constant solution
if there exists i ∈ {0, 1} such that

(−1)iu(t) ≥ 0 for t ∈ [0, ω],

and a sign-changing solution otherwise.

Let us summarize some well-known facts concerning periodic solutions to equa-
tion (1.4) (see, e. g., [5, 6]).

Proposition 1.2. The following statements hold:

(1) For any a ≤ 0 and b > 0, equation (1.4) has a unique equilibrium y = 0
and no other periodic solutions occur.

(2) For any a, b > 0, equation (1.4) has exactly three equilibria y = 0, y =
√

a
b ,

y = −
√

a
b and no other non-trivial sign-constant periodic solutions occur.

(3) For any a, b > 0 and T ≤ 2π√
a

, equation (1.4) has exactly three T -periodic

solutions.
(4) For any a, b > 0 and T > 2π√

a
, equation (1.4) has a sing-changing periodic

solution with the minimal period T .

In the present paper, we generalise these assertions to a non-autonomous case
and an arbitrary power of the super-linearity in (1.4) (see Corollaries 2.28, 2.31
and Remark 2.29). Therefore, for ω > 0 we consider the non-autonomous periodic
problem

u′′ = p(t)u+ h(t)|u|λ sgnu; u(0) = u(ω), u′(0) = u′(ω), (1.5)

where p, h ∈ L([0, ω]) and λ > 1. It is natural to refer the equation in (1.5) as a non-
autonomous Duffing type equation. The question on the existence and multiplicity
of periodic solutions to the autonomous Duffing equations is studied very often
in the existing literature and thus, plenty of interested results is known. As for
a non-autonomous case, many existence results can be found for the equations with
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a sub-linear non-linearity. However, the Duffing type equations are characterized
by a super-linearity in the equation and we have found only a few results covering
this case (see, e. g., [2, 7, 8, 11–13] and references therein). Below, we establish
effective conditions for the existence and uniqueness of a positive periodic solution
to (1.1) and their consequences for problem (1.5) (with a non-autonomous Duffing
type equation), which can be easily compared with the facts well known in the
autonomous case (1.4). At last, we will show possible extensions for a more general
problem than (1.5), namely, for the periodic problem with two super-linear terms

u′′ = p(t)u+ h(t)|u|λ sgnu+ f(t)|u|µ sgnu; u(0) = u(ω), u′(0) = u′(ω), (1.6)

where p, h, f ∈ L([0, ω]) and λ, µ > 1. It is worth mentioning that Duffing type
equations with two or more super-linear terms appear when approximating the
non-linearity in the equation of pendulum (1.3) by Taylor’s polynomials of higher
orders than 3.

Throughout the paper, the linear spaces of Lebesgue integrable and continuous
functions defined on an interval I ⊆ R are denoted by the standard symbols L(I)
and C(I), respectively. Having A ⊆ L(I), symbols A and IntA denote the closure
and the interior of the set A in the sense of the standard integral norm in L(I).
Moreover, AC 1([a, b]) stands for the set of functions u : [a, b] → R which are ab-
solutely continuous together with their first derivatives. Furthermore, AC `([a, b])
(resp. AC u([a, b])) is the set of absolutely continuous functions u : [a, b] → R such
that u′ admits the representation u′(t) = γ(t) + σ(t) for a. e. t ∈ [a, b], where
γ : [a, b] → R is absolutely continuous and σ : [a, b] → R is a non-decreasing (resp.
non-increasing) function whose derivative is equal to zero almost everywhere on
[a, b]. Finally, for x ∈ R, we put

[x]+ =
|x|+ x

2
, [x]− =

|x| − x
2

.

Definition 1.3 ([9, Definition 0.1]). We say that the function p ∈ L([0, ω]) belongs
to the set V+(ω) (resp. V−(ω)) if for any function u ∈ AC 1([0, ω]) satisfying

u′′(t) ≥ p(t)u(t) for a. e. t ∈ [0, ω], u(0) = u(ω), u′(0) = u′(ω), (1.7)

the inequality

u(t) ≥ 0 for t ∈ [0, ω]
(
resp. u(t) ≤ 0 for t ∈ [0, ω]

)
is fulfilled.

Definition 1.4 ([9, Definition 0.2]). We say that the function p ∈ L([0, ω]) belongs
to the set V0(ω) if the problem

u′′ = p(t)u; u(0) = u(ω), u′(0) = u′(ω) (1.8)

has a non-trivial sign-constant solution.

Remark 1.5. Efficient conditions for p to belong to each of the sets V+(ω), V−(ω),
and V0(ω) are given in [9].

2. Main results

In this section, we formulate all the results, their proofs are postponed till Sec-
tion 4 below.
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Theorem 2.1. Let q(·, 0) ≡ 0,

p 6∈ V−(ω) ∪ V0(ω), (2.1)

and there exists a function β ∈ AC u([0, ω]) satisfying

β(t) > 0 for t ∈ [0, ω], (2.2)

β′′(t) ≤ p(t)β(t) + q(t, β(t))β(t) for a. e. t ∈ [0, ω], (2.3)

β(0) = β(ω), β′(0) ≤ β′(ω). (2.4)

Then problem (1.1) has at least one positive solution u such that

u(t) ≤ β(t) for t ∈ [0, ω]. (2.5)

Let us introduce the hypothesis:

q(t, x) ≥ q0(t, x) for a. e. t ∈ [0, ω] and all x ≥ 0,

q0 : [0, ω]× [0,+∞[→ R is a Carathéodory function,

q0(t, ·) : [0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω].

 (H1)

Corollary 2.2. Let q(·, 0) ≡ 0, relation (2.1) hold, and at least one of the following
conditions be fulfilled:

(a) There exists c > 0 such that

p(t) + q(t, c) ≥ 0 for a. e. t ∈ [0, ω]. (2.6)

(b) Hypothesis (H1) is satisfied and there exists r > 0 such that p + q0(·, r) ∈
V−(ω).

Then problem (1.1) has at least one positive solution.

In the next statement, we give an effective condition guaranteeing that the as-
sumption (b) of Corollary 2.2 is satisfied.

Corollary 2.3. Let q(·, 0) ≡ 0 and hypothesis (H1) be satisfied. Let, moreover,
condition (2.1) hold and

lim
x→+∞

∫
E

q0(s, x)ds = +∞ for every E ⊆ [0, ω], measE > 0. (2.7)

Then problem (1.1) has at least one positive solution.

Remark 2.4. By using Lebesgue’s domination theorem, one can show that for the
function q0 appearing in hypothesis (H1), condition (2.7) holds if and only if

lim
x→+∞

q0(t, x) = +∞ for a. e. t ∈ [0, ω]. (2.8)

Remark 2.5. Assumption (2.7) in Corollary 2.3 is optimal and cannot be weakened
to the assumption

lim
x→+∞

∫ ω

0

q0(s, x)ds = +∞ (2.9)

(see Example 2.8 below). However, assuming (2.9) instead of (2.7), problem (1.1)
may still have a positive solution under a more restrictive assumption on p than
(2.1). More precisely, the following statement holds.



ON PERIODIC SOLUTIONS TO DUFFING TYPE EQUATIONS 5

Corollary 2.6. Let q(·, 0) ≡ 0 and hypothesis (H1) be satisfied. Let, moreover,
condition (2.9) hold and there exist x0 > 0 such that

q0(t, x0) ≥ 0 for a. e. t ∈ [0, ω]. (2.10)

Then problem (1.1) has at least one positive solution provided that the inclusion

p ∈ V+(ω) (2.11)

holds.

Remark 2.7. By using Lebesgue’s domination theorem, one can show that for the
function q0 appearing in hypothesis (H1), condition (2.9) is satisfied if there exists
E ⊆ [0, ω] such that measE > 0 and the equality

lim
x→+∞

q0(t, x) = +∞ for every t ∈ E

holds.

Example 2.8. Let 0 < a < b < ω, λ > 1,

p(t) := − π2

(b− a)2
for t ∈ [0, ω], h(t) :=

{
1 for t ∈ [0, a[∪ ]b, ω],

0 for t ∈ [a, b],

and
q(t, x) := h(t)|x|λ−1 for a. e. t ∈ [0, ω] and all x ∈ R.

It is clear that
∫ ω

0
p(s)ds < 0 and thus, in view of [9, Remark 0.7, Proposition 10.8],

condition (2.1) is fulfilled. Moreover, hypothesis (H1) holds with q0(t, x) := h(t)xλ−1.
Therefore, all the assumptions of Corollary 2.3 are satisfied except of (2.7), instead
of which condition (2.9) holds. We shall show that problem (1.1) has no positive
solution. Indeed, if u is a positive solution to (1.1) then the function u is a positive
solution to the equation

v′′ = − π2

(b− a)2
v (2.12)

on the interval [a, b], as well. However, the function v(t) := sin π(t−a)
b−a for t ∈ [a, b]

is also a solution to (2.12) with v(a) = 0 and v(b) = 0, which is in a contradiction
with Sturm’s separation theorem.

Under the hypothesis

for every d > c > 0 there exists hcd ∈ L([0, ω]) such that

hcd(t) ≥ 0 for a. e. t ∈ [0, ω], hcd 6≡ 0,

q(t, x) ≥ hcd(t) for a. e. t ∈ [0, ω] and all x ∈ [c, d],

 (H2)

the assumption p 6∈ V−(ω)∪V0(ω) in the above results is necessary as follows from
the next proposition.

Proposition 2.9. Let p ∈ V−(ω) ∪ V0(ω), hypothesis (H2) hold, and u be a non-
trivial solution to problem (1.1). Then

u(t) < 0 for t ∈ [0, ω]. (2.13)

If the function q is non-decreasing in the second variable, then the assumption
that p+ q0(t, r) ∈ V−(ω) for some r > 0 in Corollary 2.2 is necessary, in a certain
sense, for the existence of a positive solution to problem (1.1). More precisely, the
following statement holds.
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Corollary 2.10. Let q(·, 0) ≡ 0,

the function q(t, ·) : ]0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω], (2.14)

q(·, x) 6≡ 0 for x > 0, (2.15)

and

the function x 7→
∫ ω

0

q(s, x)ds is not constant in every neighbourhood of +∞.

(2.16)
Then problem (1.1) has at least one positive solution if and only if p 6∈ V0(ω)∪V−(ω)
and there exists a number r > 0 such that p+ q(·, r) ∈ V−(ω).

Now we give two uniqueness type results for problem (1.1). Introduce the fol-
lowing hypothesis:

For every d > c > 0 and e > 0, there exists hcde ∈ L([0, ω]) such that

hcde(t) > 0 for a. e. t ∈ [0, ω],

q(t, x+ e)− q(t, x) ≥ hcde(t) for a. e. t ∈ [0, ω] and all x ∈ [c, d].

 (H3)

Theorem 2.11. Let p 6∈ V−(ω) ∪ V0(ω), q(·, 0) ≡ 0, and hypothesis (H3) hold.
Then problem (1.1) has at most one positive solution.

Quite a stronger assertion can be proved under the assumption that p ∈ V+(ω).
On the other hand, hypothesis (H3) can be slightly weakened in that case to the
following one:

For every d > c > 0 and e > 0, there exists hcde ∈ L([0, ω]) such that

hcde(t) ≥ 0 for a. e. t ∈ [0, ω], hcde 6≡ 0,

q(t, x+ e)− q(t, x) ≥ hcde(t) for a. e. t ∈ [0, ω] and all x ∈ [c, d].

 (H ′3)

Theorem 2.12. Let p ∈ V+(ω), hypothesis (H ′3) hold, and

q(t, 0) ≥ 0 for a. e. t ∈ [0, ω]. (2.17)

Then problem (1.1) has at most one positive solution. Moreover, any non-trivial
solution to this problem is either positive or negative.

Observe that, under the assumptions of Theorem 2.12, problem (1.1) has no sign-
changing solutions. Another possibility how to ensure this property of solutions to
problem (1.1) is presented in Theorem 2.16 below. Introduce the definition:

Definition 2.13. We say that the function p ∈ L([0, ω]) belongs to the set D1(ω)
if for any a ∈ [0, ω[ , the solution u to the initial value problem

u′′ = p̃(t)u; u(a) = 0, u′(a) = 1 (2.18)

has at most one zero in the interval ]a, a+ ω[ , where p̃ is the ω-periodic extension
of the function p to the whole real axis.

Definition 2.13 is meaningful as follows from the following statement, which is
a consequence of two well-known results, namely, Corollary 5.2 stated in [4] and
Sturm’s comparison theorem (see, e. g., [4, Theorem 3.1]).

Proposition 2.14. Let p ∈ L([0, ω]) and either∫ ω

0

[p(s)]−ds ≤ 16

ω
, (2.19)
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or

p(t) ≥ −4π2

ω2
for a. e. t ∈ [0, ω]. (2.20)

Then p ∈ D1(ω).

Remark 2.15. Observe that V−(ω) ∪ V0(ω) ∪ V+(ω) ⊂ D1(ω). Indeed, by virtue of
Definition 3.7 and Lemma 3.8 below, we derive V−(ω) ∪ V0(ω) ∪ V+(ω) ⊆ D1(ω).
Moreover, let p(t) := k for t ∈ [0, ω]. Then it is not difficult to verify that p ∈ V−(ω)

iff k > 0, p ∈ V0(ω) iff k = 0, p ∈ V+(ω) iff k ∈ [−π2

ω2 , 0[ , and p ∈ D1(ω) iff

k ≥ − 4π2

ω2 . Consequently, V−(ω) ∪ V0(ω) ∪ V+(ω) 6= D1(ω).

Theorem 2.16. Let p ∈ D1(ω),

q(t, x) ≥ 0 for a. e. t ∈ [0, ω] and all x ∈ R, (2.21)

and

meas
(
∪n∈N

{
t ∈ [0, ω] : qn(t) > 0

})
> 0, (2.22)

where

qn(t) := min
{
q(t, x) : 1

n ≤ |x| ≤ n
}

for a. e. t ∈ [0, ω], n ∈ N.

Then every non-trivial solution to problem (1.1) is either positive or negative.

Remark 2.17. It is easy to verify that condition (2.22) holds if and only if there
exists E ⊆ [0, ω] such that measE > 0 and

q(t, x) > 0 for t ∈ E, x ∈ R \ {0}, (2.23)

as well as, if and only if

lim
r→0+

meas
{
t ∈ [0, ω] : f(t, r) > 0

}
> 0,

where

f(t, r) := min
{
q(t, x) : r ≤ |x| ≤ 1

r

}
for a. e. t ∈ [0, ω] and all r ∈ ]0, 1].

Remark 2.18. Assumption (2.22) in Theorem 2.16 is essential and cannot be omit-
ted. Indeed, let

p(t) := −4π2

ω2
, q(t, x) :=

[
x− sin 2πt

ω

]
+

for t ∈ [0, ω], x ∈ R.

Then condition (2.21) holds and, by virtue of Proposition 2.14, se get p ∈ D1(ω).
Moreover, we have

q
(
t, sin 2πt

ω

)
= 0 for t ∈ [0, ω]

and thus, it follows from Remark 2.17 that condition (2.22) is violated. There-
fore, all the assumptions of Theorem 2.16 are satisfied except of inequality (2.22).
However, the function

u(t) = sin 2πt
ω for t ∈ [0, ω]

is a sign-changing solution to problem (1.1).

If q in (1.1) is a function with separated variables, we arrive at the problem

u′′ = p(t)u+ h(t)ϕ(u)u; u(0) = u(ω), u′(0) = u′(ω), (2.24)

where p, h ∈ L([0, ω]) and ϕ ∈ C(R). This problem covers a rather wide class
of periodic problems arising in applications and serves us as a model problem to
illustrate the results stated above.
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Theorem 2.19. Let p 6∈ V−(ω)∪V0(ω), ϕ(0) = 0, and there exists c > 0 such that

p(t) + h(t)ϕ(c) ≥ 0 for a. e. t ∈ [0, ω].

Then problem (2.24) has at least one positive solution.

Theorem 2.20. Let p 6∈ V−(ω) ∪ V0(ω), ϕ(0) = 0, the inequality

h(t) > 0 for a. e. t ∈ [0, ω] (2.25)

holds, and

lim
x→+∞

ϕ(x) = +∞. (2.26)

Then problem (2.24) has at least one positive solution. If, in addition, the function
ϕ is increasing on [0,+∞[ then problem (2.24) has a unique positive solution.

Remark 2.21. If ϕ(x) > 0 for x > 0 then the assumption p 6∈ V−(ω) ∪ V0(ω) in
Theorem 2.20 is also necessary for the existence of a positive solution to problem
(2.24) (see Proposition 2.9 with q(t, x) := h(t)ϕ(x)).

It is shown in [9, Remark 0.7, Proposition 10.8] that if inclusion p ∈ V−(ω)∪V0(ω)
holds, then either

∫ ω
0
p(s)ds > 0 or p ≡ 0. Hence, Theorem 2.20 immediately yields

Corollary 2.22. Let the functions h and ϕ satisfy the assumptions of Theo-
rem 2.20. Let, moreover, ∫ ω

0

p(s)ds ≤ 0, p 6≡ 0. (2.27)

Then problem (2.24) has at least one positive solution. If, in addition, the function
ϕ is increasing on [0,+∞[ then problem (2.24) has a unique positive solution.

Remark 2.23. It follows from [11, Corollary 4.1] that problem (2.24) has a positive
solution provided that (2.25) holds,

p(t) ≤ 0 for a. e. t ∈ [0, ω], p 6≡ 0,

∫ ω

0

|p(s)|ds ≤ 4

ω
, (2.28)

and

ϕ(0) = 0, ϕ(x) ≥ 0 for x > 0, lim
x→+∞

ϕ(x) = +∞. (2.29)

In Corollary 2.22, condition (2.28) is weakened to (2.27) and condition (2.29) is
relaxed to ϕ(0) = 0 and (2.26). Therefore, Corollary 2.22 extends the results
stated in [11].

Assumption (2.25) in Theorem 2.20 is optimal and cannot be weakened to the
assumption

h(t) ≥ 0 for a. e. t ∈ [0, ω], h 6≡ 0 (2.30)

(see Example 2.8). However, under a stronger assumption on the function p, prob-
lem (2.24) still may have a positive solution as follows from the next statement.

Theorem 2.24. Let p ∈ V+(ω), ϕ(0) = 0, and conditions (2.26) and (2.30) hold.
Then problem (2.24) has at least one positive solution. If, in addition, the function
ϕ is increasing on [0,+∞[ then problem (2.24) has a unique positive solution and
no sign-changing solution.
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If the function ϕ in (2.24) is even, problem (2.24) can be rewritten in the form

u′′ = p(t)u+ h(t)ϕ(|u|)u; u(0) = u(ω), u′(0) = u′(ω), (2.31)

where p, h ∈ L([0, ω]) and ϕ ∈ C([0,+∞[ ). Clearly, if u is a solution to problem
(2.31) then the function −u is its solution, as well.

Theorem 2.25. Let ϕ(0) = 0, ϕ is increasing on [0,+∞[ , and relations (2.25)
and (2.26) be fulfilled. Then the following assertions hold:

(1) If p ∈ V−(ω)∪V0(ω), then problem (2.31) possesses only the trivial solution.
(2) If p ∈ D1(ω) \

[
V−(ω) ∪ V0(ω)

]
, then problem (2.31) has exactly three

solutions (positive, negative, and trivial).
(3) If p 6∈ D1(ω), then problem (2.31) possesses exactly three sign-constant

solutions (positive, negative, and trivial).

In the next theorem, assumption (2.25) is relaxed to (2.30).

Theorem 2.26. Let ϕ(0) = 0, ϕ is increasing on [0,+∞[ , and relations (2.26)
and (2.30) be fulfilled. Then the following assertions hold:

(1) If p ∈ V−(ω) ∪ V0(ω), then problem (2.31) has only the trivial solution.
(2) If p ∈ V+(ω), then problem (2.31) possesses exactly three solutions (positive,

negative, and trivial).
(3) If p ∈ D1(ω) \

[
V−(ω) ∪ V0(ω) ∪ V+(ω)

]
, then every non-trivial solution to

problem (2.31) is either positive or negative.

Remark 2.27. It follows from Remark 2.15 that assertions (2) and (3) of Theo-
rem 2.25, as well as assertion (3) of Theorem 2.26 are meaningful.

Now we derive corollaries for a non-autonomous Duffing equation and compare
the results obtained with the facts well known in the autonomous case.

Corollary 2.28. Let λ > 1 and condition (2.25) be fulfilled. Then the following
assertions hold:

(1) If p ∈ V−(ω)∪V0(ω) then problem (1.5) possesses only the trivial solution.
(2) If p ∈ D1(ω)\

[
V−(ω)∪V0(ω)

]
, then problem (1.5) has exactly three solutions

(positive, negative, and trivial).
(3) If p 6∈ D1(ω), then problem (1.5) possesses exactly three sign-constant solu-

tions (positive, negative, and trivial).

Remark 2.29. It is clear that the Duffing equation (1.4) is a particular case of the
equation in (1.5), where λ := 3 and

p(t) := −a, h(t) := b for t ∈ [0, ω]. (2.32)

One can easily derive that, in this case, p 6∈ V−(ω) ∪ V0(ω) if and only if a > 0.
Hence, Corollary 2.28(1) yields that for any a ≤ 0 and b, ω > 0, equation (1.4) has no
non-trivial ω-periodic solution. This is in a compliance with assertion (1) of Propo-
sition 1.2. On the other hand, it follows from Corollary 2.28(2),(3) and Remark 2.15
that for any a, b, ω > 0, equation (1.4) has a unique positive (resp. negative) ω-
periodic solution. This is in a compliance with assertion (2) of Proposition 1.2.
Finally, we know that p ∈ D1(ω) provided a ≤ 4π2/ω2 (see Proposition 2.14) and
thus, Corollary 2.28(2) yields that if a, b > 0 and y is a periodic solution to equa-
tion (1.4) corresponding to a closed orbit on Fig. 1, then the minimal period T of
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y satisfies the estimate

T >
2π√
a
.

This is in a compliance with assertion (3) of Proposition 1.2.
Therefore, Corollary 2.28 naturally extends the basic facts concerning periodic

solutions to the Duffing equation (1.4) to the non-autonomous case.

Remark 2.30. It follows from [13] that problem (1.5) with a continuous p and
h(t) := c has at least one ω-periodic solution if c > 0 and

p(t) ≤ 0 for t ∈ [0, ω], p 6≡ 0. (2.33)

In Corollary 2.28, condition (2.33) is weakened to (2.1), which is guaranteed, e. g.,
by assumption (2.27). Moreover, the uniqueness of a positive solution follows from
Corollary 2.28.

In the next corollary, assumption (2.25) is relaxed to (2.30) which is possible
in the non-autonomous case only (if h(t) := b then assumptions (2.25) and (2.30)
coincide).

Corollary 2.31. Let λ > 1 and condition (2.30) be fulfilled. Then the following
assertions hold:

(1) If p ∈ V−(ω)∪V0(ω) then problem (1.5) possesses only the trivial solution.
(2) If p ∈ V+(ω) then problem (1.5) has exactly three solutions (positive, neg-

ative, and trivial).
(3) If p ∈ D1(ω) \

[
V−(ω) ∪ V0(ω) ∪ V+(ω)

]
, then every non-trivial solution to

problem (1.5) is either positive or negative.

Remark 2.32. It follows from Remark 2.15 that assertions (2) and (3) of Corol-
lary 2.28, as well as assertion (3) of Corollary 2.31 are meaningful.

Finally, we consider problem (1.6) involving two super-linear terms. Clearly,
if u is a solution to problem (1.6) then the function −u is its solution, as well.
Therefore, the following statements follow from Corollaries 2.3 and 2.6.

Theorem 2.33. Let λ > µ > 1, relation (2.30) hold, and there exist c > 0 such
that

[f(t)]− ≤ ch(t) for a. e. t ∈ [0, ω]. (2.34)

If, moreover, p ∈ V+(ω) then problem (1.6) has at least three solutions (positive,
negative, and trivial).

Remark 2.34. If

f(t) ≥ 0 for a. e. t ∈ [0, ω] (2.35)

then inequality (2.34) is satisfied and, by virtue of Theorem 2.12, we can claim in
Theorem 2.33 that problem (1.6) has exactly three solutions.

Theorem 2.35. Let λ > µ > 1, relation (2.25) hold, and

[f ]
λ−1
λ−µ
− h−

µ−1
λ−µ ∈ L([0, ω]). (2.36)

If, moreover, p ∈ V+(ω) then problem (1.6) has at least three solutions (positive,
negative, and trivial).
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Remark 2.36. Observe that if there exists c > 0 such that inequality (2.34) holds
then inclusion (2.36) is satisfied.

Moreover, it follows from Proposition 2.9 that if inequality (2.35) is fulfilled,
then the assumptiuon p ∈ V+(ω) in Theorem 2.35 is necessary for the existence of
a non-trivial solution to problem (1.6).

3. Auxiliary Statements

In this section, we establish several statements which we need to prove main
results. First of all, for convenience of references, we recall some results proved in
[9].

Lemma 3.1 ([9, Proposition 10.2]). The equality V−(ω) ∪ V0(ω) = V−(ω) holds.

Lemma 3.2 ([9, Theorem 11.1]). Let g ∈ L([0, ω]), g 6≡ 0,∫ ω

0

[g(s)]−ds <
4

ω
, (3.1)

and ∫ ω

0

[g(s)]+ds ≥ 4

ω

(
1

1− ω
4

∫ ω
0

[g(s)]−ds
− 1

)
. (3.2)

Then g ∈ V−(ω).

Lemma 3.3. Let p 6∈ V−(ω) ∪ V0(ω). Then there exists h ∈ L([0, ω]) such that

h(t) ≥ 0 for a. e. t ∈ [0, ω] (3.3)

and p+ h ∈ IntV+(ω).

Proof. It follows from Propositions 10.10 and 10.11 stated in [9]. �

Lemma 3.4 ([9, Theorem 16.2]). Let g ∈ V−(ω). Then there exist ν,∆ > 0 such
that for any non-positive function f ∈ L([0, ω]), the problem

u′′ = g(t)u+ f(t); u(0) = u(ω), u′(0) = u′(ω) (3.4)

has a unique solution u and this solution satisfies

ν

∫ ω

0

|f(s)|ds ≤ u(t) ≤ ∆

∫ ω

0

|f(s)|ds for t ∈ [0, ω]. (3.5)

Lemma 3.5 ([9, Theorem 16.4]). Let g ∈ IntV+(ω). Then there exist numbers
ν,∆ > 0 such that for any non-negative function f ∈ L([0, ω]), problem (3.4) has
a unique solution u and this solution satisfies (3.5).

Lemma 3.6 ([9, Theorem 8.3]). Let g ∈ L([0, ω]). Then the inclusion g ∈ V−(ω)
holds if and only if there exist a positive function γ ∈ AC 1([0, ω]) satisfying

γ′′(t) ≤ g(t)γ(t) for a. e. t ∈ [0, ω], γ(0) ≥ γ(ω),
γ′(ω)

γ(ω)
≥ γ′(0)

γ(0)
,

and

γ(0)− γ(ω) +
γ′(ω)

γ(ω)
− γ′(0)

γ(0)
+ meas

{
t ∈ [0, ω] : γ′′(t) < g(t)γ(t)

}
> 0.
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Definition 3.7 ([9, Definition 0.4]). We say that the function p ∈ L([0, ω]) belongs
to the set D(ω) if the problem

u′′ = p̃(t)u; u(a) = 0, u(b) = 0 (3.6)

has no non-trivial solution for any a, b ∈ R satisfying 0 < b− a < ω, where p̃ is the
ω-periodic extension of the function p to the whole real axis.

Lemma 3.8. D(ω) = V−(ω) ∪ V0(ω) ∪ V+(ω) and IntD(ω) = V−(ω) ∪ V0(ω) ∪
IntV+(ω).

Proof. It follows from Propositions 2.1, 10.5, and 10.6 stated in [9]. �

Lemma 3.9 ([9, Proposition 2.2]). Let p ∈ L([0, ω]). Then the inclusion p ∈
IntD(ω) holds if and only if problem (3.6) has no non-trivial solution for any a, b ∈
R satisfying 0 < b− a ≤ ω, where p̃ is the ω-periodic extension of the function p to
the whole real axis.

Lemma 3.10. Let p ∈ D(ω). Then the inclusion p + ` ∈ IntD(ω) holds for any
function ` ∈ L([0, ω]) satisfying

`(t) ≥ 0 for t ∈ [0, ω], ` 6≡ 0. (3.7)

Proof. Extend the functions p and ` periodically to the whole real axis and denote
them by the same symbols. According to Lemma 3.9, it is sufficient to show that
the problem

u′′ =
(
p(t) + `(t)

)
u; u(a) = 0, u(b) = 0 (3.8)

has no non-trivial solution for any a < b satisfying b− a ≤ ω.
Let a, b ∈ R with 0 < b− a ≤ ω be arbitrary and let u be a solution to problem

(3.8). Suppose that u 6≡ 0 on [a, b]. Then we can assume without loss of generality
that there exists t0 ∈ ]a, b] such that

u(t) > 0 for t ∈ ]a, t0[ , u(t0) = 0, u′(t0) < 0. (3.9)

Let v be a solution to the initial value problem

v′′ = p(t)v; v(a) = 0, v′(a) = 1. (3.10)

Since we assume p ∈ D(ω), it is clear that

v(t) > 0 for t ∈ ]a, a+ ω[ . (3.11)

Moreover, from (3.8) and (3.10) we get(
u′(t)v(t)− u(t)v′(t)

)′
= `(t)u(t)v(t) for a. e. t ∈ [a, b].

Hence, by virtue of conditions (3.7), (3.8), (3.9), (3.10), and (3.11), it follows from
the latter equality that

u′(t0)v(t0) =

∫ t0

a

`(s)u(s)v(s)ds ≥ 0

and

u′(t0)v(t0) > 0 whenever t0 = b and b = a+ ω.

Consequently, in view of the third condition in (3.9), we obtain v(t0) ≤ 0, where
v(t0) < 0 if t0 = a+ω, which contradicts (3.11). The contradiction obtained proves
that u ≡ 0 on [a, b] and thus, p+ ` ∈ IntD(ω). �
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Lemma 3.11 ([9, Proposition 2.5]). Let g : R→ R be an ω-periodic function such
that g ∈ D(ω) (resp. g ∈ IntD(ω)). Then for any a < b and w ∈ AC 1([a, b])
satisfying b− a < ω (resp. b− a ≤ ω) and

w′′(t) ≥ g(t)w(t) for a. e. t ∈ [a, b], w(a) ≤ 0, w(b) ≤ 0,

the inequality
w(t) ≤ 0 for t ∈ [a, b] (3.12)

holds.

Now, we recall a classical result concerning the solvability of the periodic problem

u′′ = f(t, u); u(a) = u(b), u′(a) = u′(b), (3.13)

where f : [a, b]× R→ R is a Carathéodory function (see, e. g., [3]).

Lemma 3.12. Let there exist functions α ∈ AC `([a, b]) and β ∈ AC u([a, b]) satis-
fying

α(t) ≤ β(t) for t ∈ [a, b],

α′′(t) ≥ f(t, α(t)) for a. e. t ∈ [a, b], α(a) = α(b), α′(a) ≥ α′(b),
and

β′′(t) ≤ f(t, β(t)) for a. e. t ∈ [a, b], β(a) = β(b), β′(a) ≤ β′(b).
Then problem (3.13) has at least one solution u such that

α(t) ≤ u(t) ≤ β(t) for t ∈ [a, b].

Proposition 3.13. Let p ∈ L([0, ω];R) and f : [0, ω]× ]0,+∞[→ R be a locally
Carathéodory function1 such that

the function f(t, ·) : ]0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω] (3.14)

and

lim
x→+∞

∫
E

f(s, x)ds = +∞ for every E ⊆ [0, ω], measE > 0. (3.15)

Then there exists K > 0 such that

p+ f(·, x) ∈ V−(ω) for x ≥ K. (3.16)

Proof. Assume, in addition, that

f(t, x) ≥ 0 for a. e. t ∈ [0, ω] and all x ≥ 1. (3.17)

We first show that

[p(t) + f(t, ·)]− : ]0,+∞[→ R is non-increasing for a. e. t ∈ [0, ω] (3.18)

and

[p(t) + f(t, ·)]+ : ]0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω]. (3.19)

Indeed, in view of assumption (3.14), for any x2 ≥ x1 > 0 we have

[p(t) + f(t, x2)]− =
1

2

(
|p(t) + f(t, x2)| − (p(t) + f(t, x2))

)
≤ 1

2

(
|p(t) + f(t, x1)|+ |f(t, x2)− f(t, x1)| − (p(t) + f(t, x2))

)
1It means that for any [x1, x2] ⊂ ]0,+∞[ , the restriction of f to the set [0, ω] × [x1, x2] is

a Carathéodory function.
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=
1

2

(
|p(t) + f(t, x1)| − (p(t) + f(t, x1))

)
= [p(t) + f(t, x1)]−

for a. e. t ∈ [0, ω] and thus, relation (3.18) holds. On the other hand, using
assumption (3.14) and the inequality

|y + z| ≥ |y| − z for y, z ∈ R, z ≥ 0,

for any x2 ≥ x1 > 0 we get

[p(t) + f(t, x2)]+ =
1

2

(
|p(t) + f(t, x2)|+ (p(t) + f(t, x2))

)
≥ 1

2

(
|p(t) + f(t, x1)| − (f(t, x2)− f(t, x1)) + (p(t) + f(t, x2))

)
=

1

2

(
|p(t) + f(t, x1)|+ (p(t) + f(t, x1))

)
= [p(t) + f(t, x1)]+

for a. e. t ∈ [0, ω] and thus, relation (3.19) holds, as well.
Now observe that∫ ω

0

[p(s) + f(s, n)]+ds ≥
∫ ω

0

p(s)ds+

∫ ω

0

f(s, n)ds for n ∈ N.

Hence, assumption (3.15) yields that

lim
n→+∞

∫ ω

0

[p(s) + f(s, n)]+ds = +∞. (3.20)

Furthermore, we will show that

lim
n→+∞

∫ ω

0

fn(s)ds = 0, (3.21)

where

fn(t) := [p(t) + f(t, n)]− for a. e. t ∈ [0, ω], n ∈ N.
Indeed, let

An :=
{
t ∈ [0, ω] : p(t) + f(t, n) ≤ 0

}
for n ∈ N, A0 := ∩+∞

n=1An.

It is clear that An are measurable sets, An+1 ⊆ An for n ∈ N and thus, the set A0

is also measurable and

measA0 = lim
n→+∞

measAn. (3.22)

Moreover, we have

0 ≤
∫
An

fn(s)ds = −
∫
An

p(s)ds−
∫
An

f(s, n)ds for n ∈ N (3.23)

which, in view of (3.17), yields that∫
A0

f(s, n)ds ≤
∫
An

f(s, n)ds ≤
∫ ω

0

|p(s)|ds for n ∈ N.

Therefore, by virtue of assumption (3.15), we get

measA0 = 0. (3.24)

Now let ε > 0 be arbitrary. Since the Lebesgue integral has the so-called property
of an absolutely continuous integral, there exists a number δ > 0 such that∫

B

|p(s)|ds < ε for every B ⊆ [0, ω], measB < δ. (3.25)
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On the other hand, it follows from relations (3.22) and (3.24) that there is a number
n0 ∈ N such that

measAn < δ for n ≥ n0. (3.26)

Consequently, in view of (3.17), (3.23), (3.25), and (3.26), we get

0 ≤
∫ ω

0

fn(s)ds =

∫
An

fn(s)ds ≤
∫
An

|p(s)|ds < ε for n ≥ n0

and thus, desired relation (3.21) holds.
Finally, in view (3.18), (3.19), (3.20), and (3.21), there exists K > 0 such that

for any x ≥ K, the inequalities∫ ω

0

[p(s) + f(s, x)]−ds <
4

ω

and ∫ ω

0

[p(s) + f(s, x)]+ds ≥ 4

ω

(
1

1− ω
4

∫ ω
0

[p(s) + f(s, x)]−ds
− 1

)
are fulfilled. Consequently, by virtue of Lemma 3.2 with g(t) := p(t) + f(t, x),
condition (3.16) holds.

To finish the proof it is sufficient to mention that if condition (3.17) is violated,
then we put

p̃(t) := p(t) + f(t, 1), f̃(t, x) := f(t, x)− f(t, 1)

and the assertion of the proposition follows from the above proved with p̃ and f̃
instead of p and f because, in view of assumption (3.14), we have

f̃(t, x) ≥ 0 for a. e. t ∈ [0, ω] and all x ≥ 1.

�

Proposition 3.14. Let p ∈ V+(ω) and f : [0, ω]× ]0,+∞[→ R be a locally Ca-
rathéodory function2 such that condition (3.14) holds. Let, moreover, there exists
x0 > 0 such that

f(t, x0) ≥ 0 for a. e. t ∈ [0, ω] (3.27)

and

lim
x→+∞

∫ ω

0

f(s, x)ds = +∞. (3.28)

Then there exists K ≥ x0 such that relation (3.16) is satisfied.

Proof. We first mention that, in view of assumption (3.14) and (3.27), we have

f(t, x) ≥ 0 for a. e. t ∈ [0, ω] and all x ≥ x0. (3.29)

Put

x1 := sup

{
x ≥ x0 :

∫ ω

0

f(s, x)ds =

∫ ω

0

f(s, x0)ds

}
.

Clearly, assumption (3.28) yields that x0 ≤ x1 < +∞. Moreover, since the function
f satisfies condition (3.14), we have

f(t, x) ≥ f(t, x1) for a. e. t ∈ [0, ω] and all x ≥ x1 (3.30)

and
meas

{
t ∈ [0, ω] : f(t, x) > f(t, x1)

}
> 0 for x > x1. (3.31)

2It means that for any [x1, x2] ⊂ ]0,+∞[ , the restriction of f to the set [0, ω] × [x1, x2] is

a Carathéodory function.
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Let

f0(t, x) := f(t, x)− f(t, x1) for a. e. t ∈ [0, ω] and all x ≥ x1.

Then, in view of conditions (3.30) and (3.31), it follows from Lemmas 3.8 and 3.10
with `(t) := f0(t, x) that

p+
1

2
f0(·, x) ∈ IntD(ω) for x > x1. (3.32)

We will show that there exists x2 > x1 such that

p+
1

2
f0(·, x2) ∈ IntV+(ω) (3.33)

holds. Indeed, assume on the contrary that (3.33) is violated for every x2 > x1.
Then there is a sequence {yn}+∞n=1 ⊂ ]x1,+∞[ such that limn→+∞ yn = x1 and

p+
1

2
f0(·, yn) 6∈ IntV+(ω) for n ∈ N.

In view of (3.32), it follows from Lemma 3.8 that p + 1
2 f0(·, yn) ∈ V−(ω) ∪ V0(ω)

for n ∈ N and thus, taking into account that the function f0 is continuous in the
second argument, we get

p+
1

2
f0(·, x1) ∈ V−(ω) ∪ V0(ω).

However, p + 1
2 f0(·, x1) = p. Consequently, Lemma 3.1 then yields p ∈ V−(ω) ∪

V0(ω) which contradicts the assumption p ∈ V+(ω). The contradiction obtained
proves that (3.33) holds with some x2 > x1.

Now let ν > 0 be the number appearing in the assertion of Lemma 3.5 with
g(t) := p(t)+ 1

2 f0(t, x2). According to assumption (3.28), there exists K ≥ x2 such
that ∫ ω

0

f0(s, x)ds ≥ 3

ν
for x ≥ K. (3.34)

Let x ≥ K be arbitrary. Then, in view of (3.30) and (3.33), it follows from
Lemma 3.5 that the problem

γ′′ =
(
p(t) +

1

2
f0(t, x2)

)
γ + f0(t, x); γ(0) = γ(ω), γ′(0) = γ′(ω) (3.35)

has a unique solution γ and

γ(t) ≥ ν
∫ ω

0

f0(s, x)ds for t ∈ [0, ω].

Hence, on account of (3.34), we get γ(t) ≥ 3 for t ∈ [0, ω]. Therefore, taking (3.14),
(3.29), and (3.31) into account, from (3.35) we obtain

γ′′(t) ≤
(
p(t) +

1

2
f0(t, x2) +

1

3
f0(t, x)

)
γ(t)

≤
(
p(t) + f0(t, x)

)
γ(t)

≤
(
p(t) + f(t, x)

)
γ(t) for a. e. t ∈ [0, ω],

and

meas{t ∈ [0, ω] : γ′′(t) < (p(t) + f(t, x))γ(t)} > 0.

The assertion of the proposition follows now from Lemma 3.6 with g(t) := p(t) +
f(t, x). �
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The last three statements deal with the existence of functions α and β appearing
in Lemma 3.12 with f(t, x) := p(t)x + q(t, x)x, which are usually called lower and
upper functions of problem (1.1), respectively.

Proposition 3.15. Let ` 6∈ V−(ω) ∪ V0(ω). Then for any c > 0, there exists
a function α ∈ AC 1([0, ω]) such that

0 < α(t) ≤ c for t ∈ [0, ω] (3.36)

and

α′′(t) ≥ `(t)α(t) for a. e. t ∈ [0, ω], α(0) = α(ω), α′(0) = α′(ω). (3.37)

Proof. Let c > 0 be arbitrary. According to Lemma 3.3, there exists a non-negative
function h ∈ L([0, ω]) such that ` + h ∈ IntV+(ω). Let ν,∆ > 0 be numbers
appearing in the assertion of Lemma 3.5 with g(t) := `(t) + h(t). Then it follows
from Lemma 3.5 that the problem

α′′ =
(
`(t) + h(t)

)
α+

c

∆ω
; α(0) = α(ω), α′(0) = α′(ω)

has a unique solution α and
ν

∆
c ≤ α(t) ≤ c for t ∈ [0, ω].

Consequently, in view of inequality (3.3), the function α satisfies relations (3.36)
and (3.37). �

Proposition 3.16. Let p 6∈ V−(ω)∪V0(ω) and q : [0, ω]×R→ R be a Carathéodory
function satisfying

q(t, 0) = 0 for a. e. t ∈ [0, ω]. (3.38)

Then for any c > 0, there exists a function α ∈ AC 1([0, ω]) such that relation (3.36)
holds and

α′′(t) ≥ p(t)α(t) + q(t, α(t))α(t) for a. e. t ∈ [0, ω], (3.39)

α(0) = α(ω), α′(0) = α′(ω). (3.40)

Proof. Since q is a Carathéodory function with property (3.38), there exist a non-
negative function h ∈ L([0, ω]) and a non-negative, non-decreasing function ϕ ∈
C([0,+∞[) such that ϕ(0) = 0 and

|q(t, x)| ≤ h(t)ϕ(|x|) for a. e. t ∈ [0, ω] and all x ∈ R, |x| ≤ 1. (3.41)

We first show that there is ε0 ∈ ]0, 1] such that

p+ hϕ(ε) 6∈ V−(ω) ∪ V0(ω) for every ε ∈ ]0, ε0]. (3.42)

Indeed, assume on the contrary that there exists a sequence {εn}+∞n=1 of numbers
from the interval ]0, 1] such that

p+ hϕ(εn) ∈ V−(ω) ∪ V0(ω) for n ∈ N, lim
n→+∞

εn = 0.

Since ϕ(0) = 0, it is clear that

lim
n→+∞

∫ ω

0

|h(s)ϕ(εn)|ds = 0.

Consequently, we have p ∈ V−(ω) ∪ V0(ω) which, by virtue of Lemma 3.1, contra-
dicts the assumption p 6∈ V−(ω) ∪ V0(ω).
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Now let c > 0 be arbitrary and δ := min{ε0, c}. Then, in view of (3.42), it
follows from Proposition 3.15 with `(t) := p(t)+h(t)ϕ(δ) that there exists a function
α ∈ AC 1([0, ω]) such that

0 < α(t) ≤ δ for t ∈ [0, ω]

and

α′′(t) ≥
(
p(t) + h(t)ϕ(δ)

)
α(t) for a. e. t ∈ [0, ω], α(0) = α(ω), α′(0) = α′(ω).

Taking now into account that the function ϕ is non-decreasing and inequality (3.41)
holds, we easily conclude that the function α satisfies relations (3.36), (3.39), and
(3.40). �

Proposition 3.17. Let p 6∈ V−(ω)∪V0(ω) and q : [0, ω]×R→ R be a Carathéodory
function satisfying hypothesis (H1). Let, moreover, there exist r > 0 such that

p+ q0(·, r) ∈ V−(ω). (3.43)

Then for any c ≥ r, there exists a function β ∈ AC 1([0, ω]) satisfying inequalities
(2.3) and

β(0) = β(ω), β′(0) = β′(ω), (3.44)

β(t) ≥ c for t ∈ [0, ω]. (3.45)

Proof. Let ν > 0 be the number appearing in the assertion of Lemma 3.4 with
g(t) := p(t) + q0(t, r) and let c ≥ r be arbitrary. Then, in view of inclusion (3.43),
it follows from Lemma 3.4 that the problem

β′′ =
(
p(t) + q0(t, r)

)
β − c

νω
; β(0) = β(ω), β′(0) = β′(ω)

has a unique solution β and this solution satisfies inequality (3.45). Consequently,
(3.44) holds and since c ≥ r, hypothesis (H1) guarantees that the function β satisfies
condition (2.3), as well. �

4. Proofs of Main Results

Proof of Theorem 2.1. According to Proposition 3.16, there exists a function α ∈
AC `([0, ω]) satisfying relations (3.39), (3.40), and

0 < α(t) ≤ β(t) for t ∈ [0, ω]. (4.1)

Consequently, all the assumptions of Lemma 3.12 with f(t, x) := p(t)x + q(t, x)x,
a := 0, and b := ω are fulfilled and thus, problem (1.1) has at least one positive
solution u such that relation (2.5) holds. �

Proof of Corollary 2.2. By virtue of Theorem 2.1, to prove the corollary it is suffi-
cient to show that, in both cases (a) and (b), there exists a function β ∈ AC u([0, ω])
satisfying relations (2.2), (2.3), and (2.4).

If condition (a) is fulfilled then it is clear that the constant function β(t) := c
satisfies (2.2), (2.3), and (2.4).

On the other hand, if condition (b) holds then the existence of a function β
fulfilling (2.2), (2.3), and (2.4) follows from Proposition 3.17. �
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Proof of Corollary 2.3. Since the function q0(t, ·) in hypothesis (H1) is non-decreasing
for a. e. t ∈ [0, ω] and relation (2.7) holds, it follows from Proposition 3.13 with
f(t, x) := q0(t, x) that there exists r > 0 such that p + q0(·, r) ∈ V−(ω). Conse-
quently, the assertion of the corollary follows from Corollary 2.2(b). �

Proof of Corollary 2.6. Assume that condition (2.11) is satisfied. Since the function
q0(t, ·) in hypothesis (H1) is non-decreasing for a. e. t ∈ [0, ω] and relations (2.9)
and (2.10) hold, it follows from Proposition 3.14 with f(t, x) := q0(t, x) that there
exists r ≥ x0 such that p + q0(·, r) ∈ V−(ω). Consequently, the assertion of the
corollary follows from Corollary 2.2(b). �

Proof of Proposition 2.9. Assume on the contrary that condition (2.13) is violated.
Then it is clear that either

u(t) > 0 for t ∈ [0, ω],

or
max{u(t) : t ∈ [0, ω]} > 0, min{u(t) : t ∈ [0, ω]} ≤ 0, (4.2)

or

u(t) ≤ 0 for t ∈ [0, ω], u(t0) = 0 for some t0 ∈ [0, ω], u 6≡ 0. (4.3)

First assume that u is positive on [0, ω]. Then there are numbers u∗ > u∗ > 0
such that

u∗ ≤ u(t) ≤ u∗ for t ∈ [0, ω]

and thus, by virtue of hypothesis (H2), we have

q(t, u(t)) ≥ hu∗u∗(t) ≥ 0 for a. e. t ∈ [0, ω]. (4.4)

However, it means that u is a positive function satisfying relations (1.7) and conse-
quently, p 6∈ V−(ω) as follows from Definition 1.3. Further, we show that p 6∈ V0(ω).
Suppose on the contrary that problem (1.8) has a positive solution u0. Then, by
virtue of Fredholm’s third theorem and condition (4.4), we get the contradiction

0 =

∫ ω

0

q(s, u(s))u(s)u0(s)ds ≥ c0
∫ ω

0

hu∗u∗(s)ds > 0,

where c0 := min{u(t)u0(t) : t ∈ [0, ω]}. Hence, we have proved that p 6∈ V−(ω) ∪
V0(ω) in this case, which contradicts the assumption p ∈ V−(ω) ∪ V0(ω) of the
proposition.

Now assume that (4.2) holds. Extend the functions u, p, and q(·, x) periodically
to the whole real axis and denote them by the same symbols. Then there are a < b
such that b− a ≤ ω and

u(t) > 0 for t ∈ ]a, b[ , u(a) = 0, u(b) = 0. (4.5)

Moreover, it follows from hypothesis (H2) that

q(t, x) ≥ 0 for a. e. t ∈ [a, b] an all x ≥ 0.

Consequently, from the equation in (1.1) we get

u′′(t) = p(t)u(t) + q(t, u(t))u(t) ≥ p(t)u(t) for a. e. t ∈ [a, b].

Therefore, Lemmas 3.8 and 3.11 (with g(t) := p(t)) yield that the inequality

u(t) ≤ 0 for t ∈ [a, b]

holds which contradicts (4.5).
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Finally assume that (4.3) is satisfies. Then the function u is a solution to the
initial value problem

w′′ =
(
p(t) + q(t, u(t))

)
w; w(t0) = 0, w′(t0) = 0. (4.6)

Consequently, we have u ≡ 0 which contradicts (4.3). �

Proof of Corollary 2.10. It is clear that hypothesis (H1) holds with q0(t, x) :=
q(t, x). Therefore, if (2.1) is fulfilled and there exists r > 0 such that p + q(·, r) ∈
V−(ω), then it follows from Corollary 2.2(b) that problem (1.1) has at least one
positive solution.

Now suppose that problem (1.1) possesses a positive solution u. In view of
assumptions (2.14), (2.15), and q(·, 0) ≡ 0, the function q satisfies hypothesis (H2).
Hence, Proposition 2.9 guarantees that p 6∈ V0(ω) ∪ V−(ω). Moreover, by virtue of
assumptions (2.14) and (2.16), there exists r > 0 such that

q(t, u(t)) ≤ q(t, r) for a. e. t ∈ [0, ω], q(·, u(·)) 6≡ q(·, r).

Therefore, from (1.1) we get

u′′(t) ≤
(
p(t) + q(t, r)

)
u(t) for a. e. t ∈ [0, ω],

meas
{
t ∈ [0, ω] : u′′(t) <

(
p(t) + q(t, r)

)
u(t)

}
> 0

and thus, Lemma 3.6 with g(t) := p(t) + q(t, r) and γ(t) := u(t) yields that p +
q(·, r) ∈ V−(ω). �

Proof of Theorem 2.11. According to hypothesis (H3), one can show that

the function q(t, ·) : [0,+∞[→ R is non-decreasing for a. e. t ∈ [0, ω]. (4.7)

Assume on the contrary that u and w are positive solutions to (1.1) satisfying

u(t0) > w(t0) (4.8)

for some t0 ∈ [0, ω].
We first show that there exist t1, t2 ∈ [0, ω] and a solution v to problem (1.1)

such that t1 < t2 and

u(t) ≥ v(t) > 0 for t ∈ [0, ω], u(t) > v(t) for t ∈ [t1, t2]. (4.9)

Indeed, it is clear that either

u(t) > w(t) for t ∈ [0, ω] (4.10)

or

u(t∗) = w(t∗) for some t∗ ∈ [0, ω]. (4.11)

If condition (4.10) holds then inequalities (4.9) are obviously satisfied with v(t) :=
w(t), t1 := 0, and t2 := ω. Therefore, suppose that condition (4.11) is fulfilled.
Extend the functions u, w, p, and q(·, x) periodically to the whole real axis and
denote them by the same symbols. Then, in view of (4.8), there exist a, τ ∈ R such
that a < t0 < τ ≤ a+ ω and

u(t) > w(t) for t ∈ ]a, τ [ , u(a) = w(a), u(τ) = w(τ). (4.12)

Put

β0(t) :=

{
w(t) for t ∈ [a, τ [ ,

u(t) for t ∈ [τ, a+ ω].
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By virtue of (4.12), it is not difficult to verify that β0 ∈ AC u([a, a+ ω]),

β0(a) = β0(a+ ω), β′0(a) ≤ β′0(a+ ω), (4.13)

and

0 < β0(t) ≤ u(t) for t ∈ [a, a+ ω], β0(t) < u(t) for t ∈ ]a, τ [ . (4.14)

Moreover, we have

β′′0 (t) = p(t)β0(t) + q(t, β0(t))β0(t) for a. e. t ∈ [a, a+ ω] (4.15)

because both the functions u and v are solutions to problem (1.1). On the other
hand, according to Proposition 3.16, there exists a function α ∈ AC 1([0, ω]) satis-
fying relations (3.39), (3.40), and

0 < α(t) ≤ min{β0(s) : s ∈ [a, a+ ω]} for t ∈ [0, ω]. (4.16)

Extend the function α periodically to the whole real axis and denote it by the same
symbol. Then, by virtue of relations (3.39), (3.40), (4.13), and (4.15), it follows
from Lemma 3.12 with f(t, x) := p(t)x+ q(t, x)x, β(t) := β0(t), and b := a+ω that
there exists a function v ∈ AC 1([a, a+ ω]) satisfying

v′′(t) = p(t)v(t) + q(t, v(t))v(t) for a. e. t ∈ [a, a+ ω],

v(a) = v(a+ ω), v′(a) = v′(a+ ω),

and

α(t) ≤ v(t) ≤ β0(t) for t ∈ [a, a+ ω].

However, in view of (4.14) and (4.16), the latter relation yields that

0 < v(t) ≤ u(t) for t ∈ [a, a+ ω], v(t) < u(t) for t ∈ ]a, τ [ .

If we extend the function v periodically to the whole real axis and denote it by the
same symbols, we easily conclude that the restriction of v to the interval [0, ω] is a so-
lution to problem (1.1) satisfying desired condition (4.9) with t1 := max{0, a+t0

2 }
and t2 := min{ω, t0+τ

2 }.
Now it follows from relation (4.9) that there exist positive numbers v∗, v∗, e0

such that

u(t) ≥ v(t) + e0, v∗ ≤ v(t) ≤ v∗ for t ∈ [t1, t2]. (4.17)

Therefore, in view of conditions (4.7), (4.9) and hypothesis (H3), we get

q(t, u(t)) ≥ q(t, v(t)) for a. e. t ∈ [0, ω] (4.18)

and

q(t, u(t))− q(t, v(t)) ≥ q(t, v(t) + e0)− q(t, v(t)) ≥ hv∗v∗e0(t) (4.19)

for a. e. t ∈ [t1, t2]. On the other hand, it follows immediately from the equation in
(1.1) that u and v are periodic solutions, respectively, to the equations

z′′ =
(
p(t) + q(t, v(t))

)
z +

[
q(t, u(t))− q(t, v(t))

]
u(t),

z′′ =
(
p(t) + q(t, v(t))

)
z

(4.20)

and thus, by virtue of (4.17), (4.18), and (4.19), Fredholm’s third theorem yields
the contradiction

0 =

∫ ω

0

[
q(s, u(s))− q(s, v(s))

]
u(s)v(s)ds
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≥
∫ t2

t1

[
q(s, u(s))− q(s, v(s))

]
u(s)v(s)ds ≥ (v∗ + e0)v∗

∫ t2

t1

hv∗v∗e0(s)ds > 0.

�

Proof of Theorem 2.12. According to hypothesis (H ′3), one can show that condition
(4.7) holds, which together with assumption (2.17) yields that

q(t, x) ≥ 0 for a. e. t ∈ [0, ω] and all x ≥ 0. (4.21)

We first show that problem (1.1) has at most one positive solution. Assume on
the contrary that u and v are positive solutions to (1.1) such that u(t∗) > v(t∗) for
some t∗ ∈ [0, ω]. It is clear that either

u(t) > v(t) for t ∈ [0, ω] (4.22)

or

u(t0) = v(t0) for some t0 ∈ [0, ω]. (4.23)

Suppose that (4.22) is satisfied. Then there exist positive numbers v∗, v∗, e0

such that

u(t) ≥ v(t) + e0, v∗ ≤ v(t) ≤ v∗ for t ∈ [0, ω]. (4.24)

Therefore, in view of condition (4.7) and hypothesis (H ′3), for a. e. t ∈ [0, ω] we get

q(t, u(t))− q(t, v(t)) ≥ q(t, v(t) + e0)− q(t, v(t)) ≥ hv∗v∗e0(t). (4.25)

On the other hand, it follows immediately from the equation in (1.1) that u and v
are periodic solutions, respectively, to equations (4.20) and thus, by virtue of (4.24)
and (4.25), Fredholm’s third theorem yields the contradiction

0 =

∫ ω

0

[
q(s, u(s))− q(s, v(s))

]
u(s)v(s)ds ≥ (v∗ + e0)v∗

∫ ω

0

hv∗v∗e0(s)ds > 0.

Now suppose that (4.23) holds. Extend the functions u, v, p, and q(·, x) pe-
riodically to the whole real axis and denote them by the same symbols. Then
either

(i) there exists a ∈ [0, ω[ such that

u(t) > v(t) for t ∈ ]a, a+ ω[ , u(a) = v(a), (4.26)

or

(ii) there are a < b such that b− a < ω, u(a) = v(a), u(b) = v(b), and

u(t) > v(t) for t ∈ ]a, b[ . (4.27)

Put

w(t) := u(t)− v(t) for t ∈ R.
In the case (i), in view of conditions (4.7) and (4.26), it follows from the equation

in (1.1) that w(a) = 0, w(a+ ω) = 0,

w′′(t) =
(
p(t) + q(t, v(t))

)
w(t) +

[
q(t, u(t))− q(t, v(t))

]
u(t)

≥
(
p(t) + q(t, v(t))

)
w(t) for a. e. t ∈ [a, a+ ω],

(4.28)

and

w(t) > 0 for ]a, a+ ω[ . (4.29)

Since the function v is positive, from (4.21) and hypothesis (H ′3) we get

q(t, v(t)) ≥ q(t, δ) ≥ q(t, δ)− q(t, δ/2) ≥ h δ
2 δ

δ
2
(t) for a. e. t ∈ [0, ω],
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where δ := min{v(t) : t ∈ [0, ω]} and thus, we have

q(t, v(t)) ≥ 0 for a. e. t ∈ [0, ω], q(·, v(·)) 6≡ 0.

Hence, Lemmas 3.8 and 3.10 (with `(t) := q(t, v(t))) yield that p + q(·, v(·)) ∈
IntD(ω). Consequently, in view of Lemma 3.11 (with g(t) := p + q(·, v(·)) and
b := a+ω), from (4.28) we get w(t) ≤ 0 for t ∈ [a, a+ω] which is in a contradiction
with (4.29).

In the case (ii), by virtue of conditions (4.7), (4.21), and (4.27), it follows from
the equation in (1.1) that

w′′(t) = p(t)w(t) +
[
q(t, u(t))− q(t, v(t))

]
u(t) + q(t, v(t))

[
u(t)− v(t)

]
≥ p(t)w(t)

for a. e. t ∈ [a, b]. Consequently, taking Lemmas 3.8 and 3.11 (with g(t) := p(t))
into account, we get inequality (3.12) which is in a contradiction with (4.27).

It remains to show that any non-trivial solution to problem (1.1) is either positive
or negative. Assume on the contrary that u is a non-trivial solution to problem
(1.1) such that u(t0) = 0 for some t0 ∈ [0, ω]. Extend the functions u, p, and q(·, x)
periodically to the whole real axis and denote them by the same symbols. It is clear
that either

(a) there exists i ∈ {0, 1} such that

(−1)iu(t) ≥ 0 for t ∈ R,

or

(b) there are a < b such that b− a < ω and (4.5) holds.

In the case (a), the function u is a non-trivial solution to problem (4.6) which is
a contradiction.

In the case (b), in view of conditions (4.5) and (4.21), from the equation in (1.1)
we get

u′′(t) = p(t)u(t) + q(t, u(t))u(t) ≥ p(t)u(t) for a. e. t ∈ [a, b].

Therefore, Lemmas 3.8 and 3.11 (with g(t) := p(t)) yield that the inequality

u(t) ≤ 0 for t ∈ [a, b]

holds which contradicts (4.5). �

Proof of Theorem 2.16. Let u be a non-trivial solution to problem (1.1). Assume
on the contrary that u has a zero on the interval [0, ω]. Then it is clear that either

(a) there exist t0 ∈ [0, ω] and i ∈ {0, 1} such that

(−1)iu(t) ≥ 0 for t ∈ [0, ω], u(t0) = 0,

or

(b)

max{u(t) : t ∈ [0, ω]} > 0, min{u(t) : t ∈ [0, ω]} < 0.

If condition (a) holds, then the function u is a non-trivial solution to problem (4.6)
which is a contradiction.

Therefore, suppose that condition (b) is satisfied. We first show that the function
u has a finite number of zeros in the interval [0, ω]. Indeed, assume that {tn}+∞n=1 ⊂
[0, ω] and t0 ∈ [0, ω] are such that

tn 6= tn+1, u(tn) = 0 for n ∈ N, lim
n→+∞

tn = t0.
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Then we have u(t0) = 0, u′(t0) = 0 and thus, the function u is a non-trivial
solution to problem (4.6), which is a contradiction. Consequently, it follows from
assumptions (2.21), (2.22) and Remark 2.17 that

q(t, u(t)) ≥ 0 for a. e. t ∈ [0, ω], q(·, u(·)) 6≡ 0 on [0, ω]. (4.30)

Now we extend the functions u, p, and q(·, x) periodically to the whole real axis and
denote them by the same symbols. Then there exist a ∈ [0, ω[ and τ1, τ2 ∈ ]a, a+ω[
such that τ1 ≤ τ2,

u(t) > 0 for t ∈ ]a, τ1[ , u(a) = 0, u(τ1) = 0, (4.31)

and
u(t) < 0 for t ∈ ]τ2, a+ ω[ , u(τ2) = 0, u(a+ ω) = 0. (4.32)

Let v1 and v2 be solutions to the equation

v′′ = p(t)v (4.33)

satisfying the initial conditions

v(a) = 0, v′(a) = 1 (4.34)

and
v(a+ ω) = 0, v′(a+ ω) = 1, (4.35)

respectively. It follows from (1.1) and (4.33) that(
u′(t)vk(t)− u(t)v′k(t)

)′
= q(t, u(t))u(t)vk(t) for a. e. t ∈ R, k = 1, 2. (4.36)

We show that there exists ζ1 ∈ ]a, τ1] such that

v1(t) > 0 for t ∈ ]a, ζ1[ , v1(ζ1) = 0. (4.37)

Indeed, if v1(t) > 0 for t ∈ ]a, τ1] then, in view of (4.30), (4.31), and (4.34), equality
(4.36) yields that

u′(τ1)v1(τ1) =

∫ τ1

a

q(s, u(s))u(s)v1(s)ds ≥ 0.

However, from the latter inequality we get u′(τ1) ≥ 0 which is in a contradiction
with (4.31). Therefore, (4.37) holds and, moreover,

if q(·, u(·)) 6≡ 0 on [a, τ1] then ζ1 < τ1. (4.38)

Analogously one can show that there exists ζ2 ∈ [τ2, a+ ω [ such that

v2(t) < 0 for t ∈ ]ζ2, a+ ω[ , v2(ζ2) = 0, (4.39)

and
if q(·, u(·)) 6≡ 0 on [τ2, a+ ω] then τ2 < ζ2. (4.40)

Observe that, by virtue of conditions (4.30) (4.38), and (4.40), we have ζ1 < ζ2.
Therefore, if solutions v1 and v2 are not linearly independent then condition

(4.39) yields that v1(ζ2) = 0. On the other hand, if solutions v1 and v2 are linearly
independent then, in view of condition (4.39), it follows from Sturm’s separation
theorem that there exists a point ζ3 ∈ ]ζ2, a+ω[ such that v1(ζ3) = 0. Consequently,
in both cases, the solution v1 to problem (4.33), (4.34) has at least two zeros in the
interval ]a, a+ ω[ , which contradicts the assumption p ∈ D1(ω). �

Proof of Theorem 2.19. The assertion of the theorem immediately follows from
Corollary 2.2(a) with q(t, x) := h(t)ϕ(x). �
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Proof of Theorem 2.20. Let

q(t, x) := h(t)ϕ(x) for a. e. t ∈ [0, ω] and all x ∈ R. (4.41)

It is clear that q is a Carathéodory function satisfying q(·, 0) ≡ 0.
Put

ψ(x) := min
{
ϕ(z) : z ∈ [x,+∞[

}
for x ≥ 0. (4.42)

One can easily verify that the function ψ is well defined. Moreover, the function ψ
is continuous, non-decreasing and satisfies

ϕ(x) ≥ ψ(x) for x ≥ 0, lim
x→+∞

ψ(x) = +∞. (4.43)

Consequently, in view of assumption (2.25), the function q satisfies hypothesis (H1)
with q0(t, x) := h(t)ψ(x) and condition (2.7) is fulfilled. Therefore, Corollary 2.3
guarantees that problem (2.24) has a positive solution u. If, in addition, the function
ϕ is increasing on [0,+∞[ then q satisfies hypothesis (H3) and thus, u is the unique
positive solution to (2.24) as follows from Theorem 2.11. �

Proof of Theorem 2.24. Let the function q be defined by formula (4.41) and the
function ψ by relation (4.42). One can easily verify that the function ψ is well
defined, continuous, non-decreasing, and satisfies relations (4.43). Moreover, it is
clear that there exists x0 > 0 such that

ψ(x0) ≥ 0. (4.44)

Consequently, in view of (2.30), (4.43), and (4.44), the function q satisfies hypoth-
esis (H1) with q0(t, x) := h(t)ψ(x) and conditions (2.9) and (2.10) hold. Therefore,
Corollary 2.6 guarantees that problem (2.24) has a positive solution u. If, in ad-
dition, the function ϕ is increasing on [0,+∞[ then q satisfies hypothesis (H ′3).
Therefore, it follows from Theorem 2.12 that u is the unique positive solution and
problem (2.24) has no sign-changing solution. �

Proof of Theorem 2.25. Observe that if u is a solution to problem (2.31) then the
function −u is its solution, as well. Hence, Theorem 2.20 yields that

if p 6∈ V−(ω) ∪ V0(ω), then problem (2.31) has a unique

positive solution and a unique negative solution.
(4.45)

Put
q(t, x) := h(t)ϕ(|x|) for a. e. t ∈ [0, ω] and all x ∈ R. (4.46)

It is clear that, in view of (2.25), the function q satisfies hypothesis (H2) and
conditions (2.21) and (2.23) with E := {t ∈ [0, ω] : h(t) > 0}. Therefore, assertion
(1) can be easily derived from Proposition 2.9 and assertion (2) is a consequence of
(4.45) and Theorem 2.16 (see also Remark 2.17). Finally, in view of Remark 2.15,
assertion (3) follows immediately from (4.45). �

Proof of Theorem 2.26. Observe that if u is a solution to problem (2.31) then the
function −u is its solution, as well. Hence, assertion (2) follows immediately from
Theorem 2.24.

Let the function q be defined by formula (4.46). It is clear that, in view of
(2.30), the function q satisfies hypothesis (H2) and conditions (2.21) and (2.23)
with E := {t ∈ [0, ω] : h(t) > 0}. Therefore, assertion (1) can be easily derived
from Proposition 2.9 and assertion (3) is a consequence of Theorem 2.16 (see also
Remark 2.17). �
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Proof of Corollary 2.28. It is clear that problem (1.5) is a particular case of (2.31),
where ϕ(x) := xλ−1 for x ≥ 0. Therefore, the assertions of the corollary follow
immediately from Theorem 2.25. �

Proof of Corollary 2.31. It is clear that problem (1.5) is a particular case of (2.31),
where ϕ(x) := xλ−1 for x ≥ 0. Therefore, the assertions of the corollary follow
immediately from Theorem 2.26. �

Proof of Theorem 2.33. Put

q(t, x) := h(t)|x|λ−1 + f(t)|x|µ−1 for a. e. t ∈ [0, ω] and all x ∈ R. (4.47)

By virtue of assumptions (2.30) and (2.34), we have

q(t, x) ≥ xµ−1
(
h(t)xλ−µ − [f(t)]−

)
≥ h(t)xµ−1

(
xλ−µ − c

)
≥ h(t)ψ(x) for a. e. t ∈ [0, ω] and all x ≥ 0,

where

ψ(x) :=


−λ−µλ−1

[
µ−1
λ−1

] µ−1
λ−µ

c
λ−1
λ−µ for 0 ≤ x ≤

[
µ−1
λ−1 c

] 1
λ−µ

,

xµ−1
(
xλ−µ − c

)
for x >

[
µ−1
λ−1 c

] 1
λ−µ

.

Consequently, the function q satisfies q(·, 0) ≡ 0 and hypothesis (H1) with q0(t, x) :=
h(t)ψ(x). Moreover, inequality (2.10) holds with x0 := cµ−λ and, in view of (2.30),
condition (2.9) is fulfilled. Therefore, the assertion of the theorem follows from
Corollary 2.6. �

Proof of Theorem 2.35. Let the function q be defined by formula (4.47). It is clear
that q(·, 0) ≡ 0 and, in view of assumption (2.25), we get

q(t, x) ≥ h(t)xµ−1

(
xλ−µ − [f(t)]−

h(t)

)
for a. e. t ∈ [0, ω] and all x ≥ 0.

Now for a. e. t ∈ [0, ω] and all x ≥ 0, we put

q0(t, x) :=


−λ−µλ−1

[
µ−1
λ−1

] µ−1
λ−µ

[f(t)]
λ−1
λ−µ
− h−

µ−1
λ−µ (t) if 0 ≤ x ≤

[
µ−1
λ−1

[f(t)]−
h(t)

] 1
λ−µ

,

h(t)xλ−1 − [f(t)]−xµ−1 if x >
[
µ−1
λ−1

[f(t)]−
h(t)

] 1
λ−µ

.

Then, by virtue of assumption (2.36), one can verify that q0 : [0, ω]× [0,+∞[→ R
is a Carathéodory function and hypothesis (H1) holds. Moreover, the function q0

satisfies (2.8) which, in view of Remark 2.4, yields that (2.7) is fulfilled. Therefore,
the assertion of the theorem follows from Corollary 2.3. �
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