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ON THE Lq-SOLUTION OF THE OSEEN-BRINKMAN
TRANSMISSION PROBLEM AROUND A SOLID

(m− 1)-DIMENSIONAL OBSTACLE

MIRELA KOHR∗, DAGMAR MEDKOVÁ†, AND WOLFGANG L. WENDLAND

Abstract. The purpose of this paper is to develop a layer potential analysis

in order to show the well-posedness result of a crack type transmission problem

for the Oseen and Brinkman systems in open sets in Rm (m ∈ {2, 3}) with
Lipschitz boundaries when the boundary data belong to some Lq-spaces.

1. Introduction

The layer potential methods have a well known role in the analysis of elliptic
boundary value problems (see, e.g., [2, 5, 7, 14, 18, 19, 31]). Escauriaza and Mitrea
[8] have developed a layer potential analysis for the transmission problems of the
Laplace operator on Lipschitz domains in Euclidean setting. Fabes, Kenig and Ver-
chota [9] have developed a layer potential method in order to show the solvability of
the Dirichlet problem for the Stokes system on Lipschitz domains in Rn, n ≥ 3, with
L2-boundary data. Dahlberg, Kenig and Verchota [6] have studied the Dirichlet
and Neumann problems for the Lamé system in Lipschitz domains in Rn (n ≥ 3).
Mitrea and Wright [34] have exploited layer potential methods in order to analyze
the main boundary value problems for the Stokes system in arbitrary Lipschitz
domains in Rn, n ≥ 2. In [29] the author has obtained existence and uniqueness
results for L2-solutions of the transmission problem, the Robin-transmission prob-
lem and the Dirichlet-transmission problem for the Brinkman system in Lipschitz
domains in Rn (n ≥ 3), by using the integral equation method. Mitrea, Mitrea and
Qiang [33] have used layer potential theoretic methods to obtain well-posedness
results for variable coefficient transmission problems in Lipschitz domains on non-
smooth manifolds. The authors in [16] have used a layer potential theoretic method
in order to show the well-posedness of a mixed-transmission problem for two (lin-
ear) Brinkman systems on two adjacent Lipschitz domains in Rn (n ≥ 3) with
linear transmission conditions on the interface between these domains and linear
mixed Dirichlet-Robin conditions on another interface, which is the boundary of a
bounded creased Lipschitz domain (see also [17]).

2000 Mathematics Subject Classification. Primary 35J25, 42B20, 46E35; Secondary 76D, 76M.
Key words and phrases. Crack type transmission problem, Lq-solution, Oseen system,

Brinkman system, Lipschitz domains, layer potential operators, existence and uniqueness results.
∗The work of Mirela Kohr was supported by a grant of the Romanian National Authority for

Scientific Research, CNCS - UEFISCDI, project number PN-II-ID-PCE-2011-3-0994. Part of this
work was done in August 2014, when M. Kohr visited the Department of Mathematics of the

University of Toronto. She is grateful to the members of this department for their hospitality
during that visit.
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Chkadua, Mikhailov and Natroshvili [3] have used localized direct segregated
boundary-domain integral equations for variable coefficient transmission problems
with interface crack corresponding to scalar second order elliptic partial differential
equations in a bounded composite domain consisting of adjacent anisotropic subdo-
mains having a common interface surface. The same authors in [4] have analyzed
segregated direct boundary-domain integral equation (BDIE) systems associated
with mixed, Dirichlet and Neumann boundary value problems (BVPs) for a scalar
partial differential equation with variable coefficients of the Laplace type for do-
mains with interior cuts (cracks). The authors have established the equivalence
of BDIE’s to such boundary value problems and the invertibility of the BDIE op-
erators in the corresponding Sobolev spaces (see also [2]). Buchukuri, Chkadua,
Duduchava and Natroshvili [1] have investigated three-dimensional interface crack
problems for metallic-piezoelectric composite bodies with regard to thermal effects.
Krutitskii [20, 21, 22, 23, 24] has studied boundary value problems for the Laplace
equation on domains with cracks, by means of integral equation methods. A bound-
ary problem with jump conditions of Robin type for the Stokes system has been
studied in [30]. A boundary value problem with jump conditions of the Robin type
for the Stokes system has been studied in [30]. A three-dimensional Stokes flow
exterior to an open surface has been studied in [45] by means of a layer poten-
tial method. The authors in [44] have studied hypersingular integral equations on a
curved open smooth arc in R2 that model either curved cracks in an elastic medium
or the scattering of acoustic and elastic waves at a hard screen.

In this paper we develop a layer potential analysis in order to show the well-
posedness result of a crack type transmission problem for the Oseen and Brinkman
systems in open sets in Rm (m ∈ {2, 3}) with Lipschitz boundaries when the bound-
ary data belong to some Lq-spaces. The paper is organized as follows. The next
section is devoted to some preliminaries results and to the formulation of the crack
type transmission problem for the Oseen and Brinkman systems (see (2.4)-(2.9)),
which will be investigated below, as well as to the definition of an Lq-solution of
such a problem. Next, we present the main results of layer potential theory for
the Stokes, Brinkman and Oseen systems on Lipschitz domains in Euclidean set-
ting. The last section is devoted to the study of the solvability of the transmission
problem with crack (2.4)-(2.9) in Lq spaces, with q ∈ (1, q0), for some q0 > 2,
by using a layer potential theoretic method. Our study is motivated by various
applications, such as the transport in micro-cracked rocks or reservoirs, which re-
quire the analysis of the fluid flows in porous media containing cracks or fractures.
The cracks influence the permeability of fractured rocks and porous materials (for
further applications we refer the reader to [36] and the references therein).

2. Preliminaries

Let Ω ⊆ Rm (m ∈ {2, 3}) be an open set with compact Lipschitz boundary. Let
a > 0. If x ∈ ∂Ω, then

Γ(x) = Γa(x) := {y ∈ Ω : |x− y| < (1 + a)dist(y, ∂Ω)}

denotes the nontangential approach region of opening a at the point x. Also, for a
given v : Ω → Rm, the nontangential maximal function of v at x is defined by

v∗(x) := sup{|v(y)| : y ∈ Γ(x)}.
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It is well known that if q ∈ [1,∞) and v∗ ∈ Lq(∂Ω) for one choice of a, then
such a property holds for arbitrary choice of a (see, e.g., [12, 31] and [39, p. 62]).
Moreover, |v| ∈ Lq(ω) for any bounded open subset ω of Ω (see [32, Lemma 4.1]).
Next, define the nontangential limit of v at x ∈ ∂Ω by

Tr v(x) = TrΩv(x) := lim
Γ(x)3 y→x

v(y)

whenever such a limit exists. If v is defined in Rm \ ∂Ω, we denote by TrΩ±v the
nontangential limit of v with respect to Ω+ = Ω and Ω− := Rm \ Ω, respectively.

2.1. Crack type transmission problem for the Oseen and Brinkman sys-
tems. Let ΩB ,ΩO ⊆ Rm (m ∈ {2, 3}) be open sets, not necessary connected, with
compact Lipschitz boundaries, such that ΩB 6= ∅, ΩB∩ΩO = ∅ and ΩB∪ΩO = Rm.
Let Sif := ∂ΩB = ∂ΩO be the interface of these sets. Further, we assume that the
region ΩB contains an interior crack. We define the crack as an (m−1)-dimensional,
two-sided closed manifold ScB . We assume that ScB is a sub-manifold of a closed
Lipschitz surface ∂ωB , which is the boundary of a bounded open set ωB ⊆ Rm such
that ωB ⊂ ΩB .

Let q ∈ (1,∞). For our purpose we need to consider the following spaces

Lq(ScB) := {f ∈ Lq(∂ωB) : f = 0 on ∂ωB \ ScB},(2.1)

Lq
1(ScB) := {f ∈ Lq

1(∂ωB) : f = 0 on ∂ωB \ ScB}.(2.2)

Note that if ScB = ω, where ω is an open subset with Lipschitz boundary of the
manifold ∂ωB , then Lq

1(ScB) is the closure of the set of all infinitely differentiable
functions on ∂ωB supported in ω with respect to some related norm.

Let cO and α be positive constants, λ be a non-zero real constant. Let hB , hO,
h± be non-negative Borel measurable matrices with bounded entries. Recall that a
matrix valued function h of type m×m is non-negative if the following condition

(2.3) 〈h(x)θ, θ〉 ≥ 0, ∀ x, θ ∈ Rm

is satisfied, where 〈·, ·〉 means the inner product in Rn.
In the sequel, we will study the existence of a solution for a crack type transmis-

sion problem for the Oseen and Brinkman systems in Lq-spaces. Such a problem
requires to find some functions ((uB , πB), (uO, πO)), which satisfy

• The Brinkman and Oseen systems:

4uB − αuB −∇πB = 0, div uB = 0 in ΩB \ ScB ,(2.4)

4uO − λ∂1uO −∇πO = 0, div uO = 0 in ΩO,(2.5)

• The transmission conditions on the interface Sif :

(2.6) TrΩB
uB − TrΩO

uO = gif ∈ Lq
1(Sif ,Rn),

(2.7)
∂0

ν
B

;ΩB
(uB , πB)−cO∂λ

ν
B

;ΩO
(uO, πO)+hBTrΩB

uB+hOTrΩO
uO = fif ∈ Lq(Sif ,Rn),

• The crack type boundary conditions on ScB :

(2.8) TrωB
uB − TrΩB\ωB

uB = gcB ∈ Lq
1(ScB ,Rn),

∂0
ν

B
;ωB

(uB , πB)− ∂0
ν

B
;ΩB\ωB

(uB , πB) + h+TrωB
uB

+ h−TrΩB\ωB
uB = fcB ∈ Lq(ScB ,Rn),(2.9)
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where ∂1 means the derivative in the direction of the x1-axis, ν
B

stands for the unit
normal vector to ∂ΩB exterior to ΩB on Sif , and for the the unit normal vector to
∂ωB exterior to ωB on ∂ωB ⊃ ScB . Further,

(2.10) ∂β
ν;D(u, π) :=

(
−πI + 2∇̂u

)
ν − β

2
ν1u

is the conormal derivative of the velocity and pressure fields u = (u1, . . . , um) and
p, which are defined on an open set D ⊆ Rn with Lipschitz boundary. Here ν
denotes the unit normal to ∂D, defined a.e. ∂D, and ∂β

ν;D(u, p) is defined a.e. on
∂D in the sense of nontangential convergence. In addition, β ∈ R, I is the identity
matrix, and ∇̂u is the symmetric part of ∇u.

In the case β = λ, ∂β
ν;ΩO

(v, π) is the conormal derivative corresponding to the
Oseen system (2.5), while, in the case β = 0, ∂β

ν;ΩB
(v, π) is the conormal derivative

for the Brinkman system (2.4).
Further, we assume that hB = 0, hO = 0, gif = 0, fif = 0 on Rm \ Sif , and

h± = 0, gcB = 0, fcB = 0 on Rm \ ScB .

Definition 2.1. Let q ∈ (1,∞) be given. An Lq-solution of the boundary value
problem (2.4)-(2.9) is an element ((uB , πB), (uO, πO)) in the space

(C∞(ΩB \ ScB ,Rn)×C∞(ΩB \ ScB))×(C∞(ΩO,Rn)×C∞(ΩO)) ,

with the following properties:
• There exist the non-tangential limits of uB , ∇uB , πB , uO, ∇uO, πO almost

every where on the interface Sif .
• The non-tangential maximal functions of uB , ∇uB , πB , uO, ∇uO, πO are
q-integrable on Sif .

• There exist the non-tangential limits of uB , ∇uB and πB , which correspond
to ωB and ΩB \ ωB , respectively, a.e. on the interface crack ScB .

• The non-tangential maximal functions of uB , ∇uB , πB are q-integrable on
ScB .

• The equations (2.4) and (2.5) are satisfied everywhere in ΩB \ScB and ΩO,
respectively.

• The boundary conditions are fulfilled in the sense of non-tangential limit.

3. Layer potentials for the Stokes, Brinkman and Oseen systems

Let α > 0. Then the Brinkman system

(3.1)
{

(∆− αI)u−∇π = 0 in Ω
div u = 0 in Ω

is a zero order perturbation of the Stokes system (when α = 0) and describes the
viscous incompressible fluids flows in porous media (see, e.g., [15]). Let (Gα,Πα) ∈
D′(Rm,Rm×Rm)×D′(Rm,Rm) denote the fundamental solution of the Brinkman
system in Rm (m ≥ 2), where D′(Rm) is the space of distributions, i.e., the dual of
C∞0 (Rn) equipped with the inductive limit topology. Thus,

(3.2) (∆x − αI)Gα(x− y)−∇xΠα(x− y) = −δy(x)I, divxGα(x− y) = 0,

where δy is the Dirac distribution with mass at y, and the subscript x added to a
differential operator shows the action of the operator with respect to the variable x.
Let Gα

ij be the components of the fundamental tensor Gα. If Πα
j are the components
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of the fundamental pressure vector Πα, then the components of the fundamental
stress tensor Sα(·, ·) are defined by the relations

Sα
jk`(x,y) := −Πα

j (x− y)δjk +
∂Gα

jk(x− y)
∂x̀

+
∂Gα

`k(x− y)
∂xj

.(3.3)

In addition, if Λα is the fundamental pressure tensor with components Λα
jk, then

(3.4) ∆xS
α
jk`(x,y)− αSα

jk`(x,y)−
∂Λα

j`(x,y)
∂xk

= 0,
∂Sα

jk`(x,y)
∂xk

= 0, x 6= y.

The expressions of (Gα,Πα) and (Sα,Λα) can be found in [42, Chapter 2] and [19,
Chapter 2]. We omit them for the sake of brevity.

For α = 0 we obtain the fundamental solution of the Stokes system. Next we
use the notation (G,Π) for the fundamental solution of the Stokes system. The
components of G and Π are given by (see, e.g., [19, p. 38, 39]):

(3.5)

Gjk(x) =
1

2ωm

{
δjk

(m− 2)|x|m−2
+
xjxk

|x|m

}
, m ≥ 3

Gjk(x) =
1
4π

{
δjk ln

1
|x|

+
xjxk

|x|2

}
, m = 2,

Πj(x) = 1
σn

xj

|x|m , m ≥ 2,

where σm is the area of the unit sphere in Rm. Note that Πα = Π. The components
of the stress and pressure tensors S and Λ are given by (see, e.g., [19, p. 38,39,132]):

Sjk`(x,y) =
m

ωn

(xj − yj)(xk − yk)(x` − y`)
|x− y|m+2

,(3.6)

Λjk(x,y) =
2
ωm

(
δjk

|x− y|m
−m

(xj − yj)(xk − yk)
|x− y|n+2

)
.(3.7)

3.1. Layer potentials of the Brinkman system. Assume that Ω := Ω+ ⊆ Rm

(m ≥ 2) is a bounded open set with Lipschitz boundary ∂Ω. Let Ω− := Rm \ Ω.
Let ν

`
, ` = 1, . . . ,m, be the components of the outward unit normal ν = νΩ ,

which is defined a.e. on ∂Ω. Let α ≥ 0, q ∈ (1,∞), g ∈ Lq(∂Ω,Rm) and h ∈
Lq

1(∂Ω,Rm). Then the single-layer potential for the Brinkman system VBr;α;∂Ωg
and the corresponding pressure potential Qs

Br;α;∂Ωg are given by

(3.8)

(
VBr;α;∂Ωg

)
j
(x) :=

∫
∂Ω

Gα
ij(x− y)gj(y) dσ(y),(

Qs
Br;α;∂Ωg

)
(x) :=

∫
∂Ω

Πα
j (x− y)gj(y)dσ(y),

x ∈ Rm \ ∂Ω.

Remark that Qs
∂Ωg := Qs

Br;0;∂Ωg = Qs
Br;α;∂Ωg.

The double-layer potential WBr;α;∂Ωh and the corresponding pressure potential
Qd

Br;α;∂Ωh are given by

(3.9)

(
WBr;α;∂Ωh

)
k
(x) :=

∫
∂Ω

Sα
jk`(x,y)ν̀ (y)hj(y)dσ(y),(

Qd
Br;α;∂Ωh

)
(x) :=

∫
∂Ω

Λα
j`(x,y)ν

`
(y)hj(y)dσ(y),

x ∈ Rm \ ∂Ω,

and the principal value of WBr;α;∂Ω is defined by

(3.10) (KΩ;Br;αh)k(x) := p.v.
∫

∂Ω

Sα
jk`(x,y)ν̀ (y)hj(y)dσ(y) a.e. x ∈ ∂Ω.
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In view of (3.2) and (3.4), (VBr;α;∂Ωg, Qs
Br;α;∂Ωg) and (WBr;α;∂Ωh, Qd

Br;α;∂Ωh) sat-
isfy the Brinkman system in Rm \ ∂Ω. In addition, some of the well known prop-
erties of layer potentials for the Brinkman system are listed below (see, e.g., [9],
[34, Propositions 4.2.5, 4.2.9, Corollary 4.3.2, Theorems 5.3.6, 5.4.1, 5.4.3, 10.5.3]
in the case of the Stokes system, and [15, Lemma 3.1] in the case of the Brinkman
system):

Lemma 3.1. Let Ω := Ω+ ⊆ Rm (m ≥ 2) be a bounded open set with Lipschitz
boundary ∂Ω. Let Ω− := Rm \ Ω. Let α ≥ 0, q ∈ (1,∞), h ∈ Lq

1(∂Ω,Rm) and
g ∈ Lq(∂Ω,Rm). Then the following formulas

(3.11)
Tr+Ω

(
VBr;α;∂Ωg

)
= Tr−Ω

(
VBr;α;∂Ωg

)
:= VBr;α;∂Ωg,

Tr±Ω(WBr;α;∂Ωh) =
(
±1

2
I + KBr;α;∂Ω

)
h,

(3.12)

∂0
ν;Ω±

(VBr;α;∂Ωg, Qs
Br;α;∂Ωg) =

(
±1

2
I−K′

Br;α;∂Ω

)
g,

∂0
ν;Ω+

(
WBr;α;∂Ωh, Qd

Br;α;∂Ωh
)

= ∂0
ν;Ω−

(
WBr;α;∂Ωh, Qd

Br;α;∂Ωh
)

:= DBr;α;∂Ωh

hold a.e. on ∂Ω, where K′
Br;α;∂Ω is the formal transpose of KBr;α;∂Ω. In addition,

the following operators are well-defined, linear and bounded

(3.13)

VBr;α;∂Ω : Lq(∂Ω,Rm) → Lq
1(∂Ω,Rm)

KBr;α;∂Ω : Lq
1(∂Ω,Rm) → Lq

1(∂Ω,Rm)
K′

Br;α;∂Ω : Lq(∂Ω,Rm) → Lq(∂Ω,Rm)
DBr;α;∂Ω : Lq

1(∂Ω,Rm) → Lq(∂Ω,Rm).

In the case α = 0, which corresponds to the Stokes system, we use the follow-
ing notations for the layer potential operators V∂Ω := VBr;0;∂Ω, V∂Ω := VBr;0;∂Ω,
W∂Ω := WBr;0;∂Ω, Qs

∂Ω := Qs
Br;0;∂Ω, K∂Ω := KBr;0;∂Ω and D∂Ω := DBr;0;∂Ω.

The next lemma shows the compactness of the complementary layer potentials
for the Stokes and Brinkman operator in Lq-spaces (see [15, Theorem 3.4]).

Lemma 3.2. Let Ω ⊆ Rm (m ≥ 2) be an open set with compact Lipschitz boundary
∂Ω. Let α ≥ 0, q ∈ (1,∞). Then the following operators are compact:

(3.14)

VBr;α;∂Ω − V∂Ω : Lq(∂Ω,Rm) → Lq
1(∂Ω,Rm)

KBr;α;∂Ω −K∂Ω : Lq
1(∂Ω,Rm) → Lq

1(∂Ω,Rm)
K′

Br;α;∂Ω −K′
∂Ω : Lq(∂Ω,Rm) → Lq(∂Ω,Rm)

DBr;α;∂Ω −D∂Ω : Lq
1(∂Ω,Rm) → Lq(∂Ω,Rm).

Finally, let us mention the behavior at infinity of the layer potentials for the
Brinkman system (see, e.g., [19, Lemma 3.7.3], [42, Chapter 2]):

(3.15)
(VBr;α;∂Ωg) (x) = O(|x|−m)
(WBr;α;∂Ωh) (x) = O(|x|1−m) as |x| → ∞.

In addition, if the density h ∈ Lq
1(∂Ω,Rm) satisfies the condition

(3.16)
∫

∂Ω

〈h, ν〉dσ = 0,

then

(3.17) (WBr;α;∂Ωh) (x) = O(|x|−m) as |x| → ∞.
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Lemma 3.3. Let Ω ⊆ Rm be an open set with compact Lipschitz boundary. Let
α > 0 and f ∈ L1(∂Ω, Rm). Let β be a multiindex. Then1

(3.18)
(
∂βQs

Br;α;∂Ωf
)
(x) = O(|x|1−m−|β|) as |x| → ∞,

(3.19)
(
Qd

Br;α;∂Ωf
)
(x) = O(|x|2−m), m ≥ 3,(

Qd
Br;α;∂Ωf

)
(x) = O(ln(|x|)), m = 2, as |x| → ∞.

If |β| > 0 then

(3.20)
(
∂βQd

Br;α;∂Ωf
)
(x) = O(|x|2−m−|β|) as |x| → ∞.

Moreover, if the following condition

(3.21)
∫

∂Ω

〈f , ν〉 dσ = 0

holds and β is an arbitrary multiindex, then

(3.22)
(
∂βQd

Br;α;∂Ωf
)
(x) = O(|x|1−m−|β|) as |x| → ∞.

Proof. By an straightforward computation one obtains the relation (3.18).
Further, let us consider the fundamental solution of the Laplace equation

h∆(x) =


− 1

2π ln |x|, m = 2,

1
(m−2)σm

|x|2−m, m > 2.
(3.23)

Taking into account the explicit representation of the fundamental tensor Λα
jk (see,

e.g., [42, Chapter 2]) there exist some constants cγjk ∈ R such that

Qd
Br;α;∂Ωf(x) =

∫
∂Ω

[ ∑
|γ|=2

m∑
j,k=1

cγjk∂
γh∆(x− y)fj(y)νk(y)

+ αh∆(x− y)〈f(y), ν(y)〉
]

dσ(y).(3.24)

By differentiating (3.24) and by using the relation

|∂βh∆(x− y)| ≤ Cβ |x− y|2−m−|β|, |β| > 0

we obtain asymptotic formulas (3.19) and (3.20). In addition, if the condition (3.21)
is satisfied, then a direct computation gives (3.22). We omit the details for the sake
of brevity. �

3.2. Layer potentials for the Oseen system. Let λ ∈ R. Let us now refer to
the Oseen system

(3.25) ∆u− λ∂1u−∇p = 0, div u = 0.

The fundamental solution (Oλ,Πλ
O) of such a system vanishing at infinity is well

known (see [11], [19, Chapter 2], [28, Corollary 4.2]). Note that the fundamental
pressure field of the Oseen system is the same as the fundamental pressure field of
the Stokes system, i.e., Πλ

O = Π. In addition, O0 = G, Oλ
jk = Oλ

kj ∈ C∞(Rm \ {0}).
If λ 6= 0 and β is a multi-index, then we have

(3.26) ∂βOλ
jk(x) = O(|x|(1−m−|β|)/2) as |x| → ∞.

1∂β means the differential operator of order β, ∂β := ∂|β|

∂β1 ...∂βm
, where β = (β1, . . . , βm) and

|β| = β1 + . . . + βm.
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If |z| 6= |z1| then

(3.27) lim
r→∞

|Oλ(rz)|r(m−1)/2 = 0.

If r > 0 and q > 1 + 1
m then

(3.28) |∇Oλ
jk| ∈ Lq(Rm \B(0; r)).

Let us also mention the useful asymptotic formulas

|∂β
(
Oλ

jk(x)− Gjk(x)
)
| = O(|x|−|β|) as |x| → 0, m = 3,(3.29)

|Oλ
jk(x)− Gjk(x)| = O(1) as |x| → 0,

|∇
(
Oλ

jk(x)− Gjk(x)
)
| = O(ln |x|) as |x| → 0,

|∂β
(
Oλ

jk(x)− Gjk(x)
)
| = O(|x|−|β|+1) as |x| → 0, |β| ≥ 2,

m = 2.(3.30)

A straightforward computation yields that

(3.31) Oλ(−x) = O−λ(x).

Now let Ω ⊆ Rm (m ∈ {2, 3}) be an open set with compact Lipschitz boundary
and ν = νΩ be the outward unit normal of Ω. Let q ∈ (1,∞) and Ψ ∈ Lq(∂Ω,Rm).
Then the single-layer potential with density Ψ for the Oseen system is given by

VOs;λ;∂ΩΨ(x) :=
∫

∂Ω

Oλ(x− y)Ψ(y) dσ(y).

The pair (VOs;λ;∂ΩΨ, Qs
∂ΩΨ) is a solution of the Oseen system (3.25) in Rm \ ∂Ω.

For y ∈ ∂Ω and x ∈ Rm \ {y} we consider the matrix type kernel

KOs;λ;∂Ω := ∂λ
ν;∂Ω

(
Oλ(· − y), Q(· − y)

)
,

with the components

KOs;λ;∂Ω
j,k (x,y) =

〈
ν(y),∇yO

λ
jk(x− y)

〉
+

m∑
i=1

νi(y)
∂

∂yk
Oλ

ji(x− y)

+ νk(y)Πj(x− y) +
λν1(y)

2
Oλ

jk(x− y).(3.32)

In addition, we consider the expression

ΠOs;λ;∂Ω
k (x,y) : = 〈ν(y),∇yΠk(x− y)〉+

m∑
i=1

νi(y)
∂

∂yk
Πi(x− y)

−λνk(y)Π1(x− y) +
λν1(y)

2
Πk(x− y).(3.33)

Let Ψ ∈ Lq(∂Ω,Rm). Then the Oseen double-layer potential with density Ψ is
defined by

(WOs;λ;∂ΩΨ)(x) :=
∫

∂Ω

〈KOs;λ;∂Ω(x,y),Ψ(y)〉dσ(y), x ∈ Rm \ ∂Ω,

and the corresponding pressure potential is given by

(Qd
Os;λ;∂ΩΨ)(x) :=

∫
∂Ω

〈ΠOs;λ;∂Ω(x− y),Ψ(y)〉dσ(y), x ∈ Rm \ ∂Ω.

By an straightforward algebra we obtain that

WOs;0;∂ΩΨ = W∂ΩΨ, Qd
Os;0;∂ΩΨ = Qd

∂ΩΨ = Qd
Br;0;∂ΩΨ.
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In addition, the pair (WOs;λ;∂ΩΨ, Qd
Os;λ;∂ΩΨ) is a solution of the Oseen system

(3.25) in Rm \ ∂Ω (see, e.g., [28, Proposition 5.7] in the case λ = 1, while for λ > 0
the formula follows with similar arguments. In addition, the formula (3.31) shows
the result for arbitrary λ).

Now for x ∈ ∂Ω we consider the boundary layer potentials

(KOs;λ;∂ΩΨ)(x) := lim
ε→0

∫
∂Ω\B(x,ε)

KΩ,Os,λ(x,y)Ψ(y) dσ(y),

(K′
Os;λ;∂ΩΨ)(x) := lim

ε→0

∫
∂Ω\B(x,ε)

KΩ,Os,λ(y,x)Ψ(y) dσ(y),

and note that KOs;0;∂Ω = K∂Ω = KBr;0;∂Ω, K′
Os;0;∂Ω = K′

∂Ω = K′
Br;0;∂Ω.

Also let VOs;λ;∂ΩΨ be the boundary version of the single-layer potential VOs;λ;∂ΩΨ,
i.e., the restriction of VOs;λ;∂ΩΨ onto ∂Ω. Note that if Ψ ∈ Lq(∂Ω,Rm) then the
non-tangential limit of VOs;λ;∂ΩΨ coincides with VOs;λ;∂ΩΨ a.e. on ∂Ω. In addi-
tion, there exists a constant C ≡ C(Ω, q) > 0 such that the non-tangential maximal
function (VOs;λ;∂ΩΨ)∗ satisfies the inequality

‖ (VOs;λ;∂ΩΨ)∗ ‖Lq(∂Ω) ≤ C‖Ψ‖Lq(∂Ω,Rm).

Moreover, we have the inequality

‖(∇VOs;λ;∂ΩΨ)∗‖Lq(∂Ω) ≤ C‖Ψ‖Lq(∂Ω,Rn),

and ∇VOs;λ;∂ΩΨ has the non-tangential limit at almost all points of ∂Ω, and

(3.34) ∂λ
ν;Ω±

(VOs;α;∂ΩΨ, Qs
∂ΩΨ) = ±1

2
Ψ−K′

Ω;Os;λΨ.

In addition, the layer potential operators VOs;λ;∂Ω : Lq(∂Ω,Rm) → Lq(∂Ω,Rm) and
KOs;λ;∂Ω : Lq(∂Ω,Rm) → Lq(∂Ω,Rm) are linear and bounded operators (see, e.g.,
[34] in the case of the Stokes system, and [28, Lemma 5.1, Propositions 5.2, 5.3] in
the case of the Oseen system).

In addition, if Ψ ∈ Lq(∂Ω,Rn) then WOs;λ;∂ΩΨ has a non-tangential limit at
almost all points of ∂Ω, and there exists a constant C0 ≡ C0(Ω, q) > 0, such that

‖ (WOs;λ;∂ΩΨ)∗ ‖Lq(∂Ω) ≤ C0‖Ψ‖Lq(∂Ω,Rm),

(3.35) TrΩ±WOs;λ;∂ΩΨ = ±1
2
Ψ + KOs;λ;∂ΩΨ

(see, e.g., [28, Proposition 5.8, Lemma 5.3, Lemma 5.4]).
The following result shows the compactness of the complementary double-layer

potential operator for the Oseen and Stokes systems.

Proposition 3.4. Let Ω ⊆ Rm (m ∈ {2, 3}) be an open set with compact Lip-
schitz boundary. Let λ ∈ R and q ∈ (1,∞). Then the complementary double-layer
potential operator KOs;λ;∂Ω −K∂Ω : Lq(∂Ω,Rm) → Lq(∂Ω,Rm) is compact.

Proof. The kernels of such an operator is weakly singular, as the formulas (3.29),
(3.30) show, and the desired compactness is a direct consequence of this property
(see, e.g., [10, §4.5.2, Satz 2]). �

For the problems we are going to investigate below we need the following useful
result (see [43, Theorem 1.12]).
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Lemma 3.5. If Ω ⊆ Rm (m ≥ 2) is an open set with compact Lipschitz boundary,
then there exists a sequence of open sets {Ωj}j≥1 in Rm with compact boundaries
of class C∞, such that

• Ωj ⊂ Ω.
• There exist a constant a > 0 and some homeomorphisms Λj : ∂Ω → ∂Ωj,

such that Λj(y) ∈ Γa(y) for any y ∈ ∂Ω and j ≥ 1, and, in addition,
sup{|y − Λj(y)| : y ∈ ∂Ω} → 0 as j →∞.

• There are positive functions ωj on ∂Ω bounded away from zero and infinity
uniformly in j such that for any measurable set E ⊂ ∂Ω,∫

E

ωj dσ =
∫

Λj(E)

1 dσ,

and so that ωj → 1 pointwise a.e., and in every space Lq(∂Ω), 1 ≤ q <∞.
• For any q ∈ [1,∞), the normal vector to Ωj, ν(Λj(y)), converges pointwise

a.e., and also in every space Lq(∂Ω,Rm), to ν(y) := ν
∂Ω(y), as j →∞.

Proposition 3.6. Let λ ∈ R and m ∈ {2, 3}. Let Ω ⊆ Rm be an open set with
compact Lipschitz boundary. Then there exists a constant q0 ∈ (2,∞) such that for
any q ∈ (1, q0) the following properties hold:

(a) The complementary double-layer potential operator

KOs;λ;∂Ω −K∂Ω : Lq
1(∂Ω,Rm) → Lq

1(∂Ω,Rm)

is linear and compact.
(b) For Ψ ∈ Lq

1(∂Ω,Rm), there exists the non-tangential limit of ∇WOs;λ;∂ΩΨ
at almost all points of ∂Ω, and there exists a constant C ≡ C(Ω, q) > 0
such that

(3.36) ‖(∇WOs;λ;∂ΩΨ)∗‖Lq(∂Ω) ≤ C‖Ψ‖Lq(∂Ω,Rm).

(c) The non-tangential limit of ∂l

(
WOs;λ;∂Ω −W∂Ω

)
is a linear and compact

operator from Lq
1(∂Ω,Rm) to Lq(∂Ω,Rm).

If ∂Ω is of class C1 then all of the above properties (a)− (c) hold for q0 = ∞.

Proof. We can suppose that ∂Ω ⊂ B(0; 1). Let Γ(1), . . . ,Γ(k) be all components
of ∂Ω. Denote by SΓ(j)f the harmonic single layer potential corresponding to Γ(j)
and by Sj its restriction to Γ(j). It is well known that there exists qj > 2 such
that Sj : Lq(Γ(j)) → Lq

1(Γ(j)) is an isomorphism for 1 < q < qj . If Γ(j) is of class
C1 then q(j) = ∞ (see [13, Theorem 2.2.22]). Let q0 = min{q1, . . . , qk}. Let ψj ∈
C∞(Rm) be compactly supported functions such that ψj = 1 on a neighborhood of
Γ(j) and ψj = 0 on a neighborhood of ∂Ω \ Γ(j). Fix q ∈ (1, q0) and define

AΩf :=
k∑

j=1

ψjSΓ(j)S
−1
j f, f ∈ Lq

1(∂Ω).

According to properties of a harmonic single layer potential ([13, Theorem 2.2.13]),
AΩ is a linear operator from Lq

1(∂Ω) to C∞(Ω), f is the non-tangential limit of
AΩf at almost all points of ∂Ω, there exists the non-tangential limit of ∇AΩf at
almost all points of ∂Ω, and there exists a constant C1 ≡ C1(Ω, q) > 0 such that

‖(AΩf)∗‖Lq(∂Ω) + ‖(∇AΩf)∗‖Lq(∂Ω) ≤ C1‖f‖Lq
1(∂Ω).

Let Ωj be a sequence of open sets from Lemma 3.5. For x ∈ Ω choose ϕx ∈ C∞(Rm)
such that ϕx = 0 at vicinity of x and ϕx = 1 on a neighborhood of ∂Ω. In view of the
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Lebesgue Lemma and of the Green-Gauss Theorem we obtain for f ∈ Lq
1(∂Ω,Rm),

with 1 < q < q0, that

∂lWOs;λ;∂Ωf(x) = lim
j→∞

∫
∂Ωj

(
∂λ

ν;∂Ωj
(∂lO

λ(x− y), ∂lΠ(x− y))
)
ϕx(y)AΩf(y) dσ(y)

= lim
j→∞

{∫
Ωj

(
− (∆∂lO

λ(x−y))(ϕx(y)AΩf(y))−2∇̂∂lO
λ(x− y) · ∇̂(ϕx(y)AΩf(y))

+ (∇∂lΠ(x− y))(ϕx(y)AΩf(y)) + ∂lΠ(x− y)∇ · (ϕx(y)AΩf(y))
)
dy

−
∫

∂Ωj

λ

2
νΩ
1 ∂lO

λ(x− y)]ϕx(y)AΩf(ydσ(y)

}

= lim
j→∞

{∫
Ωj

[−2∇̂∂lO
λ(x− y) · ∇̂(ϕx(y)AΩf(y)) + ∂lΠ(x− y)∇ · (ϕx(y)AΩf(y))

+λ(∂1∂lO
λ(x− y))(ϕx(y)AΩf(y))]dy−

∫
∂Ωj

λ

2
νΩ
1 ∂lO

λ(x− y)]ϕx(y)AΩf(y)dσ(y)

}

= lim
j→∞

{∫
Ωj

[2∇̂Oλ(x− y) · ∇̂∂l(ϕx(y)AΩf(y))−Π(x− y)∇ · ∂l(ϕx(y)AΩf(y))

−λ(∂1O
λ(x− y))∂l(ϕx(y)AΩf(y))] dy+

∫
∂Ωj

[
−νΩ

l 2∇̂Oλ(x− y) · ∇̂(ϕx(y)AΩf(y))

+ νΩ
l Π(x− y)∇ · (ϕx(y)AΩf(y)) + λ(νΩ

l ∂1O
λ(x− y))(ϕx(y)AΩf(y))

− λ

2
νΩ
1 ∂lO

λ(x− y)ϕx(y)AΩf(y)
]

dσ(y)

}

= lim
j→∞

∫
∂Ωj

(
− ∂0

ν(Oλ(x− y),Π(x− y))∂l(ϕx(y)AΩf(y))

− 2νΩ
l ∇̂Oλ(x− y) · ∇̂(ϕx(y)AΩf(y)) + νΩ

l Π(x− y)∇ · (ϕx(y)AΩf(y))

+ λ(νΩ
l ∂1O

λ(x− y))(ϕx(y)AΩf(y))− λ

2
νΩ
1 ∂lO

λ(x− y)ϕx(y)AΩf(y)
)

dσ(y)

= −WOs;λ;∂Ω(∂lAΩf)(x)− λ

2
VOs;α;∂Ω(νΩ

1 ∂lAΩf)(x)

+
∫

∂Ω

(
− 2νΩ

l ∇̂Oλ(x− y) · ∇̂(AΩf(y)) + νΩ
l Π(x− y)∇ · (AΩf(y))

)
dσ(y)

+ λ∂1VOs;λ;∂Ω(νlf)(x)− λ

2
∂lVOs;λ;∂Ω(ν1f)(x).

The last equality and the properties of the Oseen layer potential VOs;λ;∂Ω and
WOs;λ;∂Ω imply (3.36) and the existence of the non-tangential limit of ∂lWOs;λ;∂Ωf
at almost all points of ∂Ω.

Let us now denote by Llf the non-tangential limit of ∂l(WOs;λ;∂Ωf − W∂Ωf),
and by Hl,λf the non-tangential limit of ∂lVOs;λ;∂Ωf . Then Hl,λ is a linear and
bounded operator on Lq(∂Ω,Rm). We have proved the following equality

L`(x) =− (KOs;λ;∂Ω −K∂Ω) (∂`AΩf)(x)− λ

2
(VOs;λ;∂Ω − V∂Ω) (ν

`
∂lAΩf)(x)
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+
∫

∂Ω

〈
−2ν

`

(
∇̂Oλ(x− y)− ∇̂G(x− y)

)
, ∇̂(AΩf(y))

〉
dσ(y)

+ λH1,λ(ν
`
f)(x)− λ

2
H`,λ(ν1f)(x),(3.37)

where H1,λ is a bounded operator on Lq(∂Ω,Rm). The operator f 7→ ν1f is com-
pact from Lq

1(∂Ω) to Lq(∂Ω). Thus, λH1,λ(ν
`
f) is compact from Lq

1(∂Ω) to Lq(∂Ω).
Similar arguments imply that the operator λHl,λ(ν1f) is also compact. All remain-
ing operators in (3.37) are integral operators with weakly singular kernels as those
of ∇AΩf (see (3.29), (3.30)). Hence, Ll : Lq

1(∂Ω,Rm) → Lq(∂Ω,Rm) is compact.
We now turn to prove the compactness of the operator KOs;λ;∂Ω−K∂Ω. Indeed,

such an operator is linear and compact on Lq(∂Ω,Rm) as Proposition 3.4 shows.
In addition, note that for any f ∈ Lq

1(∂Ω,Rm), (KOs;λ;∂Ω −K;∂Ω) f is the non-
tangential limit of WOs;λ;∂Ωf − W;∂Ωf . By considering the tangential derivative
operator ∂τij

:= νi∂j −νj∂i, we deduce that ∂τij
(KOs;λ;∂Ω −K∂Ω) = νiLj −νjLi is

a compact operator from Lq
1(∂Ω,Rm) to Lq(∂Ω,Rm). Hence, ∂` (KOs;λ;∂Ω −K∂Ω)

is a compact operator on Lq
1(∂Ω,Rm), as asserted. �

Remark 3.7. By using a similar argument as above, we can show Proposition 3.6
for any dimension m ≥ 2. For any m ≥ 2 and q0 = ∞ we can also show this result
by using the theory of pseudodifferential operators (see, e.g., [15, Theorem 3.4]).

Next, we mention the main properties of the pressure potential associated to an
Oseen double-layer potential.

Proposition 3.8. Let Ω ⊆ Rm (m ∈ {2, 3}) be an open set with compact Lipschitz
boundary. Let λ ∈ R and q ∈ (1,∞). If f ∈ Lq

1(∂Ω,Rm) then the layer potential
Qd

Os;λ;∂Ωf has a non-tangential limit at almost all points of ∂Ω, and there exists a
constant C ≡ C(Ω, q) > 0 such that

‖(Qd
Os;λ;∂Ωf)∗‖Lq(∂Ω) ≤ C‖f‖Lq

1(∂Ω,Rm).

The non-tangential limit of Qd
Os;λ;∂Ω − Qd

Os;0;∂Ω is a linear and compact operator
from Lq

1(∂Ω,Rm) to Lq(∂Ω).

Proof. In the case λ = 0 we refer the reader to [34]. In the case λ 6= 0 we use the
following equality

Qd
Os;λ;∂Ωf −Qd

Os;0;∂Ωf = −λQs
∂Ω (〈ν, f〉, 0, 0) +

λ

2
Qs

∂Ων1f ,

which, together with the boundedness of Qs
∂Ω and the compactness of the embed-

ding Lq
1(∂Ω,Rm) ↪→ Lq(∂Ω,Rm), implies the compactness of the complementary

layer potential operator Tr
(
Qd

Os;λ;∂Ω −Qd
Os;0;∂Ω

)
: Lq

1(∂Ω,Rm) → Lq(∂Ω). �

The next result gives the behaviour at infinity of a bounded solution of the Oseen
system (see [28, Theorem 6.8]).

Lemma 3.9. Let m ∈ {2, 3}. Assume that Ω ⊆ Rm is an open set such that Rm\Ω
is compact. Let (u, π) be a bounded solution of the Oseen system (3.25) in Ω. Then
there are two constants π∞ ∈ R and u∞ ∈ Rm such that u(x) → u∞, π(x) → π∞ as
|x| → ∞. Moreover, if β is a multiindex, then |∂β(u(x)−u∞)| = O(|x|(1−m−|β|)/2),
|∂β(π(x) − π∞)| = O(|x|1−m−|β|) as |x| → ∞. Moreover, r(m−1)/2u(rx) → 0 as
r →∞, whenever |x| 6= |x1|.
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The following result gives the direct layer potential representation of a solution
of the Oseen system in an open set with Lipschitz boundary (in the case of the
Stokes system we refer the reader to [34, Proposition 4.4.1]).

Proposition 3.10. Let Ω ⊆ Rm be an open set with compact Lipschitz boundary.
Let q ∈ (1,∞). Assume that the pair (u, π) is a solution of the Oseen system (2.5)
in Ω, such that the the nontangential maximal functions of u, ∇u and π with respect
to Ω belong to the space Lq(∂Ω) and there exist nontangential limits of u, ∇u and
π at almost all points of ∂Ω. If Ω is an unbounded set, we assume in addition that
u(x) → 0 and π(x) → 0 as |x| → ∞. Then the following Green representation
formulas hold

WOs;λ;∂Ω (TrΩ u) + VOs;λ;∂Ω

(
∂λ

ν;Ω(u, π)
)

=
{

u in Ω,
0 in Rm \ Ω,

(3.38)

Qd
Os;λ;∂Ω (TrΩ u) +Qs

∂Ω(∂λ
ν;Ω(u, π)) =

{
π in Ω,
0 in Rm \ Ω.

(3.39)

Proof. First, we assume that Ω is bounded, and consider some open sets Ωj as in
Lemma 3.5. Then by the Green representation formula for each of the sets Ωj one
obtains the relations (3.38) and (3.39) for such sets (see [11, §VII.6]). Finally, by
means of the Lebesgue lemma we obtain the formula (3.38) for the set Ω.

Now we assume that Ω is an unbounded set, and consider the bounded set
B(0; r) ∩ Ω, for some r > 0 sufficiently large. Then by using the formulas (3.38)
and (3.39) for such a set, by letting r → ∞, and by using the Lebesque lemma,
Lemma 3.9 and the properties of the fundamental solution of the Oseen system, we
obtain the formulas (3.38) and (3.39) in the case of the set Ω. �

Corollary 3.11. Let Ω := Ω+ ⊆ Rm be a bounded open set with Lipschitz boundary.
Let Ω− := Rm \Ω. For q ∈ (1,∞) fixed, assume that the functions (u±, π±) satisfy
the Oseen system (3.25) in Ω±, such that u−(x) → 0 and π−(x) → 0 as |x| → ∞,
and u∗±, (∇u±)∗, (π±)∗ ∈ Lq(∂Ω). Suppose that there exist the nontangential limits
of u±, ∇u± and π± at almost all points of ∂Ω. Then the following formulas

u± = WOs;λ;∂Ω

(
Tr+Ωu+ − Tr−Ωu−

)
+ VOs;λ;∂Ω

(
∂λ

ν;Ω+
(u+, π+)− ∂λ

ν;Ω−
(u−, π−)

)
π± = Qd

Os;λ;∂Ω

(
Tr+Ωu+ − Tr−Ωu−

)
+Qs

∂Ω

(
∂λ

ν;Ω+
(u+, π+)− ∂λ

ν;Ω−
(u−, π−)

)
hold in Ω±.

Proof. By using the formulas (3.38) and (3.39) in each of the domains Ω+ and Ω−,
respectively, and adding them, we obtain the desired relations. �

The next result shows that the conormal derivative of an Oseen double-layer
potential is continuous a.e. on ∂Ω (in the case of the Stokes system we refer the
reader to [34, Corollary 4.3.2], and for the Brinkman system to [15, Lemma 3.1]).

Corollary 3.12. Let Ω ⊆ Rm (m ≥ 2) be an open set with compact Lipschitz
boundary ∂Ω. Let λ ∈ R and q0 > 2 be the constant provided by Proposition 3.6.
Let q ∈ (1, q0) and h ∈ Lq

1(∂Ω,Rn). Then the following equality2

∂λ
ν;Ω+

(
WOs;λ;∂Ωh, Qd

Os;λ;∂Ωh
)

= ∂λ
ν;Ω−

(
WOs;λ;∂Ωh, Qd

Os;λ;∂Ωh
)

:= DOs;λ;∂Ωh

2The conormal derivatives below exist a.e. on ∂Ω and are understood in the sense of nontan-
gential limits.
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holds a.e. on ∂Ω. In addition, the operator

(3.40) DOs;λ;∂Ω : Lq
1(∂Ω,Rm) → Lq(∂Ω,Rm),

is linear and bounded.

Proof. Let us consider the Oseen double-layer potential u± := WOs;λ;∂Ωh and its
associated pressure potential π± := Qd

Os;λ;∂Ωh in Ω±. Then by the jump formulas
(3.35) we obtain that TrΩ+u+ − TrΩ−u = h. In addition, by Propositions 3.6 and
3.8, (∇WOs;λ;∂Ωh)∗, (Qd

Os;λ;∂Ωh)∗ ∈ Lq(∂Ω). Let us now consider the difference

f := ∂λ
ν;Ω+

(
WOs;λ;∂Ωh, Qd

Os;λ;∂Ωh
)
− ∂λ

ν;Ω−

(
WOs;λ;∂Ωh, Qd

Os;λ;∂Ωh
)
. By Corollary

3.11
WOs;λ;∂Ωh = u± = WOs;λ;∂Ωh + VOs;λ;∂Ωf ,

Qd
Os;λ;∂Ωh = π± = Qd

Os;λ;∂Ωh +Qs
∂Ωf in Rm \ ∂Ω.

in Rm \ ∂Ω.

Consequently, VOs;λ;∂Ωf = 0, Qs
∂Ωf = 0 in Rm \ ∂Ω. Finally, taking into account

these relations and by using the formulas (3.34), we obtain that

f = ∂λ
ν;Ω+

(
VOs;λ;∂Ωf , Qs

Os;λ;∂Ωf
)
− ∂λ

ν;Ω−

(
VOs;λ;∂Ωf , Qs

Os;λ;∂Ωf
)

= 0,

and the proof is complete. �

Corollary 3.13. Let m ∈ {2, 3}. Let Ω ⊆ Rm be an open set with compact Lipschitz
boundary. Then there exists a constant q0 ∈ (2,∞) such that for any q ∈ (1, q0) the
operators

Ψ 7−→ ∂0
ν;Ω(WOs;λ;∂ΩΨ, Qd

Os;λ;∂ΩΨ)−D∂ΩΨ(3.41)

DOs;λ;∂Ω −D∂Ω(3.42)

are linear and compact from Lq
1(∂Ω,Rm) to Lq(∂Ω,Rm). If ∂Ω is of class C1, then

the compactness property of the operators (3.41) and (3.42) holds for q0 = ∞.

Proof. The compactness of the operator (3.41) is a direct consequence of Proposi-
tion 3.6 and Proposition 3.8, while the compactness of the operator (3.42) follows
from the fact that the single-layer potential operator VOs;λ;∂Ω is a compact operator
on the space Lq(∂Ω,Rm). �

Lemma 3.14. Let m ∈ {2, 3}. Let Ω ⊆ Rm be an open set with compact Lipschitz
boundary. Let λ ∈ R, λ 6= 0, and q ∈ (1,∞). Then the complementary single-layer
potential operator for the Oseen and Stokes systems

VOs;λ;∂Ω − V∂Ω : Lq(∂Ω,Rm) → Lq
1(∂Ω,Rm)

is linear and compact.

Proof. Let us consider the derivatives of the complementary kernel for the Oseen
and Stokes single-layer potentials, Rk := ∂k

(
Oλ − G

)
, as well as the corresponding

layer potential

Rkf(x) =
∫

∂Ω

Rk(x,y)f(y)dσ(y), x ∈ Rm \ ∂Ω.

Let Rkf be the restriction of Rkf onto ∂Ω. It is known that if f ∈ Lq(∂Ω,Rm),
then Rkf is a nontangential limit of Rkf a.e. on ∂Ω (see [28, Proposition 5.2]). In
addition, in view of the fact that Rk(x,y) = O(|x− y|2−m), Oλ(x,y)− G(x,y) =
O(|x − y|2−m) as |x − y| → 0, the operators Rk, VOs;λ;∂Ω − V∂Ω are compact on
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Lq(∂Ω,Rm) (see, e.g., [10, §4.5.2, Satz 2]). Further, by considering the tangential
derivatives ∂τij = νi∂j − νj∂i, we deduce that the equality

∂τij (VOs;λ;∂Ω − V∂Ω) = νiRj − νjRi,

which shows that the operator ∂τij (VOs;λ;∂Ω − V∂Ω) is compact on Lq(∂Ω,Rm).
Thus, VOs;λ;∂Ω − V∂Ω : Lq(∂Ω,Rm) → Lq

1(∂Ω,Rm) is compact, as asserted. �

4. Existence and uniqueness for the transmission problem with crack
for the Oseen and Brinkman systems

The purpose of this section is to study the solvability of the crack type trans-
mission problem (2.4)-(2.9).

Let us mention the following useful remark. Assume that (uB , πB ,uO, πO) is
an Lq-solution of the transmission problem (2.4)–(2.9). Since the relations (2.8)
and (2.9) hold on ∂ωB , we deduce that fif ∈ Lq(Sif ,Rm), gif ∈ Lq

1(Sif ,Rm),
fcB ∈ Lq(ScB ,Rm) and gcB ∈ Lq

1(ScB ,Rm).

4.1. Uniqueness of the solution of the crack type transmission problem.
As an intermediary step in the analysis of the transmission problem (2.4)-(2.9), we
are going to show that a solution of such a problem is not always unique. In order
to obtain uniqueness we have to add some additional conditions at infinity. On the
other hand, if m = 2 and ΩB is unbounded, then the transmission problem is not
solvable for all boundary data, and a necessary condition for solvability is required.

We first investigate the behavior of an Lq-solution of the transmission problem
(2.4)-(2.9) at infinity (see [29, Proposition 4.1]).

Lemma 4.1. Let α ≥ 0. Assume that u = (u1, . . . , um) and π are tempered
distributions in Rm (m ≥ 2), which satisfy the Brinkman system

4u− αu−∇π = 0, div u = 0

in the sense of distributions in Rm. Then u1, . . . , um and π are polynomials.

An intermediary result in our analysis is the Green representation formula below
of a solution of the Brinkman system (3.1) in ΩB \ ScB .

Proposition 4.2. Let q ∈ (1,∞) and α > 0. Let (u, π) be a solution of the
Brinkman system (3.1) in ΩB \ ScB. Assume that

(a) There exist non-tangential limits of u, ∇u, π with respect to ωB and DB :=
ΩB \ ωB respectively, at almost all points of ∂ωB.

(b) There exist non-tangential limits of u, ∇u, π at almost all points of ∂ΩB.
(c) The non-tangential maximal functions of u, ∇u, π with respect to ωB belong

to Lq(∂ωB), and the non-tangential maximal functions of u, ∇u and π with
respect to DB belong to Lq(∂DB).

If ΩB is unbounded, we require that u(x) → 0 and π(x) → 0 as |x| → ∞.
Then the following representation formulas hold

(4.1)
WBr;α;∂ΩB

(TrΩB
u)+VBr;α;∂ΩB

(
∂0

νB ;Ω(u, π)
)
+WBr;α∂ωB

(
TrωB

u− TrΩ\ωB
u
)

+VBr;α;∂ωB

(
∂0

νB ;ωB
(u, π)− ∂0

νB ;Ω\ωB
(u, π)

)
=

{
u in ΩB \ ScB ,
0 in Rm \ ΩB .
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(4.2)
Qd

Br;α;∂ΩB
(TrΩB

u) +Qs
Br;α;∂ΩB

(
∂0

νB ;Ω(u, π)
)

+Qd
Br;α∂ωB

(
TrωB

u− TrΩ\ωB
u
)

+Qs
Br;α;∂ωB

(
∂0

νB ;ωB
(u, πB)− ∂0

νB ;Ω\ωB
(u, π)

)
=

{
π in ΩB \ ScB ,
0 in Rm \ ΩB .

If m = 2 and ΩB is unbounded, then

(4.3)
∫

∂ΩB

〈TrΩB
u, νB〉 dσ +

∫
ScB

〈(
TrωB

u− TrΩB\ωB
u
)
, νB

〉
dσ = 0.

Proof. First we assume that ΩB is bounded and ScB = ∅. Let {Ωj}j≥1 be a se-
quence of open sets as in Lemma3.5. For such domains the representation formulas
(4.1) and (4.2) hold (see [42, p. 60]). Then by means of the Lebesgue lemma we
obtain the formulas (4.1) and (4.2) for ΩB , as well.

Next, we assume that ΩB is unbounded and ScB = ∅. Let r > 0, sufficiently
large, such that ∂ΩB ⊂ B(0; r). Then, by applying the formulas (4.1) and (4.2) in
the bounded set ΩB ∩B(0; r), we obtain

WBr;α;∂ΩB
(TrΩB

u) + VBr;α;∂ΩB

(
∂0

ν;ΩB
(u, πB)

)
− uB

=−WBr;α;∂B(0;r)

(
TrB(0;r)u

)
−VBr;α;B(0;r)

(
∂0

ν;B(0;r)(u, π)
)
,

Qd
Br;α;∂ΩB

(TrΩB
u) +Qs

Br;α;∂ΩB

(
∂0

ν;ΩB
(u, π)

)
− πB

=−Qd
Br;α;∂B(0;r)

(
TrB(0;r)u

)
−Qs

Br;α;B(0;r)

(
∂0

ν;B(0;r)(u, π)
)

in ΩB ∩B(0; r). Consequently, if we define the functions

v =

{
WBr;α;∂ΩB

(TrΩB
u) + VBr;α;∂ΩB

(
∂0

ν;ΩB
(u, π)

)
− u in ΩB

−WBr;α;∂B(0;r)

(
TrB(0;r)u

)
−VBr;α;B(0;r)

(
∂0

ν;B(0;r)(u, π)
)

in Rm \ ΩB

p =

{
Qd

Br;α;∂ΩB
(TrΩB

u) +Qs
Br;α;∂ΩB

(
∂0

ν;ΩB
(u, π)

)
− π in ΩB

−Qd
Br;α;∂B(0;r)

(
TrB(0;r)u

)
−Qs

Br;α;B(0;r)

(
∂0

ν;B(0;r)(u, π)
)

in Rm \ ΩB ,

then (v, p) is a solution of the Brinkman system (3.1) in Rm. Since v(x) → 0,
p(x) = O(ln |x|) as |x| → ∞, the entries v1, . . . , vm, p are tempered distributions.
Then by Lemma 4.1 v1, . . . , vm and p are polynomials. Since v(x) → 0 we deduce
that v = 0 in Rm, and hence ∇p = 0. Therefore, there exists a constant c ∈ R such
that p = c in Rm.

Now, we use the explicit representation of the layer potentialQd
Br;α;∂ΩB

(TrΩB
uB)

(see [42, Chapter 2]). In the casem = 3, such a representation implies that p(x) → 0
as |x| → ∞. Hence, c = 0, i.e., p = 0 in R3. Let us now assume that m = 2. Then
the above mentioned representation implies that

p(x)− λ

2π

(
ln

1
|x|

) ∫
∂ΩB

〈TrΩB
uB , νB

〉dσ → 0 as |x| → ∞.

Since p is bounded at infinity, we deduce that the relation (4.3) holds. Thus,
p(x) → 0 as |x| → ∞. Finally, the property that p is a constant implies that p = 0
in R2.

Let us now assume that ScB 6= ∅. Recall that ν
B

= νΩB
on ∂ΩB , and ν

B
=

νωB
= −νΩB\ωB

on ∂ωB . We use the formulas (4.1) and (4.2) for the sets ωB and
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Ω \ωB . Adding them we obtain the formulas (4.1) and (4.2). In addition, if m = 2
and ΩB is unbounded, we have proved that

(4.4)
∫

∂(ΩB\ωB)

〈TrΩB\ωB
u, νΩB\ωB

〉dσ = 0,

while the divergence theorem implies that

(4.5)
∫

∂ωB

〈TrωB
u, νB〉 dσ = 0.

Finally, by adding the relations (4.4) and (4.5) and taking in mind that u is con-
tinuous on ∂ωB \ScB , we obtain the property (4.3), and the proof is complete. �

A useful result in our analysis is given below3.

Lemma 4.3. Let α > 0 be given. Then the following formulas hold in Rm (m ≥ 2)

Gα(x) = O(|x|−m) as |x| → ∞,(4.6)

∇Gα(x) =
{
O(|x|1−m), m > 2,
O(|x|−m), m = 2, as |x| → ∞.(4.7)

Proof. The asymptotic formula (4.6) is a direct consequence of the expression of
the fundamental tensor Gα (see, e.g., [42, (2.14), Lemma 2.11].

Next we turn to show the formula (4.7). In the case m > 2, such a formula
follows from [29, Proposition 4.2].

Let us now consider the case m = 2. Denote by ĝ the Fourier transformation of
g. Then by applying the Fourier transformation to the system (3.2) we obtain that

(|y|2 + α)Ĝα
jk(y) + iyjΠ̂k(y) = δjk, j, k = 1, . . . ,m,(4.8)

y1Ĝα
1k(y) + · · ·+ ymĜα

mk(y) = 0.(4.9)

By (4.8) we deduce that

(4.10) ‖(|y|2 + α)(Ĝα
1k(y), . . . , Ĝα

mk(y)) + iyΠ̂k(y)‖ = 1, k = 1, . . . ,m,

where ‖·‖ denotes the usual norm in Cm. In addition, the divergence type equation
(4.9) shows that the inner product in Cm of the vectors (|y|2+α)(Ĝα

1k(y), . . . , Ĝα
mk(y))

and iyΠ̂k(y) is equal to zero. Consequently, the relation (4.10) implies that

‖(|y|2 + α)(Ĝα
1k(y), . . . , Ĝα

mk(y))‖ ≤ 1,

and hence

(4.11) |Ĝα
jk(y)| ≤ 1

|y|2 + α
.

In the case α = 0 we obtain the relations

|y|2Ĝjk(y) + iyjΠ̂k(y) = δjk, j, k = 1, . . . ,m,(4.12)

|Ĝjk(y)| ≤ 1
|y|2

.(4.13)

In addition, by a straightforward computation based on the relations (4.8) and
(4.12) we obtain that

Ĝα
jk(y)− Ĝjk(y) = − α

|y|2 + α
Ĝjk(y).

3Recall that Gα is the fundamental tensor of the Brinkman system in Rm (m ≥ 2).
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In addition, the relations (4.11), (4.13) imply the inequality

|Ĝα
jk(y)− Ĝjk(y)| ≤ min

{
2
|y|2

,
α

|y|2(|y|2 + α)

}
.

Therefore, in the case m = 2 and for any p ∈ (1, 2), we obtain that

(4.14) y`

(
Ĝα

jk − Ĝjk

)
∈ Lp(R2), ysy`

(
Ĝα

jk − Ĝjk

)
∈ Lp(R2), `, s = 1, 2.

Let p′ > 2 such that 1
p + 1

p′ = 1. Then the relations (4.14) imply that

(4.15) ∂`(Gα
jk − Gjk) ∈ Lp′(R2), ∂s∂`(Gα

jk − Gjk) ∈ Lp′(R2)

(see, e.g., [41, Theorem 1.18.8]).
Now we consider a function ϕ ∈ C∞(R2) such that ϕ = 0 in a small neighborhood

of the origin, and ϕ(x) = 1 for |x| > 1. Since p′ > 2 and ∂`G(x) = O(|x|−1),
∂s∂`G(x) = O(|x|−2) as |x| → ∞, we deduce that ϕ∂`Gα

jk ∈ L
p′

1 (R2). Since p′ > 2,
[40, Theorem 6.7] shows that ∂`Gα

jk(x) → 0 as |x| → ∞. On the other hand, by
considering for each k = 1, 2 the functions u := (∂`Gα

1k, ∂`Gα
2k) and π := Πk, we

deduce that (u, π) is a solution of the Brinkman system (3.1) in the exterior of the
unit ball Bc

1 := {x ∈ R2 : |x| > 1}, which vanishes at infinity. Then by applying
Proposition 4.2 to such a solution, we obtain the Green representation formula

(4.16) u = WBr;α;∂Bc
1
(TrBc

1
u) + VBr;α;∂Bc

1

(
∂0

ν;Bc
1
(u, π)

)
in Bc

1,

and ∫
|x|=1

〈TrBc
1
u, ν〉dσ = 0.

Finally, by (4.16) and the behavior of the single- and double-layer potentials of the
Brinkman system at infinity we obtain the asymptotic formula u(x) = O(|x|−2) as
|x| → ∞, and the proof is complete. �

The next result shows that any bounded solution of the Brinkman system in the
exterior of a compact set in Rm vanishes at infinity (up to a constant pressure).

Proposition 4.4. Let D ⊆ Rm (m ≥ 2) be a compact set and α > 0. Let (u, π) be
a bounded solution of the Brinkman system (3.1) in Rm \D. Let β be a multiindex.
Then there exists a constant π∞ such that

u(x) → 0, π(x) → π∞ as |x| → ∞, m ≥ 2,

|∂β(π(x)− π∞)| = O(|x|2−m−|β|), |∂βu(x)| = O(|x|1−m), m > 2,
|∂β(π(x)− π∞)| = O(|x|1−m−|β|), |∂βu(x)| = O(|x|−m), m = 2,

as |x| → ∞.

Proof. Let ϕ ∈ C∞(Rm) such that ϕ = 0 in a neighborhood of D and ϕ = 1 outside
a compact set which contains D. Also let

(4.17) f := −[4(ϕu)− αϕu−∇(ϕπ)], g := div u.

Let Ẽ be an (m+ 1)× (m+ 1) matrix type function with the entries

Ẽjk := Gα
jk, j, k = 1, . . .m,

Ẽj,m+1 = Ẽm+1,j = Πj , j = 1, . . . ,m,

Ẽm+1,m+1(x) = δ0(x) +
α

σm

{
ln 1

|x| , m = 2,
|x|2−m

m−2 , m > 2.
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Now, we define the fields

(4.18) (v(x), p(x))> :=
∫

Rm

Ẽ(x− y)(f , g)>dy.

Since Ẽ is a fundamental solution of the Brinkman system −[4w−αw−∇r] = F,
div w = G by [42, §2.1], and v is a Newtonian potential for the Brinkman system
in Rm, we deduce that

(4.19) f = −[4v − αv −∇p], g = div v.

By (4.17) and (4.19) the pair (w, ρ) := (v−ϕu, p−ϕπ) is a solution of the Brinkman
system (3.1) in Rm. Then by Lemma 4.1 all entries w1, . . . , wm and ρ are polyno-
mials. In addition, since (w(x), ρ(x)) = o(|x|) as |x| → ∞ by Lemma 4.3, there
exist constants w∞ ∈ Rm and π∞ ∈ R such that w = w∞, ρ = π∞ in Rm. But
0 = 4w − αw − ∇ρ = −αw∞, and hence w∞ = 0. On the other hand, the
boundedness of ρ at infinity yields that∫

Rm

g dy = 0.

Then, by using again Lemma 4.3, we obtain that

(4.20) lim
|x|→∞

v(x) = 0, lim
|x|→∞

∇v(x) = 0, lim
|x|→∞

p(y) = 0.

Now, by means of the relations (4.20), w = 0 and ρ = π∞ in Rn, and (w, ρ) =
(v − ϕu, p− ϕπ), as well as the fact that ϕ = 1 outside a bounded set, we deduce
that

lim
|x|→∞

u(x) = 0, lim
|x|→∞

∇u(x) = 0, lim
|x|→∞

π(x) = π∞.

Moreover, Lemma 4.3 implies that

u(x) = O(|x|1−m), ∇u(x) = O(|x|−m) for m = 2,
∇u(x) = O(|x|1−m) for m > 2 as |x| → ∞.

Let r > 0 sufficiently large. Let Ωr := {y ∈ Rm : |y| > r}. By Proposition 4.2, u
and π can be written as

u = WBr;α;∂Ωr (TrΩru) + VBr;α;∂Ωr

(
∂0

ν;Ωr
(u, π)

)
in Ωr,(4.21)

π = Qd
Br;α;∂Ωr

(TrΩr
u) +Qs

Br;α;∂Ωr

(
∂0

ν;Ωr
(u, π)

)
in Ωr.(4.22)

In addition, if m = 2 then

(4.23)
∫

∂Ωr

〈TrΩr
u, ν〉 dσ = 0.

Finally, by Lemma 3.3 and the formula (4.22), we obtain that

∂βπ(x) = O(|x|2−m−|β|) as |x| → ∞, m > 2.

However, if m = 2 then Lemma 3.3 and the formulas (4.21) and (4.22) imply that

∂βπ(x) = O(|x|1−m−|β|), u(x) = O(|x|−m) as |x| → ∞.

The remaining part of Proposition 4.4 can be obtained by an induction argument,
which we omit for the sake of brevity. �

Next we provide the Green formula for an L2–solution of the Brinkman system
and of the Oseen system, respectively.
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Lemma 4.5. Let Ω ⊆ Rm (m ≥ 2) be an open set with compact Lipschitz boundary
and the exterior unit normal ν. Let (u, π) be a solution of the Brinkman system
(3.1) in Ω, such that u∗, (∇u)∗, π∗ ∈ L2(∂Ω) and there exist the nontangential
limits of u, ∇u and π at almost all points of ∂Ω. In addition, if Ω is unbounded,
we assume that u(x) → 0, π(x) → 0 as |x| → ∞. Then (u, π) satisfies the following
Green formula

(4.24)
∫

∂Ω

〈
TrΩu, ∂0

ν;Ω(u, π)
〉
dσ =

∫
Ω

{
2|∇̂u|2 + α|u|2

}
dx.

Proof. First we assume that Ω is bounded. Let {Ωj}j≥1 be a sequence of open sets
as in Lemma 3.5. For each Ωj the Green formula (4.24) holds. Then by means of
the Lebesgue Lemma we obtain the formula (4.24) for Ω, as well.

Now we assume that Ω is unbounded. Let r > 0 be sufficiently large. Then the
formula (4.24) holds for the bonded set Ωr := Ω ∩ B(0; r). Finally, letting r → ∞
in such a formula and by means of Proposition 4.4 we also get the Green formula
(4.24) for the unbounded set Ω, and the proof is complete. �

Lemma 4.6. Let Ω ⊆ Rm (m ≥ 2) be an open set with compact Lipschitz boundary.
Let ν be the exterior unit normal to ∂Ω. Let λ ∈ R. Let (u, π) be a solution of
the Oseen system (3.25) in Ω, such that u∗, (∇u)∗, π∗ ∈ L2(∂Ω) and there exist the
nontangential limits of u, ∇u and π at almost all points of ∂Ω. In addition, if Ω is
unbounded, we assume that u(x) → 0, π(x) → 0 as |x| → ∞. Then (u, π) satisfies
the following Green formula

(4.25)
∫

∂Ω

〈
TrΩu, ∂λ

ν;Ω(u, π)
〉
dσ = 2

∫
Ω

|∇̂u|2dx.

Proof. The formula (4.25) follows by means of Lemma 3.9 and [28, Lemma 6.2]. �

Next we show the uniqueness of an Lq-solution of the crack type transmission
problem (2.5)-(2.9).

Proposition 4.7. Let q ∈ (1,∞). Let
(
(uB , πB), (uOπO)

)
be an Lq-solution of the

homogeneous crack type transmission problem (2.4)−(2.9). If ΩB is unbounded, we
assume that uB(x) → 0, πB(x) → 0 as |x| → ∞. If ΩO is unbounded, we assume
that uO(x) → 0, πO(x) → 0 as |x| → ∞. Then uB ≡ 0 and πB ≡ 0 in ΩB \ ScB,
uO ≡ 0 and πO ≡ 0 in ΩO.

Proof. First, we consider the case q ≥ 2. In view of the fact that ((uB , πB), (uOπO))
is a solution of the homogeneous transmission problem (2.5)− (2.9), we obtain the
boundary conditions

TrΩB
uB = TrΩO

uO on Sif , TrωB
uB = TrΩB\ωB

uB = uB on ∂ωB .

Remember that νB is the exterior unit normal to ΩB on Sif , and the exterior unit
normal to ωB on ∂ωB . Then by applying Lemma 4.6 for (uO, πO) in ΩO, and
Lemma 4.5 for (uB , πB) in ωB and ΩB \ωB , respectively, and adding the resulting
formulas, we obtain

0=
∫

∂ΩO

〈
TrΩO

uO, ∂
0
νB ;ΩB

(uB , πB)−cO∂λ
νB ;ΩO

(uO, πO)+hBTrΩB
uB+hOTrΩO

uO

〉
dσ

+
∫

∂ωB

〈
TrωB

uB , ∂
0
νB ;ωB

(uB , πB)− ∂0
νB ;ΩB\ωB

(uB , πB) + (h+ + h−)TrωB
uB

〉
dσ
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=cO
∫

ΩO

2|∇̂uO|2 dx +
∫

Sif

〈(hB + hO)TrΩO
uO,TrΩO

uO〉 dσ

+
∫

ΩB\ScB

(
2|∇̂uB |2 + α|uB |2

)
dx +

∫
ScB

〈(h+ + h−)TrωB
uB ,TrωB

uB〉 dσ.

Therefore uB = 0 in ΩB and ∇̂uO = 0 in ΩO. The second relation implies that
uO is linear on each component of ΩO (see [27, Lemma 3.1]), and hence uO is a
harmonic function. Then by the transmission condition TrΩO

uO = TrΩB
uB = 0

on ∂ΩO. If ΩO is unbounded then uO(x) → 0 as |x| → ∞. By the maximum
principle we obtain that uO = 0 in ΩO. In addition, the Brinkman and Oseen
equations imply that the functions πB and πO are locally constant in ΩB and ΩO,
respectively. Since uB = 0, the crack type condition (2.9) implies that πB has no
jump on the crack ScB , and the transmission condition (2.7) yields that πB = cOπO

on the interface Sif . If ΩO (ΩB) is unbounded then πO(x) → 0 (πB(x) → 0) as
|x| → ∞, respectively. Consequently, we deduce that πB = 0 in ΩB and πO = 0 in
ΩO.

Let now 1 < q ≤ 2. It is sufficient to prove that
(
(uB , πB), (uOπO)

)
is an L2-

solution of the homogeneous crack type transmission problem (2.4)− (2.9). Denote

g := uO, f = ∂λ
−νB

(uO, πO) on ∂ΩO,

Φ := [uB ]+, Ψ := [∂O
νB

(uB , πB)]+ − [∂O
νB

(uB , πB)]− on ∂ωB .

Then uB = g on Sif . Since h+ = h− = 0 on ∂Ω \ ScB we have

(4.26) Ψ + (h+ + h−)Φ = 0.

(2.7) gives ∂0
νB

(uB , πB) = −c0f − (hO +hB)g on Sif . According to Proposition 4.2

(4.27) uB = WBr;α;∂ΩB
g−cOVBr;α;∂ΩB

f−VBr;α;∂ΩB
(hO +hB)g+VBr;α;∂ωB

Ψ,

(4.28) πB = Qd
Br;α;∂ΩB

g− cOQ
s
Br;α;∂ΩB

f −Qs
Br;α;∂ΩB

(hO + hB)g +Qs
Br;α;∂ωB

Ψ.

If we go to ∂ωB in (4.27), we obtain

(4.29) Φ−WBr;α;∂ΩB
g+cOVBr;α;∂ΩB

f+VBr;α;∂ΩB
(hO+hB)g−VBr;α;∂ωB

Ψ = 0.

According to Proposition 3.10

(4.30) uO = WOs;λ;∂ΩO
g + VOs;α;∂ΩO

f ,

(4.31) πO = Qd
Os;λ;∂ΩO

g +Qs
∂ΩO

f .

If we go to Sif in (4.27) and (4.30) we obtain

g =
1
2
g + KBr;α;∂ΩB

g − cOVBr;α;∂ΩB
f − VBr;α;∂ΩB

(hO + hB)g + VBr;α;∂ωB
Ψ,

g =
1
2
g + KOs;λ;∂ΩO

g + VOs;λ;∂ΩO
f .

Multiply the second equation by co and add to the first equation. (Remind that
VBr;α;∂ΩB

= VBr;α;∂ΩO
, KBr;α;∂ΩB

= −KBr;α;∂ΩO
.)

(4.32) − 1+c0
2 g −KBr;α;∂ΩO

g + cOKOs;λ;∂ΩO
g + cO(VOs;λ;∂ΩO

f − VBr;α;∂ΩO
f)

−VBr;α;∂ΩB
(hO + hB)g + VBr;α;∂ωB

Ψ = 0.

Calculating the conormal derivative from (4.30), (4.31) we obtain

(4.33) f = DOs;λ;∂ΩO
g +

1
2
f −K ′

Os;λ;∂ΩO
f .
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Define
T1(Ψ,Φ,g, f) = Ψ + (h+ + h−)Φ,
T2(Ψ,Φ,g, f) = Φ−WBr;α;∂ΩB

g + cOVBr;α;∂ΩB
f + VBr;α;∂ΩB

(hO + hB)g
−VBr;α;∂ωB

Ψ,
T3(Ψ,Φ,g, f) = − 1+c0

2 g −KBr;α;∂ΩO
gcOKOs;λ;∂ΩO

g − VBr;α;∂ΩB
(hO + hB)g

+cO(VOs;λ;∂ΩO
f − VBr;α;∂ΩO

f) + VBr;α;∂ωB
Ψ,

T4(Ψ,Φ,g, f) = DOs;λ;∂ΩO
g − 1

2 f −K ′
Os;λ;∂ΩO

f

Then T = (T1, T2, T3, T4) is a bounded operator on Lq(∂ωB ,Rm)×Lq
1(∂ωB ,Rm)×

Lq
1(∂ΩO,Rm)×Lq(∂ΩO,Rm). Sobolev imbedding theorem and compactness of com-

plementary layer potentials force that T is a compact perturation of the operator
T̃ = (T̃1, T̃2, T̃3, T̃4), where

T̃1(Ψ,Φ,g, f) = Ψ,

T̃2(Ψ,Φ,g, f) = Φ− VBr;α;∂ωB
Ψ,

T̃3(Ψ,Φ,g, f) = −1 + c0
2

g + (cO − 1)K∂ΩO
g

T̃4(Ψ,Φ,g, f) = D∂ΩO
g − 1

2
f −K ′

∂ΩO
f

Since the equation Φ−VBr;α;∂ωB
Ψ = ϕ can be rewritern as Φ = VBr;α;∂ωB

Ψ + ϕ,
the operator (T̃1, T̃2) is an invertible operator on Lq(∂ωB ,Rm) × Lq

1(∂ωB ,Rm).
The operator T̃3 is a Fredholm operator with index 0 on Lq

1(∂ΩO,Rm) by [34,
Theorem 9.1.3]. The operator − 1

2I−K
′
∂ΩO

is a Fredholm operator with index 0 on
Lq(∂ΩO,Rm) by [34, Theorem 9.1.11]. Since the equation D∂ΩO

g− 1
2 f−K

′
∂ΩO

f = ϕ

can be rewrtitern as − 1
2 f−K

′
∂ΩO

f = ϕ−D∂ΩO
g the operator (T̃3, T̃4) is a Fredholm

operator with index 0 on Lq
1(∂ΩO,Rm) × Lq(∂ΩO,Rm). Since T̃ is a Fredholm

operator with index 0 and T − T̃ is compact, the operator T is a Fredholm operator
with index 0 on Lq(∂ωB ,Rm) × Lq

1(∂ωB ,Rm) × Lq
1(∂ΩO,Rm) × Lq(∂ΩO,Rm) for

arbitrary 1 < q ≤ 2. Since T (Ψ,Φ,g, f) = 0 by (4.26), (4.29), (4.32) and (4.33),
we have (Ψ,Φ,g, f) ∈ L2(∂ωB ,Rm)×L2

1(∂ωB ,Rm)×L2
1(∂ΩO,Rm)×L2(∂ΩO,Rm)

(see [26, Lemma 5] or [34]). The representation (4.27), (4.28), (4.30), (4.31) gives
that

(
(uB , πB), (uO, πO)

)
is an L2-solution of the transmission problem.

�

4.2. Existence of a solution of the crack type transmission problem. Next
we are concerning with the existence of a solution of the crack type transmission
problem (2.4)-(2.9). We determine a solution of such a problem, which vanishes at
infinity, in the form

(4.34)

uB = WBr;α;∂ΩB
Φ + VBr;α;∂ΩB

Ψ + WBr;α;∂ωB
Υ + VBr;α;∂ωB

Θ,
πB = Qd

Br;α;∂ΩB
Φ +Qs

Br;α;∂ΩB
Ψ +Qd

Br;α;∂ωB
Υ +Qs

Br;α;∂ωB
Θ,

uO = WOs;λ;∂ΩB
Φ + VOs;λ;∂ΩB

Ψ,
πO = Qd

Os;λ;∂ΩB
Φ +Qs

Os;λ;∂ΩB
Ψ,

with unknown densities (Φ,Ψ,Υ,Θ) ∈ Xq, where

(4.35) Xq := Lq
1(Sif ,Rm)× Lq(Sif ,Rm)× Lq

1(ScB ,Rm)× Lq(ScB ,Rm).

If m = 2 and ΩB is unbounded we require that (Φ,Ψ,Υ,Θ) ∈ Yq, where

(4.36) Yq :=

{
(Φ,Ψ,Υ,Θ) ∈ Xq :

∫
Sif

〈Φ, ν
B
〉dσ +

∫
ScB

〈Φ, ν
B
〉dσ = 0

}
.
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Note that the potentials WOs;λ;∂ΩB
Φ, VOs;λ;∂ΩB

Ψ, Qd
Os;λ;∂ΩB

Φ, Qs
Os;λ;∂ΩB

Ψ are
analyzed in ΩO, i.e., outside their reference set ΩB . The potentials WBr;α;∂ΩB

Φ,
VBr;α;∂ΩB

Ψ, Qd
Br;α;∂ΩB

Φ, Qs
Br;α;∂ΩB

Ψ are well-defined and infinitely differentiable
in a neighborhood of ScB , i.e., strictly inside their reference set ΩB . The potentials
WBr;α;∂ωB

Υ, VBr;α;∂ωB
Θ, Qd

Br;α;∂ωB
Υ, Qs

Br;α;∂ωB
Θ are well-defined and infinitely

differentiable in a neighborhood of Sif , i.e., strictly outside their reference set ωB .
By imposing the transmission and crack type conditions (2.6)-(2.9)) and the re-
quired boundary behavior to the layer potential representations (4.34), we deduce
that (uB , πB ,uO, πO) is an Lq-solution of the crack type transmission problem
(2.4)-(2.9) if and only if

(4.37) T α;λ(Φ,Ψ,Υ,Θ) = (gif , fif ,gcB , fcB),

where T α;λ = (T α;λ
1 , T α;λ

2 , T α;λ
3 , T α;λ

4 ) is a bounded linear operator on Xq, having
the following entries

(4.38)
T α;λ

1 (Φ,Ψ,Υ,Θ)=
(

1
2 I+KBr;α;∂ΩB

)
Φ+VBr;α;∂ΩB

Ψ+WBr;α;∂ωB
Υ+VBr;α;∂ωB

Θ
−

[(
− 1

2 I + KOs;λ;∂ΩB

)
Φ + VOs;λ;∂ΩB

Ψ
]
,

T α;λ
2 (Φ,Ψ,Υ,Θ) =DBr;α;∂ΩB

Φ +
(

1
2 I + K′

Br;α;∂ΩB

)
Ψ

+∂0
νB ;∂ΩB

(
WBr;α;∂ωB

Υ+VBr;α;∂ωB
Θ, Qd

Br;α;∂ωB
Υ+Qs

∂ωB
Θ

)
−cO

[(
− 1

2 I + K′
Os;λ;∂ΩB

)
Ψ + DOs;λ;∂ΩB

Φ
]

+hB

( (
1
2 I + KBr;α;∂ΩB

)
Φ + VBr;α;∂ΩB

Ψ + WBr;α;∂ωB
Υ

+VBr;α;∂ωB
Θ

)
+ hO

[(
− 1

2 I + KOs;λ;∂ΩB

)
Φ + VOs;λ;∂ΩB

Θ
]
,

T α;λ
3 (Φ,Ψ,Υ,Θ) =Υ,

T α;λ
4 (Φ,Ψ,Υ,Θ) =Θ + (h+ + h−)

(
VBr;α;∂ωB

Θ+WBr;α;∂ΩB
Φ+VBr;α;∂ΩB

Ψ
)

+h+

(
1
2 I + KBr;α;∂ωB

)
Υ + h−

(
− 1

2 I + KBr;α;∂ωB

)
Υ.

Note that T α;λ is a linear operator on Xq, as we have h+ = h− = 0 on ∂ω \ ScB .
In addition, we mention the following useful result.

Lemma 4.8. Let X, Y be Banach spaces, T : X → Y be a bounded linear operator.
If T is a Fredholm operator with index zero then there exists a finite-dimensional
linear operator P : X → Y such that T + P is an isomorphism.

Proof. Let X0 = {x ∈ X : Tx = 0}. According to [38, Lemma 5.1] there exists a
closed subspace X1 of X such that X = X0 ⊕X1. Denote by P1 the projection of
X onto X0 along X1. Since the index of T is 0 there exists a subspace Z of Y of the
same dimension like X0 such that Y = Z⊕T (X). Then there exists an isomorphism
P2 of X0 onto Z. Let P := P2 ◦ P1. Since P is a compact operator, the operator
T + P : X → Y is Fredholm with index zero. Assume now that (T + P )x = 0.
Since Px ∈ Z and Y = Z ⊕ T (X), we deduce that Tx = 0, Px = 0. Since Tx = 0,
we have x ∈ X0. Therefore, 0 = Px = P2x. Since P2 : X0 → Z is an isomorphism
we deduce that x = 0. Therefore, T + P : X → Y is a Fredholm operator with
index zero and trivial kernel, and hence such an operator is an isomorphism. �

Proposition 4.9. Let Xq and Yq be the spaces defined in (4.35) and (4.36). Then
there exists q0 > 2 such that for any q ∈ (1, q0) the operators T α;λ : Xq → Xq given
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by (4.38) is an isomorphism. If m = 2 and ΩB is unbounded then T α;λ : Yq → Yq

is an isomorphism. If the interface Sif is of class C1 then q0 = ∞.

Proof. First we show that there exists q0 > 2 such that the operator T α;λ : Xq → Xq

is Fredholm with index zero for all q ∈ (1, q0). In fact, by [34, Theorem 9.1.11,
Theorem 10.5.3] and [25], there is q0 > 2 such that 1+c0

2 I + (1− c0)K′
ΩB

: Xq → Xq

is a Fredholm operator with index zero for any q ∈ (1, q0). Moreover, if Sif is of C1

class, then q0 = ∞. Let q ∈ (1, q0). By Lemma 4.8 there exists a finite-dimensional
linear operator P : Xq → Xq such that 1+c0

2 I + (1 − c0)K′
ΩB

+ P : Xq → Xq is an
isomorphism. Then define the operator T = (T1, T2, T3, T4) by

T1(Φ,Ψ,Υ,Θ)=Φ,
T2(Φ,Ψ,Υ,Θ) =

[
1+c0

2 I + (1− c0)K′
∂ΩB

+ P
]
Ψ + DBr;α;∂ΩB

Φ− cODOs;λ;∂ΩB
Φ,

T3(Φ,Ψ,Υ,Θ) =Υ,

T4(Φ,Ψ,Υ,Θ) =Θ + h+

(
1
2 I + KBr;α;∂ωB

)
Υ + h−

(
− 1

2 I + KBr;α;∂ωB

)
Υ.

Since h+ = h− = 0 on ∂Ω \ ScB , the operator T is linear and bounded on Xq.
Further, observe that the equation T (Φ,Ψ,Υ,Θ) = (Λ1,Λ2,Λ3,Λ4) is equiva-

lent to Φ = Λ1, [ 1+c0
2 I+(1−c0)K′

ΩB
+P ]Ψ = Λ2−DBr;α;∂ΩB

Λ1−cODOs;λ;∂ΩB
Λ1,

Υ = Λ3, Θ = Λ4 − h+( 1
2 I + KBr;α;∂ωB

)Λ3 − h−(− 1
2 I + KBr;α;∂ωB

)Λ3. Therefore,
T : Xq → Xq is an isomorphism. Next we show that the operator T α;λ : Xq → Xq

is a Fredholm operator with index 0. To this purpose, note the useful relations

(T α;λ
1 − T1)(Φ,Ψ,Υ,Θ) = (KBr;α;∂ΩB

−KOs;α;∂ΩB
)Φ + WBr;α;∂ωB

Υ
+VBr;α;∂ωB

Θ+(VBr;α;∂ΩB
−VOs;λ;∂ΩB

)Ψ,
(T α;λ

2 − T2)(Φ,Ψ,Υ,Θ) = [(K′
Br;α;∂ΩB

−K∂ΩB
)− c0(K′

Os;λ;∂ΩB
−K∂ΩB

)]Ψ
+∂0

νB ;∂ΩB
(WBr;α;∂ωB

Υ+VBr;α;∂ωB
Θ, Qd

Br;α;∂ωB
Υ

+Qs
∂ωB

Θ) + hB

( (
1
2 I + KBr;α;∂ΩB

)
Φ + VBr;α;∂ΩB

Ψ

+WBr;α;∂ωB
Υ + VBr;α;∂ωB

Θ
)

+hO

[(
− 1

2 I + KOs;λ;∂ΩB

)
Φ + VOs;λ;∂ΩB

Θ
]
− PΨ,

(T α;λ
3 − T3)(Φ,Ψ,Υ,Θ) =0,

(T α;λ
4 − T4)(Φ,Ψ,Υ,Θ) = (h+ + h−)

(
VBr;α;∂ωB

Θ + WBr;α;∂ΩB
Φ + VBr;α;∂ΩB

Ψ
)
.

The operator T − T α;λ : Xq → Xq is linear and compact, as the Sobolev imbed-
ding theorem and compactness of complementary potentials show (see Lemma
3.2, Proposition 3.4, Proposition 3.6 and Lemma 3.14). Therefore, the operator
T α;λ : Xq → Xq is Fredholm with index zero, as well.

LetG ⊆ Rm be a bounded open set with Lipschitz boundary. Let ϕ ∈ Lq
1(∂G,Rn).

By the divergence theorem we obtain the equality∫
∂G

〈(
1
2

I + KBr;α;∂G

)
ϕ, νΩ

〉
dσ =

∫
∂G

〈TrG (WOs;λ;∂Gϕ) , νG〉dσ = 0.

In addition, we have the equality∫
∂G

〈(
−1

2
I + KBr;λ;∂G

)
ϕ, ν

G

〉
dσ =

∫
∂G

〈(
1
2

I + KBr;α;∂G

)
ϕ, ν

G

〉
dσ

−
∫

∂G

〈ϕ, ν
G
〉 dσ = −

∫
∂G

〈ϕ, ν
G
〉 dσ.(4.39)



ON THE Lq-SOLUTION OF THE OSEEN-BRINKMAN TRANSMISSION PROBLEM AROUND A SOLID (m−1)-DIMENSIONAL OBSTACLE25

Therefore,
(
− 1

2 I + KBr;λ;∂G

)
ϕ is orthogonal to ν

G
if and only if ϕ is orthogonal to

ν
G
. Similar results hold for

(
± 1

2 I + KG;Os,λ

)
ϕ.

Now we turn to show that the operator T α;λ : Xq → Xq is one-to-one. For this
purpose, assume that (Φ,Ψ,Υ,Θ) ∈ Xq satisfies the equation T α;λ(Φ,Ψ,Υ,Θ) =
0. Then Υ = 0. Let ((uB , πB), (uO, πO)) be the layer potentials defined as in
(4.34). If ΩB is bounded or m = 3 then ((uB , πB), (uO, πO)) is an Lq-solution of
the homogeneous crack type transmission problem (2.4)-(2.9), which vanishes at
infinity. By Proposition 4.7 we obtain that uB = 0, πB = 0 in ΩB and uO = 0,
πO = 0 in ΩO. Suppose now that m = 2 and ΩB is unbounded. Then(

1
2

I+ KBr;α;∂ΩB

)
Φ =

(
−1

2
I + KOs;λ;∂ΩB

)
Φ

− VBr;α;∂ΩB
Ψ−VBr;α;∂ωB

Θ + VOs;λ;∂ΩB
Ψ

on Sif . The divergence theorem implies that the right-hand side in the above
equality is orthogonal to νB on Sif . Then by the orthogonality result above (4.39),
Φ is orthogonal to νB on Sif . Therefore ((uB , πB), (uO, πO)) is an Lq-solution of
the homogeneous crack type transmission problem (2.4)-(2.9), which vanishes at
infinity. By Proposition 4.7 we obtain that uB = 0, πB = 0 in ΩB and uO = 0,
πO = 0 in ΩO.

Since uB = 0, πB = 0, the crack type condition (2.9) implies that Θ = 0. Let
us define the layer potential

(4.40)
vB := WBr;α;∂ΩB

Φ + VBr;α;∂ΩB
Ψ

pB := Qd
Br;α;∂ΩB

Φ +Qs
Br;α;∂ΩB

Ψ in Rm \ Sif ,

(4.41)
vO = WOs;λ;∂ΩB

Φ + VOs;λ;∂ΩB
Ψ

pO := Qd
Os;λ;∂ΩB

Φ +Qs
Os;λ;∂ΩB

Ψ in Rm \ Sif .

We turn to show that vB = 0, pB = 0, vO = 0, pO = 0 on Rm \ Sif . To this
purpose note that Υ = 0 and Θ = 0 imply vB = uB = 0, pB = πB = 0 in ΩB , and
vO = uO = 0, pO = πO = 0 in ΩO. In addition, the jump formulas of the boundary
layer potentials and their conormal derivatives imply that

TrΩO
vB = TrΩO

vB − TrΩB
vB = −Φ,(4.42)

∂0
νB ;ΩO

(vB , pB) = ∂0
νB ;ΩO

(vB , πB)− ∂0
νB ;ΩB

(vB , pB) = −Ψ,(4.43)

TrΩB
vO = TrΩB

vO − TrΩO
vO = Φ,(4.44)

∂λ
νB ;ΩB

(vO, pO) = ∂λ
νB ;ΩB

(vO, πO)− ∂λ
νB ;ΩO

(vO, pO) = Ψ.(4.45)

In addition, if ΩB is bounded then the Divergence Theorem gives∫
∂ΩB

〈Φ, νB〉 dσ =
∫

∂ΩB

〈TrΩBvB , νB〉 dσ = 0.

Now the relations (4.42)-(4.45) show that (vB , pB ,vO, pO) is an Lq-solution of the
transmission problem

(4.46)


(∆− αI)vB −∇pB = 0, div vB = 0 in ΩO,
(∆− λ∂1)(−vO)−∇(−pO) = 0, div vO = 0 in ΩB ,
TrΩO

vB − TrΩB
(−vO) = 0 on Sif ,

∂0
νB ;ΩO

(vB , pB)− ∂λ
νB ;ΩB

(−vO,−pO) = 0 on Sif ,

which vanishes at infinity. Then by Proposition 4.7 we obtain that vB = 0, pB = 0
in ΩO, and −vO = 0, −pO = 0 in ΩB . In addition, the relations (4.44), (4.45)
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imply that Φ = 0 and Ψ = 0. Consequently, the Fredholm operator of index zero
T α;λ : Xq → Xq is one-to-one, and hence an isomorphism.

Finally, we analyze the case m = 2 and ΩB unbounded. Let us suppose that
(Φ,Ψ,Υ,Θ) ∈ Yq. Put (gif , fif ,gcB , fcB) = T α;λ(Φ,Ψ,Υ,Θ). If (uB , πB ,uO, πO)
is given by the formula (4.34) then (uB , πB ,uO, πO) is a solution of the problem
(2.4)-(2.9) vanishing at infinity. Proposition 4.2 implies that∫

∂ΩB

〈TrΩB
uB , νB〉 dσ +

∫
ScB

〈gcB , νB〉 dσ = 0.

In addition, by the Divergence Theorem we obtain the equality∫
∂ΩB

〈TrΩO
uO, νB〉 dσ = 0.

Subtracting the above equalities we obtain that (gif , fif ,gcB , fcB) ∈ Yq. Since
T α;λ(Yq) ⊂ Yq and T α;λ : Xq → Xq is an isomorphism, we conclude that the
operator T α;λ : Yq → Yq is an isomorphism, as asserted. �

The main result related to the transmission problem (2.4)-(2.9) is given below.

Theorem 4.10. Let ΩB ,ΩO ⊆ Rm (m ∈ {2, 3}) be open sets with compact Lipschitz
boundaries, such that ΩB 6= ∅, ΩB∩ΩO = ∅ and ΩB∪ΩO = Rm. Let Sif := ∂ΩB =
∂ΩO. Let ωB ⊆ Rm be a bounded open set with a closed Lipschitz surface ∂ωB.
Let ScB ⊂ ∂ωB be closed. Then there exists a number q0 > 2 such that for any
q ∈ (1, q0) the following properties holds.

(1) Assume that ΩB is bounded.
(a) Then there exists an Lq-solution of the crack type transmission problem

(2.4)-(2.9) if and only if (gif , fif ,gcB , fcB) ∈ Xq.
(b) Let (gif , fif ,gcB , fcB) ∈ Xq be given. If ((uB , πB), (uO, πO)) is an

Lq-solution of the problem (2.4)-(2.9), then there exist two constants
u∞ ∈ Rm and π∞ ∈ R such that uO(x) → u∞, πO(x) → π∞ as
|x| → ∞.

(c) Let u∞ ∈ Rm and π∞ ∈ R be given. Let (Φ,Ψ,Υ,Θ) be equal to

(T α;λ)−1(gif + u∞, fif − c0(π∞ν + λν1u∞)− hOu∞,gcB , fcB),

where T α;λ is the isomorphism (4.38). Let uB, πB, uO and πO be the
layer potentials given by (4.34). Let vO = uO + u∞, pO = πO + π∞.
Then ((uB , πB), (vO, pO)) is the unique Lq-solution of the crack type
transmission problem (2.4)-(2.9), such that

vO(x) → u∞, pO(x) → π∞ as |x| → ∞.

(2) Assume that ΩB is unbounded.
(a) If m = 3 then there exists an Lq-solution of the crack type transmission

problem (2.4)-(2.9) if and only if (gif , fif ,gcB , fcB) ∈ Xq.
(b) If m = 2 then there exists an Lq-solution of the crack type transmission

problem (2.4)-(2.9) if and only if (gif , fif ,gcB , fcB) ∈ Yq.
(c) Let (gif , fif ,gcB , fcB) ∈ Xq be given. In the case m = 2, we assume

that (gif , fif ,gcB , fcB) ∈ Yq. If
(
(uB , πB), (uO, πO)

)
is an Lq-solution

of the crack type transmission problem (2.4)-(2.9), then there exists a
constant π∞ ∈ R such that πB(x) → π∞ as |x| → ∞.



ON THE Lq-SOLUTION OF THE OSEEN-BRINKMAN TRANSMISSION PROBLEM AROUND A SOLID (m−1)-DIMENSIONAL OBSTACLE27

(d) Let π∞ ∈ R be given. Let

(Φ,Ψ,Υ,Θ) = (T α;λ)−1(gif , fif + π∞ν,gcB , fcB).

Let uB, πB, uO and πO be the layer potentials given by (4.34). Also let
pB = πO + π∞. Then ((uB , pB), (uO, πO)) is the unique Lq-solution
of the crack type transmission problem (2.4)-(2.9), such that

pB(x) → π∞ as |x| → ∞.

(3) If Sif is of class C1 then q0 = ∞.

Proof. The results of Theorem 4.10 follow by means of Proposition 4.9, Proposition
4.7, Lemma 3.9 and Proposition 4.4. �
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