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INTEGRAL EQUATIONS METHOD AND THE TRANSMISSION
PROBLEM FOR THE STOKES SYSTEM

D. MEDKOVÁ1

Abstract. The transmission problem for the Stokes system is studied: ∆v± =
∇p±, ∇ · v± = 0 in G±, v+ − v− = g, a+T (v+, p+)n − a−T (v−, p−)n = f on
∂G+. Here G+ ⊂ R3 is a bounded open set with Lipschitz boundary and G− is
the corresponding complementary open set. Using the integral equation method we
study the problem in homogeneous Sobolev spaces. Under assumption that ∂G+

is of class C1 we study this problem also in Besov spaces and Lq-solutions of the
problem. We show the unique solvability of the problem. Moreover, we solve the
corresponding boundary integral equations by the successive approximation method.

1. Introduction

The transmission problem is a very important problem and there are lots of papers
devoted to this topic (see for example [18], [39], [2], [7], [38], [10]). This problem
occurs in the case of contact of two media with different material constants. Very
fruitful is to study this problem using the integral equation method (see [4], [35], [12],
[11], [13], [34], [5]). Many papers study the Brinkman transmission problem and the
Stokes–Brinkman transmission problem by the integral equation method ([21], [22],
[23], [25], [20], [24]). The transmission problem for the Stokes system was studied by
the integral equation method in [3], [36]. The following transmission problem was
studied:

(1.1) ∆v± = ∇p± in G±, ∇ · v± = 0 in G±,

(1.2) v+ − v− = g, a+T (v+, p+)n− a−T (v−, p−)n = f on ∂G.

(1.3) v−(x) = O(|x|−1), ∇v−(x) = O(|x|−2), p−(x) = O(|x|−2) as |x| → ∞.
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Here G = G+ ⊂ R3 is a bounded open set with Lipschitz boundary ∂G, G− :=
R3 \ clG+ its complement with ∂G− = ∂G, where clG+ denotes the closure of G+

and ∂G the boundary of G, n = nG is the outward unit normal of G+, a+, a− are
positive constants, and

T (v, p) = 2∇̂v − pI

is the stress tensor. Here I denotes the identity matrix and

∇̂v =
1

2
[∇v + (∇v)T ]

is the strain tensor, with (∇v)T as the matrix transposed to ∇v = (∂jvk), (k, j =
1, 2, 3), and∇·v = ∂1v1+∂2v2+∂3v3 denotes the divergence of v. For 1 < q ≤ 2 and f ∈
Lq(∂Ω, R3) and g ∈ W 1,q(∂Ω, R3) it was shown that there exists a unique Lq-solution
of the transmission problem (1.1), (1.2), (1.3). It means that the nontangential
maximal functions of v±, ∇v± and p± are in Lq(∂Ω) and the transmission conditions
(1.2) are satisfied in the sense of the nontangential limit. (See [36], Theorem 9.2.1.)

The integral equation method is a basis of calculation of a solution of the problem
by the boundary element method (see [14], [17], [43], [40]). The famous article [44]
studies the Neumann problem for elliptic systems by the integral equation method.
O. Steinbach and W. L. Wendland looked for a solution in the form of a single layer
potential. They proved that the corresponding integral equation can be solved by the
successive approximation. The goal of this paper is to prove a similar result for the
transmission problem for the Stokes system.

First we study a solution v± ∈ W̃ 1,2(G±, R
3), p± ∈ L2(G±) of the problem

(1.1), (1.2) for G+ with Lipschitz boundary. Here the homogeneous Sobolev space
W̃ 1,2(G±) is defined by W̃ 1,2(G±) = {u ∈ L6(G±); ∂ju ∈ L2(G±)}. (It is well
known that the study of the problem in the standard Sobolev space W 1,2(G±) =
{u ∈ L2(G±); ∂ju ∈ L2(G±)} failes. Remark that W 1,2(G±) is a dense subspace of
W̃ 1,2(G±), and W̃ 1,2(G+) = W 1,2(G+), W̃ 1,2(G−) 6= W 1,2(G−).) We show that the
transmission problem is uniquely solvable and

(1.4) v± = DGg + EGΨ, p± = ΠGg +QGΨ

with

(1.5) Ψ = T (v+, p+)n− T (v−, p−)n.

Here (DGg,ΠGg) is the hydrodynamical double layer potential with density g and
(EGΨ, QGΨ) is the hydrodynamical single layer potential with the density Ψ. So, it
is enough to calculate Ψ. The density Ψ satisfies the integral equation

(1.6) Ψ =
2(a+ − a−)

(a+ + a−)
K ′GΨ +

2

a+ + a−
F
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(for the definition of the operator K ′G see §3; for the definition of F see §5). We show
that this equation is uniquely solvable. If Ψ0 ∈ H−1/2(∂G,R3) is fixed

(1.7) Ψk =
2(a+ − a−)

(a+ + a−)
K ′GΨk−1 +

2

a+ + a−
F,

then Ψk → Ψ and

‖Ψk −Ψ‖H−1/2(∂G,R3) ≤ Cαk
(
‖Ψ0‖H−1/2(∂G,R3) + ‖F‖H−1/2(∂G,R3)

)
,

where

(1.8) α =
max(a+, a−)

a+ + a−
< 1

and a constant C depends only on G, a+ and a−.
Under the assumption that ∂G is of class C1 and 1 < q <∞ we study an Lq-solution

of the transmission problem (1.1), (1.2) accomplished with the condition

(1.9) v−(x)→ 0, p−(x)→ 0 as |x| → ∞

instead of the rather artificial condition (1.3). We show the unique solvability of the
problem and the representation (1.4), (1.5). The density Ψ ∈ Lq(∂G,R3) is a unique
solution of the equation (1.6). If Ψ0 ∈ Lq(∂G,R3) is fixed and Ψk is given by (1.7),
then Ψk → Ψ and

‖Ψk −Ψ‖Lq(∂G,R3) ≤ Cαk
(
‖Ψ0‖Lq(∂G,R3) + ‖F‖Lq(∂G,R3)

)
,

where α is given by (1.8) and a constant C depends only on G, a+, a− and q.
Under the assumption that ∂G is of class C1 and 0 < s < 1, 1 < q, t <∞ we study

a solution of the transmission problem (1.1), (1.2), (1.9) in Besov space, i.e. for f ∈
Bq,t
s−1(∂G,R3), g ∈ Bq,t

s (∂G,R3) we look for v+ ∈ Bq,t
s+1/q(G+, R

3), p+ ∈ Bq,t
s+1/q−1(G+),

v− ∈ Bq,t
s+1/q(G− ∩ B(0; r), R3), p− ∈ Bq,t

s+1/q−1(G− ∩ B(0; r)) for all r > 0. (Here
B(x; r) = {y ∈ R3; |x− y| < r}.) We show the unique solvability of the problem and
the representation (1.4), (1.5). The density Ψ ∈ Bq,t

s−1(∂G,R3) is a unique solution
of the equation (1.6). If Ψ0 ∈ Bq,t

s−1(∂G,R3) is fixed and Ψk is given by (1.7), then
Ψk → Ψ and

‖Ψk −Ψ‖Bq,t
s−1(∂G,R3) ≤ Cαk

(
‖Ψ0‖Bq,t

s−1(∂G,R3) + ‖F‖Bq,t
s−1(∂G,R3)

)
,

where α is given by (1.8) and a constant C depends only on G, a+, a−, s, q, t.
Under the assumption that ∂G is of class C1 and 1 < q < ∞ we study a solution

of the transmission problem (1.1), (1.2), (1.9) such that v± ∈ D1,q(G±), p ∈ Lq(G±),
where the homogeneous Sobolev space is defined by D1,q(G±) = {u; ∂ju ∈ Lq(G±)}.
First, we show that such solution is a solution in a Besov space, i.e. v+ ∈ Bq,q

1 (G+, R
3),

p+ ∈ Bq,q
0 (G+), v− ∈ Bq,q

1 (G− ∩ B(0; r), R3), p− ∈ Bq,q
0 (G− ∩ B(0; r)) for all r > 0.

So, we have the representation (1.4), (1.5). The density Ψ ∈ W−1/q,q(∂G,R3) =
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Bq,q
−1/q(∂G,R

3) is a unique solution of the equation (1.6). If Ψ0 ∈ W−1/q,q(∂G,R3) is
fixed and Ψk is given by (1.7), then Ψk → Ψ and

‖Ψk −Ψ‖W−1/q,q(∂G,R3) ≤ Cαk
(
‖Ψ0‖W−1/q,q(∂G,R3) + ‖F‖W−1/q,q(∂G,R3)

)
,

where α is given by (1.8) and a constant C depends only on G, a+, a− and q. A
more complicated problem is the solvability of the problem. If 3/2 < q < ∞ then
the problem (1.1), (1.2), (1.9) is uniquely solvable. If 1 < q ≤ 3/2 then the problem
(1.1), (1.2), (1.9) is solvable if and only if 〈f , c〉 = 0 for each constant vector c and a
solution is unique.

2. Formulation of the problem

We shall study the transmission problem (1.1), (1.2). Instead of the artificial
condition (1.3) we use a more natural condition.

First we define a scale of strong solutions (i.e. Lq-solutions). Let Ω be an open
set with Lipschitz boundary. If x ∈ ∂Ω, a > 0 denote the non-tangential approach
regions of opening a at the point x by

ΓΩ
a (x) := {y ∈ Ω; |x− y| < (1 + a) dist(y, ∂Ω)}.

If now v is a vector function defined in Ω we denote the non-tangential maximal
function of v on ∂Ω by

v∗Ω(x) := sup{|v(y)|; y ∈ ΓΩ
a (x)}.

If x ∈ ∂Ω, Γ(x) = ΓΩ
a (x) then

v(x) = lim
y→ x

y ∈ Γ(x)

v(y)

is the non-tangential limit of v with respect to Ω at x.
Let now 1 < q < ∞, f ∈ Lq(∂G,R3), g ∈ W 1,q(∂G,R3). We say that v±, p±

defined on G± is an Lq-solution of the transmission problem (1.1), (1.2), (1.9) if
v+, p+ satisfy (1.1) and (1.9); (∇v±)∗, p∗±, v∗± are from Lq(∂G,R1); for almost all
x ∈ ∂G there exist the non-tangential limits of v±, ∇v± and p± at x and the condition
(1.2) is fulfilled in the sense of the nontangential limit a.e. on ∂G.

Now we formulate a weak solution v± ∈ W̃ 1,2(G±, R
3), p± ∈ L2(G±) in the homo-

geneous Sobolev space for f ∈ H−1/2(∂G,R3), g ∈ H1/2(∂G,R3).
Denote by D1,2(R3) the space of all functions u ∈ L2

loc(R
3) such that ∂ju ∈ L2(R3)

in the sense of distributions for each j = 1, 2, 3. Then D1,2(R3) is a Banach space
with the norm

‖u‖L1,2(R3) =

√√√√∫
G

|u|2 dHm +

∫
R3

|∇u|2 dHm
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(see [30], §1.5.3). Denote by C∞c (R3) the space of all infinitely differentiable functions
in R3 with compact support. Denote by W̃ 1,2(R3) the closure of C∞c (R3) in D1,2(R3).
The space D1,2(R3) is the direct sum of W̃ 1,2(R3) and the space of constant functions
(see [8], p. 155). If we put

‖u‖W̃ 1,2(R3) = ‖∇u‖L2(R3),

then this norm is equivalent with the norm induced from D1,2(R3) (see [30], §1.5.2 and
[30], §1.5.3). According to [26], Lemma 2.2 we have W̃ 1,2(R3) = {u ∈ L6(R3);∇u ∈
L2(R3;R3)}. For an open set Ω denote by W̃ 1,2(Ω) the space of restrictions of functions
from W̃ 1,2(R3) onto Ω. Denote

‖u‖W̃ 1,2(Ω) = inf{‖v‖W̃ 1,2(R3); v = u on Ω}.

Then W̃ 1,2(Ω) is a Banach space. If Ω is a bounded open set with Lipschitz boundary
then W̃ 1,2(Ω) = H1(Ω) and both norms are equivalent. If Ω is an unbounded domain
with compact Lipschitz boundary then ‖∇u‖L2(Ω) is an equivalent norm in W̃ 1,2(Ω).
According to [6], Chapter XI, Part B, §1 we have W̃ 1,2(Ω) = {u; ∂ju ∈ L2(Ω), u(x)(1 +
|x|2)−1/2 ∈ L2(Ω)}.

Using weak characterizations of the Neumann boundary condition for the Stokes
system in G+ and in G− (see [32]) and the fact that nG− = −nG+ we give a weak
formulation of the transmission problem for the Stokes system (1.1), (1.2):

Let g ∈ H1/2(∂G,R3), f ∈ H−1/2(∂G,R3). We say that v± ∈ W̃ 1,2(G±, R
3),

p± ∈ L2(G±, R
1) is a weak solution of the transmission problem for the Stokes system

(1.1), (1.2) if ∇ · v± = 0, v+ − v− = g on ∂G in the sense of traces and

a+

∫
G+

(2∇̂v+ · ∇̂w − p+(∇ ·w)) dH3 + a−

∫
G−

(2∇̂v− · ∇̂w − p−(∇ ·w)) dH3 = 〈f ,w〉

for all w ∈ W̃ 1,2(R3, R3).

3. The surface potentials

The aim of this section is to assemble some basic facts on hydrodynamical potentials.
For x ∈ R3, and j, k = 1, 2, 3 define

Ejk(x) =
1

8π

[
δjk
|x|

+
xjxk
|x|3

]
, Qk(x) =

xk
4π|x|3

.

If Ψ is a vector function (or distribution) supported on ∂G define the hydrodynam-
ical single layer potential with density Ψ by

(3.1) (EGΨ)(x) = 〈Ψ, E(x− ·)〉 =

∫
∂G

E(x− y)Ψ(y) dH2(y)
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and the corresponding pressure by

(3.2) (QGΨ)(x) = 〈Ψ, Q(x− ·)〉 =

∫
∂G

Q(x− y)Ψ(y) dH2(y).

Then EGΨ ∈ C∞(R3 \ ∂G,R3), QGΨ ∈ C∞(R3 \ ∂G,R1), ∇QGΨ − ∆EGΨ = 0,
∇ · EGΨ = 0 in R3 \ ∂G. We have the following decay behavior as |x| → ∞:

EGΨ(x) = O(|x|−1),

QGΨ(x), |(∇EGΨ)(x)| = O(|x|−2).

If Ψ ∈ Lq(∂G,R3), 1 < q <∞ then EGΨ(x) makes sense for almost all x ∈ ∂G and
EGΨ(x) is the non-tangential limit of EGΨ (see [29], Corollary 3.3). The nontangential
maximal function of EGΨ, ∇EGΨ, QGΨ with respect to G+ and G− is in Lq(∂G)
(see [19], Lemma 2.1.4). Moreover, EG is a bounded linear operator from Lq(∂G) to
W 1,q(∂G) (see [29], Corollary 3.3) and EGΨ ∈ W 1,q(G,R3), QGΨ ∈ Lq(G) (see [29],
Theorem 4.4).

If 0 < s < 1 and 1 < q, t < ∞ then EG is a bounded linear operator from
Bq,t
s−1(∂Ω, R3) to Bq,t

s+1/q(Ω) and QG is a bounded linear operator form Bq,t
s−1(∂Ω, R3) to

Bq,t
s+1/q−1(Ω) (see [29], Theorem 4.4). Moreover, EG is a bounded linear operator from

Bq,t
s−1(∂Ω, R3) to Bq,t

s (∂Ω) and EGΨ is the trace of EGΨ (see [29], Proposition 4.5). In
particular, if s 6= 1−1/q then EG is a bounded linear operator fromW s−1,q(∂G,R3) =
Bq,q
s−1(∂G,R3) to W s+1/q,q(G,R3) = Bq,q

s+1/q(G,R
3); and QG is a bounded linear oper-

ator from W s−1,q(∂G,R3) = Bq,q
s−1(∂G,R3) to W s+1/q−1,q(G) = Bq,q

s+1/q−1(G). By the
interpolation argument we obtain this result also for s = 1 − 1/q (see [1], p. 248
and [41], Chapter 5, Theorem 5). If Ψ ∈ H−1/2(∂G,R3) = W−1/2,2(∂G,R3) then the
behavior at infinity gives EGΨ ∈ W̃ 1,2(R3, R3), QGΨ ∈ L2(R3, R1).

Remark that

(3.3) EGnG = 0 in R3, QGnG = −1 in G+, QGnG = 0 in G−
(see for example [42], §3.2).

Now we define a hydrodynamical double layer potential. Fix y ∈ ∂G such that
there is the unit outward normal nG(y) of G at y. For x ∈ R3 \ {y}, j, k ∈ {1, 2, 3}
put

KG
jk(x,y) =

3

4π

(yj − xj)(yk − xk)(y − x) · nG(y)

|x− y|5
,

ΠG
k (x,y) =

1

2π

{
−3

(yk − xk)(y − x) · nG(y)

|y − x|5
+

nGk (y)

|y − x|3

}
.

For Ψ = [Ψ1,Ψ2,Ψ3] ∈ Lq(∂G,R3) define the hydrodynamical double layer potential
with density Ψ by

(3.4) (DGΨ)(x) =

∫
∂G

KG(x,y)Ψ(y) dH2(y)
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and the corresponding pressure by

(3.5) (ΠGΨ)(x) =

∫
∂G

ΠG(x,y)Ψ(y) dH2(y)

in R3 \ ∂G. Then DGΨ ∈ C∞(R3 \ ∂G,R3), ΠGΨ ∈ C∞(R3 \ ∂G,R1) and ∇ΠGΨ−
∆DGΨ = 0, ∇ · DGΨ = 0 in R3 \ ∂G. We have the following decay behavior as
|x| → ∞:

(DGΨ)(x) = O(|x|−2),

|(∇DGΨ)(x)|, ΠGΨ(x) = O(|x|−3).

Define
KGΨ(x) = lim

ε↘0

∫
∂G\B(x;ε)

KG(x,y)Ψ(y)dH2(y)

on ∂G, where B(x; ε) = {y; |x− y| < ε}. Then KG is a bounded linear operator on
Lq(∂G;R3) (see [29], Corollary 3.3). If 0 < s < 1 and 1 < q, t < ∞ then KG is a
bounded linear operator on W 1,q(∂G) (see [29], Proposition 3.5) and on Bq,t

s (∂G) (see
[29], Proposition 4.5). If Ψ ∈ Lq(∂G;R3) then there exists the nontangential limit
[DGΨ]+(x) of DGΨ with respect to G+ and the nontangential limit [DGΨ]−(x) of
DGΨ with respect to G− for almost all x ∈ ∂G and

(3.6) [DGΨ]±(x) = ±1

2
Ψ(z) +KGΨ(z)

(see [29], Proposition 3.2). Then DG : Bq,t
s (∂G) → Bq,t

s+1/q(G) and the operator
ΠG : Bq,t

s (∂G) → Bq,t
s+1/q−1(G) are bounded and [DGΨ]± is the trace of DGΨ with

respect to G± (see [29], Theorem 4.4). In particular, if s 6= 1 − 1/q then DG is
a bounded linear operator from W s,q(∂G,R3) = Bq,q

s (∂G,R3) to W s+1/q,q(G,R3) =
Bq,q
s+1/q(G,R

3); ΠG is a bounded linear operator from W s,q(∂G,R3) = Bq,q
s (∂G,R3)

to W s+1/q−1,q(G) = Bq,q
s+1/q−1(G). By the interpolation argument we obtain this

result also for s = 1 − 1/q (see [1], p. 248 and [41], Chapter 5, Theorem 5). If
Ψ ∈ H1/2(∂G,R3) = W 1/2,2(∂G,R3) then the behavior at infinity gives DGΨ ∈
W̃ 1,2(G±;R3), ΠGΨ ∈ L2(G±). If Ψ ∈ W 1,q(∂G,R3) then (DΩΨ)∗G + (∇DΩΨ)∗G +
(ΠGΨ)∗G ∈ Lq(∂G) and there exist the non-tangential limits of ∇DΩΨ and ΠGΨ at
almost all points of ∂G (see [29], Proposition 3.4).

Denote by K ′G the adjoint operator of KG. Then K ′G is a bounded linear operator
on Lq(∂G,R3) and on Bq,t

−s(∂G,R
3). (Remark that

K ′GΨ(x) = lim
ε↘0

∫
∂G\B(x;ε)

KG(y,x)Ψ(y) dH2(y)

for Ψ ∈ Lq(∂G,R3).) If Ψ ∈ Lq(∂G,R3) then

(3.7) [T (EGΨ, QGΨ)]±nG = ±1

2
Ψ−K ′GΨ
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(A detailed proof of these relations can be found in [9].)
Let now Ψ ∈ H−1/2(∂G,R3). According to [32], Proposition 4.2 we have

(3.8)
∫
G+

[(2∇̂EGΨ) · (∇̂v)− (QGΨ)(∇ · v)] dHm =

〈
1

2
Ψ−K ′GΨ,v

〉

for all v ∈ W̃ 1,2(R3, R3). Since C∞c (R3, R3) is a dense subset of W̃ 1,2(R3, R3), the
behavior of a hydrodynamical single layer potential at infinity gives

(3.9)
∫
G−

[(2∇̂EGΨ) · (∇̂v)− (QGΨ)(∇ · v)] dHm =

〈
1

2
Ψ +K ′GΨ,v

〉

for all v ∈ W̃ 1,2(R3, R3).

4. Integral representation formula

We shall study a transmission problem also in Besov spaces. We shall need an
integral representation formula. Suppose that 0 < s < 1, and 1 < q, t <∞. The trace
is a bounded linear operator from Bq,t

s+1/p(G) to Bq,t
s (∂G) (see [36], Theorem 2.5.2).

If v, p is an Lq-solution of the Neumann problem −∆v + ∇p = 0, ∇ · p = 0 in
G, T (v, p)nG = h on ∂G (i.e v, p is a solution of the homogeneous Stokes system,
v∗G + (∇v)∗G + p∗Ω ∈ Lp(∂G) and the boundary condition is fulfilled in the sense of the
non-tangential limit) then

(4.1) 〈T (v, p)nG,Φ〉 =

∫
∂G

[T (v, p)nG] ·Φ = 2

∫
G

∇̂Φ · ∇̂v −
∫
G

p(∇ ·Φ)

for all Φ ∈ C∞c (R3, R3). If v ∈ Bq,t
s+1/q(G,R

3), p ∈ Bq,t
s+1/q−1(G), −∆v + ∇p = 0,

∇ · v = 0 in G then the stress T (v, p)nG defined by (4.1) is a distribution supported
on ∂G. Moreover, (v, p) 7→ T (v, p)nG is a bounded linear operator from {[v, p] ∈
Bq,t
s+1/q(G,R

3) × Bq,t
s+1/q−1(G);−∆v +∇p = 0,∇ · v = 0 in G} to Bq,t

s−1(∂G,R3) (see
[36], Proposition 10.2.1).

Lemma 4.1. Let −∆v = ∇p, ∇ · v = 0 in R3 \ F where F is compact. If v(x)→ 0,
p(x)→ 0 as |x| → ∞ or v ∈ W̃ 1,2(R3\F,R3), p ∈ L2(R3\F ), then |v(x)| = O(|x|−1),
|∇v(x)|+ |p(x)| = O(|x|−2) as |x| → ∞.

Proof. Fix r > 0 such that F ⊂ B(0; r). According to [36], Theorem 9.2.3 there
exists ṽ, p̃ such that −∆ṽ = ∇p̃, ∇ · ṽ = 0 in R3 \ B(0; r), ṽ = v on ∂B(0; r) and
|ṽ(x)| = O(|x|−1), |∇ṽ(x)|+ |p̃(x)| = O(|x|−2) as |x| → ∞. We have ṽ = v and p− p̃
is constant by [28], Theorem 6.5. Thus p = p̃. �

Lemma 4.2. Let 0 < s < 1, 1 < q, t < ∞, and v+ ∈ Bq,t
s+1/q(G+, R

3), p+ ∈
Bq,t
s+1/q−1(G+), v− ∈ Bq,t

s+1/q(G− ∩ B(0; r), R3), p− ∈ Bq,t
s+1/q−1(G− ∩ B(0; r)) for all
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r > 0. Suppose that v±, p± is a solution of the transmission problem (1.1), (1.2),
(1.9). Then

(4.2) DG±v±(x) + EG± [T (v±, p±)(±nG)](x) =

{
v±(x), x ∈ G±,
0, x ∈ G∓,

(4.3) ΠG±v±(x) +QG± [T (v±, p±)(±nG)](x) =

{
p±(x), x ∈ G±,
0, x ∈ G∓,

(4.4) v±(x) = DGg(x) + EGΨ(x), x ∈ G±,

(4.5) p±(x) = ΠGg(x) +QGΨ(x), x ∈ G±,
where

(4.6) Ψ = T (v+, p+)n− T (v−, p−)n.

Proof. First we deduce the relations (4.2), (4.3) for v+, p+. For x ∈ G+ see [36],
Proposition 10.6.1. Suppose now that x ∈ G−. Using (4.1) for v = v+, p = p+,
Φ(y) = (E1k(y−x), E2k(y−x), E3k(y−x))T and then for v(y) = (E1k(y−x), E2k(y−
x), E3k(y− x))T , p(y) = Qk(y− x), Φ = v+ and subtracting, we obtain (4.2). Using
(4.1) for v = v+, p = p+, Φ(y) = (Q1(y − x), Q2(y − x), Q3(y − x))T and then for
v(y) = (Q1(y − x), Q2(y − x), Q3(y − x))T , p(y) = 0, Φ = v+ and subtracting, we
obtain (4.3).

We now show relations (4.2), (4.3) for v−, p−. We use (4.2), (4.3) for G− ∩B(0; r).
Since |v−(x)| = O(|x|−1), |∇v−(x)|+ |p−(x)| = O(|x|−2) as |x| → ∞ by Lemma 4.1,
letting r →∞ gives (4.2), (4.3).

Adding (4.2), (4.3) we obtain (4.4), (4.5). �

Corollary 4.1. Let 0 < s < 1, 1 < q, t < ∞, g ∈ Bq,t
s (∂G,R3). Denote v± = DGg,

p± = ΠGg in G±. Then T (v+, p+)n = T (v−, p−)n on ∂G.

Proof. We have g = [DGg]+ − [DGg]− by (3.6). Put Ψ = T (v+, p+)n − T (v−, p−)n.
Then DGg = DGg + EGΨ, ΠGg = ΠGg + QGΨ in R3 \ ∂G by Lemma 4.2. Hence
EGΨ ≡ 0, and QGΨ = 0 in R3 \ ∂G. Thus Ψ = [Ψ/2−K ′GΨ]− [−Ψ/2−K ′GΨ] =
[T (EGΨ, QGΨ)]+n− [T (EGΨ, QGΨ)]−n = 0. �

5. Weak solution in W̃ 1,2(Ω±)

Suppose that Ω has Lipschitz boundary. Let g ∈ H1/2(∂Ω, R3) = W 1/2,2(∂Ω, R3),
f ∈ H−1/2(∂Ω, R3) = W−1/2,2(∂Ω, R3). If Ψ ∈ H−1/2(∂Ω, R3) then v±, p± given by
(4.4), (4.5) is a weak solution of the problem (1.1), (1.2) if and only if

(5.1) a+

(
1

2
Ψ−K ′GΨ

)
+ a−

(
1

2
Ψ +K ′GΨ

)
= F,

where

(5.2) F = f + (a− − a+)[T (DGg,ΠGg)]+n ∈ H−1/2(∂Ω, R3)
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(see (3.6), (3.7) and Lemma 4.2).
We show that there exists a unique solution v± ∈ W̃ 1,2(G±, R

3), p± ∈ L2(G±) of
the problem (1.1), (1.2). If 1/2 < s < 1 then v+ ∈ B2,2

s (G+, R
3), p+ ∈ B2,2

s−1(G+),
v− ∈ B2,2

s (G− ∩B(0; r), R3), p− ∈ B2,2
s−1(G− ∩B(0; r)) for all r > 0. Lemma 4.1 gives

(1.9). So we have the representation (4.4), (4.5) where Ψ is given by (4.6). For a
calculation of the solution we need to solve the equation (5.1). We show that this
equation can be solved by the successive approximation method. For this aim we
rewrite this equation as

(5.3) Ψ =
2(a+ − a−)

(a+ + a−)
K ′GΨ +

2

a+ + a−
F.

We use the following notation: If X is a Banach space denote by I the identity
operator on X. If M is a subspace of X denote by dimM the dimension of M . If
Y is a subspace of X such that X = M

⊕
Y , i.e. X is the direct sum of M and Y ,

denote by codimY = dimM the codimension of Y . If T is a bounded linear operator
in X, denote by KerT = {x ∈ X;Tx = 0} the kernel of T , α(T ) = dim KerT ,
β(T ) = codimT (X). We say that T is Fredholm if T (X) is a closed subset of X and
α(T ) < ∞, β(T ) < ∞. For a Fredholm operator T denote i(T ) = α(T ) − β(T ) the
index of T . If X is a complex Banach space denote by σ(T ) the spectrum of T and
by r(T ) = sup{|λ|;λ ∈ σ(T )} the spectral radius of T .

Proposition 5.1. Suppose that u± ∈ W̃ 1,2(G±, R
3), p± ∈ L2(G±, R

1), is a weak
solution of the transmission problem for the Stokes system (1.1), (1.2). If g = 0,
f = 0 then u± = 0, p± = 0.

Proof. Put v = u± on G±. Since u+ − u− = 0 on ∂G, we have v ∈ W̃ 1,2(R3, R3).
Since ∇ · v = 0, we obtain

0 = 〈f ,v〉 = a+

∫
G+

2|∇̂u+|2 dH3 + a−

∫
G−

2|∇̂u−|2 dH3.

Thus ∇̂v = 0 on R3 \ ∂G. If V is a component of R3 \ ∂G then there exists a skew
symmetric matrix A (i.e. AT = −A) and a vector b such that v(x) = Ax + b in
V (see for example [32], Lemma 3.1). Suppose first that V is unbounded. Since
v ∈ L6(V,R3), we infer that A = 0, b = 0. Let now V1, . . . , Vk are all components
of R3 \ ∂Ω on which v = 0. Denote by D the closure of V1 ∪ · · · ∪ Vk. Suppose that
D 6= R3. Let S be a component of ∂D. Then v = 0 on S. Choose a component V of
R3 \ ∂G such that S ⊂ ∂V and D ∩ V = ∅. Suppose that v(x) = Ax + b in V . Let
W be a bounded component of R3 \ S. Put w(x) = Ax + b in W . Then ∆w = 0 in
W , w = 0 on ∂W = S. The maximum principle for harmonic functions gives that
w = 0 in W . Since V ⊂ W , we have v = 0 in V , what is a contradiction. Thus v = 0
in R3.

The Stokes system gives ∇p± = ∆u± = 0. Thus p± is constant on each component
of G±. Since p− ∈ L2(G−, R

1), we deduce p− = 0 on the unbounded component of G−.
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Let S be a component of ∂G. Then there are a component V+ of G+ and a component
V− of G− such that S = ∂V+ ∩ ∂V−. Let c+, c− be such constants that p+ = c+ on
V+, p− = c− on V−. Since u±, p± is a classical solution of the transmission problem
for the Stokes system (1.1), (1.2), we have 0 = a+T (u+, p+)n − a−T (u−, p−)n =
(a−c− − a+c+)n on S. Therefore a−c− = a+c+. Since p− = 0 on an unbounded
component of G−, we deduce that p+ = 0, p− = 0. �

Lemma 5.1. Let Ψ ∈ H−1/2(∂G,C3). Then

(5.4) 〈Ψ, EGΨ〉 = 2

∫
R3\∂G

|∇̂EGΨ|2 dy ≥ 0.

If 〈Ψ, EGΨ〉 = 0 then EGΨ = 0 in R3 and for each component S of ∂G there exists
a constant cS such that Ψ = csn

G on S.

Proof. For (5.4) see [32], Corollary 4.4. Let now 〈Ψ, EGΨ〉 = 0. Then ∇̂EGΨ = 0
in R3 \ ∂G. If V is a component of R3 \ ∂G then there is a matrix A and a vector
b such that EGΨ(x) = Ax + b in V (see [32], Lemma 2.1). Denote by V1, . . . , Vk all
components of R3 \ ∂G and suppose that V1 is unbounded. Since EGΨ(x) → 0 as
|x| → ∞, we infer that EGΨ = 0 in V1. Denote D = ∪{Vj;EGΨ ≡ 0 in Vj}. The
boundary behavior of a hydrodynamical single layer potential gives EGΨ = 0 on clD.
Suppose now that clD 6= R3. Fix a component S of ∂D. Choose a component Vj of
R3 \ ∂G such that S ⊂ ∂Vj and D∩Vj = ∅. Then there is a matrix A and a vector b
such that EGΨ(x) = Ax + b in Vj. Put u(x) = Ax + b. Denote by U the component
of R3 \ S such that Vj ⊂ U . Then u is a solution of the problem ∆u = 0 in U , u = 0
on ∂U . The maximum principle for harmonic functions gives that u = 0 in U . Thus
EGΨ = 0 in Vj, what is a contradiction. So, clD = R3.

Since u = EGΨ, p = QGΨ is a solution of the Stokes system in R3 \ ∂G, we have
∇QGΨ = ∆EGΨ = 0 in R3 \ ∂G. So, there are constants cj such that QGΨ = cj in
Vj. Let now S be a component of ∂G. Choose j and k such that Vj ⊂ G+, Vk ⊂ G−
and S = ∂Vj ∩ Vk. According to boundary behavior of a hydrodynamical potential
we have on S

Ψ =

[
1

2
Ψ−K ′GΨ

]
−
[
−1

2
Ψ−K ′GΨ

]
= [T (EGΨ, QGΨ)]+nG − [T (EGΨ, QGΨ)]−nG

= T (0, cj)n
G − T (0, ck)n

G = −cjnG + ckn
G. �

Lemma 5.2. If λ ∈ C is an eigenvalue of (1/2)I − K ′G in H−1/2(∂G,C3) then
0 ≤ λ ≤ 1.
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Proof. Let Ψ be an eigenfunction corresponding to an eigenvalue λ. According to
Lemma 5.1 and [32], Proposition 4.3

2

∫
G

|∇̂EGΨ(x)|2 dx =

〈
1

2
Ψ−K ′GΨ, EGΨ

〉

= 〈λΨ, EGΨ〉 = 2λ

∫
R3\∂G

|∇̂EGΨ|2 dx.

If 〈Ψ, EGΨ〉 6= 0 then

λ =

∫
G

|∇̂EGΨ|2 dx∫
R3\∂G

|∇̂EGΨ|2 dx

and 0 ≤ λ ≤ 1. Let now 〈Ψ, EGΨ〉 = 0. Then for each component S of ∂G there
exists a constant cS such that Ψ = cSnG on S. By virtue of (3.3) we obtain that
λ = 1 or λ = 0. �

Proposition 5.2. Let X be a complex Banach space. Denote by N the set of all
norms on X equivalent to the original norm. If T is a bounded linear operator on X
then

r(T ) = inf
‖·‖∈N

‖T‖.

(See [15].)

Theorem 5.1. Let f ∈ H−1/2(∂G,R3), g ∈ H1/2(∂G,R3). Then there exists a unique
weak solution v± ∈ W̃ 1,2(G±, R

3), p± ∈ L2(G±, R
1) of the transmission problem for

the Stokes system (1.1), (1.2). We have the representation (4.4), (4.5) where Ψ is
given by (4.6). Remark that Ψ is a unique solution of the integral equation (5.3) with
F given by (5.2). Fix Ψ0 ∈ H−1/2(∂G,R3). Set

(5.5) Ψk =
2(a+ − a−)

(a+ + a−)
K ′GΨk−1 +

2

a+ + a−
F.

Then Ψk → Ψ in H−1/2(∂G,R3). Put

(5.6) α =
max(a+, a−)

a+ + a−
.

Then there exists a constant C dependent only on G, a+ and a− such that

‖Ψk −Ψ‖H−1/2(∂G,R3) ≤ Cαk
(
‖Ψ0‖H−1/2(∂G,R3) + ‖F‖H−1/2(∂G,R3)

)
.

Proof. If λ ∈ C \ 〈0, 1〉 then (1/2)I − K ′G − λI is a Fredholm operator with index
0 by [32], Theorem 4.12 and [37],§ 16, Theorem 16. Since λ is not an eigenvalue of
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(1/2)I −K ′G by Lemma 5.2, we deduce that λ 6∈ σ((1/2)I −K ′G). Easy calculation
gives

(5.7) σ

(
2(a+ − a−)

a+ + a−
K ′G

)
⊂
〈
− |a+ − a−|

a+ + a−
,
|a+ − a−|
a+ + a−

〉
.

Proposition 5.2 gives that there exists an equivalent norm ‖ ‖ on H−1/2(∂G,C3) such
that

(5.8)
∥∥∥∥2(a+ − a−)

a+ + a−
K ′G

∥∥∥∥ < α.

Since α < 1 the equation (5.3) is uniquely solvable (see [16], Theorem 1.3.10). If Ψ is a
solution of this equation then v, p given by (4.4), (4.5) is a solution of the transmission
problem (1.1), (1.2). This solution is unique by Proposition 5.1. Lemma 4.2 gives
that Ψ is given by (4.6).

Fix a constant C1 such that ‖h‖ ≤ C1‖h‖H−1/2(∂Ω,R3), ‖h‖H−1/2(∂Ω,R3) ≤ C1‖h‖
for all h ∈ H−1/2(∂Ω, R3). Denote C2 = 2 + 2/(a+ + a−). According to [16], Theo-
rem 1.3.10 we have Ψk → Ψ and

‖Ψ−Ψn‖H−1/2(∂G,R3) ≤ C1‖Ψ−Ψn‖ ≤ C1
αn

1− α
‖Ψ1 −Ψ0‖

≤ αn
C1C2

1− α
[‖Ψ0‖+ ‖F‖] ≤ αn

C2
1C2

1− α
[
‖Ψ0‖H−1/2(∂G,R3) + ‖F‖H−1/2(∂G,R3)

]
. �

6. The transmission problem in Besov spaces

Lemma 6.1. Let X, Y be Banach spaces, T be a bounded linear Fredholm operator
in X with index 0, T be a bounded linear Fredholm operator in Y with index 0. Let
X ⊂ Y , Y ′ ⊂ X ′ and Tx = Tx for each x ∈ X, T ′z = T′z for each z ∈ Y ′. Then the
kernel of T and T are the same.

(See [31], Lemma 9.)

Theorem 6.1. Suppose that G has boundary of class C1, 0 < s < 1, 1 < q, t < ∞.
Let f ∈ Bq,t

s−1(∂G,R3), g ∈ Bq,t
s (∂G,R3). Then there exists a unique solution v±

p± of the transmission problem for the Stokes system (1.1), (1.2), (1.9) such that
v+ ∈ Bq,t

s+1/q(G+, R
3), p+ ∈ Bq,t

s+1/q−1(G+), v− ∈ Bq,t
s+1/q(G− ∩ B(0; r), R3), p− ∈

Bq,t
s+1/q−1(G− ∩ B(0; r)) for all r > 0. We have the representation (4.4), (4.5) where

Ψ is given by (4.6). Remark that Ψ is a unique solution of the integral equation (5.3)
in Bq,t

s−1(∂G,R3) with F given by (5.2). Fix Ψ0 ∈ Bq,t
s−1(∂G,R3). Let Ψk be given by

(5.5). Then Ψk → Ψ in Bq,t
s−1(∂G,R3). Let α be given by (5.6). Then there exists a

constant C dependent only on G, a+, a−, q, t and s such that

(6.1) ‖Ψk −Ψ‖Bq,t
s−1(∂G,R3) ≤ Cαk

(
‖Ψ0‖Bq,t

s−1(∂G,R3) + ‖F‖Bq,t
s−1(∂G,R3)

)
.
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Proof. Put t′ = t/(t − 1), q′ = q/(q − 1). Then KG is a compact operator on
Bq′,t′

1−s(∂G,C
3) by [29], p. 232. Since K ′G is the adjoint operator of KG, the K ′G is

compact on Bq,t
s−1(∂G,C3). Lemma 6.1 and Lemma 5.2 gives (5.7) in Bq,t

s−1(∂G,C3).
So, the equation (5.3) is uniquely solvable in Bq,t

s−1(∂G,C3). If F is given by (5.2) and
v±, p± by (4.4), (4.5), then v±, p± is a solution of the transmission problem for the
Stokes system (1.1), (1.2), (1.9) such that v+ ∈ Bq,t

s+1/q(G+, R
3), p+ ∈ Bq,t

s+1/q−1(G+),
v− ∈ Bq,t

s+1/q(G− ∩B(0; r), R3), p− ∈ Bq,t
s+1/q−1(G− ∩B(0; r)) for all r > 0. Lemma 4.2

gives that Ψ is given by (4.6).
Let now v±, p± be a solution of the transmission problem for the Stokes system

(1.1), (1.2), (1.9) with g = 0, f = 0. Lemma 4.2 gives (4.4), (4.5) with Ψ given by
(4.6). So, (5.3) holds with F = 0. Unique solvability of this integral equation forces
Ψ = 0. Hence v± = 0, p± = 0.

We show (6.1) in the same way as in the proof of Theorem 5.1. �

7. The problem in homogeneous Sobolev spaces

Let Ω ⊂ R3 be an open set, 1 < q < ∞. The space D1,p(Ω) consists of those
functions in L1

loc(Ω) for which all generalized derivatives of the order 1 are in Lq(Ω).
We have D1,q(G+) = W 1,q(G+) but D1,q(G−) 6= W 1,q(G−) (see §1.5.2, §1.5.3 and
§1.5.4 in [30]). We choose r > 0 such that ∂G ⊂ B(0; r) and define

‖f‖D1,q(G−) =

 ∫
G−∩B(0;r)

|f |q dH3 +

∫
G−

|∇f |q dH3


1/q

.

D1,q(G−) equipped with this norm is a Banach space (see [30], §1.5.3). Remark that
W̃ 1,2(G±) is a subspace of D1,2(G±) and the norm of W̃ 1,2(G±) is equivalent with the
norm induced from D1,2(G±) (see [30], §1.5.3 and [27], Theorem 8.3).

We shall look for a solution v± ∈ D1,q(G±, R
3), p± ∈ Lq(G±) of the transmission

problem (1.1), (1.2), (1.9). We shall see that such solution satisfies v+ ∈ Bq,q
1 (G+, R

3),
p+ ∈ Bq,q

0 (G+), v− ∈ Bq,q
1 (G−∩B(0; r), R3), p− ∈ Bq,q

0 (G−∩B(0; r)) for all r > 0 (see
Proposition 7.1). So, Theorem 6.1 gives us represantability of the solution by (4.4),
(4.5). Moreover, according to Theorem 6.1 we can solve the integral equation (5.3) by
the successive approximation and the estimate (6.1) holds in W−1/q,q(∂G,R3).

Proposition 7.1. Let 1 < q < ∞ , g ∈ W 1−1/q,q(∂G,R3) = Bq,q
1−1/q(∂G,R

3), f ∈
W−1/q,q(∂G,R3) = Bq,q

−1/q(∂G,R
3), v± ∈ C∞(G±, R

3), p± ∈ C∞(G±). Then the
assertion (1) implies the assertion (2). If 3/2 < q < ∞ then the assertions (1) and
(3) are equivalent. If q = 2 then the assertions (1), (2) and (3) are equivalent.

1. v± ∈ D1,q(G±, R
3), p± ∈ Lq(G±) is a solution of the transmission problem

(1.1), (1.2), (1.9).
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2. v±, p± is a solution of the transmission problem (1.1), (1.2), (1.9) such
that v+ ∈ Bq,q

1 (G+, R
3), p+ ∈ Bq,q

0 (G+), v− ∈ Bq,q
1 (G− ∩ B(0; r), R3), p− ∈

Bq,q
0 (G− ∩B(0; r)) for all r > 0.

3. v± ∈ W̃ 1,2(G±, R
3), p± ∈ L2(G±) is a solution of the transmission problem

(1.1), (1.2).

Proof. Fix 0 < s < 1 − 1/q. In all cases v±, p± is a solution of the transmission
problem (1.1), (1.2), (1.9) such that v+ ∈ Bq,q

s+1/q(G+, R
3), p+ ∈ Bq,q

s+1/q−1(G+), v− ∈
Bq,q
s+1/q(G− ∩B(0; r), R3), p− ∈ Bq,q

s+1/q−1(G− ∩B(0; r)) for all r > 0. (See Lemma 4.1
and the inclusions of Bessel spaces in [45].) According to Lemma 4.2 we have the
representation (4.4), (4.5) with Ψ given by (4.6). Since g ∈ W 1−1/q,q(∂G,R3) =
Bq,q

1−1/q(∂G,R
3), Ψ ∈ W−1/q,q(∂G,R3) = Bq,q

−1/q(∂G,R
3), the properties of hydrody-

namical potentials give the assertion. �

Theorem 7.1. Let 3/2 < q <∞. If q 6= 2 suppose that G has boundary of class C1.
Let g ∈ W 1−1/q,q(∂G,R3), f ∈ W−1/q,q(∂G,R3). Then there exists a unique solution
v± ∈ D1,q(Ω±) p± ∈ Lq(Ω±) of the transmission problem for the Stokes system (1.1),
(1.2), (1.9). We have the representation (4.4), (4.5) where Ψ is given by (4.6). Remark
that Ψ is a unique solution of the integral equation (5.3) in W−1/q,q(∂G,R3) with F
given by (5.2). Moreover,

(7.1) ‖v±‖D1,p(G±,R3) + ‖p±‖Lp(G±) ≤ C[‖g‖W 1−1/q,q(∂G,R3) + ‖f‖W−1/q,q(∂G,R3)]

where C depends only on G and q.

Proof. According to Proposition 7.1, Theorem 5.1 and Theorem 6.1 it is enough to
prove (7.1). For f ∈ W−1/q,q(∂G,R3), g ∈ W 1−1/q,q(∂G,R3) denote by vg,f

± , pg,f± the
solution of the transmission problem (1.1), (1.2), (1.9). We have the representation
(4.4), (4.5). Thus U± : [g, f ] 7→ [vg,f

± , pg,f± ] is a linear operator fromW 1−1/q,q(∂G,R3)×
W−1/q,q(∂G,R3) to D1,p(G±, R

3)× Lp(G±). If x ∈ G±, gn → g, fn → f , then

[vgn,fn
± (x), p

gn,fn)
± (x)]→ [vg,f

± (x), pg,f± (x)].

So, the operator U± is closed. The closed graph theorem gives that it is bounded. �

Lemma 7.1. For 1 < q < ∞ denote by Xq the set of all f ∈ W−1/q,q(∂G,R3)
satisfying

(7.2) 〈f , c〉 = 0,

for every c ∈ R3. Then K ′G(Xq) ⊂ Xq.

Proof. Put g = f/2 −K ′Gf . Then u = EGf , p = QGf is a solution of the Neumann
problem ∆u = ∇p in G, ∇ · u = 0 in G, T (u, p)nG = g. Hence 〈g, c〉 = 0 (see for
example [36]). So, K ′Gf = f/2− g ∈ Xq. �

Theorem 7.2. Suppose that G has boundary of class C1, 1 < q ≤ 3/2. Let g ∈
W 1−1/q,q(∂G,R3), f ∈ W−1/q,q(∂G,R3). Then there exists a solution v± ∈ D1,q(Ω±)
p± ∈ Lq(Ω±) of the transmission problem for the Stokes system (1.1), (1.2), (1.9) if
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and only if (7.2) holds true. This solution is unique and (7.1) holds with C dependent
only on G and q. We have the representation (4.4), (4.5) where Ψ is given by (4.6).
Remark that Ψ is a unique solution of the integral equation (5.3) in W−1/q,q(∂G,R3)
with F given by (5.2).

Proof. If v± ∈ D1,q(Ω±) p± ∈ Lq(Ω±) is a solution of the transmission problem
for the Stokes system (1.1), (1.2), (1.9) then v+ ∈ Bq,q

1 (G+, R
3), p+ ∈ Bq,q

0 (G+),
v− ∈ Bq,q

1 (G−∩B(0; r), R3), p− ∈ Bq,q
0 (G−∩B(0; r)) for all r > 0 (see Proposition 7.1).

Theorem 6.1 gives uniqueness of the problem (1.1), (1.2), (1.9) and the representation
(4.4), (4.5).

The operator S = I−2(a+−a−)/(a++a−)K ′G is an isomorphism onW−1/q,q(∂G,R3)
(= Bq,q

−1/q(∂G,R
3)) by Theorem 6.1. If Xq is the space from Lemma 7.1 then S(Xq) ⊂

Xq. So, S(Xq) = Xq. Let now f ∈ Xq. Since 〈[T (DGg,ΠGg]+n, c〉 = 0 for all constant
c, we have F ∈ Xq. Thus Ψ = S−1F ∈ Xq. If v±, p± is given by (4.4), (4.5), then
v± ∈ D1,q(Ω±) p± ∈ Lq(Ω±) is a solution of the transmission problem (1.1), (1.2),
(1.9).

Let now f 6∈ Xq. If v± ∈ D1,q(Ω±), p± ∈ Lq(Ω±) is a solution of the transmission
problem (1.1), (1.2), (1.9) then it is given by (4.4), (4.5) where Ψ = S−1F (see
Theorem 6.1). Clearly, |∇DGg| ∈ Lq(G−), ΠGg ∈ Lq(G−). Since [T (DGg,ΠGg]+n ∈
Xq and f 6∈ Xq we have F 6∈ Xq. Hence Ψ 6∈ Xq. According to properties of
hydrodynamical potentials there exist positive constants C1, C2 such that C1|x|−2 ≤
|∇EGΨ(x)| ≤ C2|x|−2, C1|x|−2 ≤ |QGΨ(x)| ≤ C2|x|−2 at vicinity of infinity. So,
v− 6∈ D1,q(Ω−), p− 6∈ Lq(Ω−).

For f ∈ Xq, g ∈ W 1−1/q,q(∂G,R3) denote by vg,f
± , pg,f± the solution of the transmis-

sion problem (1.1), (1.2), (1.9). We have the representation (4.4), (4.5). Thus U± :

[g, f ] 7→ [vg,f
± , pg,f± ] is a linear operator from Xq ×W−1/q,q(∂G,R3) to D1,p(G±, R

3)×
Lp(G±). If x ∈ G±, gn → g, fn → f , then we have

[vgn,fn
± (x), p

g(n),f(n)
± (x)]→ [vg,f

± (x), pg,f± (x)].

So, the operator U± is closed. The closed graph theorem gives that it is bounded. �

8. Lq-solution of the transmission problem

Theorem 8.1. Suppose that G has boundary of class C1, 1 < q < ∞. Let f ∈
Lq(∂G,R3), g ∈ W 1,q(∂G,R3). Then there exists a unique Lq-solution v± p± of
the transmission problem for the Stokes system (1.1), (1.2), (1.9). We have the
representation (4.4), (4.5) where Ψ is given by (4.6). Remark that Ψ is a unique
solution of the integral equation (5.3) in Lq(∂G,R3) with F given by (5.2). Fix
Ψ0 ∈ Lq(∂G,R3). Let Ψk be given by (5.5). Then Ψk → Ψ in Lq(∂G,R3). Let α be
given by (5.6). Then there exists a constant C dependent only on G, a+, a− and q
such that

(8.1) ‖Ψk −Ψ‖Lq(∂G,R3) ≤ Cαk
(
‖Ψ0‖Lq(∂G,R3) + ‖F‖Lq(∂G,R3)

)
.
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Proof. Fix 1/q < s < 1. If v± p± is an Lq-solution of the transmission problem
(1.1), (1.2), (1.9) then v+ ∈ W 1,q(G+, R

3) ⊂ W s,q(G+, R
3) = Bq,q

s (G+, R
3), p+ ∈

Lq(G+) ⊂ Bq,q
s−1(G+), v− ∈ W 1,q(G+ ∩ B(0; r), R3) ⊂ Bq,q

s (G− ∩ B(0; r), R3), p− ∈
Lq(G− ∩B(0; r)) ⊂ Bq,q

s−1(G− ∩B(0; r)) for all r > 0 (see [33], Lemma 4.1). According
to Theorem 6.1 an Lq-solution of the problem (1.1), (1.2), (1.9) is unique.

Put q′ = q/(q − 1). Then KG is a compact operator on Lq′(∂G,C3) by [29], p. 232.
Since K ′G is the adjoint operator of KG, the operator K ′G is compact on Lq(∂G,C3).
Lemma 6.1 and Lemma 5.2 gives (5.7) in Lq(∂G,C3). So, the equation (5.3) is uniquely
solvable in Lq(∂G,C3). If F is given by (5.2) and v±, p± by (4.4), (4.5), then v±, p±
is an Lq-solution of the transmission problem (1.1), (1.2), (1.9). Lemma 4.2 gives that
Ψ is given by (4.6).

We show (8.1) in the same way as in the proof of Theorem 5.1. �
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