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The Robin problem for the scalar
Oseen equation

Dagmar Medkováa, Emma Skopinb and Werner Varnhornb*†

Communicated by R. Picard

We study the Robin problem for the scalar Oseen equation in an open n-dimensional set with compact Ljapunov
boundary. We prescribe two types of Robin boundary conditions, and prove the unique solvability of these problems as
well as a representation formula for the solution in form of a scalar Oseen single layer potential. Moreover, we prove the
maximum principle for the solution to the Robin problem of the scalar Oseen equation. Copyright © 2013 John Wiley &
Sons, Ltd.
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1. Introduction

The Dirichlet, Neumann, and Robin boundary value problems for second order partial differential equations are important model
problems in mathematical physics [1]. Traditionally, the Dirichlet and Neumann problems for the Laplace equation in domains with
smooth boundary have been studied by the method of integral equations long time ago. Later, also the Robin problem for the Laplace
equation in smooth and Lipschitz domains has been investigated by this method [2–7].

Recently, also the boundary value problems for the scalar Oseen equation

��uC 2�@1uD 0 in��R3, � 2R, (1)

have been studied by the method of integral equations [8, 9]. Here, the authors study the Dirichlet problem, that is, they prescribe the
boundary condition

uD g on @�,

and the Oseen Neumann problem, prescribing the boundary condition

@u

@n
� �n1uD g on @�.

Here nD n� is the outward (with respect to�) unit normal vector on @�.
In the present paper, we study the Robin problem for the scalar Oseen equation in an open set� � R3 with compact boundary @�

of class C1,˛ , ˛ > 0, that is, the scalar Oseen problem (1) with prescribed boundary condition

@u

@n
C huD g on @�, (2)

where h denotes a positive function, and the Robin problem corresponding to the Oseen Neumann condition studied in [8, 9], that is,
we prescribe the boundary condition

@u

@n
� �n1uC huD g on @� (3)

with h � 0. We prove unique solvability of these problems, a representation of the solution in form of a scalar Oseen single layer
potential, and the maximum principle for the solution of the Robin problem for the scalar Oseen equation.
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2. The maximum principle for the Robin problem

Let � � R3 be an open set with boundary of class C1. Denote by � the closure of �, and by n D n�.z/ the outward (with respect
to �) unit normal vector in z 2 @�. Let g, h 2 C0.@�/ and � 2 R be given. Then we call u a classical solution of the Robin problem
for the scalar Oseen Equations (1) and (2), if u 2 C2.�/ \ C0.�/, if there exists @u.z/=@n at each z 2 @�, and if Equations (1) and (2)
are satisfied.

The following result holds true for general 2�m 2N .

Proposition 2.1
Let G�Rm be an open set with bounded boundary @G. Let g and a� 0 be functions defined on @G, and let � 2R. Let u 2 C2.G/\C0.G/
be given with ��uC 2�@1u D 0 in G, and let � D .�1, : : : , �m/ be a unit vector function on @G. Suppose that for z 2 @G with a.z/ ¤ 0
the function � D �.z/ satisfies fzC t� ;�ı < t < 0g �� and fzC t� ; 0< t < ıg \�D ; for some ı > 0, and suppose that there exists

@u.z/

@�
D lim

t!0
�

u.zC t�/� u.z/

t
.

If a.z/ D 0 set a.z/.@u.z/=@�/ D 0. Now assume that a.@u=@�/C u D g on @G. If G is unbounded suppose moreover that u.x/! 0 as
jxj !1. Then the following estimate holds true:

inf
x2@G

g.x/� inf
x2G

u.x/� sup
x2G

u.x/� sup
x2@G

g.x/.

Proof
The maximum principle ([10], Chapter 3, Theorem 3.1) gives that there exists z 2 @G such that u � u.z/. If a.z/ ¤ 0 then @u.z/=@� � 0
because � is an outward pointing vector and u� u.z/. Thus

sup
x2G

u.x/D u.z/� a.z/
@u.z/

@�
C u.z/D g.z/� sup

x2@G
g.x/.

Now, for v D�u, we have

inf
x2@G

g.x/D� sup
x2@G

.�g.x//�� sup
x2G

v.x/D inf
x2G

u.x/.

�

3. Potentials

Let � 2 R, jxj :D
q

x2
1 C x2

2 C x2
3, and let

E2�.x/D
1

4�jxj
e�.j�xj��x1/

denote the fundamental solution of the scalar Oseen Equation (1). Note that E0.x/ D 1=.4�jxj/ is the fundamental solution of the
Laplace equation ��u D 0. Because � � R3 is an open set with bounded boundary of class C1,˛ , 0 < ˛, and ' 2 C0.@�/, then the
scalar Oseen single layer potential

E�2�'.x/D

Z
@�

E2�.x � y/'.y/ d�y

is well defined. Easy calculations yield E�2�' 2 C1.R3 n @�/ and��E�2�' C 2�@1uD 0 in R3 n @� [9]. Moreover, for �D 0, we find

E�0 '.x/D O.1=jxj/, jrE�0 '.x/j D O.1=jxj2/ as jxj !1. (4)

If �¤ 0, then

jE�2�'.x/j C jrE�2�'.x/j D O
�

e�.j�xj��x1/=jxj
�

as jxj !1. (5)

Because E�2� is an integral operator with weakly singular kernel, it is a compact linear operator on C0.@�/ (see, for example, [11]).

Lemma 3.1
Let � � Rm be an open set with bounded boundary @� of class C1,˛ ,˛ > 0. Let k.x, y/ be defined for Œx, y� 2 Rm � @�; x ¤ y and
k.x, y/j � Cjx�yj1�mCˇ with positive constants C, ˇ. Suppose that k.x, �/ is measurable, and k.�, y/ is continuous. Let f 2 L1.@�/. Then

kf .x/D

Z
@�

k.x, y/f .y/ d�y

is a continuous function in Rm.

2
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(See [12] or [13], Lemma 3.2)

Lemma 3.2
Let � 2R. Define R2�.x/D E2�.x/� E0.x/. Then

R2�.x/D O.1/, jrR2�.x/j D O.jxj�1/ jxj ! 0.

If��R3 is an open set with bounded boundary of class C1,˛ , 0< ˛ < 1, ' 2 C0.@�/, then for

R�2�'.x/D

Z
@�

R2�.x � y/'.y/ d�y

we find R�2�' 2 C1.R3/.

Proof
Put f .t/D .et � 1/=t for t ¤ 0, f .0/D 1. Then f is continuous. So, there is a constant C such that jf .t/j � C for jtj � 1. If 0 < jtj � 1 then
jf 0.t/j D jet=t � .et � 1/=t2j � .CC e/=t. Clearly,

R2�.x/j D f .�.j�xj � �x1//
�.j�xj � �x1/

jxj
.

Thus, jR2�.x/j D O.1/ as jxj ! 0. Moreover,

jrR2�.x/j � jf
0.�.j�xj � �x1//j

j8�.j�xj � �x1/j

jxj
C jf .�.j�xj � �x1//jO.1=jxj/D O.1=jxj/, jxj ! 0.

Using Lemma 3.1 for R�2� and @jR�2�, we obtain R�2�' 2 C1.R3/. �

Proposition 3.3
Let��R3 be an open set with bounded boundary of class C1,˛ , ˛ > 0, � 2 R. For x, y 2 @�, x ¤ y set

L�2�.x, y/D n�.x/ � rxE2�.x � y/.

For ' 2 C0.@�/ define

L�2�'.x/D

Z
@�

L�2�.x, y/'.y/ d�y .

Then L�2� is a compact linear operator on C0.@�/.

Proof
It is well known that L�0 is a compact linear operator on C0.@�/ (see, for example, [11] or [14]). Because L�2� � L�0 is an integral operator

with weakly singular kernel (Lemma 3.2), it is a compact linear operator on C0.@�/ (see, for example, [11]). �

Proposition 3.4
Let � � R3 be an open set with bounded boundary of class C1,˛ , ˛ > 0, � 2 R, ' 2 C0.@�/. Then E�2�' 2 C0.R3/. Put u D E�2�' in �.
Then

@u.x/

@n
D

1

2
'.x/C L�2�'.x/.

Here nD n.x/ is the exterior unit normal with respect to� in x 2 @�.

Proof
The proposition is well known for �D 0 (see, for example, [11] or [14].) By virtue of Lemma 3.2, we obtain the result for arbitrary �. �

Corollary 3.5
Let��R3 be an open set with bounded boundary of class C1,˛ , ˛ > 0, � 2 R, ' 2 C0.@�/. If E�2�' D 0 on @�, then ' D 0.

Copyright © 2013 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2013, 36 2237–2242

2
2

3
9



D. MEDKOVÁ, E. SKOPIN AND W. VARNHORN

Proof
Put uD E�2�' in�, v D E�2�' in GD R3 n�. Proposition 3.4 gives that E�2�' 2 C0.R3/. Moreover, E�2�' is a solution of the scalar Oseen

equation in R3 n @� and E�2�'.x/ ! 0 as x ! 1. The maximum principle ([10], Chapter 3, Theorem 3.1) gives that E�2�' D 0 in R3.

Fix x 2 @�. Let n be the unit outward normal of� at x. According to Proposition 3.4, we have

0D
@u.x/

@n
C
@v.x/

@.�n/
D

1

2
'.x/C L�2�'.x/C

1

2
'.x/C LG

2�'.x/D '.x/.

�

Proposition 3.6
Let��R3 be an open set with bounded boundary of class C1,˛ , ˛ > 0, � 2 R, ' 2 C0.@�/. Then

Z
@�

.E�2�'/

�
1

2
' C L�2�' � �n1E�2�'

�
d�y D

Z
�

jrE�2�'j
2 dy.

Proof
If � D 0, [15]. Let now � ¤ 0. Suppose first that � is bounded. We know that jrE�0 'j 2 L2.�/. Lemma 3.2 gives that R�2�' 2 C1

�
R3
�
.

Thus jrE�2�'j 2 L2.�/. For 	 > 0 denote 
� D
n

x � 	n�.x/; x 2 @�
o

, and by �� an open set such that @�� D 
� , �� � �. We

know that E�2�' is continuous in R3. Because @E�0 '
�

x � 	n�.x/
�
=@n�.x/ ! '.x/=2 C L�0 ' as 	 ! 0 uniformly with respect to

@� ([16], Chapter XV, §3 or [11], §28 or [14], §1.2, Theorem 2), we deduce that @E�2�'
�

x � 	n�.x/
�
=@n� �n1E�2�

�2 �
x � 	n�.x/

�
!

'.x/=2C L�2�'.x/� �n1E�2�'.x/ as 	! 0 uniformly with respect to @�. By virtue of Green’s Formula, we find by the same way like for

the Neumann problem for the Laplace equation (compare [11, 12, 16])

Z
@�

�
E�2�'

��1

2
' C L�2�' � �n1E�2�'

�
d�y D lim

�!0

Z
��

(�
E�2�'

� @E�2�'

@n
� �n1

�
E�2�'

�2
)

d�y

D lim
�!0

Z
��

n�
E�2�'

� �
�E�2�'

�
C jrE�2�'j

2 � 2�
�

E�2�'
�
@1E�2�'/

o
dy

D lim
�!0

Z
��

n
jrE�2�'j

2C
�

E�2�'
� �
�E�2�' � 2�@1E�2�'

�o
dy D

Z
�

jrE�2�'j
2 dy.

(We can also prove this equality by approximating� from inside by [17], Theorem 1.12.)
Now, let� be unbounded. Set G.R/D fx 2�; jxj< Rg, and define ' D 0 outside of @�. Then we obtain

Z
�

jrE�2�'j
2 dy D lim

R!1

Z
G.R/

jrE�2�'j
2 dy

D lim
R!1

Z
@G.R/

�
EG.R/

2� '
��1

2
' C LG.R/

2� ' � �n1EG.R/
2� '

�
d�y

D

Z
@�

�
E�2�'

��1

2
' C L�2�' � �n1E�2�'

�
d�y C lim

R!1

Z
fjxjDRg

(�
E�2�'

� @E�2�'

@n
� �n1

�
E�2�'

�2
)

d�y .

With help of Equations (5) and (4) and Lebesque’s Lemma, this implies

ˇ̌̌
ˇ̌̌
ˇ
Z

fjxjDRg

(
.E�2�'/

@E�2�'

@n
� �n1.E

�
2�'/

2

)
d�y

ˇ̌̌
ˇ̌̌
ˇ�

Z
fjxjDRg

Ce�2.j�xj��x1/jxj�2 d�y

D

Z
fjxjD1g

Ce�2R.j�xj��x1/ d�y ! 0

as R!1. Thus the proposition is proved. �

2
2

4
0
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4. The boundary condition (2) with h> 0

We shall look for a solution of the problems (1) and (2) in the form of a single layer potential E�2�' with ' 2 C0.@�/. According to

Proposition 3.4, the function E�2�' is a classical solution of the problems (1) and (2) if and only if

1

2
' C L�2�' C hE�2�' D g on @�. (6)

Theorem 4.1
Let� � R3 be an open set with bounded boundary of class C1,˛ , ˛ > 0, � 2 R. If h 2 C0.@�/, h > 0, then T D .1=2/IC L�2� C hE�2� is a

continuously invertible operator in C0.@�/. Assume g 2 C0.@�/.

� If� is bounded, then there exists a unique classical solution u of the problems (1) and (2).
� If� is unbounded, then there exists a unique classical solution u of the problems (1) and (2) such that u.x/! 0 as jxj !1.

Moreover, uD E�2�T�1g and

inf
x2@�

g.x/

h.x/
� inf

x2�
u.x/� sup

x2�
u.x/� sup

x2@�

g.x/

h.x/
. (7)

Proof
If u is a solution of problems (1) and (2), then u satisfies the boundary condition h�1.@u=@n/C u D g=h on @�. Proposition 2.1 gives
uniqueness and the estimate (7).

Now, let ' 2 C0.@�/ satisfy T' D 0. Then u D E�2�' is a classical solution of problems (1) and (2) with g D 0. We have proved that

E�2�' D uD 0 on�. Corollary 3.5 gives that ' D 0.

L�2� is a compact linear operator on C0.@�/ by Proposition 3.3. Because E�2� is an integral operator with weakly singular kernel, it

is a compact operator on C0.@�/, see, for example, [11]. Thus, the operator T � .1=2/I is compact, too. Because T is one to one, the
Riesz–Schauder theory gives that T is a continuously invertible operator on C0.@�/. Hence, u D E�2�T�1g is a classical solution of the
Robin problems (1) and (2). �

Corollary 4.2
Let� � R3 be an open set with bounded boundary of class C1,˛ , ˛ > 0, � 2 R. Let u 2 C2.�/\ C0.�/ such that there exists @u.z/=@n
at each z 2 @�, @u=@n 2 C0.@�/, and Equation (1) holds true. If � is unbounded suppose in addition that u.x/! 0 as jxj ! 1. Then
there exists ' 2 C0.@�/ such that uD E�2�'. Moreover, we find

Z
@�

u

�
@u

@n
� �n1u

�
d�y D

Z
�

jruj2 dy <1. (8)

Proof
Set hD 1, gD @u=@nCu. Then u is a classical solution of the Robin problems (1) and (2). Theorem 4.1 gives that there exists ' 2 C0.@�/

such that uD E�2�'. Then Proposition 3.4 and Proposition 3.6 prove Equation (8). �

5. The boundary condition (3) with h� 0

In this section, we shall look for a solution of problems (1) and (3) in the form of a single layer potential E�2�' with ' 2 C0.@�/. According

to Proposition 3.4, the function E�2�' is a classical solution of the problems (1) and (3), if and only if

1

2
' C L�2�' � �n1E�2�' C hE�2�' D g on @�. (9)

Theorem 5.1
Let � � R3 be an open set with bounded boundary of class C1,˛ , ˛ > 0, � 2 R n f0g. If h 2 C0.@�/, h � 0, then T D
.1=2/IC L�2� � �n1E�2�' C hE�2� is a continuously invertible operator in C0.@�/. Fix g 2 C0.@�/.

� If� is bounded, then there exists a unique classical solution u of the problems (1) and (3).
� If� is unbounded, then there exists a unique classical solution u of the problems (1) and (3) such that u.x/! 0 as jxj !1.

Moreover, uD E�2�T�1g and

sup
x2�
ju.x/j � C sup

x2@�
jg.x/j,

where the constant C depends only on� and �.
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Proof
Suppose first that u is a classical solution of the problems (1) and (3) with gD 0. According to Corollary 4.2

0D

Z
@�

u

�
@u

@n
� �n1uC hu

�
d�y D

Z
�

jruj2 dyC

Z
@�

hu2 d�y .

Thus, ru D 0 in � and hu D 0 on @�. Because ru D 0 in �, the function u is constant on each component of � and
0 D @u=@n � �n1u C hu D ��n1u on @�. Because u is constant on each component of @�, we infer that u D 0 on @�. Because u
is constant on each component of�, we deduce that u� 0.

If ' 2 C0.@�/, T' D 0, then E�2�' is a classical solution of problems (1) and (3) with g D 0. We have proved that E�2�' D 0 on @�.
Corollary 3.5 gives that ' D 0.

The operator L�2� is a compact linear operator on C0.@�/ by Proposition 3.3. Because E�2� is an integral operator with weakly singular

kernel, it is a compact operator on C0.@�/ (see, for example, [11]). Thus, the operator T � .1=2/I is compact. Because T is one to one,
the Riesz–Schauder theory gives that T is a continuously invertible operator in C0.@�/. If g 2 C0.@�/ then u D E�2�T�1g is a classical
solution of the Robin problems (1) and (3).

The operator E�2�T�1 is a linear operator from C0.@�/ to C0.�/. Suppose that 'n ! ' in C0.@�/, E�2�T�1'n !  in C0.�/. If x 2 �,

an easy calculation gives that E�2�T�1'n.x/! E�2�T�1'.x/. Hence, E�2�T�1' D  , and the operator E�2�T�1 is closed. The closed graph

theorem ([18], Theorem II.1.9) gives that the operator E�2�T�1 is bounded. So, there exists a constant C such that

sup
x2�

ˇ̌̌
E�2�T�1g.x/

ˇ̌̌
� C sup

x2@�
jg.x/j

for each g 2 C0.@�/. �
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