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Abstract

We consider a simplified model based on the Navier-Stokes-Fourier
system coupled to a transport equation and the Maxwell system, proposed
to describe radiative flows in stars. We establish global-in-time existence
for the associated initial-boundary value problem in the framework of
weak solutions.

Key words: Radiation magnetohydrodynamics, Navier-Stokes-Fourier sys-
tem, weak solution

1 Introduction
i

There are a number of situations when stars can be described by compress-
ible fluids and their dynamics is controlled by intense magnetic fields coupled
with a simplified model of radiation. Following studies by Ducomet, Feireisl
and Nečasová [11] and Ducomet and Feireisl [10] we consider a mathematical
model of radiative flow where the motion of the fluid is described by the standard
Galilean fluid mechanics giving the evolution of the mass density % = %(t, x), the
velocity field ~u = ~u(t, x), and the absolute temperature ϑ = ϑ(t, x) as functions
of the time t and the Eulerian spatial coordinate x ∈ Ω ⊂ R3. The effect of ra-
diation is incorporated in the radiative intensity I = I(t, x, ~ω, ν), depending on
the director ~ω ∈ S2, where S2 ⊂ R3 denotes the unit sphere, and the frequency
ν ≥ 0. This system of equations is coupled to a simplified Maxwell system of
electrodynamics where we assume the quasineutrality of the plasma described
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and neglect the Maxwell displacement current. This system describes the evo-
lution of the magnetic induction ~B = ~B(t, x) and the electric field ~E = ~E(t, x),
resp. the magnetic field ~H = ~H(t, x) and the electric induction ~D = ~D(t, x).
The collective effect of the radiation is then expressed in terms of integral means
with respect to the variables ~ω and ν of quantities depending on I: the radiation
energy ER is given as

ER(t, x) =
1
c

∫
S2

∫ ∞

0

I(t, x, ~ω, ν) d~ω dν. (1.1) i0

The time evolution of I is described by a transport equation with source terms
S̃ depending on nonnegative quantities of the absolute temperature ϑ and fre-
quency of radiation ν, while the effect of radiation on the macroscopic motion
of the fluid is represented by an extra source term of radiative heating/cooling
in the energy equation and an extra source term of acceleration/deceleration
both evaluated in terms of S̃.

The Maxwell system of classical electrodynamics in our case reduces to the
Faraday’s law of induction

∂t
~B + curlx ~E = 0, (1.2) i6

together with the Gauss’s law for magnetism

divx
~B = 0, (1.3) i7

the Ampère’s law
~J = curlx ~H, (1.4) iA

Coulomb’s law
divx

~D = 0, (1.5) iC

and (nonlinear version of) Ohm’s law

~J = σ( ~E − ~B × ~u), (1.6) i8

where ~B = µ ~H, ~D = ε̃ ~E, σ is the (nonlinear) electrical conductivity, µ = µ(
∣∣∣ ~H∣∣∣)

and ε̃ is the dielectric permittivity. All the material properties are assumed to
be scalars.

This gives us from (1.2)

∂t
~B + curlx( ~B × ~u) + curlx(

1
σ
curlx(

1
µ
~B)) = 0. (1.7) i6a

Following [2] we will denote

M(s) =
∫ s

0

τ∂τ (τµ(τ))dτ, (1.8) i6b

and rewrite the equation (1.2) as a version of the Poynting theorem

∂tM(| ~H|) + ~J · ~E = divx( ~H × ~E). (1.9) i6c
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Together with the principles of continuum mechanics, the magnetofluid [6,
30] with radiation effects [37] problem can be described by the system of equa-
tions

∂t%+ divx(%~u) = 0 in (0, T )× Ω; (1.10) i1

∂t(%~u) + divx(%~u⊗ ~u) +∇xp(%, ϑ) = (1.11) i2

divxS− ~SF + %∇xψ + µ~J × ~H in (0, T )× Ω;

∂t

[
%

(
1
2
|~u|2 + e(%, ϑ)

)
+M(| ~H|)

]
+ divx

[
%

(
1
2
|~u|2 + e(%, ϑ) +

p(%, ϑ)
%

)
~u

]
=

(1.12) i3

%∇xψ · ~u− divx

(
~q − S~u+

µ

ε̃
~D × ~H

)
− SE in (0, T )× Ω;

∂tI + c~ω · ∇xI = cS̃ in (0, T )× Ω× (0,∞)× S2. (1.13) i4

Note that, contrary to the model studied in [17], a radiation term appears
in the momentum equation in spite of this term may be small. The electrical
conductivity σ hidden in (1.11) can depend on the density %, on the temperature
ϑ and the magnetic field ~H (cf. (2.8)) of the magnetofluid.

The symbol p = p(%, ϑ) denotes the (equilibrium) thermodynamic pressure
and e = e(%, ϑ) is the specific internal energy, interrelated through Maxwell’s
relation

∂e

∂%
=

1
%2

(
p(%, ϑ)− ϑ

∂p

∂ϑ

)
. (1.14) i5

Observe that both the pressure and the internal energy involve both a radiation
and a thermal term. The meaning of this splitting is that there is a part of
the photon gas in the equilibrium with plasma whereas another part is not.
The latter is described by the transport equation (1.13) and is caused mainly
by inverse Compton scattering and synchrotrone radiation [29]. Naturally, our
description is somehow ”mixed” since we use classical thermodynamics and
classical electrodynamics for the description of matter while the radiation is
described by geometrical optics.

Furthermore, S is the viscous part of the stress tensor determined by New-
ton’s rheological law

S = λ(ϑ,
∣∣∣ ~H∣∣∣)(∇x~u+∇T

x ~u−
2
3
divx~u I

)
+ η(ϑ,

∣∣∣ ~H∣∣∣)divx~u I, (1.15) i9

where the shear viscosity coefficient λ > 0 and the bulk viscosity coefficient
η ≥ 0 are effective functions of the absolute temperature and the magnitude of
the magnetic field. Once again, we tacitly assume isotropy of the considered
medium (without the presence of a magnetic field). Similarly, ~q is the heat flux
given by Fourier’s law

~q = −
(
κRϑ

3 + κM

(
%, ϑ,

∣∣∣ ~H∣∣∣))∇xϑ, (1.16) i10
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with the constant radiative heat conductivity coefficient κR > 0 and with a
molecular heat conductivity coefficient κM > 0.

Further the source term of radiation is due to absorption/emission and scat-
tering of light

S̃ = Sa,e + Ss, (1.17) i11

where
Sa,e(t, x, ~ω, ν) = σa(ν, ϑ)

(
B(ν, ϑ)− I(t, x, ~ω, ν)

)
, (1.18) i12

Ss(t, x, ~ω, ν) = σs(ν, ϑ)
(

1
4π

∫
S2
I(t, x, ~ω, ν) d~ω − I(t, x, ~ω, ν)

)
, (1.19) i13

SE(t, x) =
∫
S2

∫ ∞

0

S̃(t, x, ~ω, ν) d~ω dν , (1.20) i14

and
~SF (t, x) = c−1

∫
S2

∫ ∞

0

~ωS̃(t, x, ~ω, ν) d~ω dν, (1.21) i15

with the absorption coefficient σa = σa(ν, ϑ) ≥ 0, and the scattering coefficient
σs = σs(ν, ϑ) ≥ 0. Here B(ν, ϑ) denotes (equilibrial) black body radiation.
According to Planck’s law we recall

B(ν, ϑ) =
2hϑ3c−2

e
hν

kBϑ − 1
. (1.22) i16

More restrictions on the structural properties of constitutive relations will be
imposed in Section 2 below.

System (1.10) – (1.22) is supplemented with the boundary conditions mod-
elling the mechanical and heat isolation combined with no-slip and transparency
(radiation does not reflect back to the domain Ω) at the boundary:

~u|∂Ω = ~0, ~q · ~n|∂Ω = 0; (1.23) i17

I(t, x, ~ω, ν) = 0 for x ∈ ∂Ω, ~ω · ~n ≤ 0, (1.24) i18

where ~n denotes the outer normal vector to ∂Ω.
For the electromagnetic fields we adopt boundary conditions of a perfect

conductor (assuming outside Ω there are zero fields and using the continuity of
the following components of the fields across ∂Ω)

~E × ~n|∂Ω = ~0, ~B · ~n|∂Ω = 0. (1.25) i19

It remains to complement the system with the Poisson equation for the self-
gravitational potential ψ from the right-hand side of (1.11)

−∆ψ = 4πG%, (1.26) i20

where G is Newton’s gravitational constant.
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System (1.10) – (1.26) can be viewed as a simplified model in radiation hydro-
dynamics, the physical foundations of which were described by Pomraning [37]
and Mihalas and Weibel-Mihalas [35] in the framework of the theory of special
relativity. Similar systems have been investigated more recently in astrophysics
and laser applications (in the relativistic and inviscid case) by Lowrie, Morel
and Hittinger [33], Buet and Després [4], with a special attention to asymptotic
regimes, see also Dubroca and Feugeas [8], Lin [31] and Lin, Coulombel and
Goudon [32] for related numerical issues.

The existence of local-in-time solutions and sufficient conditions for blow
up of classical solutions in the non-relativistic inviscid case were obtained by
Zhong and Jiang [38], see also the recent papers by Jiang and Wang [27, 28] for
related one-dimensional “Euler-Boltzmann” type models. Moreover, a simplified
version of the system has been investigated by Golse and Perthame [24], where
global existence was proved by means of the theory of nonlinear semigroups.

Concerning viscous fluids, a number of similar results have been considered
in the recent past in the one-dimensional geometry [1, 13, 14, 15, 16] and a global
existence result has also recently been proved in the 3D setting in [11] under
some hypotheses on transport coefficients, for the “complete system” (when a
radiative source appears only in the right-hand side of (1.11)).

Our goal in the present paper is to show that the existence theory developed
in [11] and [10] relying on previous works [21], [19] and [20, Chapter 3], can be
adapted to the problem (1.10) – (1.26).

As stressed in [11], a complete proof of existence is now well understood (see
[20, Chapter 3]) therefore we focus as in [11] on the property of weak sequential
stability for problem (1.10) – (1.26) in the framework of the weak solutions in-
troduced in [10]. More specifically, we introduce a concept of finite energy weak
solution in the spirit of [10] and show that any sequence {%ε, ~uε, ϑε, ~Hε, Iε}ε>0 of
solutions to problem (1.10) – (1.26), bounded in the natural energy norm, pos-
sesses a subsequence converging to (another) weak solution of the same problem
Such a property highlights the essential ingredients involved in the “complete”
proof of existence that may be carried over by means of the arguments delineated
in [20, Chapter 3].

The essential contribution to the proof comes from the entropy inequality.
Due to a relevant “radiative” contribution one faces a similar situation encoun-
tered in [11], namely that the total entropy production has not a “definite sign”
and, accordingly, we can establish the strong convergence of the radiative con-
tribution with the help of regularity of velocity averages. This is also connected
to the fact that we do not introduce radiation entropy in the total entropy
inequality.

The paper is organized as follows. In Section 2, we list the principal hypothe-
ses imposed on constitutive relations, introduce the concept of weak solution to
problem (1.10) – (1.26), and state the main result. Uniform bounds imposed
on weak solutions by the data are derived in Section 3.1. The property of weak
sequential stability of a bounded sequence of weak solutions is established in
Section 3.2. Finally, we introduce a suitable approximation scheme and discuss
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the main steps of the proof of existence in Section 3.3.

2 Hypotheses and main results
m

Hypotheses imposed on constitutive relations and transport coefficients are mo-
tivated by the general existence theory for the Navier-Stokes-Fourier system
developed in [20, Chapter 3] and reasonable physical assumptions [37].

Firstly, we consider the pressure in the form

p(%, ϑ) = ϑ5/2P
( %

ϑ3/2

)
+
a

3
ϑ4, a > 0, (2.1) m1

where P : [0,∞) → [0,∞) is a given function with the following properties:

P ∈ C1[0,∞), P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (2.2) m2

0 <
5
3P (Z)− P ′(Z)Z

Z
< c for all Z ≥ 0, (2.3) m3

lim
Z→∞

P (Z)
Z5/3

= p∞ > 0. (2.4) m4

The component a
3ϑ

4 represents the effect of “equilibrium” radiation pressure
(see [11] for motivations and [20] for details). Essentially, these hypotheses are
implications of general principles of thermodynamical stability and the assump-
tion that there is at least one component in the plasmatic mixture behaving
in the degenerate regime as a Fermi gas (we may think of it in most cases as
electron gas). The constant a is the Stefan-Boltzmann constant.

According to Maxwell’s relation (1.14) and statistical kinetic theory, the
internal energy density e is

e(%, ϑ) =
3
2
%−1ϑ5/2P

(
%ϑ−3/2

)
+ aϑ4%−1, (2.5) m5

and the associated specific entropy reads

s(%, ϑ) = M
(
%ϑ−3/2

)
+

4a
3
ϑ3%−1, (2.6) m6

with a function M satisfying by (2.3)

M ′(Z) = −3
2

5
3P (Z)− P ′(Z)Z

Z2
< 0.

Additional entropy for the photon gas out of equilibrium is not introduced.
The transport coefficients µ, η, and κM are continuously differentiable func-

tions of their respective variables admitting a common temperature scaling such
that there exist c1, c2, c3, c > 0

λ′ϑ(ϑ,
∣∣∣ ~H∣∣∣) < c3, (2.7) m7
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c1(1 + ϑ) ≤ η(ϑ,
∣∣∣ ~H∣∣∣), σ−1(%, ϑ, ~B), λ(ϑ,

∣∣∣ ~H∣∣∣) ≤ c2(1 + ϑ), (2.8) m8

κM (%, ϑ,
∣∣∣ ~H∣∣∣) ≤ c(1 + ϑ3), (2.9) m8a

for any ϑ ≥ 0. We consider the magnetic permeability µ satisfying the following
property

cks(1 + s)−k ≤ ∂k
s (sµ(s)) ≤ cks(1 + s)−k, (2.10) m8b

for any s ≥ 0 and for k = 0, 1 with ck, ck > 0. Moreover, we assume that
σa, σs are continuous functions of ν, ϑ such that there exist c4, c5, c6 > 0 and
h ∈ L1(0,∞) and it holds

0 ≤ σa(ν, ϑ), σs(ν, ϑ) ≤ c4, 0 ≤ σa(ν, ϑ)B(ν, ϑ) ≤ c5, (2.11) m9

σa(ν, ϑ), σs(ν, ϑ), σa(ν, ϑ)B(ν, ϑ) ≤ h(ν), (2.12) m10

σa(ν, ϑ), σs(ν, ϑ) ≤ c6ϑ, (2.13) m11

for all ν ≥ 0, ϑ ≥ 0. Relations (2.11) – (2.13) represent “cut-off” hypotheses
neglecting the effect of radiation at large frequencies ν and small temperatures
ϑ.

We just recall the definitions introduced in [11]. In the weak formulation of
the Navier-Stokes-Fourier system the equation of continuity (1.10) is replaced by
its renormalized version introduced in [7] represented by the family of integral
identities∫ T

0

∫
Ω

[(
%+ b(%)

)
∂tϕ+

(
%+ b(%)

)
~u · ∇xϕ+

(
b(%)− b′(%)%

)
divx~u ϕ

]
dx dt

(2.14) m12

= −
∫

Ω

(
%0 + b(%0)

)
ϕ(0, ·) dx,

to be satisfied for any ϕ ∈ C∞c ([0,∞) × Ω), and any b ∈ C∞[0,∞), b′ ∈
C∞c [0,∞), where (2.14) implicitly includes the initial condition

%(0, ·) = %0.

Similarly, the momentum equation (1.11) is replaced by its weak version∫ T

0

∫
Ω

(%~u · ∂t~ϕ+ %~u⊗ ~u : ∇x~ϕ+ pdivx~ϕ) dx dt (2.15) m13

=
∫ T

0

∫
Ω

S : ∇x~ϕ− %∇xψ · ~ϕ+ ~SF · ~ϕ− µ( ~J × ~H) · ~ϕ dx dt

−
∫

Ω

(%~u)0 · ~ϕ(0, ·) dx,
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for any ~ϕ ∈ C∞c ([0, T ) × Ω; R3). For (2.15) to make sense, especially the term∫ T

0

∫
Ω

S : ∇xϕ dx dt, the field ~u must belong to a certain Bochner space with
Sobolev space with respect to the spatial variable and we require that

~u ∈ L2(0, T ;W 1,2
0 (Ω; R3)), (2.16) m14

where (2.16) already includes the no-slip boundary condition (1.23)1. Gravita-
tional potential ψ is given by (1.26) considered on the whole space R3, where %
was extended to be zero outside Ω.

As the term S~u in the total energy balance (1.12) is not controlled on the (hy-
pothetical) vacuum zones of vanishing density, we replace (1.12) by the internal
energy equation as in [20]

∂t(%e)+divx(%e~u)+divx~q = S : ∇x~u−pdivx~u−SE+~u·~SF +
1
σ

∣∣∣curlx ~H
∣∣∣2. (2.17) m15

Furthermore, dividing (2.17) by ϑ and using Maxwell’s relation (1.14), we may
rewrite (2.17) as the entropy equation

∂t (%s) + divx (%s~u) + divx

(
~q

ϑ

)
= r, (2.18) m16

where the entropy production rate r is

r =
1
ϑ

(
S : ∇x~u−

~q · ∇xϑ

ϑ
+

1
σ

∣∣∣curlx ~H
∣∣∣2)+

~u · ~SF − SE

ϑ
, (2.19) iprod

where the first term rm := 1
ϑ

(
S : ∇x~u− ~q·∇xϑ

ϑ + 1
σ

∣∣∣curlx ~H
∣∣∣2) is the (nonneg-

ative) matter entropy production by virtue of the constitutive laws (1.15) and
(1.16). The second term on the right-hand side of (2.19) is due to radiative en-
tropy rate which does not have a definite sign since it corresponds to radiative
heating/cooling.

For the smooth fields we can get an evolution equation for the sum of the
density of the kinetic energy 1

2% |~u|
2 and of the magnetic energy M( ~H) sub-

tracting (2.17) from (1.12). However, generally for weak solutions we cannot
exclude that the entropy dissipation rate due to heat exchange, internal viscous
friction and Foucault eddy currents is larger than r in compliance with the Sec-
ond law of Thermodynamics and equation (2.18) has to be replaced in the weak
formulation by the inequality∫ T

0

∫
Ω

(
%s∂tϕ+ %s~u · ∇xϕ+

~q

ϑ
· ∇xϕ

)
dx dt (2.20) m17

≤ −
∫

Ω

(%s)0ϕ(0, ·) dx+
∫ T

0

∫
Ω

1
ϑ

(
~q · ∇xϑ

ϑ
− S : ∇x~u−

1
σ

∣∣∣curlx ~H
∣∣∣2 − ~u · ~SF

+SE

)
ϕdx dt,
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for any ϕ ∈ C∞c ([0, T )× Ω), ϕ ≥ 0.
Since replacing equation (1.12) by inequality (2.20) would certainly result

in a formally underdetermined problem, system (2.14), (2.15), (2.20) must be
supplemented with the total energy balance

d

dt

∫
Ω

(
1
2
%(t, x) |~u(t, x)|2 + %e(%(t, x), ϑ(t, x)) + c−1

∫
S2

∫ ∞

0

I(t, x, ~ω, ν) d~ω dν

(2.21) m18

+M(| ~H|)− 1
2
%(t, x)ψ(t, x)

)
dx =

∫
Ω

∫
S2

∫ ∞

0

divx (~ωI(t, x, ~ω, ν)) d~ω dν dx,

which can be rephrased as follows∫
Ω

(
1
2
%|~u|2 + %e(%, ϑ) + ER +M(| ~H|)− 1

8πG
|∇ψ|2

)
(τ, ·) dx (2.22) m19

+
∫ τ

0

∫∫
∂Ω×S2

~ω·~n≥0

∫ ∞

0

I(t, x, ~ω, ν) ~ω · ~n dν d~ω dSx dt

=
∫

Ω

(
1

2%0
|(%~u)0|2 + (%e)0 + ER,0 +M(| ~H|)(0, ·)− 1

8πG
|∇ψ0|2

)
dx,

for a. a. τ ∈ (0, T ),

where ER is given by (1.1), and

ER,0 = c−1

∫
S2

∫ ∞

0

I0(·, ~ω, ν) d~ω dν.

The transport equation (1.13) can be extended to the whole physical space
R3 provided we set

σa(x, ν, ϑ) = 1Ωσa(ν, ϑ), σs(x, ν, ϑ) = 1Ωσs(ν, ϑ),

and take the initial distribution I0(x, ~ω, ν) to be zero for x ∈ R3 \ Ω. Accord-
ingly, for any fixed ~ω ∈ S2, equation (1.13) can be considered a linear transport
equation defined in (0, T ) × R3, with a right-hand side cS̃. With the above
mentioned convention, extending ~u to be zero outside Ω, we may therefore as-
sume that both % and I are defined on the whole physical space R3. Then the
gravitational potential ψ is defined on the whole R3 by the Newtonian potential.

Finally, we need to state the weak formulation of the reduced Maxwell system
(1.2), (1.6)∫ T

0

∫
Ω

(
~B · ∂t~ϕ−

(
~B × ~u+

1
σ
curlx ~H

)
· curlx~ϕ

)
dx dt = (2.23) m20

−
∫

Ω

~B0 · ~ϕ(0, ·) dx,
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holds for any ~ϕ ∈ D([0, T )× R3,R3).

In accordance with the boundary conditions (1.24), (1.25) one also take

~B0 ∈ L2(Ω),divx
~B0 = 0 in D′(Ω), ~B0 · n|∂Ω) = 0. (2.24) m20a

Definition 2.1 We say that (%, ~u, ϑ, ~B, I) is a weak solution of problem
(1.10) – (1.26) iff

%0 ≥ 0 a.e. in Ω, %0 ∈ L
5
3 (Ω),

(%~u)0√
ρ0

∈ L2(Ω,R3),

(%e(%, ϑ))0 = %0e(%0, ϑ0) ∈ L1(Ω), ϑ0 > 0 a.e. in Ω, ϑ0 ∈ L∞(Ω),

ψ0 = G(−∆)−1χΩ%0, ~B0 ∈ L2(Ω,R3), divx
~B0 = 0 in D′(Ω), ~B0 · ~n

∣∣∣
∂Ω

= 0,

I0 ≥ 0 a.e. in Ω× S2 × (0,∞),

I0 ∈ L1(R3 × S2 × (0,∞)) ∩ L∞(R3 × S2 × (0,∞)),

(%s(%, ϑ))0 = %0s(%0, ϑ0) ∈ L1
loc(Ω),

% ≥ 0, ϑ > 0 for a.a. (t, x)× Ω, I ≥ 0 a.a. in (0, T )× Ω× S2 × (0,∞),

% ∈ L∞(0, T ;L5/3(Ω)), ϑ ∈ L∞(0, T ;L4(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

~u ∈ L2(0, T ;W 1,2
0 (Ω; R3)), ~B ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;W 1,2(Ω)),

M
(∣∣∣ ~H∣∣∣) ∈ L∞(0, T ;L1(Ω)),

divx
~B(t) = 0, ~B(t) · n|∂Ω = 0, t ∈ (0, T ),

I ∈ L∞((0, T )× Ω× S2 × (0,∞)), I ∈ L∞(0, T ;L1(Ω× S2 × (0,∞)),

and (%, ~u, ϑ, ~B, I) satisfy the integral identities (2.14), (2.15), (2.20), (2.22),
and (2.23) together with the transport equation (1.13) and boundary conditions
(1.23) – (1.25) at least in the sense of traces.

The main result of the present paper can be stated as follows. Weak limits
are generally denoted with an overbar.

Tm1 Theorem 2.1 Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω of class
C2+α for an α > 0. Assume that the thermodynamic functions p, e, s satisfy
hypotheses (2.1) – (2.6), and that the transport coefficients η, κM , λ, σ, µ, σa,
and σs comply with (2.7) – (2.13).

Let {%ε, ~uε, ϑε, ~Bε, Iε}ε>0 be a family of weak solutions to problem (1.10) –
(1.26) in the sense of Definition 2.1 such that

%ε(0, ·) ≡ %ε,0 → %0 in L5/3(Ω), (2.25) m21∫
Ω

(
1
2
%ε|~uε|2 + %εe(%ε, ϑε) + ER,ε +M

(∣∣∣ ~H∣∣∣)− 1
2
%ψ

)
(0, ·) dx (2.26) m22
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≡
∫

Ω

(
1

2%0,ε
|(%~u)0,ε|2 + (%e)0,ε + ER,0,ε +M

(∣∣∣ ~H∣∣∣)
0,ε
− 1

2
(%ψ)0,ε

)
dx ≤ E0,∫

Ω

%εs(%ε, ϑε)(0, ·) dx ≡
∫

Ω

(%s)0,ε dx ≥ S0,

and

0 ≤ Iε(0, ·) ≡ I0,ε(·) ≤ I0, |I0,ε(x, ~ω, ν)| ≤ h(ν) for a certain h ∈ L1(0,∞).
(2.27) m23

Then
%ε → % in Cweak([0, T ];L5/3(Ω)),

~uε → ~u weakly in L2(0, T ;W 1,2
0 (Ω; R3)),

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)),

~Bε → ~B weakly in L2(0, T ;W 1,2(Ω)) ∩ L∞(0, T ;L2(Ω)),

and
Iε → I weakly-(*) in L∞((0, T )× Ω× S2 × (0,∞)),

at least for suitable subsequences, where {%, ~u, ϑ, ~B, I} is a weak solution of
problem (1.10) – (1.26).

Note that strong convergence is required only for the initial distribution of
the densities {%ε,0}ε>0 (see (2.25)), while the remaining initial data are only
bounded in suitable norms. This is due to the fact that the evolution of the
density is governed by continuity equation (1.10) having hyperbolic character
without any smoothing effect incorporated.

3 Proof of Theorem 2.1

Following [11], the proof consists of three steps. We establish uniform estimates
on the family {%ε, ~uε, ϑε, ~Bε, Iε}ε>0 independent of ε → 0+ first. Secondly,
we observe that the extra forcing terms in (2.15), (2.20) due to radiation are
bounded in suitable Lebesgue norms. In particular, the analysis of the macro-
scopic variables %ε, ~uε, ϑε is essentially the same as in the case of the Navier-
Stokes-Fourier system presented in [20]. Consequently as in [11] the proof of
Theorem 2.1 reduces to the study of the transport equation (1.13) governing
the time evolution of the radiation intensity Iε and Maxwell’s system (1.2) and
(1.6). In the last step we introduce an approximation scheme similar to that
used in [20, Chapter 3] and sketch the main ideas of a complete proof of the
existence of global-in-time weak solutions to problem (1.10) – (1.26).
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3.1 Uniform bounds
a

Uniform (a priori) bounds follow immediately from the total energy balance
and the entropy production equation.

The total energy balance (2.21), combined with hypotheses of Theorem 2.1
give

ess sup
t∈(0,T )

‖√%ε~uε‖L2(Ω;R3) ≤ c, (3.1) a1

ess sup
t∈(0,T )

‖%εe(%ε, ϑε)‖L1(Ω) ≤ c, (3.2) a2

ess sup
t∈(0,T )

‖ER,ε‖L1(Ω) ≤ c, (3.3) a3

ess sup
t∈(0,T )

∥∥∥M(∣∣∣ ~Hε

∣∣∣)∥∥∥
L1(Ω)

≤ c, (3.4) a3a

and
ess sup

t∈(0,T )

‖ ~Bε‖L2(Ω) ≤ c. (3.5) a40

Thus, as the internal energy contains the radiation component proportional
to ϑ4 (cf. (2.1)), we deduce from (3.2) that

ess sup
t∈(0,T )

‖ϑε‖L4(Ω) ≤ c, (3.6) a4

and, by virtue of hypotheses (2.1) – (2.4),

ess sup
t∈(0,T )

‖%ε‖L5/3(Ω) ≤ c. (3.7) a5

This crucial uniform estimate we get ”for free” by the proportionality of pressure
and internal energy density of the fluid part of the internal energy and by the
assumption that we deal with a component behaving like a Fermi gas (cf. [20,
Chapter 2])

%e ≥ aϑ4 +
3
2
p∞%

5
3 . (3.8) a50

Since the quantity Iε is non-negative, we have from (1.13)

1
c
∂tIε + ~ω · ∇xIε ≤ σa(ν, ϑε)B(ν, ϑε) + σs(ν, ϑε)

1
4π

∫
S2
Iε(·, ~ω, ·) d~ω ≤ (3.9) a6

c5 + c4

∫
S2
Iε(·, ~ω, ·) d~ω,

as the coefficients σs, σa are non-negative and bounded by (2.11). Thus we
deduce a uniform bound

0 ≤ Iε(t, x, ν, ~ω) ≤ c(T )(1 + sup
x∈Ω, ν≥0,~ω∈S2

I0,ε) ≤ c(T )(1 + I0) for any t ∈ [0, T ]

(3.10) a7

12



by (2.27) with a certain non-negative function c(t).
Cut-off hypothesis (2.12) together with (3.10) yield

‖SE,ε‖L∞((0,T )×Ω) + ‖~SF,ε‖L∞((0,T )×Ω;R3) ≤ c. (3.11) a16

Moreover, due to (2.13) it holds∥∥∥∥SE,ε

ϑε

∥∥∥∥
L∞((0,T )×Ω)

+

∥∥∥∥∥ ~SF,ε

ϑε

∥∥∥∥∥
L∞((0,T )×Ω;R3)

≤ c. (3.12) a17

As the viscosity coefficients satisfy (2.7) – (2.8), we get

‖%ε~uε‖2L2((0,T ),L1(Ω)) +
∫ T

0

∫
Ω

1
ϑε

Sε : ∇x~uε dx dt ≥

c1

∥∥∥∥∇x~uε +∇T
x ~uε −

2
3
divx~uεI

∥∥∥∥2

L2((0,T )×Ω;R3×3)

+ ‖%ε~uε‖2L2((0,T ),L1(Ω))

≥ c7‖~uε‖2L2(0,T ;W 1,2
0 (Ω;R3))

,

where we have used a variant of the Korn-Poincaré inequality (see [20, Chapter
2, Proposition 2.1]) and c7 depends only on the uniform bounds of % and c1.

On the other hand, in accordance with (3.12) by Hölder’s inequality∣∣∣∣∣
∫ T

0

∫
Ω

1
ϑε
~uε · ~SF,ε dx dt

∣∣∣∣∣ ≤ c‖~uε‖L1((0,T )×Ω;R3).

Then the entropy inequality (2.20) (with positive production terms, the rest
estimated by (3.12)) yields the uniform bounds for Ω bounded

‖~uε‖L2(0,T ;W 1,2
0 (Ω;R3)) ≤ c, (3.13) a18

‖∇xϑε‖L2((0,T )×Ω) ≤ c, (3.14) a19∥∥∥∥ 1
ϑεσε

∣∣∣curlx ~Hε

∣∣∣2∥∥∥∥
L1((0,T )×Ω)

≤ c, (3.15) a200

upon testing with approximations of the test function ϕ = χΩ(x)χ[0,T ](t) and
passing to the limit. Moreover we have∥∥∥curlx ~Hε

∥∥∥
L2((0,T )×Ω;R3)

≤ c. (3.16) a230

Finally we summarize the lemmas from [18, Chapter 7] concerning the (lin-
earized) equation for the evolution of magnetic field ~B (2.23):

• The boundary condition expressing continuity of the tangential compo-
nent of the electric field (1.25)1 is automatically satisfied by the weak
formulation (2.23).
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• The boundary condition expressing continuity of the normal component
of the magnetic field (1.25)2 is satisfied once we choose ~Bε,0 · ~n = 0.

• The same is true for the condition of solenoidality (1.3) once we guarantee
divx

~Bε,0 = 0 in D′(Ω).

• We have got a Hodge-type estimate∥∥∥ ~Bε

∥∥∥
W 1,2(Ω,R3)

≤ c

(∥∥∥curlx ~Bε

∥∥∥
L2(Ω,R3)

+
∥∥∥divx

~Bε

∥∥∥
L2(Ω)

+

∥∥∥ ~Bε · ~n
∥∥∥

W
1
2 ,2(∂Ω)

)
≤ c

∥∥∥curlx ~Bε

∥∥∥
L2(Ω,R3)

≤ c,

meaning that we have got a uniform estimate of the magnetic induction∥∥∥ ~Bε

∥∥∥
L2(0,T ;W 1,2(Ω,R3))

≤ c, (3.17) a250

and also for the magnetic field∥∥∥ ~Hε

∥∥∥
L2(0,T ;W 1,2(Ω,R3))

≤ c. (3.18) a250a

To estimate the pressure functions p(%ε, ϑε) globally we start with the obser-
vation that estimates (3.7), (3.13) imply that the sequences {%ε~uε}ε>0, {%ε~uε⊗
~uε}ε>0 are bounded in Lp((0, T ) × Ω) for a certain p > 1, namely p = 45

43 .
Similarly, combining (3.6), (3.13), (3.14), we get

{Sε}ε>0 bounded in Lp((0, T )× Ω; R3×3) for a certain p > 1,namely p =
34
23
.

Moreover, {%ε∇xψε}ε>0, { ~Jε× ~Bε}ε>0 are bounded in Lp((0, T )×Ω) for a certain
p > 1. Now, repeating the arguments of [23], we observe that the quantities

ϕ(t, x) = ψ̃(t){B[%ω
ε ]}α, ψ̃ ∈ D(0, T ) for sufficiently small parameters α, ω > 0

may be used as test functions in the momentum equation (2.15), where B[v] is
a suitable branch of solutions to the boundary value problem

divx

(
B[v]

)
= v − 1

|Ω|

∫
Ω

v dx, B[v]|∂Ω = 0. (3.19) p27

Here B is the Bogovskii operator and α denotes a convolution parameter in time
since we need to test with a continuously differentiable function.

Next we get estimates of {B[%ω
ε ]}α in Lq(0, T ;W 1,p(Ω,R3)) for all q ∈ [1,∞]

and p ∈ (1,∞) by {%ω
ε }α in Lq(0, T ;Lp(Ω,R3)) and of {B[%ω

ε ]}α setting the
renormalization function in (2.14) b(%ε) := {B[%ω

ε ]}α. This leads to an estimate
of the term

∫ T

0
ψ̃(t)

∫
Ω
p(%ε, ϑε){B[%ω

ε ]}α dx dt by eight integrals resulting from

14



the momentum equation (2.15). We omit most details which can the reader find
in [20, Chapter 2]. Let us just note that the ”worst” term arises from the time
derivative which we a priori do not control in a Lebesgue space and therefore
we partially integrate in time and estimate it as follows∣∣∣∣∣−

∫ T

0

ψ̃(t)
∫

Ω

%ε~uε · ∂t{B[%ω
ε ]}α dx dt

∣∣∣∣∣ ≤ ∥∥∥ψ̃∥∥∥C(0,T )
‖%ε~uε‖

L∞(0,T ;L
5
4 (Ω,R3))

×

(3.20) p280

‖∂t{B[%ω
ε ]}α‖L1(0,T ;L5(Ω,R3)) ≤ c

∥∥∥ψ̃∥∥∥
C(0,T )

‖%ε~uε‖
L∞(0,T ;L

5
4 (Ω,R3))

×{
‖{B[%ω

ε ]}α~uε‖L1(0,T ;L5(Ω,R3)) +∥∥[%ε ({B[%ω
ε ]}α)′ − {B[%ω

ε ]}α
]
divx~uε

∥∥
L1(0,T ;L

15
8 (Ω,R3))

}
≤ c for ω ≤ 11

18
,

by (3.7), (3.1) and (3.13) and repeated use of Hölder’s inequality and Sobolev
embedding. ”New terms” in comparison to [20, Chapter 2] are estimated as
follows∣∣∣∣∣−

∫ T

0

ψ̃(t)
∫

Ω

%ε∇xψε · {B[%ω
ε ]}α dx dt

∣∣∣∣∣ ≤ c
∥∥∥ψ̃∥∥∥

C(0,T )
‖∇ψε‖

L∞(0,T ;L
15
4 (Ω))

×

(3.21) p290

‖%ω
ε ‖L1(0,T ;L

15
7 (Ω))

‖%ε‖
L∞(0,T ;L

5
3 (Ω))

≤ c for ω ≤ 7
9
,∣∣∣∣∣

∫ T

0

ψ̃(t)
∫

Ω

~SF,ε · {B[%ω
ε ]}α dx dt

∣∣∣∣∣ ≤ c
∥∥∥ψ̃∥∥∥

C(0,T )

∥∥∥~SF,ε

∥∥∥
L∞((0,T )×Ω;R3)

×

(3.22) p300

‖%ω
ε ‖L1(0,T ;L1+δ(Ω)) ≤ c for small δ > 0 and ω <

5
3

and∣∣∣∣∣−
∫ T

0

ψ̃(t)
∫

Ω

σ(%ε, ϑε, ~Bε)
(
~Eε + ~uε × ~Bε

)
× ~Bε · {B[%ω

ε ]}α dx dt

∣∣∣∣∣ ≤ c×

(3.23) p310∥∥∥ψ̃∥∥∥
C(0,T )

∥∥∥curlx ~Hε

∥∥∥
L2((0,T )×Ω;R3)

‖%ω
ε ‖L

15
8 (0,T ;L

15
8 (Ω))

∥∥∥ ~Bε

∥∥∥
L

10
3 ((0,T )×Ω;R3)

≤ c

for ω ≤ 8
9
.

The resulting (uniform in ε) estimate reads∫ T

0

∫
Ω

p(%ε, ϑε)%ω
ε dx dt < c, (3.24) p28

where ω ≤ min
{

5
3 ,

8
9 ,

7
9 ,

55
102 ,

11
18 ,

2
27

}
= 2

27 , in particular, we can arrive at the
following regularity by upper bounds for pressure in the non-degenerate region
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(for small Zs in the sense of (2.2)) and in the degenerate region, respectively
and homogeneous regularity of temperature by (3.6) ‖ϑε‖

L
17
3 ((0,T )×Ω)

≤ c

{p(%ε, ϑε)}ε>0 is bounded in Lp((0, T )×Ω) for a p > 1,namely p =
47
45
. (3.25) p29

3.2 Weak sequential stability
w

We sketch the principal part of the proofs and focus mainly on the issues related
to weak sequential stability of quantities related to radiation and magnetic field
that require new ideas. In particular, we examine in details the extra terms in
the entropy balance equation (2.20).

3.2.1 Weak sequential stability of macroscopic thermodynamic quan-
tities

After the uniform estimates on the radiation forcing terms SE,ε and ~SF,ε in
(3.11), strong (pointwise) convergence of the macroscopic thermodynamic quan-
tities {%ε}ε>0, {ϑε}ε>0 can be shown exactly as in [10].

To begin, using the uniform bounds established in Section 3.1 we observe
that

%ε → % in Cweak([0, T ];L
5
3 (Ω)), (3.26) w1

ϑε → ϑ weakly in L2(0, T ;W 1,2(Ω)), (3.27) w2

and
log(ϑε) → log(ϑ) weakly in L2((0, T )× Ω), (3.28) w3

and
~uε → ~u weakly in L2(0, T ;W 1,2

0 (Ω; R3)), (3.29) w4

possibly passing to suitable subsequences. Moreover, since the (weak) time
derivative ∂t (%ε~uε) of momenta can be expressed by means of momentum bal-
ance (2.15) (Lorentz force density bounded as in (3.23)), we have got

%ε~uε → %~u in Cweak([0, T ];L
5
4 (Ω; R3)). (3.30) w4a

Since our system contains quantities depending on % and ϑ in a general
nonlinear way, pointwise (resp. a. e.) convergence of {%ε}ε>0, {ϑε}ε>0 must be
established in order to perform the limit ε→ 0+. This step is apparently easier
to carry out for the temperature because of the uniform bounds available for
∇xϑε.

3.2.2 Pointwise convergence of temperature

A. e. convergence of the sequence {ϑε}ε>0 can be established essentially by the
monotonicity arguments. The main problem are possible uncontrollable time
oscillations in hypothetical zones of vacuum, here eliminated by the presence of
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radiation component in the entropy inequality. More specifically, our goal is to
show that∫ T

0

∫
Ω

(
%εs(%ε, ϑε)− %εs(%ε, ϑ)

)(
ϑε − ϑ

)
dx dt→ 0 as ε→ 0+, (3.31) np1

which, in accordance with hypothesis (2.6), implies the desired conclusion

ϑε → ϑ in L4((0, T )× Ω), in particular, ϑεk
→ ϑ a. e. in (0, T )× Ω. (3.32) np2

In order to see (3.31), we first observe that∫ T

0

∫
Ω

%εs(%ε, ϑε)
(
ϑε − ϑ

)
dx dt→ 0 as ε→ 0 + .

Indeed this follows by means of the Aubin-Lions compactness lemma as

ϑε − ϑ→ 0 weakly in L2(0, T ;W 1,2(Ω)),

and the (weak) time derivative ∂t(%εs(%ε, ϑε)) can be expressed by means of the
entropy inequality (2.20).

Consequently, it remains to show that∫ T

0

∫
Ω

%εs(%ε, ϑ)
(
ϑε − ϑ

)
dx dt→ 0 as ε→ 0 + . (3.33) np3

To see (3.33), we combine the bounds imposed on ∂tb(%ε) by the renormal-
ized equation (2.14), with the estimates on the temperature gradient (3.14), to
deduce that

νt,x[%ε, ϑε] = νt,x[%ε]⊗ νt,x[ϑε] a. e. in (0, T )× Ω, (3.34) np4

where the symbol ν[%ε, ϑε] denotes a Young measure associated to the family
{%ε, ϑε}ε>0, while ν[%ε], ν[ϑε] stand for Young measures generated by {%ε}ε>0,
{ϑε}ε>0, respectively. In order to conclude, we use the following result fre-
quently called Fundamental theorem of the theory of Young measures (see Pe-
dregal [36, Chapter 6, Theorem 6.2]):

TYM Theorem 3.1 Let {~vn}∞n=1, ~vn : Q ⊂ RN → RM be a sequence of functions
bounded in L1(Q; RM ), where Q is a domain in RN .

Then there exist a subsequence (not relabeled) and a parametrized family
{νy}y∈Q of probability measures on RM depending measurably on y ∈ Q with
the following property:

For any Caratheodory function Φ = Φ(y, z), y ∈ Q, z ∈ RM such that

Φ(·, ~vn) → Φ weakly in L1(Q),

we have
Φ(y) =

∫
RM

Φ(y, z) dνy(z) for a.a. y ∈ Q.

In virtue of Theorem 3.1, relation (3.34) implies (3.33). We have proved the
almost everywhere convergence of the temperature claimed in (3.32). Note that
this step leans heavily on the presence of the radiative entropy flux.
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3.2.3 Pointwise convergence of density

Although the pointwise convergence of the family of densities {%ε}ε>0 represents
one of the most delicate questions of the existence theory for the compressible
Navier-Stokes system, this step is nowadays well understood. The idea is to use
the quantities

ϕ(t, x) = ψ(t)φ(x)∇x∆−1[χΩTk(%ε)]

as test functions in the weak formulation of momentum equation (2.15). Simi-
larly, we can let ε→ 0+ in (2.15) and test the resulting expression on

ϕ(t, x) = ψ(t)φ(x)∇x∆−1[χΩTk(%ε)],

where ψ ∈ C∞c (0, T ), φ ∈ C∞c (Ω), and Tk is a cut-off function,

Tk(z) = min{z, k}.

In the limit for ε → 0+, this procedure yields the celebrated relation for the
effective viscous pressure discovered by Lions [34], relating last two expressions
whose weak limits have not been identified yet, which reads in the present setting
as ∫ T

0

∫
Ω

ψφ
(
p(%, ϑ)Tk(%)− p(%, ϑ) Tk(%)

)
dx dt (3.35) evp

=
∫ T

0

∫
Ω

ψφ
(
S : R[χΩTk(%)]− S : R[χΩTk(%)]

)
dx dt,

where the ovebars denote weak limits of the composed quantities (in the ap-
propriate Lebesgue spaces Lp((0, T ) × Ω), for p = 47

45 and p = 34
23 , respectively,

thus in L1((0, T ) × Ω) as well) and where R = Ri,j = ∂xi∆
−1∂xj is a pseudo-

differential operator with its symbol

R =
ξ ⊗ ξ

|ξ|2

(see [20, Section 3.6]). Note that the presence of the extra term ~SF in (2.15)
does not present any additional difficulty as∫ T

0

∫
Ω

ψ~SF,ε · φ∇x∆−1[Tk(%ε)] dx dt→
∫ T

0

∫
Ω

ψ~SF · φ∇x∆−1[Tk(%)] dx dt.

The same applies to the Lorentz force density as we can apply the Aubin-Lions
lemma due to (3.17), ∂t

~Bε ∈ L2(0, T ; [W 1,4(Ω)]∗) by (3.5), (3.13), (2.8) and
(3.15) to obtain

~Bε → ~B in L2
(
(0, T )× Ω,R3

)
(3.36) evp0

which together with once again (3.15) leads to the identification of the weak
limit in L

5
4 ((0, T )× Ω) of the term involving magnetic induction ~B in (2.15).

The following commutator lemma is in the spirit of Coifman and Meyer [5]:
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LLL1 Lemma 3.1 Let w ∈ W 1,2(R3) and ~Z ∈ Lp(R3; R3) be given, with 6/5 < p <
∞.

Then, for any 1 < s < 6p/(6 + p),∥∥∥R[w~Z]− wR[~Z]
∥∥∥

W β,s(R3;R3)
≤ c‖w‖W 1,2(R3)‖~Z‖Lp(R3;R3),

where 0 < β = 3
s −

6+p
6p , and c = c(p) are positive constants.

Applying Lemma 3.1 to the expression on the right-hand side of (3.35) and
using (weak) compactness in time of Tk(%ε) following1 from the renormalized
equation (2.14), we obtain

p(%, ϑ)Tk(%)−
(

4
3
λ
(
ϑ,
∣∣∣ ~H∣∣∣)+ η

(
ϑ,
∣∣∣ ~H∣∣∣))Tk(%)divx~u (3.37) evp1

= p(%, ϑ) Tk(%)−
(

4
3
λ
(
ϑ,
∣∣∣ ~H∣∣∣)+ η

(
ϑ,
∣∣∣ ~H∣∣∣))Tk(%)divx~u,

cf. [20, Section 3.7.4] with help of (3.32) and (3.36).
Now, introducing the functions

Lk(%) =
∫ %

1

Tk(z)
z2

dz,

we deduce from renormalized equation (2.14) that∫ T

0

∫
Ω

(
%Lk(%)∂tϕ+ %Lk(%)~u · ∇xϕ− Tk(%)divx~uϕ

)
dx dt

= −
∫

Ω

%0Lk(%0)ϕ(0, ·) dx

for any ϕ ∈ C∞c ([0, T )× Ω). It follows from (3.37) that

oscq[%ε → %] ((0, T )× Ω) (3.38) odm

≡ sup
k≥1

(
lim sup

ε→0

∫ T

0

∫
Ω

|Tk(%ε)− Tk(%)|q dx dt

)
<∞, ∀q ∈

(
2,

8
3

)
,

where osc is the oscillation defect measure introduced in [22]. In particular,
relation (3.38) implies that the limit functions %, ~u satisfy renormalized equation
(2.14) (see [20, Lemma 3.8]); whence∫

Ω

(
%Lk(%)− %Lk(%)

)
(τ) dx+

∫ τ

0

∫
Ω

(
Tk(%)divx~u− Tk(%)divx~u

)
dx (3.39) for

=
∫ τ

0

∫
Ω

(
Tk(%)divx~u− Tk(%)divx~u

)
dx dt for any τ ∈ [0, T ].

1Naturally the Tk function has to be approximated by differentiable functions first.

19



Using once more (3.38), we can let k → ∞ in (3.39) to obtain the desired
conclusion

% log(%) = % log(%),

particularly,
%ε → % in L1((0, T )× Ω), (3.40) convd

see [20, Section 3.7.4] for details.
Relations (3.26) – (3.29), (3.32), (3.40), and by means of interpolation from

(3.36) and (3.17)

~Bε → ~B in L2((0, T );Lq(Ω,R3)), 1 ≤ q < 6. (3.41) convb

together with the previous uniform bounds allow us to pass to the limit in
the weak formulation of the Navier-Stokes-Fourier system and the simplified
Maxwell’s system, as soon as we show convergence of the sequence {Iε}ε>0.
This will be accomplished in the forthcoming section.

3.2.4 Convergence of radiation intensity

Our ultimate goal is to establish convergence of the quantities arising in the
entropy production rate by radiation

1
ϑε
SE,ε =

1
ϑε

∫ ∞

0

σa(ν, ϑε)
[∫
S2

(B(ν, ϑε)− Iε) d~ω
]

dν+

1
ϑε

∫ ∞

0

σs(ν, ϑε)
∫
S2

[
1
4π

∫
S2
Iε(t, x, ~ω, ν) d~ω − Iε(t, x, ~ω, ν)

]
d~ω dν =

1
ϑε(t, x)

∫ ∞

0

σa(ν, ϑε(t, x))
[∫
S2

(B(ν, ϑε(t, x))− Iε(t, x, ~ω, ν)) d~ω
]

dν

and

1
ϑε

~SF,ε · ~uε =

1
cϑε

~uε ·
∫ ∞

0

σs(ν, ϑε)
∫
S2
~ω

[
1
4π

∫
S2
Iε(t, x, ~ω, ν) d~ω − Iε(t, x, ~ω, ν)

]
d~ω dν+

1
cϑε(t, x)

~uε ·
∫ ∞

0

σa(ν, ϑε(t, x))
[∫
S2
~ω (B(ν, ϑε(t, x))− Iε(t, x, ~ω, ν)) d~ω

]
dν

Since ϑε → ϑ a. e. in (0, T )×Ω, the desired result follows from compactness
of the velocity averages over the sphere S2 established by Golse et al. [25, 26],
see also Bournaveas and Perthame [3], and hypothesis (2.12). Specifically, we
use the following result (see [25]):

Ppr1 Proposition 3.1 Let I ∈ Lq([0, T ]×Rn×S2×R), ∂tI+ cω ·∇xI ∈ Lq([0, T ]×
Rn×S2×R) for a certain q > 1. In addition, let I0 ≡ I(0, ·) ∈ L∞(Rn×S2×R).

Then
Ĩ(t, x, ν) ≡

∫
S2
I(t, x, ~ω, ν) d~ω
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belongs to the space W s,q([0, T ]×Rn ×R) for any s, 0 < s < inf{1/q, 1− 1/q},
and

‖Ĩ‖W s,q ≤ c(I0)(‖I‖Lq + ‖∂tI + cω · ∇I‖Lq ).

As the radiation intensity Iε satisfies the transport equation (1.13), by virtue
of hypotheses (2.9) and (2.10) where S̃ is bounded in Lq∩L∞([0, T )×Ω×S2×R),
a direct application of Proposition 3.1 yields the desired conclusion∫

S2
Iε(t, x, ~ω, ν) d~ω →

∫
S2
I(t, x, ~ω, ν) d~ω in L2((0, T )× Ω),

and ∫
S2
~ωIε(t, x, ~ω, ν) d~ω →

∫
S2
~ωI(t, x, ~ω, ν) d~ω in L2((0, T )× Ω),

for any fixed ν > 0. Consequently

1
ϑε
SE,ε →

1
ϑ
SE , (3.42) convSE

and
1
ϑε

~SF,ε · ~uε →
1
ϑ
~SF · ~u (3.43) convSF

as required, and Theorem 2.1 is proved by convergences (3.40), (3.29), (3.32),
(3.41), (3.42) and (3.43). The entropy inequality (2.20) needs additionally con-
vergence of the initial total entropy of approximations to the initial entropy of
its limit and weak upper semicontinuity of the right-hand side of (2.20) due to
(1.16), (1.15), (3.29), (3.27). Moreover we need the positivity of the absolute
temperature ϑ. This is due to the convergences (3.28) and (3.32).

3.2.5 The Maxwell equation

The Maxwell system is represented by weak formulation (2.23).
We have the following convergences:

• ~Bε → ~B weakly in L2(0, T,W 1,2(Ω)),

• ~Bε → ~B strongly in L2(0, T, L2(Ω)),

• ~Jε × ~Bε → ~J × ~B weakly in Lp((0, T )× Ω; R3) ∀p ∈
[
1, 5

4

]
.

Here we factor the only nonlinear term as follows to use the uniform bound
(3.15)

1
σ
curlx ~Hε =

√
ϑεσ−1(%ε, ϑε, ~Bε)

√
1

ϑεσ(%ε, ϑε, ~Bε)
curlx ~Hε, (3.44) magdiff

and get the uniform bound in a reflexive Banach space∥∥∥σ−1(%ε, ϑε, ~Bε)curlx ~Hε

∥∥∥
L

34
23 ((0,T )×Ω)

≤ c. (3.45) magdiffest
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This suffices to pass to the limit in (2.23). Q.E.D.

3.3 Approximating scheme and global-in-time existence
exi

We conclude the paper by proposing an approximation scheme to be used to
prove existence of global-in-time weak solutions to problem (1.10) – (1.26).
The scheme is essentially the same as in [20, Chapter 3], the extra terms are
put in { }. The dependence of approximate solutions on the parameters of
approximation δ and d has been in notation suppressed.

• The continuity equation (1.10) is replaced by an “artificial viscosity” ap-
proximation

∂t%+ divx(%~u) = {d∆%}, d > 0, (3.46) ap1

to be satisfied on (0, T )×Ω, and supplemented by the homogeneous Neu-
mann boundary conditions

∇x% · ~n|∂Ω = 0. (3.47) ap2

The initial distribution of the approximate densities is given through

%(0, ·) = %0,δ, (3.48) ap3

where

%0,δ ∈ C2,ν(Ω), ∇x%0,δ · ~n|∂Ω = 0, inf
x∈Ω

%0,δ(x) > 0, (3.49) ap4

with a positive parameter δ > 0. We recall the requirement of the strong
convergence of initial approximations of density (2.25) supplemented ad-
ditionally with the condition

|{%0,δ < %0}| → 0 + as δ → 0 + . (3.50) ap5

• The momentum equation is replaced by a Faedo-Galerkin approximation:∫ T

0

∫
Ω

(
%~u · ∂t~ϕ+ %~u⊗ ~u : ∇x~ϕ+ (p+ {δ(%Γ + %2)})divx~ϕ

)
dxdt =

∫ T

0

∫
Ω

(
{d(∇x%∇x~u)} · ~ϕ+ Sδ : ∇x~ϕ− %∇xψ · ~ϕ− ~SF · ~ϕ

)
dxdt

−
∫
Ω
(%~u)0 · ~ϕ dx,

(3.51) ap6

to be satisfied for any test function ~ϕ ∈ C1
c ([0, T ), Xn), where

Xn ⊂ C2,ν(Ω; R3) ⊂ L2(Ω; R3) (3.52) ap7
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is a finite-dimensional space of functions satisfying the no-slip boundary
conditions

~ϕ|∂Ω = ~0. (3.53) ap8

The space Xn is endowed with the Hilbert structure induced by the scalar
product of the Lebesgue space L2(Ω;R3).

We set

Sδ := Sδ

(
∇x~u, ϑ, ~H

)
=
(
λ
(
ϑ,
∣∣∣ ~H∣∣∣)+ δϑ

)
×

(
∇x~u+∇T

x ~u− 2
3divx~u I

)
+
(
η
(
ϑ,
∣∣∣ ~H∣∣∣) divx~u

)
I.

(3.54)

• We replace the energy equation (1.12) with a modified internal energy
balance

∂t(%e+ {δ%ϑ}) + divx

(
(%e+ {δ%ϑ})~u

)
− (3.55) ap11

divx

(
κM (%, ϑ,

∣∣∣ ~B∣∣∣) + κRϑ
3 + {δ

(
ϑΓ + ϑ−1

)
}∇xϑ

)
=

Sδ : ∇x~u+
1
σ

∣∣∣curlx ~H
∣∣∣2 + ~u · ~SF +

{
dδ(Γ|%|Γ−2 + 2)|∇x%|2+

δϑ−2 − dϑ5 + 2δϑ

[∣∣∣∣∇x~u+∇x~u
T

2

∣∣∣∣2 − 1
3

(divx~u)
2

]}
− p divx~u− SE ,

to be satisfied in (0, T )× Ω, together with no-flux boundary conditions

∇xϑ · ~n|∂Ω = 0. (3.56) ap12

The initial condition reads

%(e+ δϑ)(0, ·) = %0,δ(e(%0,δ, ϑ0,δ) + δϑ0,δ), (3.57) ap13

where the (approximate) temperature distribution satisfies

ϑ0,δ ∈ C1(Ω), ∇xϑ0,δ · ~n|∂Ω = 0, inf
x∈Ω

ϑ0,δ(x) > 0. (3.58) ap14

• We add the equation for the radiative transfer

1
c
∂tI + ~ω · ∇xI = S̃ in (0, T )× Ω× S2 × (0,∞), (3.59) ap15

together with the transparency condition (1.24).
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• Finally we require satisfaction of the unmodified equation for magnetic in-
duction ~B (2.23), solenoidality condition (1.3) with an approximate initial
condition

~B(0, ·) = ~B0,δ (3.60) ap16

with ~B0,δ ∈ D(Ω,R3), divx
~B0,δ = 0 and

~B0,δ → ~B0 in L2(Ω,R3) as δ → 0+ . (3.61) ap17

Given a family of approximate solutions {%d,δ, ~ud,δ, ϑd,δ, ~Bd,δ, Id,δ}d>0,δ>0,
we may construct a weak solution of system (1.1) – (1.26) letting successively
d → 0, δ → 0 and using compactness arguments delineated in the previous
part of this paper. The reader may consult [20, Chapter 3] for all technical
details. The approximate solutions can be constructed by means of a fixed
point argument applied to the couple ~u, I, similarly to [20, Chapter 3, Section
3.4].
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DN3 [15] B. Ducomet, Š. Nečasová, Large-time behavior of the motion of a vis-
cous heat-conducting one-dimensional gas coupled to radiation, Annali di
Matematica Pura ed Applicata (4) 191 (2012), no. 2, 219 – 260.
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équations de transport et application au calcul de la limite de la valeur
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