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ASPLUND SPACES CHARACTERIZED BY RICH FAMILIES AND

SEPARABLE REDUCTION OF FRÉCHET SUBDIFFERENTIABILITY

MAREK CÚTH, MARIÁN FABIAN

Abstract. Asplund property of a Banach space X is characterized by the existence of a rich
family, in the product X × X

∗, consisting of some carefully chosen separable subspaces. This
structural result is then used to add a lot of precision and simplicity to the known separable
reductions of Fréchet subdifferentials.

1. Introduction

A Banach space is called Asplund if every convex continuous function on it is Fréchet differ-
entiable at a point (equivalently, at the points of a dense set, yet equivalently, at the points of a
dense Gδ set). An important, and widely used, equivalent condition for the Asplund property of a
Banach space is that every separable subspace of it has separable dual, see [Ph93, Theorem 2.34].
For several other characterizations of Asplund spaces see [F∼11, Theorem 11.8]. Asplund spaces
occur quite frequently in the non-separable Banach space theory.

Section 2 offers a new structural result characterizing Asplund spaces— Theorem 2.3. This is
done in the nowadays modern language of rich families. This instrument is strong enough to get
almost immediately a vast bunch of linear projections in duals to Asplund spaces, in particular
projectional resolutions of the identity, or a modern substitute of it— projectional skeletons.

The Asplund spaces are of particular importance in infinite-dimensional variational analysis,
see [M06]. A reason for that is that a Banach space is Asplund (if and) only if every lower
semicontinuous function on it is somewhere Fréchet subdifferentiable [F89]. Section 3 is devoted
to the separable reduction, via a rich family, of a general, quite precise, assertion involving Fréchet
subdifferentials— see, Theorem 3.1. It serves as a common tool for getting immediately separable
reductions of several more concrete statements like non-emptiness of subdifferential, fuzzy calculus,
extremal principle, ..., all in the sense of Fréchet. The proof, based on Theorem 2.3, brigs a
novelty and more simplicity and precision when comparing with the so far existing technology, cf.
[FI13, FI15].

2. Rich families in Asplund spaces

Let P be a set and let ≺ be a partial order, see [E77, page 21]. Assume moreover that P is
(up)-directed by ≺, i.e., for every t1, t2 ∈ P there is t3 ∈ P such that t1 ≺ t3 and t2 ≺ t3. A subset
R ⊂ P is called cofinal if for every t ∈ P there is r ∈ P such that t ≺ r. R is called σ-complete
if, whenever r1 ≺ r2 ≺ · · · is an increasing sequence in R, then there is r ∈ R such that ri ≺ r for
every i ∈ N and r ≺ t whenever t ∈ P and ri ≺ t for every i ∈ N. A set R ⊂ P is called rich if it
is both cofinal and σ-complete. Note that the whole P is rich if it is σ-complete.

Now, we are ready to provide a concrete example of the poset (P,≺) that emerges naturally in
the framework of Banach spaces. Let Z be a (rather non-separable) Banach space. By S(Z) we

Date: December 8, 2015.
2010 Mathematics Subject Classification. 46B26, 58C20, 46B20, 03C30.
Key words and phrases. Asplund space, Asplund generator, rich family, separable reduction, Fréchet subdiffer-
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denote the family of all separable closed subspaces of Z and we endow it by the partial order “⊂”.
Thus, we can consider rich families in the poset (S(Z),⊂). We then also say that they are rich in
Z. This example of rich family was first articulated in a paper [BM00] by J.M. Borwein and W.
Moors. The power of rich families is demonstrated by the following fundamental simple fact (see
[BM00] and also [LPT12, page 37]).

Proposition 2.1. The intersection of two (even of countably many) rich families of a given Banach
space is (not only non-empty but again even) rich.

Let k ∈ N be greater than 1, and let X1, . . . , Xk be Banach spaces. By a block we understand
any product Y1 × · · · × Yk. Any family consisting of (some) blocks Y1 × · · · × Yk where Y1 ∈
S(X1), . . . , Yk ∈ S(Xk) is called a block-family in S(X1 × · · · ×Xk) or just in X1 × · · · ×Xk. If
k = 2, we speak about rectangles and rectangle-families and we denote by S⊏⊐(X1×X2) the maximal
rectangle-family in S(X1 ×X2). This S⊏⊐(X1×X2) is clearly a rich family in S(X1×X2). For a
Banach space X , with dual X∗, we will frequently work with rectangle-families in S⊏⊐(X ×X∗).

It is fair to say a warning: If R is a rich rectangle-family in S⊏⊐(X ×X∗) it may happen that
the “projection” of it on, say, the second coordinate, that is, the family

{
Y : V × Y ∈ R for some

V ∈ S(X)
}
, is not rich in S(X∗). Such a situation can be arranged easily even in Hilbert space.

Fortunately, in one important case, the projection of R on the first coordinate is again rich; see
Theorems 2.3 a 3.1 below.

Let X be a Banach space. For a set A ⊂ X the symbols spA, spA, and spQA mean the linear
span of A, the norm-closed linear span of A and the set consisting of all finite linear combinations
of elements in A with rational coefficients, respectively. For A ⊂ X and B ⊂ X∗ we put B|A :={
x∗|A : x∗ ∈ B

}
; hence, if A is a subspace of X , then B|A is a subset of the dual space A∗. The

set of rational numbers is denoted by Q and we put Q+ := Q∩ (0,+∞). For an infinite set M the
symbol [M ]≤ω means the family of all infinite countable subsets of M . Given a set M in a Banach
space, then M always denotes the norm closure (not the weak neither weak∗ closure) of it.

Next, we introduce a concept which serves as a link between X and X∗ (and exists right if and
only if X is Asplund).

Definition 2.2. By an Asplund generator in a Banach space X we understand any correspondence
G : [X ]≤ω −→ [X∗]≤ω such that

(a)
(
spC

)∗
= G(C)|spC for every C ∈ [X ]≤ω;

(b) if C1, C2, . . . is an increasing sequence in [X ]≤ω, then G(C1∪C2∪· · · ) = G(C1)∪G(C2)∪· · · ;

(c)
⋃
{G(C) : C ∈ [X ]≤ω} is a dense subset in X∗; and

(d) if C1, C2 ∈ [X ]≤ω are such that spC1 = spC2, then spG(C1) = spG(C2).

Now, consider a Banach space (X, ‖ · ‖), not being Hilbert. Let V be a (closed) subspace of it.
We focus on a question whether there exists a linear isometric extension operator from the dual
V ∗ into X∗. (If there were so, then some arguments in the next section would become quite easy.)
There do exist situations when this happens. For instance, if X is c0(Γ) or ℓp(Γ), 1 ≤ p < +∞,
and V is c0(N) or ℓp(N), where N ⊂ Γ. However, we are afraid that for general X and V this may
not be true. Fortunately, and this is the content of the next structural theorem: If X is Asplund,
there are plenty of well behaving V ’s. We think that this statement actually elucidates what the
Asplund property of a Banach space is. The proof of it gathers together ideas from several papers
ranging over half a century, see in particular [L65, T70, JZ74, G79, FG88, St96, CF15] .

Theorem 2.3. (Main) Let (X, ‖ ·‖) be a (rather non-separable) Banach space. Then the following
assertions are mutually equivalent.
(i) X is an Asplund space.
(ii) X admits an Asplund generator.
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(iii) There exists a rich rectangle-family A ⊂ S⊏⊐(X × X∗) such that Y1 ⊂ Y2 whenever V1 ×
Y1, V2×Y2 are in A and V1 ⊂ V2, and for every V ×Y ∈ A the assignment Y ∋ x∗ 7−→ x∗|V ∈ V ∗

is a surjective isometry.
(iv) There exists a cofinal rectangle-family A ⊂ S⊏⊐(X ×X∗) such that for every V × Y ∈ A the
assignment Y ∋ x∗ 7−→ x∗|V ∈ V ∗ is a surjection.

Proof. (i)=⇒(ii). In order not to get lost in the case of general Asplund space, assume first that
the norm ‖ · ‖ on X is Fréchet smooth, or more generally, that there exist an open set 0 ∈ Ω ⊂ X

and a smooth function f : Ω → R, with continuous derivative f ′ such that f ′(V ∩ Ω)|V is dense
in V ∗ for every subspace V of X ; note that this easily implies that X is Asplund. Define then
G : [X ]≤ω −→ [X∗]≤ω by

[X ]≤ω ∋ C 7−→ f ′
(
spQC ∩ Ω

)
=: G(C) ∈ [X∗]≤ω.

It remains to verify the properties (a), (b), (c), and (d) in Definition 2.2. As regards (a), fix any
C ∈ [X ]≤ω and any v∗ in the dual ( spC)∗. Let any ε > 0 be given. The properties of f provide
a v ∈ spQ C ∩ Ω such that

∥∥v∗ − f ′(v)|spC

∥∥ < ε. But f ′(v) belongs to G(C). And, as ε > 0 was

arbitrary, we get that v∗ belongs G(C)| spC . Thus (a) is verified. Concerning (b), let C1, C2, . . .

be as in the premise. Because our G is “monotone”, we have only to prove the inclusion “⊂”. And
for this it is enough to realize that spQ(C1 ∪ C2 ∪ · · · ) = spQ(C1) ∪ spQ(C2) ∪ · · · . The claim (c)
follows immediately from the fact that f ′(X) is dense in X∗ and from the definition of G. The
last property (d) is guaranteed by the continuity of f ′.

If we are facing a general Asplund space (and we do not have at hand the function f as above),
we have to work harder. Either, we use the information from [FG88] (where Simons’ lemma is
needed!), or we profit from [CF15], based on Ch. Stegall’s ideas (and proved without use of Simons’
lemma). More concretely, let S be any nonempty set in BX . By L(S) we denote the family of all
functions of the form

BX∗ ∋ x∗ 7−→ 1−
k∑

n=1

2−n
∣∣an − 〈x∗, sn〉

∣∣,

where k ∈ N, a1, a2, . . . , ak are rational numbers in [−1, 1], and s1, s2, . . . , sk are elements from S;
note that #L(S) = #S + ℵ0. It is easy to check that each element of L(S) is weak∗ continuous
and has the maximum norm at most equal to 1. Thus L(S) is a subset of (the closed unit ball of)
the Banach space C(BX∗) of all weak∗ continuous functions on the closed unit ball BX∗ in X∗.
We can easily check that

L(S) = L(S) ;(2.1)

hence, the set above here is separable whenever S is separable.
Consider the multivalued mapping ∂ : C(BX∗) −→ 2BX∗ defined by

C(BX∗) ∋ f 7−→ ∂(f) :=
{
x∗ ∈ BX∗ : f(x∗) = max f(BX∗)

}
.

It is well known, and easy to check, that ∂ is norm to weak∗ upper semicontinuous and weak∗

compact-valued. Now, X being Asplund, its dual unit ball is weak∗ dentable, see [Ph93, Theo-
rem 2.32], [F∼11, Theorem 11.8]. Thus, we are ready to apply the selection theorem of Jayne
and Rogers [JR85, Theorem 8], [F97, Theorem 8.1.2] to ∂ and get a sequence of norm to norm

continuous mappings λj : C(BX∗) −→ X∗, j ∈ N, such that for every f ∈ C(BX∗) the limit
limj→∞ λj(f) =: λ0(f) exists in the norm topology of X∗ and moreover λ0(f) ∈ ∂(f), that is,
f
(
λ0(f)

)
= max f(BX∗). Now, we define the multivalued mapping

C(BX∗) ∋ f 7−→ {λ1(f), λ2(f), . . .} =: Λ(f) ⊂ X∗;
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thus Λ : C(BX∗) −→ 2X
∗

. The continuity of the mappings λj ’s and (2.1) then guarantee that

Λ
(
L(S)

)
= Λ

(
L(S)

)
.(2.2)

Hence, the set above is separable once S is separable.
Using the symbols L and Λ introduced above, define

[X ]≤ω ∋ C 7−→⊂ spQ Λ
(
L
(
spQ C ∩BX

))
=: G(C) ∈ [X∗]≤ω .

Let us check that G is an Asplund generator. As regards (a) in Definition 2.2, take any C ∈ [X ]≤ω.

Put V := spC. By [CF15, Proposition 1], BV ∗ ⊂ Λ
(
L(BV )

)∣∣
V
. Hence, using (2.2)

(
spC

)∗
= V ∗ ⊂ spQ Λ

(
L(BV )

)∣∣
V
⊂ G(C)

∣∣
V

(
⊂

(
spC

)∗)
.

(We actually got a stronger equality that
(
spC

)∗
= G(C)

∣∣
spC .) (b) follows easily from the very

definition of our G, the definition of Λ, L, and from the monotonicity of the sequence C1, C2, . . .

(c) follows immediately from [CF15, Proposition 1] saying also that BX∗ ⊂ Λ
(
L(BX)

)
. (d) follows

easily from (2.2) and from the definition of G. We thus proved that (ii) holds in a general Asplund
space.

(ii)=⇒(iii). Let G : [X ]≤ω −→ [X∗]≤ω be an Asplund generator in X . Define A ⊂ S⊏⊐(X×X∗)
as the family consisting of all rectangles spC×spG(C), where C ∈ [X ]≤ω, such that the assignment

(2.3) spG(C) ∋ x∗ 7−→ x∗| spC ∈ (spC)∗

is a surjective isometry. We shall show that A is a rich family.
As regards the cofinality of A, fix any V × Y ∈ S⊏⊐(X ×X∗). Since G is an Asplund generator,

the condition (c) guarantees that there is C0 ∈ [X ]≤ω so big that C0 ⊃ V and G(C0) ⊃ Y .
Assume that for some m ∈ N we already found countable sets C0 ⊂ C1 ⊂ · · · ⊂ Cm−1 ⊂ X .
Realizing that spQG(Cm−1) is countable, we find Cm ∈ [X ]≤ω so big that Cm ⊃ Cm−1 and that
‖x∗‖ = sup 〈x∗, Cm ∩ BX〉 for every x∗ ∈ spQG(Cm−1). Do so subsequently for every m ∈ N and

put finally C := C0 ∪ C1 ∪ · · · . Clearly C ∈ [X ]≤ω and also spC × spG(C) ⊃ V × Y . It remains
to show that the assignment (2.3), with our just constructed C, is a surjective isometry.

From the above we have that for every m ∈ N and for every x∗ ∈ spQG(Cm−1)

‖x∗‖ = sup 〈x∗, Cm ∩BX〉 ≤ sup〈x∗, spC ∩BX〉 =
∥∥x∗| spC

∥∥ ≤ ‖x∗‖.

Hence, by (b) in Definition 2.3, we get that
∥∥x∗| spC

∥∥ = ‖x∗‖ holds for every x∗ ∈ spG(C). We
proved that the assignment (2.3) with our C is isometrical; denote it for a moment by R. Then,
using (a) from Definition 2.3 and the isometric property of R we have

(
spC

)∗
⊂ G(C)|spC ⊂ R

(
spG(C)

)
= R

(
spG(C)

)
= spG(C)|spC .

This shows the surjectivity of the assignment (2.3) with our C. We thus proved that spC×spG(C)
belongs to A, and hence, the family A is cofinal.

For checking the σ-completeness of A, consider any increasing sequence V1 × Y1, V2 × Y2, . . .

of elements in A. Then, clearly, V1 × Y1 ∪ V2 × Y2 ∪ · · · is of form V × Y and this is an element of
S⊏⊐(X×X∗). Also, clearly, V = V1 ∪ V2 ∪ · · · and Y = Y1 ∪ Y2 ∪ · · · . From the definition of A, for
every i ∈ N find Ci ∈ [X ]≤ω such that Vi = spCi and Yi = spG(Ci). Put C := C1 ∪C2 ∪ · · · ; then
C ∈ [X ]≤ω and spC = V . Since V1 ⊂ V2 ⊂ · · · for every i ∈ N we have spCi = sp (C1 ∪ · · · ∪ Ci),
and hence by (d) Yi = spG(C1 ∪ · · · ∪ Ci). Then

Y = Y1 ∪ Y2 ∪ · · · = sp
(
G(C1) ∪G(C1 ∪ C2) ∪ · · ·

) (b)
= spG(C1 ∪ C2 ∪ · · · ) = spG(C)

Now, by (a), V ∗ ⊂ Y |V .
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Further, we will verify that the assignment Y ∋ x∗ 7−→ x∗|V ∈ V ∗ is a surjective isometry. As
regards the isometric property, we recall that for every i ∈ N the rectangle Vi × Yi belongs to A,
and so for every x∗ ∈ Yi we have

‖x∗‖ =
∥∥x∗|Vi

∥∥ ≤
∥∥x∗|V

∥∥ ≤ ‖x∗‖.

It then follows, using the density of Y1∪Y2 ∪· · · in Y , that ‖x∗‖ =
∥∥x∗|V

∥∥ for every x∗ ∈ Y . Now,

once having the information just proved, we have that Y |V = Y |V (⊂ V ∗), and hence V ∗ = Y |V .
Therefore, summarizing all the above, we are sure that our A is a rich family.

Finally, consider any V1 × Y1, V2 × Y2 in A such that V1 ⊂ V2. From the very definition of A
we find C1, C2 ∈ [X ]≤ω such that spC1 = V1 and spC2 = V2. Then

C2 ⊂ C1 ∪C2 ⊂ spC1 ∪ spC2 = V1 ∪ V2 = V2 = spC2,

and so spC2 ⊂ sp (C1∪C2) ⊂ spC2. Now (d) in Definition 2.2 gives that spG(C2) = spG(C1∪C2),
and so

Y2 = spG(C1 ∪ C2)
(b)
= sp

(
G(C1) ∪G(C1 ∪ C2)

)
⊃ spG(C1) = Y1.

We completely proved (iii).

(iii)=⇒(iv) is trivial.

(iv)=⇒(i). Assume (iv) holds. Let Z ∈ S(X) be arbitrary. From the cofinality of A, find
V × Y ∈ A such that V × Y ⊃ Z × {0}. Then V ∗, being the image of Y (∈ S(X∗)), is itself
separable. It then follows that Z∗, the quotient of V ∗, must be also separable. Now it remains to
use the aforementioned characterization of the Asplund property, and thus (i) follows. �

Remark 2.4. Assume that the norm ‖ · ‖ on X is Fréchet smooth and define f := ‖ · ‖2. Then

for every subspace V ⊂ X we get that V ∗ ⊂ f ′(V )|V but not V ∗ ⊂ f ′(V ) |V . Indeed, this stronger
inclusion seems to be a privilege of only some V ’s; we can find such subspaces by playing a suitable
“volleyball” with countably many moves, see the proof of (ii)⇒(iii) above. (Fortunately, these
“selected/better” V ’s form a rich family in S(X).) From this, and from the proof of implication
(i)⇒(ii) above, it follows that using the Stegall’s approach here is somehow stronger and simpler,
see [CF15, Proposition 1]. Likewise, the whole Stegall’s approach [St96] is stronger and simpler
than that from [FG88], see [CF15, Remark 2].

It can be useful to extend Theorem 2.3 to the following statement.

Theorem 2.5. Let (Z, ‖ · ‖) be a Banach space, (X, ‖ · ‖) an Asplund space, T : Z → X a bounded
linear operator, and let z∗ ∈ Z∗ be given. Then there exists a rich block-family AT in Z ×X ×X∗

such that Y1 ⊂ Y2 whenever U1×V1×Y1, U2×V2×Y2 ∈ AT and V1 ⊂ V2, and that for every
U ×V ×Y in AT we have T (U) ⊂ V , the restriction assignment Y ∋ x∗ 7−→ x∗|V ∈ V ∗ is a
surjective isometry, and ‖T ∗x∗ − z∗‖ =

∥∥(T |U )∗(x∗|V )− (z∗|U )
∥∥ for every x∗ ∈ Y .

Proof. It is easy (and left to a reader) to check that the rectangle-family RT consisting of all
U × V ∈ S⊏⊐(Z ×X) such that T (U) ⊂ V is rich in Z ×X . Denote

R1 :=
{
U×V ×Y : U× V ∈ RT and Y ∈ S(X∗)

}
,

R2 :=
{
U×V ×Y : U ∈ S(Z) and V × Y ∈ A

}

where A is from Theorem 2.3. Clearly, both these families are rich, and therefore R := R1 ∩ R2

is a rich block-family in Z×X×X∗. Clearly, every triple U×V ×Y in R possesses the first two
properties from the conclusion of our theorem. Now, define the family

AT :=
{
U×V ×Y ∈ R : ‖T ∗x∗ − z∗‖ =

∥∥(T |U )∗(x∗|V )− (z∗|U )
∥∥ for every x∗ ∈ Y

}
.

Clearly, AT has all the three required properties. Thus, it remains to check that AT is rich.
As regards the cofinality of AT , consider any M ∈ S(Z ×X ×X∗). From the cofinality of R,

find U0×V0×Y0 in R such that U0×V0×Y0 ⊃ M . We shall construct an increasing sequence
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Um×Vm×Ym, m ∈ N, in R as follows. Let m ∈ N and assume that we have already found
Um−1×Vm−1×Ym−1. Using the separability of Ym−1 find Cm−1 ∈ [Z]≤ω such that Cm−1 ⊃ Um−1

and ‖T ∗x∗ − z∗‖ = sup 〈T ∗x∗ − z∗, Cm−1 ∩ BZ〉 for every x∗ ∈ Ym−1. Find Um×Vm×Ym in
R so big that it contains (Um−1 ∪ Cm−1)×Vm−1×Ym−1. Doing so for every m ∈ N, put finally

U :=
⋃
Um , V :=

⋃
Vm , and Y :=

⋃
Ym . Clearly, U×V ×Y =

⋃
Um×Vm×Ym ⊃ M . The

σ-completeness of R guarantees that U×V ×Y lies in R. Now fix any m ∈ N and any x∗ ∈ Ym−1.
We can estimate

‖T ∗x∗ − z∗‖ = sup
〈
T ∗x∗ − z∗, Cm−1 ∩BZ

〉
≤ sup

〈
T ∗x∗ − z∗, BU

〉

= sup
{〈

x∗|V ,
(
T |U

)
u
〉
− 〈z∗|U , u〉 : u ∈ BU

}

=
∥∥(T |U )∗(x∗|V )− z∗|U

∥∥ ≤ ‖T ∗x∗ − (z∗)‖ .

Thus ‖T ∗x∗ − z∗‖ =
∥∥(T |U )∗(x∗|V ) − (z∗)|U

∥∥ for every x∗ from
⋃
Ym, and finally, for every x∗

from Y . We verified that U × V × Y ∈ AT , and hence AT is cofinal.
As regards the σ-completeness of AT , consider any increasing sequence U1×V1×Y1, U2×V2×Y2, . . .

in AT . Put U :=
⋃
Ui , V :=

⋃
Vi , and Y :=

⋃
Yi . Clearly, U×V ×Y =

⋃
Ui×Vi×Yi . As R was

rich, our U×V×Y belongs to it. Take any i ∈ N and any x∗ ∈ Yi. Since Ui×Vi×Yi ∈ AT , we have
that ‖T ∗x∗−z∗‖ =

∥∥(T |Ui
)∗(x∗|Vi

)− (z∗|Ui
)
∥∥. But we can easily verify the following monotonicity

∥∥(T |Ui
)∗(x∗|Vi

)− (z∗|Ui
)
∥∥ ≤

∥∥(T |U )∗(x∗|V )− (z∗|U )
∥∥ ≤ ‖T ∗x∗ − z∗‖.

Thus ‖T ∗x∗ − z∗‖ =
∥∥(T |U )∗(x∗|V )− (z∗|U )

∥∥ holds for every x∗ from
⋃
Yi, and hence for every x∗

from Y . We proved that U × V × Y belongs to AT , and therefore this family is σ-complete.
�

Remark 2.6. Of course, Theorem 2.5 can be easily extended to several spaces Z1, . . . , Zk, to
z∗i ∈ Z∗

i , and to operators Ti : Zi → X, i = 1, . . . , k.

3. Separable reduction for statements with Fréchet subdifferentials

Separable reductions for Fréchet (sub)differentiability originated some three-four decades ago
in works by D. Gregory [Ph93, pages 23, 24, 37], D. Preiss [Pr84], and M. Fabian, N. V. Zhivkov
[FZ85]. In all these papers and in many subsequent ones until the recent contributions —see [P10],
[I11], [FI13], [FI15]— there was a common belief that for a successful performing separable re-
ductions of statements involving Fréchet subdifferentiability (like non-emptiness of subdifferential,
fuzzy calculus, etc.), it is necessary to first translate such statements completely into terms of the
Banach space X in question (with no use of its dual X∗). The present approach below destroys
this longstanding taboo in the case when we restrict to the framework of Asplund spaces.1 In-
deed, once we have at hand the deeper structural characterization of the Asplund property (see
Theorem 2.3), we can work with the original definition of Fréchet (sub)differentiability (“... there
exists an element of the dual X∗ such that ...”). This way, the separable reductions in Asplund
spaces can be substantially simplified and obtained results become exact (see Theorem 3.1); for
comparison see [FI15].

Let (X, ‖ · ‖) be a Banach space, let f : X −→ (−∞,+∞] be any proper function, i.e. f 6≡ +∞,
and let x ∈ X be a point where f(x) < +∞. The Fréchet subdifferential ∂F f(x) of f at x is the
(possibly empty) set consisting of all x∗ ∈ X∗ such that f(x+h)− f(x)−〈x∗, h〉 > −o(‖h‖) for all

0 6= h ∈ X where o : (0,+∞) −→ [0,+∞] is a suitable function with the property that o(t)
t

→ 0 as

t ↓ 0; or in other words, if for every ε > 0 there is δ > 0 such that 1
‖h‖

(
f(x+h)−f(x)−〈x∗, h〉

)
> −ε

whenever h ∈ X and 0 < ‖h‖ < δ.

1Separable reduction of Fréchet differentiability realized without any translation into terms of X was presented
recently in [LPT12, Sections 3.5 and 3.6].
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Theorem 3.1. (Main) Let (X, ‖ · ‖) be a (rather non-separable) Asplund space and let f : X −→
(−∞,+∞] be any proper function. Then there exists a rich rectangle-family R ⊂ S⊏⊐(X × X∗)
such that Y1 ⊂ Y2 whenever V1 × Y1, V2 × Y2 ∈ R and V1 ⊂ V2, with further properties that for
every V × Y ∈ R the assignment Y ∋ x∗ 7−→ x∗|V ∈ V ∗ is an isometry from Y |V onto V ∗ and
for every v ∈ V we have that

(
∂F f(v) ∩ Y

)
|V =

(
∂F f(v)

)
|V = ∂F (f |V )(v);

that is, in more detail, if v∗ ∈ ∂F (f |V )(v), there exists a unique x∗ ∈ ∂F f(v) ∩ Y such that
x∗|V = v∗ and ‖x∗‖ = ‖v∗‖.

Remark 3.2. It is worth to compare the theorem above with what was proved in [FZ85, F89]: In
a general (possibly non-Asplund) Banach space X , there is a cofinal family C in S(X) such that
for every V ∈ C and for every v ∈ V the non-emptiness of ∂F (f |V )(v) implies the non-emptiness
of ∂F f(v).

Proof. We obviously have that
(
∂F f(v) ∩ Y

)
|V ⊂

(
∂F f(v)

)
|V ⊂ ∂F (f |V )(v)(3.1)

for every V × Y ∈ S⊏⊐(X ×X∗) and every v ∈ V .
Further for x ∈ X, x∗ ∈ X∗, r ∈ R, 0 < δ1 < δ2, and V ⊂ X we define

IV (x, x
∗, r, δ1, δ2) := inf

{
1

‖h‖

(
f(x+ h)− r − 〈x∗, h〉

)
: h ∈ V and δ1 < ‖h‖ < δ2

}
.

(A novelty here is that we operate also with x∗, an element of the dual X∗, which was “for-
bidden” for three decades, and that f(x) is replaced by r ∈ R.) Further for each “cortege”
x, x∗, r, δ1, δ2 as above and for each γ > 0 we find a vector v(x, x∗, r, δ1, δ2, γ) ∈ X such that
δ1 < ‖v(x, x∗, r, δ1, δ2, γ)‖ < δ2 and
(3.2)

1

‖v(x, x∗, r, δ1, δ2, γ)‖

(
f(x+v(x, x∗, r, δ1, δ2, γ))−r−〈x∗, v(x, x∗, r, δ1, δ2, γ)〉

)
< IX(x, x∗, r, δ1, δ2)+γ

if IX(x, x∗, r, δ1, δ2) > −∞, and

(3.3)
1

‖v(x, x∗, r, δ1, δ2, γ)‖

(
f(x+ v(x, x∗, r, δ1, δ2, γ))− r − 〈x∗, v(x, x∗, r, δ1, δ2, γ)〉

)
< −

1

γ

if IX(x, x∗, r, δ1, δ2) = −∞.
Let A ⊂ S⊏⊐(X ×X∗) be the rich family found in Theorem 2.3. We define the family R as that

consisting of all V × Y ∈ A satisfying

(3.4) IX(x, x∗, r, δ1, δ2) = IV (x, x
∗, r, δ1, δ2) whenever x ∈ V, x∗ ∈ Y, r ∈ R, and 0 < δ1 < δ2.

We shall prove that R is cofinal in S(X ×X∗). Fix any Z ∈ S(X ×X∗). Since A is rich, there
is V0 × Y0 ∈ A such that V0 × Y0 ⊃ Z. Find countable sets C0, D0 contained and dense in V0 and
Y0, respectively. We shall construct increasing sequences Y0 × V0, V1 × Y1, V2 × Y2, . . . in A, and
C0 ×D0, C1 ×D1, C2 ×D2, . . . in [X ×X∗]≤ω such that Ci = Vi, Di = Yi for every i ∈ N, and
having some extra properties described below. Let m ∈ N be arbitrary and assume that we have
already found Vm−1, Ym−1, Cm−1, Dm−1. From the cofinality of A we find Vm × Ym ∈ A such that
Vm contains the (countable) set

C̃ := Cm−1 ∪
{
v(x, x∗, q, δ1, δ2, γ) : x ∈ Cm−1, x∗ ∈ Dm−1, q ∈ Q, δ1, δ2, γ ∈ Q+, and δ1 < δ2

}

and Ym contains Ym−1. Find then a countable set C̃ ⊂ Cm ⊂ Vm such that Cm = Vm and a
countable set Dm−1 ⊂ Dm ⊂ Ym such that Dm = Ym. Do so subsequently for every m ∈ N. Put
V := V0 ∪ V1 ∪ V2 ∪ · · · and Y := Y0 ∪ Y1 ∪ Y2 ∪ · · · . The σ-completeness of A guarantees that
V × Y belongs to A.
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We shall show that V × Y ∈ R. This means that we have to verify (3.4). So, fix any cortege
x, x∗, r, δ1, δ2 as there. Consider any fixed h ∈ X such that δ1 < ‖h‖ < δ2. We have to show that
1

‖h‖(f(x+h)−r−〈x∗, h〉) ≥ IV (x, x
∗, r, δ1, δ2). Pick some δ′1, δ

′
2 ∈ Q such that δ1 < δ′1 < ‖h‖ < δ′2 <

δ2. It is easy to check that V = C0 ∪C1 ∪ · · · and Y = D0 ∪D1 ∪ · · · . Find x0 ∈ C0, x1 ∈ C1, . . .

and x∗
0 ∈ D0, x∗

1 ∈ D1, . . . such that ‖xi − x‖ −→ 0 and ‖x∗
i − x∗‖ −→ 0 as i → ∞. Consider

any fixed γ ∈ Q+ . Pick q ∈ Q such that |r − q| < γ‖h‖. Denote N1 :=
{
i ∈ N : ‖xi − x‖ <

min{δ′1 − δ1, δ2 − δ′2}
}
; this is a co-finite set in N.

Now, take any k ∈ V , with δ′1 < ‖k‖ < δ′2. For i ∈ N1 we have δ1 < ‖xi − x+ k‖ < δ2 and then
we can estimate

1

‖k‖

(
f(xi + k)− q − 〈x∗

i , k〉
)

=
‖k + xi − x‖

‖k‖
·

1

‖k + xi − x‖

(
f(x+ (xi − x+ k))− r − 〈x∗, xi − x+ k〉

)

+
1

‖k‖

(
〈x∗, xi − x+ k〉 − 〈x∗

i , k〉
)
+

r − q

‖k‖

≥
(
1+ si

‖xi − x‖

‖k‖

)
IV (x, x

∗, r, δ1, δ2)−
1

δ1

(
‖x∗‖‖xi − x‖+ δ2‖x

∗ − x∗
i ‖
)
− γ

δ2

δ′1

(3.5)

where si = 1 if IV (x, x
∗, r, δ1, δ2) ≤ 0 and si = −1 otherwise. It then follows that

IV (xi, x
∗
i , q, δ

′
1, δ

′
2)

≥
(
1+ si

‖xi − x‖

δ1

)
IV (x, x

∗, r, δ1, δ2)−
1

δ1

(
‖x∗‖‖xi − x‖ + δ2‖x

∗ − x∗
i ‖
)
− γ

δ2

δ′1

(3.6)

holds for every i ∈ N1.
Now, put

N2 :=
{
i ∈ N1 : δ′1 < ‖h+ x− xi‖ < δ′2 and 〈x∗

i , x− xi〉+ 〈x∗
i − x∗, h〉 > −‖h‖γ

}

—this is still a co-finite set in N— and then put N3 :=
{
i ∈ N2 : IX(xi, x

∗
i , q, δ

′
1, δ

′
2) = −∞}.

First, assume that N3 is finite. Using (3.2), for every i ∈ N2 \N3 we can estimate

1

‖h‖

(
f(x+ h)− r − 〈x∗, h〉

)

=
‖x− xi + h‖

‖h‖
·

1

‖x− xi + h‖

(
f(xi + (x− xi + h))− q − 〈x∗

i , x− xi + h〉
)

+
1

‖h‖

(
〈x∗

i , x− xi〉+ 〈x∗
i − x∗, h〉

)
+

q − r

‖h‖

>
‖x− xi + h‖

‖h‖
IX(xi, x

∗
i , q, δ

′
1, δ

′
2)− γ − γ

>
‖x− xi + h‖

‖h‖

[
1

‖v(xi, x
∗
i , q, δ

′
1, δ

′
2, γ)‖

(
f
(
xi + v(−)

)
− q −

〈
x∗
i , v(−)

〉)
− γ

]
− 2γ

≥
‖x− xi + h‖

‖h‖

[
IV

(
xi, x

∗
i , q, δ

′
1, δ

′
2,
)
− γ

]
− 2γ;

(3.7)

here v(−) meant v(xi, x
∗
i , q, δ

′
1, δ

′
2, γ) (∈ V ). Now, plugging here (3.6), and then letting N2 \N3 ∋

i → ∞, we get that

1

‖h‖

(
f(x+ h)− r − 〈x∗, h〉

)
≥ IV (x, x

∗, r, δ1, δ2)− 3γ − γ
δ2

δ′1
.
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And, realizing that γ ∈ Q+ could be arbitrarily small, we get that 1
‖h‖

(
f(x + h) − r − 〈x∗, h〉

)
≥

IV (x, x
∗, r, δ1, δ2). This, of course, implies that IX(x, x∗, r, δ1, δ2) ≥ IV (x, x

∗, r, δ1, δ2).
Second, assume that the set N3 is infinite. Take any γ′ ∈ Q+. For i ∈ N3 we have from (3.3)

that

−
1

γ′
>

1

‖v(xi, x
∗
i , q, δ

′
1, δ

′
2, γ

′)‖

(
f(xi + v(xi, x

∗
i , q, δ

′
1, δ

′
2, γ

′))− q − 〈x∗
i , v(xi, x

∗
i , q, δ

′
1, δ

′
2, γ

′)〉
)

=
‖xi − x+ v(−)‖

‖v(−)‖
·

1

‖xi − x+ v(−)‖

(
f(x+ (xi − x+ v(−)))− r − 〈x∗, xi − x+ v(−)〉

)

+
r − q

‖v(−)‖
+

1

‖v(−)‖

(
〈x∗, xi − x〉+ 〈x∗ − x∗

i , v(−)〉
)

≥
‖xi − x+ v(−)‖

‖v(−)‖
IV (x, x

∗, r, δ1, δ2)−
|r − q|

δ′1
−

1

δ′1

∣∣〈x∗, xi − x〉+ 〈x∗ − x∗
i , v(−)〉

∣∣;

here v(−) always meant v(xi, x
∗
i , q, δ

′
1, δ

′
2, γ

′) (∈ V ). And letting N3 ∋ i → ∞, we get that − 1
γ′

≥

IV (x, x
∗, r, δ1, δ2)−

|r−q|
δ1

. Here γ′ ∈ Q+ could be arbitrarily small. Therefore IV (x, x
∗, r, δ1, δ2) =

−∞, and hence for sure IX(x, x∗, r, δ1, δ2) ≥ IV (x, x
∗, r, δ1, δ2). Therefore V × Y ∈ R.

The proof of σ-completeness of R is similar to (but a bit different from) the proof of cofinality.
Let V1,×Y1, V2 × Y2, . . . be an increasing sequence of elements in our R. We have to verify that
V1 × Y1 ∪ V2 × Y2 ∪ · · · also belongs to R. Clearly, this set is of form V × Y . As A is σ-complete,
V×Y ∈ A. It remains to verify (3.4). So, fix any cortege x, x∗, r, δ1, δ2 as there. Consider any h ∈ X

such that δ1 < ‖h‖ < δ2. We have to show that 1
‖h‖(f(x+h)−r−〈x∗ , h〉) ≥ IV (x, x

∗, r, δ1, δ2). Pick

some δ′1, δ
′
2 ∈ R such that δ1 < δ′1 < ‖h‖ < δ′2 < δ2. It is easy to check that V = V1 ∪ V2 ∪ · · · and

Y = Y1 ∪ Y2 ∪ · · · . Find x1 ∈ V1, x2 ∈ V2, . . . and x∗
1 ∈ Y1, x∗

2 ∈ Y2, . . . such that ‖xi − x‖ −→ 0
and ‖x∗

i − x∗‖ −→ 0 as i → ∞. Denote M1 :=
{
i ∈ N : ‖xi − x‖ < min{δ′1 − δ1, δ2 − δ′2}

}
; this is

a co-finite set in N.
Now, take any k ∈ V , with δ′1 < ‖k‖ < δ′2. For i ∈ M1 we have δ1 < ‖xi − x + k‖ < δ2 and

then we can estimate (This chain is a bit simpler than (3.5) since we now do not need r replaced
by q ∈ Q.)

1

‖k‖

(
f(xi + k)− r − 〈x∗

i , k〉
)

=
‖k + xi − x‖

‖k‖
·

1

‖k + xi − x‖

(
f(x+ (xi − x+ k))− r − 〈x∗, xi − x+ k〉

)

+
1

‖k‖

(
〈x∗, xi − x+ k〉 − 〈x∗

i , k〉
)

≥
(
1 + si

‖xi − x‖

‖k‖

)
IV (x, x

∗, r, δ1, δ2)−
1

δ1

(
‖x∗‖‖xi − x‖+ δ2‖x

∗ − x∗
i ‖
)

where si = 1 if IV (x, x
∗, r, δ1, δ2) ≤ 0 and si = −1 otherwise. It then follows that (This is a bit

simpler than (3.6).)

IV (xi, x
∗
i , r, δ

′
1, δ

′
2)

≥
(
1 + si

‖xi − x‖

δ1

)
IV (x, x

∗, r, δ1, δ2)−
1

δ1

(
‖x∗‖‖xi − x‖+ δ2‖x

∗ − x∗
i ‖
)(3.8)

holds for every i ∈ M1.
Now, consider any γ > 0 and put (This M2 is defined exactly as N2 above.)

M2 :=
{
i ∈ M1 : δ′1 < ‖h+ x− xi‖ < δ′2 and 〈x∗

i , x− xi〉+ 〈x∗
i − x∗, h〉 > −γ‖h‖

}
;
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this is still a co-finite set in N. Using (3.8), for every i ∈ M2 we can estimate (The following chain
is different from (3.7).)

1

‖h‖

(
f(x+ h)− r − 〈x∗, h〉

)

=
‖x− xi + h‖

‖h‖
·

1

‖x− xi + h‖

(
f(xi + (x− xi + h))− r − 〈x∗

i , x− xi + h〉
)

+
1

‖h‖

(
〈x∗

i , x− xi〉+ 〈x∗
i − x∗, h〉

)

≥
‖x− xi + h‖

‖h‖
IX(xi, x

∗
i , r, δ

′
1, δ

′
2)− γ

=
‖x− xi + h‖

‖h‖
IVi

(xi, x
∗
i , r, δ

′
1, δ

′
2)− γ (as (xi, x

∗
i ) ∈ Vi × Yi ∈ R and (3.4) holds)

≥
‖x− xi + h‖

‖h‖
IV (xi, x

∗
i , r, δ

′
1, δ

′
2)− γ.

Now, plugging here (3.8), and then letting M2 ∋ i → ∞, we get that

1

‖h‖

(
f(x+ h)− r − 〈x∗, h〉

)
≥ IV (x, x

∗, r, δ1, δ2)− γ ,

Finally, realizing that γ > 0 could be arbitrarily small, we get that 1
‖h‖

(
f(x+ h)− r − 〈x∗, h〉

)
≥

IV (x, x
∗, r, δ1, δ2). This, of course, implies that IX(x, x∗, r, δ1, δ2) ≥ IV (x, x

∗, r, δ1, δ2), and so
V ×Y ∈ R. We proved that R is σ-complete, and therefore R is a rich rectangle-family in X×X∗.

That Y1 ⊂ Y2 whenever V1 × Y1, V2 × Y2 ∈ R and V1 ⊂ V2, follows immediately from the same
property shared by A.

It remains to prove that our R “works”, that is , that ∂F (f |V )(v) ⊂
(
∂F f(v) ∩ Y

)
|V whenever

V × Y ∈ R and v ∈ V . So, pick any such V × Y . We know from Theorem 2.3 that Y ∋ x∗ 7−→
x∗|V ∈ V ∗ is an isometry onto. Fix any v ∈ V . Assume there is v∗ in ∂F (f |V )(v). Find (a
unique) x∗ ∈ Y such that x∗|V = v∗. We shall show that x∗ ∈ ∂F f(v). So, fix any ε > 0.
Find δ > 0 such that f(v + k) − f(v) − 〈v∗, k〉 > −ε‖k‖ whenever k ∈ V and 0 < ‖k‖ < δ;
then IV (v, x

∗, f(v), δ1, δ) ≥ −ε for every δ1 ∈ (0, δ). Now, let h ∈ X be any vector such that
0 < ‖h‖ < δ. Pick δ1 ∈ (0, ‖h‖). Then we have

1

‖h‖

(
f(v + h)− f(v)− 〈x∗, h〉

)
≥ IX(v, x∗, f(v), δ1, δ) = IV (v, v

∗, f(v), δ1, δ) ≥ −ε

by (3.4). We proved that x∗ belongs to ∂f(v)∩Y , and so v∗ belongs to
(
∂F f(v)∩Y

)
|V . Therefore

∂F (f |V )(v) ⊂
(
∂F f(v) ∩ Y

)
|V . This together with (3.1) completes the proof. �

Corollary 3.3. Let (X, ‖ · ‖) be a (rather non-separable) Asplund space and let f : X −→
(−∞,+∞] be any proper function. Then there exists a rich family R ⊂ S(X) such that for
every V ∈ R and for every v ∈ V we have:
(i) ∂F f(v) 6= ∅ if (and only if) ∂F (f |V )(v) 6= ∅ (cf. [F89]).
(ii) For t ≥ 0 we have ∂F f(v) \ tBX∗ 6= ∅ if (and only if) ∂F (f |V )(v) \ tBV ∗ 6= ∅ (cf. [FM02]).
(iii) f is Fréchet differentiable at v if (and only if) f |V is Fréchet differentiable at v; and in this
case ‖f ′(v)‖ =

∥∥(f |V )′(v)
∥∥ (cf. [Pr84, Z12]).

Proof. Let R1 and R2 be rich rectangle-families found in Theorem 3.1 for the functions f and −f ,
respectively. Let R be the “projection of R1 ∩R2 on the first coordinate”, that is, put

R :=
{
V ∈ S(X) : V × Y ∈ R1 ∩R2 for some Y ∈ S(X∗)

}
.
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It is easy check that R is rich. It works. Indeed, (i) and (ii) follow immediately from Theorem 3.1.
As regards (iii), take any V ∈ R and any v ∈ V . Find Y ∈ S(X∗) so that V ×Y is in R1∩R2. Then
(i) and (ii) immediately follow from Theorem 3.1. Further, assume that f |V is Fréchet differentiable
at v and put v∗ := (f |V )

′(v). This implies that v∗ ∈ ∂F (f |V )(v) and −v∗ ∈ ∂F ((−f)|V )(v). Find
the unique x∗ ∈ Y such that x∗|V = v∗ and ‖x∗‖ = ‖v∗‖; then (−x∗)|V = −v∗. Now, by
Theorem 3.1, x∗ ∈ ∂F f(v) and −x∗ ∈ ∂F (−f)(v). It then follows that f is Fréchet differentiable
at v, with f ′(v) = x∗ and ‖f ′(v)‖ = ‖x∗‖ = ‖v∗‖ = ‖(f |V )

′(v)‖. �

Corollary 3.4. Let (X, ‖ · ‖) be an Asplund space, let f : X −→ (−∞,+∞] be a lower semicon-
tinuous function, and g : X −→ (−∞,+∞] be a function uniformly continuous in a vicinity of a
certain x ∈ X. Then:
(i) The set {x ∈ X : ∂F f(x) 6= ∅} is dense in the domain of f (see [F89]).
(ii) If x∗ ∈ ∂F (f+g)(x), then for every ε > 0 there are x1, x2 ∈ X, x∗

1 ∈ ∂F f(x1), and x∗
2 ∈ ∂F g(x2)

such that ‖x1 − x‖ < ε, ‖x2 − x‖ < ε, and ‖x∗
1 + x∗

2 − x∗‖ < ε (see [F89] modulo [I83]).

Proof. Assume first thatX is separable. Find an equivalent Fréchet smooth norm, see e.g. [DGZ93,
pages 48, 43] arbitrarily close to ‖ · ‖. Then (i) can be easily obtained using Borwein-Preiss or
Deville-Godefroy-Zizler smooth variational principles [Ph93, Section 4]. As regards (ii), proceed
as in [I83], using the same smooth principles.

Second, assume that X is non-separable. As regards (i), combine the just proved separable
statement with Corollary 3.3 (i). To prove (ii), assume that x∗ ∈ ∂F (f + g)(x) and let ε > 0 be
given. By Theorem 3.1, find rich families R1, R2 corresponding to f, g, respectively, and put R :=
R1∩R2. Find V ×Y ∈ R so that it contains (x, x∗). Using the validity of the separable statement,
find x1, x2 ∈ V, v∗1 ∈ ∂F (f |V )(x1), and v∗2 ∈ ∂F (g|V )(x2) such that ‖x1 − x‖ < ε, ‖x2 − x‖ < ε,
and ‖v∗1 + v∗2 − x∗|V ‖ < ε. Now, the conclusion of Theorem 3.1 provides unique x∗

1 ∈ ∂F f(x1)∩ Y

and x∗
2 ∈ ∂F g(x2) ∩ Y such that x∗

i |V = v∗i , i = 1, 2. Hence, using the isometric property of the
restriction mapping Y ∋ ξ 7−→ ξ|V , we conclude that ‖x∗

1 + x∗
2 − x∗‖ = ‖v∗1 + v∗2 − x∗|V ‖ < ε. �

Let (X, ‖ · ‖) be a Banach space, let Ω ⊂ X , and let x ∈ Ω. The Fréchet normal cone NF (x,Ω)
of Ω at x is defined as the Fréchet subdifferential of the indicator function ιΩ of Ω at x; note that
NF (x,Ω) always contains 0. Let Ω1,Ω2 be two subsets of X , with non-empty intersection, and fix
an x in it. If there are ε > 0 and sequences (a1n), (a2n) in X satisfying that (a1n +Ω1)∩ (a2n +Ω2)∩
(x + εBX) = ∅ for every n ∈ N, then we say that x is a local extremal point of Ω1 ∩ Ω2 and the
triple {Ω1,Ω2, x} is called an extremal system in X , see [M06, page 172].

Corollary 3.5. Let (X, ‖ · ‖) be an Asplund space. Then:
(i) For every nonempty closed set Ω ⊂ X the set

{
x ∈ X : NF (x,Ω) 6= {0}

}
is dense in the

boundary of Ω (see [FM99] ).
(ii) For every extremal system (Ω1,Ω2, x) in X the “Fréchet” extremal principle holds, that is,
for every ε > 0 there are x1, x2 ∈ X such that ‖x1 − x‖ < ε, ‖x2 − x‖ < ε and there are
x∗
i ∈ NF (xi,Ωi) + εBX∗ , i = 1, 2, such that ‖x∗

1‖+ ‖x∗
2‖ = 1, and x∗

1 + x∗
2 = 0 (see [MS96]).

The proof is very similar to that of Corollary 3.4, once we have at hand the “separable” statements
[MS96].

Remark 3.6. Of course, (ii) in Corollary 3.5 is usually derived from (ii) in Corollary 3.4 with help
of Ekeland’s principle. We thank the referee for this comment. It should be also noted that (ii) in
Corollary 3.4 and 3.5 were obtained in [FM02] via a much more complicated separable reduction.

We finish by deriving easily a strengthening of the main result of the paper [FI15] from Theo-
rems 2.5 and 3.1 in the framework of Asplund spaces.

Theorem 3.7. Let k ∈ N, let X be a non-separable Asplund space, let Z1, . . . , Zk be Banach
spaces, let z∗1 ∈ Z∗

1 , . . . , z∗k ∈ Z∗
k , let Ti : Zi → X, i = 1, . . . , k, be bounded linear operators,
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and let f : X −→ (−∞,+∞] be a proper function. Then there exists a rich block-family R in
Z1×· · ·×Zk×X such that, for every U1×· · ·×Uk×V ∈ R we have T1(U1) ⊂ V, . . . , Tk(Uk) ⊂ V

and there is Y ∈ S(X∗) such that:
(i) The assignment Y ∋ x∗ 7−→ x∗|V ∈ V ∗ is an isometry onto V ∗;
(ii)

(
∂F f(v) ∩ Y

)
|V =

(
∂F f(v)

)
|V = ∂F (f |V )(v) for every v ∈ V ; and

(iii)
∥∥T ∗

i x
∗ − z∗i

∥∥ =
∥∥(Ti|Ui

)∗
(x∗|V )− (z∗i |Ui

)
∥∥ for every x∗ ∈ Y and i = 1, . . . , k

Proof. Putting together Theorem 2.5 and Remark 2.6, we find a rich block-family AT1,...,Tk
in

Z1 × · · · × Zk ×X ×X∗ with similar properties as the family AT in Theorem 2.5 has. Let R′ be
the rich family in X ×X∗ found in Theorem 3.1. Define

R :=
{
U1×· · ·×Uk×V : U1×· · ·×Uk×V ×Y ∈ AT1,...,Tk

and V ×Y ∈ R′ for some Y ∈ S(X∗)
}
.

Clearly, R is cofinal. And from the “monotonicity” property of AT1,...,Tk
we easily get that R is

σ-complete. That (i) and (iii) are true follows directly from Theorem 2.5. (ii) comes immediately
from Theorem 3.1. �

Remark 3.8. From the theorem above we immediately get a strengthening of [FI15, Corollary
4.5] and afterwards [FI15, Theorem 4.6], provided we are in the framework of Asplund spaces.

Remark 3.9. There are at least two methods of proving separable reduction theorems. One is
“the method via rich families” presented above. An alternative to this is a set-theoretical approach
called “the method of suitable models”. On one hand, proofs using the latter method, require some
knowledge of set theory or logic, on the other hand it seems that this approach is more powerful and
less technical. All the statements from this paper can be formulated and proved in the language of
“suitable models”. The proofs would be shorter; however, for a reader not familiar with set theory
or logic, less readable. This is why we have chosen to present the proofs using the first mentioned
method. We refer a reader interested in the second mentioned method to the paper [C12] where
basics of this alternative way is explained, to [CK14] where the relation between the both methods
is investigated, and to a forthcoming paper [C16] where it will be proved (among other things)
that in Asplund spaces the both methods are in some sense equivalent.
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[F∼11] M. Fabian, P. Hájek, P. Habala, V. Montesinos, and V. Zizler, Banach space theory: The basis for linear

and non-linear analysis, Springer Verlag, CMS Books in Mathematics, New York 2011.
[FI13] M. Fabian and A. Ioffe, Separable reduction in the theory of Fréchet subdifferentials, Set-Valued Var. Anal.
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